Learning to Improve Uncertainty Handling
in a Hybrid Planning System

Jim Blythe and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213
{jblythe,mmv } @cs.cmu.edu

Abstract

Weaver is a hybrid planning algorithm that can create plans in
domains that include uncertainty, modelled either as incom-
plete knowledge of the initial state of the world, of the effects
of plan steps or of the possible external events. The plans
are guaranteed to exceed some given threshold probability
of success. Weaver creates a Bayesian network representa-
tion of a plan to evaluate it, in which links corresponding
to sequences of events are computed with Markov models.
As well as the probability of success, evaluation produces
a set of flaws in the candidate plan, which are used by the
planner to improve it. We describe a learning method that
generates control knowledge compiled from this probabilis-
tic evaluation of plans. The output of the learner is search
control knowledge for the planning domain that helps the
planner select alternatives that have previously lead to plans
with high probability of success. The learned control knowl-
edge is incrementally refined by a combined deductive and
inductive mechanism.

Introduction

We describe a machine learning technique that can be used
to improve efficiency and potentially plan quality in a hy-
brid system for planning under uncertainty. The planning
system, called Weaver (Blythe 1994; 1996), uses an Al plan-
ner (Veloso et al. 1995) and a probabilistic reasoner that
models the probability of success of the plan. Our action
model is similar to Buridan’s (Kushmerick, Hanks, & Weld
1995), which is a generalisation of that of classical plan-
ning (eg (Minton et al. 1989)) to include uncertainty in
the initial state, and in the outcomes of actions. We also
model external events which can be predicted only with
some probability.

Weaver iterates between a planning phase and an evalua-
tion phase. When the planner has created a candidate plan,
the probabilistic reasoning system constructs a Bayesian be-
lief net to evaluate its probability of success. The construc-
tion uses the operator model to generate the probabilistic
dependencies among the plan steps. It models the change
of some aspects of the domain over the time taken to exe-
cute the plan using Markov chains, as we describe below.
The output of the evaluation is also used to suggest possible
ways to improve the candidate plan.

In this paper we discuss a learning technique that can
be applied to hybrid planners of this form. We describe a
method to learn search control rules for the planner from the
experience of the probabilistic reasoner during the evalua-
tion phase. This is a form of speed-up and quality learning,
which will allow the planner to converge more quickly to
plans with a high probability of success. By allowing expe-
rience gained from the probabilistic analysis of plans to be
used at the stage of plan formation, the system can reduce
the number of calls made to the probabilistic analysis mod-
ule and greatly improve efficiency. In domains where there
are limited computational resources for planning, this gain
in efficiency can lead the system to produce plans of higher
quality within the resource limits, and sometimes to find a
plan of acceptable quality where otherwise it would not.

Since the learned knowledge is expressed in a form us-
able directly by the planner, the representation is no more
complex than for classical planning. The basic technique
can be applied to any planning system that makes use of an
external critic to compile the experience of the critic into
search guidance for the planner. We illustrate this learn-
ing method in a challenging planning domain that has a
very large state space, real-valued as well as nominal at-
tributes and complex interactions between goals (Desimone
& Agosta 1994). This domain is of potential interest as a
bench-mark for learning to act in dynamic, uncertain worlds,
and we briefly discuss it in the next section.

Machine learning techniques have been studied exten-
sively to improve the efficiency of classical Al planning
systems that do not include any representation of uncer-
tainty (Minton 1988; Veloso 1994; Borrajo & Veloso 1996;
Estlin & Mooney 1996; Katukam & Kambhampati 1994)
and these techniques are still useful for reducing search
in domains with uncertainty. Some of the machine learning
methods used in classical planners find new uses for the con-
ditional plans now considered. Analogy, for example, can
be used very efficiently for the specific problem of re-using
planning effort across conditional branches of a plan (Blythe
& Veloso 1996). In addition, Weaver offers several other
opportunities for speed-up learning in its modules. The
Bayesian net construction module, for example, re-creates
certain model fragments many times in a particular domain,
as specific sub-plans and event interactions recur. These

could be generalised and cached.

In contrast, the learning technique described here exploits
the hybrid nature of Weaver. It produces search control
knowledge for the planner by analysing the probabilistic
model. The learning algorithm generates control knowledge
compiled from the evaluation of the impact of the external
events and the threshold probability of success. The learned
control knowledge is incrementally refined by a combined
deductive and inductive mechanism.

Planning in Dynamic, Uncertain Domains

In recent years there has been much research in plan-
ning under uncertainty (Kushmerick, Hanks, & Weld 1995;
Blythe 1996; Collins & Pryor 1995; Boutilier, Dean, &
Hanks 1995). Most of the systems developed use a proba-
bilistic representation for the sources of uncertainty and the
performance of the plan. Plans typically include sensing
and conditional branches. The input to the planner is usu-
ally a probability distribution over the possible initial states,
a goal to be achieved and a minimum probability with which
a plan should achieve the goal. In this section we describe
Weaver and the oil-spill planning domain which we use to
illustrate learning in Weaver.

Modelling uncertainty

In Weaver, a planning domain P is defined by set of variables
V', a set of values dom(v) for each variable v € V, a set
of actions A, a set of events £ and a total order < over
the events and actions. A state in the domain is a complete
assignment of values to the variables of V so that each
variable v is assigned a value in its domain by the state s.
A planning problem consists of a probability distribution
over the set of states called the initial state distribution,
a goal description G, which is a sentence involving the
variables in V', and a threshold probability 7. A solution
to the planning problem is a policy m, a partial mapping of
states to actions in A, such that if the action 7(s) is taken
whenever the state of the world is s, some state that satisfies
G will be eventually reached with probability at least 7.
The probability of success of a policy m with respect to
a planning problem is the probability that such a state is
reached. The rest of this section defines this probability by
describing an underlying Markov decision process M used
to define the actions and events in P.
The states of M consist of two parts:

1. an assignment to the variables Z, corresponding to a state
in the planning domain

2. a set of pending effects A.

Each element of the pending effects is a triple (¢, a, o)
where ¢ is an integer denoting time, « is an action or event
and o is a set of “effects”, a partial assignment of values
to variables in V. The pending effects represent the events
and actions that are currently taking place in the given state
of M.

We begin by defining a “successor function” n(.) on states
of M. Let s be a state in M and write s = X U A where
2 and A are as described above. To calculate the successor

state n(s), first find those pending effects whose time value
is 1:
Al = {6 =(1,a,0)]d € A}
A! can be thought of as the “imminent” pending effects,
and is applied to the variables assignment X to give a new
assignment 2’ defined by:

'(v) = o(v), when(1,a,0) € A, o(v) is defined
and «a is the least action in the total
order for which this is true.

3'(v) = Z(v), if no such pending effect exists.

The remaining pending effects, AT = A — A!, contribute
to the pending effects of the new state n(s) with their time
count reduced by one:

n(s) = U{(t—1,a,0)|(t,a o)c At}

This successor function forms the basis of the MDP M
describing the actions and external events in the planning
domain P. As described below, changes to the world due to
actions or external events are expressed by inserting pending
effects into the set A for the state that is changed. At each
time step, the successor function is performed. Note that the
successor function itself is deterministic: n(s) is uniquely
defined for each state s € M.

Actions and external events

Actions are triples a = (m, d, ed(.)), where 7 is a sentence
over the variables V' that must be satisfied in any state of P
where a is applied. We refer to m as the preconditions of a.
The duration of a, d, is an integer specifying the number of
time units that a takes to perform. Any effects that a has
on the world will not take place until d time units after the
action is begun. The effect distribution, ed(.) is a function
that takes a state and returns a probability distribution of
effects, that is, a finite set ed(2) = {(p;,03) |1 < i < n}
for some n, where each o; is a partial assignment to variables
in V, each p; is a positive number and 3 ., p; = 1.

In the special case when there are no external events, the
transition function ®(a, m) that maps an action a and a state
m in M to a probability distribution of new states is defined
as follows:

®(a,m) = n(mU{(d, a,c;)}) with probability p;

Thus if the duration d of action a is 1, the effects take
place in the next state after a is performed, otherwise there
is a delay corresponding to d before a’s effects are realised.
The effect distribution is calculated from the domain-level
component of the state m.

External events have a precondition, duration and effect
distribution similar to actions, and also have a probability
of occurrence p: e = (m,d,ed(.),p). When the set £ of
external events is not empty, let 7 (F, o) denote the set of
external events whose preconditions are satisfied in the state
o. Intuitively, any combination of the events in H(F, o)
might take place when an action is performed in state . The
probability that event h takes place and has effect ed(c); is

P X pi.

For each subset H' C H(FE, o), applying action a can
lead to transitions with the following probabilities:

®(a,m) = n(mU{(d,a,0i)} | (dn, h,ed(0)s,))
heH'
with prob p; H DhPin H (1 —pp)

heH' h'eH—-H'

A simple example

The motivating example in the first section can be
modelled with three variables in the set V', person,
plane and taxi representing, respectively, the locations
of the traveller, plane and taxi. The domain of per-
son is {airportA, airportB, hotel}, while the domain of
taxi is {airportB, hotel} and the domain of plane is
{airportA airportB}.

To complete the planning domain we need to spec-
ify the actions take-plane and take-taxi and the event
taxi-moves. The action take-plane has the precondition
person = plane, specifying that the traveller must be in the
same location as the airplane. The action has a duration
of 3 units, and an effect function that moves the plane and
passenger on completion of the action:

ed(c) = {({(plane = airportB), (person = airportB)}, 1)}

if o[plane] = airportA
ed(o)

if o[plane] = airportB

In both cases the effect distribution is a singleton set with
probability 1, so the action is always deterministic. The
take-taxi action is defined analogously, except that it has
duration 1 and modifies the taxi variable rather than the
airplane variable.

The one event, taxi-moves also has duration 1. It has a
null precondition that is satisfied in every state, and an effect
function that moves the taxi to its other location:

ed(c) = {({(taxi = airportB)},1)}
if o[taxi] = hotel

{({(taxi = hotel)}, 1)}

if o[taxi] = airportB

ed(o)

In addition the event has probability 1/3, so when an
action is taken in a state, the effect that the taxi moves
is added with 1/3 probability. However, we define take-
taxi < taxi-moves in the total order on actions and events,
so whenever a take-taxi action and a taxi-moves event
complete at the same time, the value of taxi is taken from
the action take-taxi. The successor function n(.) is well-
defined without specifying the rest of the total order, because
no other pair of actions or events modify the same variable.

Evaluating plans using the underlying Markov
process

Consider the initial state o in which the traveller and the
airplane are at airport A and the taxi is at airport B. Con-
sider the plan to move the traveller to the hotel that consists

{({(plane = airportA), (person = airportA)}, 1)}

of two actions taken in sequence: take — plane followed
by take — taxi. The probability of success of the plan is
computed by examining the possible state transitions cor-
responding to the plan in the underlying Markov process
M . Since Weaver creates plans that may be “open-loop”,
that is, they may contain no sensing actions, a plan does
not strictly correspond to a Markov Decision Process since
in some cases the plan may select different actions in the
same state. A true MDP representation could be created by
including the history of the plan in the state, but this is not
included in M for simplicity.

In this example, there is one possible initial state my,
in which the action take — plane is performed, leading
to two possible successor states m; and m/| as shown
in Figure 1. Both of these have the A portion equal
to {(2,take — plane, {airplane = airportB, person =
airportB})}. Since in the plan the actions take place se-
quentially, no action is taken for the next four time points,
until successive applications of the successor function re-
move the take — plane effect from the A portion of the state
and apply it to the X portion. At this point there are two
possible states, m3 and m4 as shown in Figure 1. In only
one of these, ms, is the action take — taxi applicable, so
the plan fails in the case that m’3 is reached, and succeeds
otherwise, since my satisfies the goal.

The probability of success of the plan can be computed
in a number of ways, the simplest of which is to back up
the values from the Markov process. Backing up the values,
we successively compute the probability of success in all
states that can be reached at times 4 (im4 and mj) and use
these to compute the probability of success of all states that
can be reached at time 3, and so on until the states in the
initial distribution are reached. These values are shown
below the states in Figure 1. In this way, the underlying
Markov process M can be used to show that the probability
of success of the two-step plan is 14/27 ~ 0.52.

It is typically intractable to work directly with the under-
lying Markov process to evaluate plans in large domains,
such as the oil-spill domain used to illustrate this paper
which contains over 30 events and over 1600 literals. Rather
than work with this model, our approach is to use the com-
mitments already made in an emerging plan to restrict at-
tention to only the sources of change in the world that are
relevant to the plan. In (Blythe 1996) we show how to build
reduced models of the domain that can be used to compute
the correct probability of success of a given plan much more
efficiently than can usually be done with the full model.

Weaver

Directly solving the underlying MDP for a given planning
domain is typically intractable. Instead, the philosophy used
in Weaver is to ignore many of the sources of uncertainty
while forming an initial plan, which is then used to decide
which sources of uncertainty are relevant for its evaluation.
In order to do this, Weaver iterates between a planning
phase and a plan evaluation phase. The planning system
ignores external events when creating a plan and relies on
the evaluator to check which events may affect it. The

ml

traveller = airportA

plane = airportA

m2
traveller = airportA

plane = airportA

m3
traveller = airportB
plane = airportB

m4

traveller = hotel

plane = sirportB

mo taxi = airtportB taxi = airtportB taxi = airtportB taxi = hotel
= ai 5/9
traveller = airportA take-plane 2/3 1 1
plane = airportA take-taxi
taxi = airtportB ml’ m3’
14/27 traveller = airportA traveller = airportA traveller = airportB
plane = airportA plane = airportA plane = airportB
taxi = hotel taxi = hotel taxi = hotel
4/9 1/3 0

Figure 1: The states of M visited in all possible executions of the plan take-plane followed by take-taxi. Probabilities of

success are backed up and shown below each state.

information that the evaluation phase provides may be used
by Weaver either to improve or discard the current plan.

In either case, the information may be learned and applied
as control knowledge in the planning phase to avoid creating
plans which would ultimately be rejected after an evaluation
phase. We describe a learning method that does this in the
next section. Figure 2 shows the global architecture of the
system. Weaver iterates between the classical planner and
the probabilistic plan evaluator. When the planner is forced
to backtrack because its plans fail to meet the threshold
probability, this is a possible learning opportunity. The input
to the learning module includes both the trace of the planner
and of the evaluator, and the outputis a set of search control
rules that can be used by the planner, without reference to
the evaluator, in an attempt to produce plans directly with
higher probability of success.

Weaver
- I
Classical candidate Probabilistic
Planner plans Evaluator
Evaluations
L J
search
control learning
rules Learning episodes
System
(Hamlet)

Figure 2: The global architecture for planning and learning
under uncertainty.

The oil-spill domain

We illustrate the planner and the learning technique with a
planning domain for dealing with oil spilled from tankers
at sea. This domain was originally developed at SRI for use
with the SIPE planner (Desimone & Agosta 1994), but in our
version we have added information about uncertain external
events that control the weather and the spread over time of
spilled oil. The domain includes information about equip-
ment that can be used to help with oil spills, including chem-
ical dispersants, skimmers and transportation equipment, as
well as information about locations in the San Francisco bay
area such as sea ports, environmentally sensitive shoreline
and sea sectors.

A simple initial scenario and goal from the oil-spill do-
main is as follows: a tanker which has begun to spill oil
is located off the Santa Clara coast. Weaver is given a
conjunction of 3 goals: (1) stop the flow of oil from the
tanker, (2) make sure there is no spilled oil and (3) make
sure there are no unprotected sensitive areas of shoreline
that are threatened by the spilled oil. In the initial state,
(2) and (3) are satisfied since there is no spilled oil, and
the planner produces a plan to satisfy (1) in the absence of
external events. In this case the chosen plan is to move a
pump and a tank-barge from Richmond port, and pump the
oil into the barge as it flows from the tanker. Weaver picks
a pump that can transfer oil at a faster rate than it is flowing
from the tanker, so the flow is effectively stopped.

The plan Weaver initially chooses to stop the flow of oil
is shown in Figure 3. After the pump and barge are moved
to the scene of the spill, step 3 pumps the oil. From the
domain model, the action of pumping the oil requires the
pump and the barge to be in the correct position, and the
weather in this part of the sea to be not too rough.

The plan is passed to the probabilistic evaluation module,
which first computes the duration of each step in the plan.
Since the scene is 35 miles from Richmond port, and the
barge’s maximum speed is 2 knots, step 3 begins at least
18 hours after execution of the plan is started. Once times
are assigned to the steps, a belief net is constructed for the
plan that records each fact about the world that must be true

1 Move pump
Start: 0 End: 4

2 Move bargel
Start: 0 End: 18

Pump location
Time: 4

Pump location

Time: 18 Time: 18

Barge location

3 Pump oil
Start: 18 End: 23

Weather
Time: 0

Markov chain

Weather
Time: 18

Figure 4: A portion of the belief net generated for the initial plan. Square nodes represent actions in the plan, and round nodes
are state variables at given times, generated as preconditions or effects of actions, or representing persistence. The probability
matrix for the arc between the two nodes for the variable “weather” is computed from a Markov model derived from the

relevant external events.

1. move cargo-pumpl santa-clara-coast richmond-port
utility-boat-2

2. move tank-bargel richmond-port santa-clara-coast

3. cargo-transfer-oil-to-stabilize ss-weany santa-clara-
coast tank-bargel cargo-pumpl 600 120

Figure 3: Initial plan (probability 0.51 of success)

for the world to succeed, essentially using the subgoal tree
from the action models created by the planner. Since the
plan is correct with respect to the actions, each such fact is
established either by a previous action or in the initial state,
and no actions make the fact false after it is established but
before it is required. Thus several of the required conditions
must hold true over a non-zero time interval, for the plan
to succeed. These persistence assumptions are justified
by searching for external events that can make them false,
compiling the relevant events into a reduced Markov model
and running the model for the time period indicated from
the analysis of the plan.

In this instance, two of the persistence intervals have
non-trivial Markov models: the sea state during the set-up
for pumping the oil and the amount of oil spilled during the
plan’s execution. These models are run over the time periods
required, and the evaluation module returns to the planner
a low probability of success and two failure modes: that
the sea conditions are too poor when the barge arrives, with
probability 0.4, and that some oil has spilled from the tanker
by the time the barge arrives, with probability 0.85. Part of
the belief network generated to model the plan, dealing only
with the preconditions of the final step, is shown in Figure 4.

The planner improves its original plan by adding a con-

ditional branch, contingent on whether oil has spilled from
the tanker. The new steps in the plan move a skimmer to the
scene to skim oil from the surface of the water into the same
barge. This second plan is shown in Figure 5. This plan is
evaluated and found to have probability 0.6 of success, with
the change in the weather being the only failure mode.

1. move cargo-pumpl santa-clara-coast richmond-port
utility-boat-2
2. move tank-bargel richmond-port santa-clara-coast
3. cargo-transfer-oil-to-stabilize ss-weany santa-clara-
coast tank-bargel cargo-pumpl 600 120
IF oil-spilled santa-clara-coast
BEGIN

4. move boom-skimmerl oakland-port santa-clara-
coast

5. perform-open-water-recovery weany-spill santa-
clara-coast 600

6. clean-up-spill weany-spill santa-clara-coast

END
Figure 5: The improved plan (probability 0.6 of success)

Learning Planning Control Knowledge from
the Probabilistic Analysis

The example problem in the previous section also illustrates
an opportunity to apply speed-up learning from the evalua-
tion module to the planning module of Weaver. Concretely,
the choice of which barge to use affects the probability of
success as a function of the sea condition. In the problem
scenario there are four different tank barges that the plan-
ner can choose from to pump oil into, leading to different
probabilities of success for the final plan, because of their

different speeds and different worst operating conditions.
The planner is unaware of these factors since it ignores the
external events that cause the weather to change, and picks
a barge at random. In order to find the plan that maximises
the probability of success in this example problem, Weaver
iteratively calls the planner again, and the planner has to
backtrack over the choice of which barge to use and pick
tank-barge?2 instead of rank-bargel, because according to
the problem description, tank-barge2 has a higher maxi-
mum sea state although it is twice as slow as rank-bargel.

This example illustrates the learning opportunities avail-
able in planning under uncertainty. In general, our learning
method allows Weaver to learn from experience which fea-
tures of the problem to pay attention to in choosing the
steps in a plan. The method is based on HAMLET (Borrajo
& Veloso 1996) which is a learning algorithm that combines
deductive and inductive techniques to acquire control rules
to improve the planning efficiency and the quality of the
plans generated.! In this section, we briefly introduce HAM-
LET’s learning technique and then present how we apply
and

HAMLET as an inductive explanation-based learner

HAMLET is a learning algorithm that uses examples of plan-
ning episodes, i.e., search trees, to automatically generate
control knowledge to guide future plan search. HAMLET
was designed and developed to address situations, where:
(1) example search trees are explainable,i.e., there is some
underlying domain theory that can guide the automated ex-
planation (interpretation) process, but (2) generating correct
explanations from a single example is too expensive or im-
possible, i.e., the underlying domain theory is neither correct
nor complete to the point of providing effective generaliza-
tion information.?

Several learning algorithms applied to problem solving
generate explanations for the local decisions made during
the search process (e.g., (Laird, Rosenbloom, & Newell
1986; Mitchell, Keller, & Kedar-Cabelli 1986; DelJong
& Mooney 1986; Minton 1988; Pérez & Etzioni 1992;
Katukam & Kambhampati 1994). These explanation-based
techniques follow a deductive approach and invest a sub-
stantial explanation effort to produce proven correct and
complete control rules from a single (or few) problem solv-
ing examples and a correct and complete underlying domain
theory. There has been work on learning with incomplete,
or intractable theories, (e.g., (Tadepalli 1989)) applied to
simple problem solving scenarios.

Alternatively to these deductive domain-theory depen-
dent algorithms, inductive learning approaches incremen-
tally acquire correct knowledge by observing a large set of

"HAMLET stands for Heuristics Acquisition Method by Learning
from sEarch Trees (Borrajo & Veloso 1994; Veloso & Borrajo
1994).

*In addition to the type hierarchy, set of operators and inference
rules that describe the primitive problem solving action model,
a complete domain theory would include also a set of domain
axioms that enables the proof of the universal truth of episodic
explanations.

problem solving examples. These approaches strongly de-
pend on the particular examples seen, but can also acquire
simple and useful rules (Cohen 1990; Leckie & Zukerman
1991).

HAMLET combines a deductive and an inductive ap-
proach: it generates bounded explanations from search trees
that are refined inductively with more example problems.
Hence, the learned knowledge becomes increasingly cor-
rect incrementally. HAMLET learns control knowledge to
improve both the search efficiency of the planner and to
improve the quality of the plans generated.

HAMLET is integrated with the PRODIGY planner. The
inputs to HAMLET are a task domain (D), a set of train-
ing problems (P), a quality measure (()), a learning mode
(L), and an optimality parameter (O). @, L, and O will
be explained shortly. The output is a set of control rules
(C). HAMLET has two main modules: the Bounded Expla-
nation module, and the Refinement module. Figure 6 shows
HAMLET’s modules and their connection to PRODIGY.

HAMLET

Quality
Measure

™[Bounded Explanation C
p
Learning = module
mode

T E——

Optimality — - | Refinement

F module
parameter ST - Learned
Traini STC C Control

roblern Knowledge
Problems — PRODIGY

/

Domain

Figure 6: HAMLET’s high level architecture.

The Bounded Explanation module generates control rules
from a planning search tree. It explains the success-
ful search choices by loosely following the dependencies
among choices, and by selecting a bounded set of features
describing the situation in which the successful choice was
made. (No proof of correctness or completeness of the
explanations is attempted.)

These rules might be overly specific or overly general,
as their explanation procedure was lazy. The Refinement
module generalizes rules incrementally upon analyzing new
positive examples of the application of the same rules. It
replaces overly general rules with more specific ones upon
encountering negative examples, i.e., situations in which the
learned rules lead to wrong decisions. HAMLET gradually
learns and refines control rules, converging to a concise
set of correct control rules (i.e., rules that are individually
neither overly general, nor overly specific). In Figure 6, C
is the current set of control rules, S7" and S7¢ are planning
search trees generated by the planner when not using (S77)
and using (S7¢) the learned control rules, and C’ is the new
set of control rules learned by the Bounded Explanation
module.

HAMLET has been tested in a variety of experiments in-
volving complex planning problems. The empirical results

C

support the effectiveness of HAMLET s learning approach, in
terms of improvement in planning efficiency, in the quality
of plans generated, and in its incremental convergence to-
wards the correct knowledge (Borrajo & Veloso in press
forthcoming 1996). We realize that HAMLET’s learning
power comes most directly from its overall lazy learning
approach.

Extending HAMLET to a hybrid planner

HAMLET’s incremental inductive refinement of the learned
knowledge seems appropriate for compiling experience ob-
tained from probabilistic planning episodes. We discuss
how to extend HAMLET to apply to the hybrid planning sce-
nario. Training occurs by solving simple problems, such as
the earlier example from the oil-spill domain, in several dif-
ferent ways with different probabilities of success. Because
the probabilistic model is built from events whose precon-
ditions are known, the factors influencing the probability of
success can be determined. HAMLET can use these factors to
augment its partial (bounded) explanation of the preferred
solution and produce control rules to be used in the planner.
Three modifications are needed to use HAMLET in this way:
(i) to add the plan step duration as an operational predicate
in the explanation process that constructs the left hand side
of the control rules; (ii) to treat the probability of success as
a quality measure for plans and if necessary include it in the
explanation, and (iii) to be able to handle continuous values
appropriately (e.g. plan step duration is a continuous value)
in both its explanation and refinement phases. Although
Weaver and HAMLET are both implemented systems, these
modifications are under development, so the description that
follows is provided as an example of the technique but is
not a trace of an already implemented algorithm.

Following up on the example of the previous section, for
simplicity, consider the subgoal of stopping the discharge
of oil as the top-level goal. In this situation, Weaver still
produces the same plan as shown in Figure 3. This plan now
has a probability of success of 0.6 as the change in weather is
the only external event that matters for this subgoal. Weaver
requires the planner to search for a plan with higher proba-
bility. The plan which uses tank-barge2 is found that has
a probability of success of 0.84. These two solved plans
are given to the learning module. HAMLET identifies the
decision choices available as the learning opportunities. In
particular, the point in the plan search tree where the two
barge binding choices for the operator cargo-transfer-oil-to-
stabilize is a learning opportunity. The extended HAMLET
generates a partial explanation of the difference between the
two plans using from their corresponding belief nets.

To generate a partial explanation for the probability of
success of a plan, Weaver supplements the explanation gen-
erated by HAMLET from the plan in the normal way with
literals generated from each Markov chain contributing to
the plan’s belief net. In each such chain, the preconditions
of events that lie on a path from nodes representing desired
values to nodes representing undesired values are added to
the partial explanation. This explanation process is equiva-
lent to the goal regression used by HAMLET in the sequence

of planning operators. In the example the event explanation
will identify the sea conditions at the scene of the oil spill
in the initial state as the relevant features to be added. The
duration of each step is also added to the explanation. This
is computed from the bindings of the operator and so is
available when the planner chooses between steps.

In this case, the set difference between the explanations
of the better plan and the worse plan includes the worst sea
state for each barge and the duration. HAMLET tentatively
adds the control rule shown in Figure 7.

IF the chosen-operator is cargo-transfer-oil-to-stabilize
and candidate-bindings ?B1 use ?bargel
and candidate-bindings ? B2 use ?barge2
and worst-sea-state of ?bargel is 5
and worst-sea-state of ?barge2 is 3.5
and duration of ?Bl is 37
and duration of ?B2 is 17
THEN prefer bindings ?BI to ? B2

Figure 7: Example Control Rule Learned

Here, ?7B1, 7B2, ?bargel and ?barge2 are variables. As
expected, following HAMLET’s incremental learning pro-
cess, the rules produced may be incorrect. In particular, the
rule in Figure 7 is incorrect: it is over-general because the
initial sea-state is not mentioned and also over-specific be-
cause of the explicit durations of the different instantiations
of the operators. However the underlying explanations are
stored so that as new cases are encountered the rule can
be refined to correctly cover many examples. Durations
may be generalised to ranges as more positive examples are
encountered, and the initial sea state can be added to the
precondition as negative examples are encountered.

Extensive empirical studies have been performed to ana-
lyze HAMLET’s convergence behavior in classical domains.
In the domains used, HAMLET consistently showed that the
set of control rules converged to an increasingly correct set
of rules (Borrajo & Veloso 1996). An equivalent empirical
study as well as an analytical one in the probabilistic frame-
work is on-going research. However this domain clearly
presents a challenge to HAMLET because the learned rules
are essentially trying to predict the output of one or more
Markov chains in the plan’s Bayesian net. Rules that simply
learn conjunctions of ranges for real-valued features such
as the operator duration cannot possibly learn the relation
between duration, initial sea state and the best barge choice
perfectly. We conjecture, however, that a few such rules
will adequately cover all cases met in practice in a particu-
lar scenario such as spills in the bay area.

References

Blythe, J., and Veloso, M. 1996. Using analogy in condi-
tional planners. Technical Report forthcoming, Computer
Science Department, Carnegie Mellon University.

Blythe,J. 1994. Planning with external events. In de Man-
taras, R. L., and Poole, D., eds., Proc. Tenth Conference

on Uncertainty in Artificial Intelligence, 94—101. Seattle,
WA: Morgan Kaufmann.

Blythe, J. 1996. Decompositions of markov chains for
reasoning about external change in planners. In Drabble,
B., ed., Proc. Third International Conference on Artificial
Intelligence Planning Systems. University of Edinburgh:
AAAI Press.

Borrajo, D., and Veloso, M. 1994. Incremental learn-
ing of control knowledge for nonlinear problem solving.
In Proceedings of the European Conference on Machine
Learning, ECML-94,64-82. Springer Verlag.

Borrajo, D., and Veloso, M. 1996. Lazy incremental learn-
ing of control knowledge for efficiently obtaining quality
plans. Artificial Intelligence Review in press.

Borrajo, D., and Veloso, M. in press, forthcoming 1996.
Lazy incremental learning of control knowledge for effi-
ciently obtaining quality plans. Journal of Artificial Intel-
ligence Review.

Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning
under uncertainty: structural assumptions and computa-
tional leverage. In Ghallab, M., and Milani, A., eds., New
Directions in Al Planning. Assissi, Italy: 10S Press.

Cohen, W. W. 1990. Learning approximate control rules
of high utility. In Proceedings of the Seventh International
Conference on Machine Learning, 268-276.

Collins, G., and Pryor, L. 1995. Planning under un-
certainty: Some key issues. In Proc. 14th International
Joint Conference on Artificial Intelligence, 1567-1573.
Montréal, Quebec: Morgan Kaufmann.

DelJong, G. F., and Mooney, R. 1986. Explanation-
based learning: An alternative view. Machine Learning
1(2):145-176.

Desimone, R. V., and Agosta, J. M. 1994. Oil spill re-
sponse simulation: the application of artificial intelligence
planning technology. In Simulation Multiconference.

Estlin, T., and Mooney, R. 1996. Multi-strategy learn-
ing of search control for partial-order planning. In Proc.

Thirteenth National Conference on Artificial Intelligence.
AAAI Press.

Katukam, S., and Kambhampati, S. 1994. Learning
explanation-based search control rules for partial order
planning. In Proc. Twelfth National Conference on Artifi-
cial Intelligence. AAAI Press.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76:239 — 286.

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986.
Chunking in SOAR: The anatomy of a general learning
mechanism. Machine Learning 1:11-46.

Leckie, C.,and Zukerman, I. 1991. Learning search control
rules for planning: An inductive approach. In Proceedings
of Machine Learning Workshop, 422-426.

Minton, S.; Carbonell, J. G.; Knoblock, C. A.; Kuokka,
D. R.; Etzioni, O.; and Gil, Y. 1989. Explanation-based

learning: A problem solving perspective. Artificial Intel-
ligence 40:63-118.

Minton, S. 1988. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Boston,
MA: Kluwer.

Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T.
1986. Explanation-based generalization: A unifying view.
Machine Learning 1:47-80.

Pérez, A. M., and Etzioni, O. 1992. Dynamic: A new
role for training problems in ebl. In Sleeman, D., and
Edwards, P., eds., Machine Learning: Proceedings of the
Ninth International Conference,367-372.San Mateo, CA:
Morgan Kaufmann.

Tadepalli, P. 1989. Lazy explanation-based learning: A
solution to the intractable theory problem. In Proceed-
ings of the Eleventh International Joint Conference on
Artificial Intelligence, 694-700. San Mateo, CA: Morgan
Kaufmann.

Veloso, M., and Borrajo, D. 1994. Learning strategy
knowledge incrementally. In Proceedings of the 6th Inter-
national Conference on Tools with Artificial Intelligence,
484-490.

Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The prodigy architecture. Journal of Experimental and
Theoretical Al 7:81-120.

Veloso, M. M. 1994. Planning and Learning by Analogical
Reasoning. Springer Verlag.

