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Abstract

RoboSoccer i1s a multi-agent framework in which mul-
tiple robots collaborate in an adversarial environment.
RoboSoccer can be built with robots and fields of dif-
ferent sizes. In the smallest version of the game, robots
cannot incorporate on-board full autonomous capa-
bilities. In particular, vision processing is off-board,
centralized, and connected to the individual clients
that control the robots. The vision system needs to
overview the complete field and to compute in real
time positioning information for the moving ball and
players. This paper describes our on-going work on
developing a multi-object tracking and prediction in
this challenging setup. This paper presents our pre-
liminary work applying an extended Kalman filter to
follow the trajectory of multiple moving colored ob-
jects. We present empirical results that show the ef-
fectiveness of the method both in position tracking
and prediction. We conclude with a discussion of the
approach, results and future work.

Introduction

Robotic Soccer has recently been introduced as a
testbed for multiagent AI research, where teamplay-
ers must interact and coordinate with each other to
compete against a team of opponents (Kitano et al.
1997). Both simulator-based and real robot competi-
tions have been set. We have pursued research on both
tracks, developing layered learning approaches within
the simulator (Stone & Veloso 1997) and constructing
real robots (Veloso, Stone, & Achim 1997).

In this paper, we focus on our work building a re-
liable system of real robots for robotic soccer. The
nature of the game requires good players to have fast
perception, fast planning, fast action, accurate con-
trol and cooperation. This brings together techniques
from different fields such as vision, learning, planning,
robotics control and multiagent systems.

Modules which deal with each of the these issues
have been or are being designed and implemented to
achieve our overall goal (Veloso, Stone, & Achim 1997).
This paper concentrates on the perception aspects of
our research. Concretely we design a vision algorithm

that uses an extended Kalman filter to track and pre-
dict the position of the moving robots and ball. The
algorithm robustly tracks objects after radical changes
of direction (for example due to collisions against a wall
or other players), and after intersection of trajectories.

RoboSoccer

RoboSoccer can be built with robots and fields of dif-
ferent sizes. In the smallest version of the game, up
to 5 robots in each team of size not larger than 15cm3
compete. Due to the small size of these robots, it is
very difficult to perform perception and computation
on-board the robot, thus they are usually performed
off-board. An overhead camera with a global view of
the field is usually used. The output of the camera is
fed into the off-board computer(s) and then the vision
input is processed. The off-board computer(s) commu-
nicate with the robots wireless and send strategic nav-
igational control commands (Veloso, Stone, & Achim
1997). Special color markings are allowed on the robot
to differentiate between team members and opponents.
The soccer ball used in these competition is an orange-
colored golf ball.

The simplest and robust vision operation to pin
point the location of robot in the field is color seg-
mentation. This operation has the advantage that it is
simple and fast to compute. We are interested in near
frame-rate acquisition frequencies.

In order to achieve extremely fast perception, dedi-
cated hardwares are often employed to speed up pro-
cessing (Sohota et al. 1995). We use a Cognachrome
Vision System developed at Newton Labs which can
perform color segmentation and blob orientation find-
ing at a peak rate of 30 frame/sec. The Cognachrome
system can track objects of three different types of
color. It returns a list of blobs it found for each color.
In the setup of the game, similarly to other tasks, such
as radar sensing, we have a list of homogeneous mov-
ing objects and we need to distinguish between them
to apply the correct control. Reliably tracking such
system is a challenging problem to address. Further-
more, the readings from the Cognachrome system is
rather noisy. (See Figure 1(a) for an example of the



returned track of tracking a rolling ball.)

Robot soccer players often need to intercept balls
during the game. To do that, we need to perform pre-
diction on the ball position. Predicting the future lo-
cation of a ball is essential in a speedy and accurate
interception. Due to the noisy location readings, it is
difficult to extract stable velocities measurements since
the extraction process is very sensitive to noise.

In this paper, we present how we solved the latter
task, namely tracking the ball and predicting its future
location robustly.

Detection of the ball’s location is done with the Cog-
nachrome vision system. The Cognachrome vision sys-
tem can perform very fast objection detection by color
segmentation. However, there are two drawbacks with
this system. Firstly, the location of the ball is often
very noisy. Secondly, the system often misses the ball
and produces a no-detection output. In order to lo-
cate the ball and perform prediction robustly, we must
devise a mechanism to compute the best estimate of
the ball’s location in the presence of noise and miss-
ing data. The technique we are going to use is the
Extended Kalman Filter.

Extended Kalman Filter

The Kalman filter provides a solution to the least
square method and at the same time is computation-
ally efficient. Its recursive nature i1s well suited for
real-time estimation of system states. Furthermore, it
is robust against system noise and it is able to produce
good estimations even when the precise nature of the
modeled system 1s unknown. The basic Kalman Filter
can be applied only to linear systems. The FErtended
Kalman Filter (EKF) pushes the power of the Kalman
Filter further to non-linear systems by linearizing the
system equations centered at the current best estimate.
The system we are estimating is non-linear, thus we use
the EKF.

Here we give a brief description of the extended
Kalman Filter. It is by no means the most detailed
treatment of the subject, and more extensive references
for Kalman-Bucy Filters can be found in (Kalman
1960; Kalman & Bucy 1961).

The Extended Kalman filter is a recursive estima-
tor for a possibly non-linear system. The goal of the
filter is to estimate the state of a system. The state
1s usually denoted as a n-dimensional vector x. A set
of equations are used to describe the behavior of the
system, described through the equation:

i1 = [(@h, ug, wi),
where f(-) is a non-linear function which represents the
behavior of the non-linear system, uy is the external in-
put to the system and wyg 1s a zero mean, Gaussian ran-
dom variable with covariance matrix Q). wy captures
the noise in the system and any possible discrepancies
between the physical system and the model. The sub-
script k denotes the value of the variable at time step

k.

The system being modeled is being observed (mea-
sured). The observations can also be non-linear:

25 = h(xg, vg),

where zy is the vector of observations and h(-) is the
non-linear measurement function, and vg is another
zero-mean (Gaussian random variable with covariance
matrix Rg. It captures any noise in the measurement
process.

The EKF involves a two-step iterative process,
namely update and propagate. The current best esti-
mate of the system’s state z and its error covariance Pj
is computed on each iteration. During update, the cur-
rent observation is used to refine the current estimate
and recompute the covariance. On propagate, the state
and covariance of the system at the next time step is
calculated using the system’s equations. The process
then repeats, the update step refines the estimate using
the observation, and so on. The update and propagate
equations are as follows:

Propagate Equations

Ty = f(@k,uk,0)
Py = ApPcAL + WiQeWi

Update Equations

Ky = PIHI(H.PTH! + ViRV,I)™!
T = i‘lz—l—[{k(zk—h(i‘;,()))
Pe = (I—KyHy) P,

Matrices A, W, H and V are Jacobian matrices ob-
tained during the linearization step of the EKF. A and
W are the Jacobian of f(-) with respect to # and w,
respectively. H and V are the Jacobian of h(-) with
respect to x and v, respectively. These matrices are
evaluated using the current estimate zg.

The Kalman Gain matrix K deserves special ex-
planation. The Kalman Gain at the current time step
governs how much the filter trusts the current obser-
vation values. The value (z — h(z;,0)) is called the
innovation. It is the difference between the actual ob-
serveration and the calculated (predicted) observation.
A large Kalman Gain means that we trust the obser-
vation and therefore adjust the current state estimates
according to that new reading. A small Kalman Gain
means that we do not trust the observation and rely
more on the system equation to update the state esti-
mate.

Prediction

Prediction in a Kalman Filter is performed by repeated
applications of the propagate equations to the current
state estimate. To obtain the prediction of the sys-
tem’s state in n time-steps ahead, we have to apply
the propagate equations n times.



Ball Equations

We modelled our ball in the Kalman filter framework
in the following way. We capture the ball’s state into 5
variables: the ball’s x and y location, the ball’s veloc-
ities in the x and y direction and a friction parameter
(Ar) for the surface.

These variables are related via the following set of
non-linear difference equations:

Tp1 Ty + xp - At
Yk+1 yi + U - At
ZTh41 = Ty - A
Uk+1 Uk - An
Akt1 Ak

The above equation models the ball with simple
Newtonian dynamics. A is a friction term which dis-
counts the velocity at each time step. At is the time-
step size.

The prediction equations are:

Thpn = Tp+ g At agy
Yetn = Yk + Yk Al-app

_ 1 it =1
Gn =0 (1= (M)")/(1 = ) otherwise

The prediction equations are derived by solving the
recursive equation obtained by substituting the value
of xy4; where i decreases from n to 1. We are only
interested in the predicted spatial location of the ball
thus we do not explicitly calculate the predicted veloc-

ity.

Non-linearities

The RoboSoccer field is surrounded by a 3”7 high wall.
The purpose of the wall is to prevent the ball from
falling off the playing field. Naturally, the ball bounces
off the field and the dynamics of the ball changes. We
attempted to incorporate such non-linearity into our
system by modifying the ball’s dynamics. The size
and shape of the field is known and thus the locations
of the wall. We can predict ahead of time the ball-wall
contact time and schedule to flip the sign of one of the
x or y velocity parameter, depending on which wall
the ball is heading towards. This assumes the walls
run parallel to the axis.

The prediction value also needs to be adjusted to
take into account the existence of the walls. All predic-
tion values which lie outside of the field are adjustable
by performing a reflection of the predicted coordinate
with respect to the line which forms the wall.

Multi-Object Tracking

Tracking multiple objects simultaneously 1s trivial if
the objects were non-homogeneous, that is, if there is
a method in which one can reliably distinguish between
them. For example, a red ball and a blue ball. How-
ever, problems arise when the objects to be tracked are
homogeneous, or are similar enough such that distin-
guishing between them is not possible. Examples of

such scenarios are radar readings, and human/object
tracking in a cluttered scene.

This data association problem described above 1s in-
vestigated in detail in (Bar-Shalom 1978; Yao 1992;
Bar-Shalom & Fortmann 1988). Our approach is more
simplistic. In a less clustered environment such as
a robot soccer field, such simplifications do not pose
problems. It should be noted however, that the perfor-
mance of our approach will probably deteriorate very
quickly as the object density increases. We will con-
tinue this investigation and will test the limitations of
our approach.

Our design relies on a distance metric between per-
ceived and projected objects. The perceived object is
the reading we obtained from our vision system and the
projected object is the value obtained from a one-step
prediction using our object model with Kalman Filter.
We seek to pair up the location of objects returned by
the vision system and the locations predicted by the
Kalman filter.

Since the Kalman Filter gives an estimated covari-
ance matrix representing the uncertainties of the ob-
jects’ locations, we can take advantage of the availabil-
ity and use the Mahalanobis distance as our distance
metric.

The vision system does not guarantee a detection
even if the ball is present, thus, we have a poten-
tially non-trivial matching problem. We simplify this
by seeking a matching which minimizes the following
least square criteria:

Z(d(%a%apk))z,

where z;; and z;; are the ith matching pair. And the
function d(z,y, P) is the Mahalanobis distance metric
given by:

A, 1, P) = \/(z — )T P~ (x — p),

where P is the covariance matrix.
Unmatched predictions are handled by not perform-
ing the update step of the Kalman filter.

Results

Figure 1(a) shows a typical track that is returned by
the vision system and Figure 1(b) shows the track esti-
mated by our algorithm. The estimated track is much
smoother than the perceived track.

Figure 2 shows the average prediction error over one
of our test track. It plots the error vs. prediction time.
The further we try to predict into the future, the more
unreliable the prediction. The prediction keeps reliable
for a large acceptable window of future.

Figure 3(a) shows the variation of the friction term
over time running on a plain track. The friction
parameter fluctuates slightly during the run and at
around time-step 235, it touches the wall and deceler-
ates quickly. By time-step 300, it came to a complete



(a) Typical ball track raw data obtain from the
vision system

/

(b) Ball track estimation by Kalman Filter

Figure 1: Comparison of raw data input and Kalman
estimation output
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Figure 2: Graph of average Euclidean distance error
vs prediction time

stop. Figure 3(b) shows the variation of the friction
term when a ball rolls perpendicularly towards a wall.
The impact occured at around time-step 60. The fast
deceleration (indicated by the drop in the friction pa-
rameter) is due to the back spin of the ball caused
by the impact. As the spin dies off, the friction term
regains 1ts value back to normal at around time-step
200.

Figure 4 shows results of tracking two balls. The
balls started at the top of the diagram and were pushed
towards one another. At the crossing point, the balls
nearly collided. However, even with such close en-
counter, the algorithm managed to distinguish between
the two balls and continues its tracking successfully.

Conclusion

This paper describes our current approach to track
multiple moving objects in a robot soccer environment.
We assume a non-linear physical model of the system
and utilize the Extended Kalman filter to estimate the
system parameters. Non-linearities in the environment
are also taken into account and resolved. The Kalman
Filter framework also allows prediction of the system’s
future state. Empirical analysis shows that the state
estimation and state prediction are very accurate.

Discussion and Future work

Even though our system works very well most of the
time, we have encountered a few possible failure modes.
Firstly, in the multi-ball case, balls’ collision often con-
fuses the system. In such cases, the system will fail to
find a good matching. Second, the Kalman filter’s pa-
rameters (the error covariance matrix) are initialized
to some predefined values that were found to be the
best from previous runs. However, the parameters of a
fresh, new run often deviates from the one of previous
runs. This gap in the initial parameters setting often
causes the system to be unstable for the first 1/2 sec.
The system regains stability after the Kalman filter
adjusts 1ts own parameters.
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(a) graph of friction term vs time on
a plain track
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(b) graph of friction term vs time on
a bounced track

Figure 3: Variation of friction term over time in two
different scenarios

Figure 4: Multi-track detection shows data points
matched correctly

In the near future, we plan to experiment with the
more robust data association filters. We hope that will
solve our problem with the ball mismatch described in
the previous paragraph. We are also very eager to
modify our algorithm to work with robot soccer player
where manuveuring (system input) will be added to
our Kalman Filter equations.
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