
Abstract

Continuous planning refers to the process of planning
in a world under continual change. Traditionally, as
new world information is encountered, a planner
adapts to it through the refinement of the plans that are
under construction. The major thesis of this paper,
however, is that often it is necessary to modify the goals
of the planner in addition to the plans themselves. We
introduce the concept of goal transformations in a
continuous planner. The extended planner can
automatically select the appropriate goal
transformations in response to world changes and can
completely solve the transformed problem. We present
a set of goal transformations that handle, in particular,
changes in resources in the world. We introduce a
detailed taxonomy of goal transformations. We
implemented several transformations within a planning
system, and we show empirical results that
demonstrate the effectiveness of our approach.

Introduction

Continuous (or continual) planning in dynamic environ-
ments requires the discharge of many classical-planning
assumptions. For example, the closed world assumption can-
not hold. The world is under continual change, and planning
is often a matter of adjusting to the world as new information
is discovered, whether during planning or during execution.
However, the adjustment that planners classically perform
given dynamic events during planning entails change with
regard to the knowledge concerning the current state of the
world and, in response, adaptation of the current plan. Dur-
ing execution of plans, outcomes may diverge from expecta-
tions, so plans are again adjusted accordingly (see Tate,
Hendler, and Drummond, 1990). The major thesis of this
paper, however, is that the adjustment of thegoals of the
planner is often required in addition to the adjustment of the
plans themselves.

When the world changes during planning or during exe-
cution (in continuous planning there is not necessarily a
clear chronological line between the two), goals may

become obsolete. For example, it makes no sense to continue
to pursue the goal of securing a town center if the battlefield
has shifted to an adjacent location. At such a point, a robust
planner must be able to alter the goal minimally to compen-
sate; otherwise, a correct plan to secure the old location will
not be useful at execution time. We define agoal transforma-
tion to be a movement in a goal space and show how such a
function can be explicitly incorporated into a planner’s deci-
sion process.

Goal transformations are required in at least two cases
within a continuous planning algorithm: (i) when the plan-
ning system senses a change in the environment that dictates
an adjustment either during the planning process or during
the execution of plan steps; (ii) when the planner cannot
solve the current problem because of a lack of known
resources. However, goal transformations need to be used
conservatively and with caution. Otherwise in all instances,
the substitution of the current goals with the empty set by a
series of retraction transformations can be satisfied by the
null plan (a plan with no steps).

Moreover, a trade-off exists that the planner should eval-
uate before deciding to perform goal transformations. By
changing the goals, the planner may not be able to create a
plan whose utility is as great as a plan that satisfies the orig-
inal goal. In cases where no plan is possible for the original
goal, a minimal goal shift is clearly warranted. In cases
where a plan does exist for the original goal, the cost of the
plan execution may reduce the benefits over that for the alter-
native plan that achieves a transformed goal. Therefore, a
cost-benefit analysis can be performed to find the optimal
point at which goal transformations should be used.

Finally, an additional trade-off exists with respect to the
introduction of this new approach to replanning. Through
goal transformations, a planner may successfully generate
plans where none could be achieved previously, but at the
expense of a larger and more complex search space. The key
to making this approach practical is to make the choice of
transformations an option only when planning would other-
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wise fail, and then to manage the search through control
knowledge.

Section 2 discusses the concept of goal transformations
in some detail. Section 3 continues with an example to moti-
vate the goal transformation process in a continuous planner
where planning monitors sense the changes of the state. Sec-
tion 4 describes the implementation and algorithm we imple-
mented within the PRODIGY planning and learning
architecture. Although the example and the implementation
makes use of the Air Campaign Planning domain, the results
are not domain specific. Section 5 reports empirical results
that illustrate the relative performance of PRODIGY with
and without goal transformations. Finally, section 6 con-
cludes with a brief discussion and future research.

Goal Transformations

Cox and Veloso (1997a) show that goals can exist in an
abstraction hierarchy so that some goals specify desired
states that are more general than others. The concept intro-
duced in this work is that an important strategy for replan-
ning in continuous planning environments is to shift goals
along this hierarchy and other goal spaces. We call such
movement agoal transformation. Table 1 is suggestive of the
types of goal transformations that are available to reposition
a goal along various continuums. The goal arguments and
predicates may be moved along an abstraction hierarchy, an

enumerated set, a number line, or a component partonomy.

An operationalization transformation takes as input a
vague goal for which no explicit action exists (i.e., no single
operator in the domain can achieve the goal state) and
replaces it with a more specific goal for which a plan or plan-
ning step can be generated.Concretion andspecialization is
an upward movement through an abstraction hierarchy on
either goal arguments or predicates respectively. Michalski
(1994) coined the terms in a learning context, referring to
these classes of functions as knowledge transmutations.
Instantiation andreification are simply the special cases of
concretion and specialization. In this case, the new terms are
ground tokens rather than abstract types.

Expansion andcontraction are upward and downward
movements respectively of a goal along a partonomy1

instead of a semantic hierarchy; whereas,escalation andero-
sion move the goal up or down enumerated or countable
ordered sets of argument values.Intrusion and retraction
either adds or deletes a goal from the current set of open
states the planner must achieve. Substitution replaces one
goal with an equivalent (either logical, e.g., DeMorgan’s
Law, or semantic equivalence, e.g., see Table 1) substitute.
Finally, theidentity transformation completes the taxonomy.

1A partonomy is defined as a component hierarchy or graph
connected by “part-of” links.

a.Helvetica font indicates ground instances

Table 1: A taxonomy of goal transformations

Transformation Example

Operationalization acquired (air-superiority)→ destroyed (enemy-air-forces)

Concretion destroyed (air-forces)→ destroyed (offensive-air-forces)

Specialization ineffective (enemy-forces)→ destroyed (enemy-forces)

Instantiation deployed (airborne-unit)→ deployed (82nd-Airborne-Divisiona)

Reification deployed (82nd-Airborne-Division) → Flown (82nd-Airborne-Division)

Expansion interdicted (rail-line)→ interdicted (rail-net)

Contraction secured (city)→ secured (city-airport)

Erosion fighting-capacity (enemy, 50%)→ fighting-capacity (enemy, 75%)

Escalation outcome (battle, stalemate)→ outcome (battle, victory)

Intrusion null → in-control-of(base)

Retraction deployed (reconnaissance-unit)→ null

Identity � → �

Substitution prevent (not(in-control-of(base)))→ maintain (in-control-of(base))
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A number of such goal changes are inherent in the clas-
sical planning process. For example, the choice of variable
bindings is implicitly a goal transformation. That is, choos-
ing a specific instantiation of an open precondition using
constraints from the operator is isomorphic to a goal instan-
tiation transformation (see Table 1). Likewise, subgoaling on
the preconditions of a planning operator can be considered a
goal intrusion transformation. Finally, when a rationale-
based sensing monitor suggests a plan-based cut (Veloso,
Pollack, and Cox, 1998), this is equivalent to a goal retrac-
tion transformation.

An Air Campaign Planning Example:
The bridges problem

Consider the following problem from the Air Campaign
Planning (ACP) domain (Thaler and Shlapak, 1995; Warden,
1989). An air commander is tasked with the mission of mak-
ing a given river � impassable. To achieve such a broad goal,
he must operationalize the state of impassable into specific
objectives that can be accomplished by the forces at the com-
mander’s disposal. Therefore, the goal� , (outcome
impassable � ), is transformed into a series of lower-level
goals to destroy each crossing that affords transportation
across it. The following inference rule implements agoal
operationalization transformationon� .

Let �  be an object of type RIVER;
�  = (outcome impassable � ).
ΟΚ <−− true
∀ � | (isa crossing � ) ∧

(enables-movement-over ��� )
if ¬ (is-destroyed � )
then OK <-- false

if OK
then assert�

Figure 1. Goal operationalization transformation

The transformation not only provides a set of specific
objectives, but the rationale for the transformation is
explicit; that is, theenables-movement-over predicate
supplies the reason why these goals were posted. The ratio-
nale can therefore be used as a focus for monitoring changes
in the environment that may force replanning during the
planning or execution process. That is, the monitor will be
sensitive only to new information concerning movement
over rivers.

At goal transformation time, a monitor is created to
watch for changes in the environment that can affect the effi-
cacy of a plan. For example, the monitor may notice addi-
tional river crossings or detect information that implies that
an existing crossing can no longer afford movement (in the

military domain this information may be provided by current
reconnaissance). Veloso, Pollack and Cox (1998) have
termed such a monitor a plan-based quantified condition
monitor. It represents only one in a set of rationale-based
sensing monitors for continuous planning and execution.

Now for each crossing that exists across� , the com-
mander can assign one resource (in this case, an F-15) to dis-
able the bridge or ford. Each unit that is assigned a task must
be deployed to a nearby airbase. And if not already done, the
base must be first secured. However, while the planning and
deployment is being carried out, new crossings may be dis-
covered that need attention. Depending on the availability of
resources, one of two events may occur.

If sufficient additional resources can be allocated, then
another goal is posted for planning. Effectively, this entails a
goal intrusion transformation. The goal does not originate
outside of the system, nor does it stem from subgoaling on
preconditions of an operator. It comes about because of
changing conditions in the environment with respect to the
planning rationale as enforced by the sensing monitor.

Alternatively, if the resources for the task are not avail-
able (or too costly), then the goals of making the river
impassable may be too demanding given the current situa-
tion. So instead of causing the river to be impassable, the
commander may reinterpret the mission as one of restricting
movement across the river � . A goal erosion transformation
is applied to the original goal�  to produce� ′ = (outcome
restricts-movement � ). Such a goal is operationalized by
destroying as many crossing as possible and damaging the
rest. Figure 1 shows the PRODIGY planner executing this
transformation in such a scenario.2

Implementation3

The Prodigy4.0 system (Carbonellet al., 1992; Veloso,et
al., 1995) employs a state-space nonlinear planner and fol-
lows a means-ends analysis backward-chaining search pro-
cedure that reasons about both multiple goals and multiple
alternative operators from its domain theory appropriate for
achieving such goals. A domain theory is composed of a
hierarchy of object classes and a suite of operators and infer-

2Notice in Figure 2 that agoal specialization transformation
changes themake-ineffective-by goal tois-isolated-by. This is a
change in the goal predicate. More will be said concerning this
transformation at the end of the subsequent section on
implementation.
3The ACP domain and goal transformation implementation used to
generate our results is located on the world-wide web athttp://
www.cs.cmu.edu/~prodigy together with the Prodigy4.0
User Interface 2.0 (Cox and Veloso, 1997b; 1997c) shown here.
The domain directory name is goal-trans.



4

F
ig

ur
e 

2.
 G

oa
l t

ra
ns

fo
rm

at
io

ns
 a

nd
 r

at
io

na
le

-b
as

ed
 m

on
ito

rs
 d

ur
in

g 
ai

r 
ca

m
pa

ig
n 

pl
an

ni
ng

 e
xa

m
pl

e



5

ence rules that change the state of the objects. A planning
problem is represented by an initial state (objects and prop-
ositions about the objects) and a set of goal expressions to
achieve. Planning decisions consist of choosing a goal from
a set of pending goals, choosing an operator (or inference
rule) to achieve a particular goal, choosing a variable binding
for a given operator, and deciding whether to commit to a
possible plan ordering and to get a new planning state or to
continue subgoaling for unachieved goals. Different choices
give rise to different ways of exploring the search space.
These choices are guided by either control rules (see Car-
bonell,et al., 1992; Minton, 1988), by past problem-solving
episodes (i.e., cases; see Veloso, 1994), or by domain-inde-
pendent heuristics (see Veloso and Stone, 1995).

Prodigy4.0 follows a sequence of decision choices,
selecting a goal, an operator, and an instantiation for the
operator to achieve the goal. Prodigy4.0 has an additional
decision point, namely where it decides whether to “apply”
an operator to the current state or continue “subgoaling” on
a pending goal. “Subgoaling” can be best understood as
regressing one goal, or backward chaining, using means-
ends analysis. It includes the choices of a goal to plan for and
an operator to achieve this goal. “Applying” an operator to
the state means a commitment (not necessarily definite since
backtracking is possible) in the ordering of the final plan. On
the other hand, updating the state through this possible com-
mitment allows Prodigy4.0 to use its state to more informed
and efficient future decisions. Hence, the planning algorithm
is a combination of state-space search corresponding to a
simulation of plan execution of the plan (thehead plan; Fink
and Veloso, 1996) and backward-chaining responsible for
goal-directed reasoning (thetail plan). Further details of
PRODIGY can be found in Veloso,et al. (1995).

 We have implemented continuous planning with ratio-
nale-based monitors within the Prodigy4.0 planner (Veloso,
Pollack, and Cox, 1998). Figure 3 sketches the overall algo-
rithm. The continuous planning version of the system
includes two primary changes (last bullet in 3 and line 5 from
Figure 3). First, rationale-based monitors are generated
whenever the plan has been updated. Second, sensing is per-
formed to check the status of the world conditions being
monitored, and plan adaptations are performed in response.

The bold face text in 3 indicates the additional changes
that introduces goal transformations. The set�  is calculated
in addition to � . The best action from the intersection of the
two sets is then selected and instantiated. If the action was a
planning step, then the step is added to the plan. Otherwise
some goal is altered by the transformation into a similar
goal, thus “achieving” the selected goal.

1. Terminate if goal statement is satisfied in current state.
2. Compute set ofpending goals� , and set ofapplicable

operators � . A goal is pending if it is a precondition,
not satisfied in the current state of an operator currently
in the plan. An operator is applicable when all its pre-
conditions are satisfied in the state.

3. Either
• Choose a goal�  from �
• Expand� , i.e., compute the set�  of relevant instanti-

ated operators that could achieve the goal� , and com-
pute the set �  of relevant goal transformations on � ,

• Perform action selection.
• Perform step instantiation.
• Add new step to planor shift goals.
• Generate new monitors.

4. or
• Choose an operator�  from � . Apply � .

5. Sense for fired monitors, perform planning adaptations.
6. Go to step 1.

Figure 3. A skeleton of Prodigy4.0’s continuous planning
algorithm.

PRODIGY currently calculates the set�  using either
domain-specific control rules or unguided search. In the pre-
vious example, the system contains competing specializa-
tion transformations such as the following two. In these
rules, the variables e-unit and f-unit represent enemy and
friendly units respectively:

(made-ineffective-by <e-unit> <f-unit>)
→ (is-isolated-by <e-unit> <f-unit>)

(made-ineffective-by <e-unit> <f-unit>)
→ (is-destroyed-by <e-unit> <f-unit>)

The control rule Reject-Specialization-G-Trans from Figure
4 rejects the latter transformation thereby reducing�  when
noncombatants are near the enemy; otherwise, both transfor-
mations are relevant, and conflict resolution is randomly cal-
culated (lacking further domain-specific knowledge). The
proposition that specifies the location of local resident non-
combatants relative to the enemy is detected by a plan-based
usability-condition monitor (Veloso, Pollack, and Cox,
1998) that was spawned when instantiating the inference
rule representation of the transformation Specialize-Ineffec-
tive-2-Destroy (i.e., the second rule above). Note that, in the
emacs inferior-lisp process shown in the background of Fig-
ure 2, Reject-Specialization-G-Trans fires appropriately to
retract the earlier goal transformation commitment. That is,
the planner had transformed the goal (made-ineffective-by
enemy1 infantry-battalion-a) to (is-destroyed-by enemy1
infantry-battalion-a). This decision is reversed upon discov-
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ery of local residents near the battlefield during the planning
process. The conclusion section discusses alternative
domain-independent methods to control the selection of
transformations.

(Control-RuleReject-Specialization-G-Trans
(if (and

(current-goal (made-ineffective-by <e-unit><f-unit>))
(true-in-state (near <people> <e-unit>))
(type-of-object <people> Noncombatants)))

(then reject operator Specialize-Ineffective-2-Destroy)
)

Figure 4. Example Prodigy4.0 control rule for managing the
set of relevant goal transformations

Experimental Results

An experiment was conducted to illustrate the difference in
planning performance with and without goal transforma-
tions. To simplify matters in this experiment, rationale-based
sensing monitors were not used. Instead, we allow PROD-
IGY to achieve partial goal satisfaction when it is not using
goal transformations and compare the results to planning
with goal transformations. Partial goal satisfaction simply
counts the number of top level goals solved during planning
when the planning is aborted due to planning resource limi-
tations (e.g., exceeding a time threshold for planning).

In this experiment, we manipulate the complexity of the
problem by varying the number of goals the planner must
achieve from one to ten. At the same time, we vary the num-
ber of resources available to achieve the goals from one air
unit to thirty. The total number of planning problems amount
to 300. We evaluated planning with and without goal trans-
formations in this test suite. As in the previous example from
the ACP domain, top-level goals are to make rivers impass-
able. Sacrificing realism for uniformity, each river in the
ACP domain has exactly three bridges. Furthermore, each F-
15 unit can destroy one bridge and damage an arbitrary num-
ber of bridges.

To evaluate the efficacy of a plan, we measure the total
reduction in transportation capacity of any plan. For each
bridge, if the planner assigns a unit to destroy it, 100%
reduction is guaranteed; whereas, if the same unit damages
it, a 50% reduction is assigned for that bridge. Thus given 3
F-15 units and two rivers to make impassable (i.e., 2 goals),
a standard planner will only be able to destroy three bridges
across one river for a total of 50% total reduction in transpor-
tation capacity. Using goal transformations, a planner can
destroy three bridges and damage three more, for a total of a
75% reduction.

We first ran PRODIGY on the 300 examples with goal

transformations. We recorded the planning time expended
and the reduction in transportation capacity for each exam-
ple. Then we ran the examples again without goal transfor-
mations using a time-out of the previous time expended on
that same example (plus ten percent or one second which-
ever is greater).

Figure 5 shows the planning performance of Prodigy4.0
when using goal transformations. Notice that when the num-
ber of resources is equal to or greater than three times the
number of goals, the transportation capacity reduction is 100
percent; that is, planning is completely successful because
one F-15 unit is available for each river crossing. The trian-
gular region at the top of the graph indicates this behavior.
When the number of resources is less than three time the
number of goals, the performance slowly degrades to about
50 percent efficiency. In Figure 6, the performance is the
same in the upper portion of the graph. Given insufficient
resources, however, the decline in planning performance is
significantly worse under the no transformation condition. In
the worse case (i.e., when the number of resources is less
than 3), no transportation capacity is reduced at all because
not one goal is achieved completely.

The difference in performance between planning with
and without goal transformations is also obvious when look-
ing at specific two dimensional slices through the intersec-
tion of the previous two figures. Figure 7 shows the
comparative performance of PRODIGY at the extreme range
of problem complexity. Holding constant the number of
goals at ten, Figure 7 plots the reduction in transportation
capacity as the number of resources vary.

Alternatively, we can cut the three dimensional result
space in the orthogonal direction. Figure 8 shows the perfor-

Figure 5. Plan performance with goal transformations as a
function of resource availability and problem complexity.



7

mance of PRODIGY when holding resource availability
constant at five F-15 units and varying the problem complex-
ity from one to ten goals. Again, the reduction in transporta-
tion capacity is significantly greater under the goal
transformation condition than it is when planning without
such transformations.

Conclusion

We introduced the concept of goal transformations as a
method to successfully plan in dynamic domains. Although
related to partial goal achievement (e.g., Drummond and

Bresina, 1990; Williamson and Hanks, 1994) this method is
different. We introduce a taxonomy of goal transformations
based on an organization of goals and objects in a goal hier-
archy. For example, goals can be transformed to more spe-
cific or more general goals. The approach applies in
continuous planning, where the world state is changing
either during planning or execution. We implemented the
goal transformation process in response to changes of the
world as a new decision point in a planning algorithm. The
work reported in the paper introduces the goal transforma-
tion concept, presents its implementation, and demonstrates
its effectiveness through controlled experiments. The imple-
mentation is set to include the use of a utility analysis to eval-
uate the choice of which goal transformation to perform, if
any. In our on-going research, we are experimenting with
different cost-benefit functions for the utility analysis.

The use of cost-benefit functions to manage goal transforma-
tions represents a change from a goal-based agent to a util-
ity-based agent in the language of Russel and Norvig (1995).
It also represents a more domain-independent mechanism of
control for calculating the set�  from Figure 3. Future
research will determine the amount of domain knowledge
necessary to realize such goal shifts. An alternative method
that we plan to investigate for determining the degree and
type of goal change is to allow the human planner to actually
exert control over these decisions. This represents a mixed-
initiative approach to replanning in a dynamic environment
and is a natural insertion point for human management of the
planning process. Indeed, many in the military planning
community believe that much of the operational and strate-
gic level planning amounts to creating and maintaining a
hierarchy of objectives or goals (Kent and Simons, 1994;
Thaler, 1993). The research presented here offers to advance
such a view. Unlike other systems that perform goal transfor-

Figure 6. Plan performance without goal transformations
as a function of resource availability and problem

complexity.
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mations implicitly or procedurally, this work is an attempt to
begin to formalize goal change and to create declarative rep-
resentation of a goal transformation taxonomy.
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