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Abstract

General-purpose planners use domain-independent search
heuristics to generate solutions for problems in a variety
of different domains. However, as heuristics they are, there
are situations in which these heuristics do not produce the
expected effective guidance, and the planner performs inef-
ficiently or obtains solutions of poor quality. Learning from
experience can help to identify the particular situations for
which the domain-independent heuristics need to be overrid-
den. In this paper, we present a system, HAMLET, that learns
control knowledge and incrementally refines it, allowing the
planner not only to solve efficiently complex problems, but
also generate solutions of good quality. We claim that in-
cremental learning of control knowledge and consideration
of the quality of the solutions are two fundamental research
directions towards the goal of applying planning techniques
to real-world problems. We show empirical results in a com-
plex domain that show the promise of our approach to support
our claims.

Introduction and Related Work

Most systems that learn strategic knowledge in problem
solving have been applied to problem solvers with the
linearity assumption, such as the ones applied to Prolog
or logic programming (Quinlan 1990; Zelle & Mooney
1993), special-purpose (Langley 1983; Mitchell, Utgoff,
& Banerji 1983), or other general-purpose linear prob-
lem solvers (Etzioni 1993; Leckie & Zukerman 1991;
Minton 1988; Pérez & Etzioni 1992). These problem
solvers are known to be incomplete and unable of finding
optimal solutions (Rich 1983; Veloso 1989).

If we remove the linearity assumption, we are deal-
ing with nonlinear problem solvers. This kind of prob-
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lem solvers are needed to address real world complex
problems.  Some nonlinear planners search the plan
space by using partially-ordered plans (Chapman 1987;
McAllester & Rosenblitt 1991). Others remove the linear-
ity assumption by fully interleaving goals, searching in the
state space, and using totally-ordered plans (Veloso 1989;
Warren 1974). Most of the approaches do backward chain-
ing, although some use forward chaining (Bhatnagar 1992;
Laird, Rosenbloom, & Newell 1986). In general, there
have been only a few learning approaches applied to
nonlinear problem solving (Bhatnagar 1992; Kambham-
pati & Kedar 1991; Laird, Rosenbloom, & Newell 1986;
Pérez & Carbonell 1994; Ruby & Kibler 1992; Veloso
1992).

In this paper we show that nonlinear problem solving of-
fers new learning opportunities where domain-dependent
control knowledge may be used to further improve not
only the problem solver performance but also the quality
of the solutions produced. Both issues are needed for scal-
ing up the kinds of domains and problems that planners
can solve. Constructing correct explanations of the non-
linear problem solver successes and failures from a single
example may be computationally very expensive, as the
generalization phase to generate provably correct knowl-
edge would have to consider a large number of possible
combinations of planning situations. To alleviate this ef-
fort, we developed a new approach, and implemented it
in HAMLET,! where control knowledge for individual deci-
sions is incrementally acquired through experience. HAM-
LET is integrated with PRODIGY4.0, the current nonlinear
problem solver of the PRODIGY architecture for planning
and learning (Carbonell et al. 1992). HAMLET learns lo-
cal control rules by first lazily explaining the decisions
made during problem solving from individual examples.
Upon finding new positive and negative examples of the
use of its learned rules, HAMLET incrementally induces
and refines its control knowledge (Borrajo & Veloso 1993;
1994a). A similar lazy approach can be found in (Tadepalli
1989), where LEBL (Lazy Explanation Based Learning) is
presented. The main difference is that while Tadepalli re-
fines the knowledge introducing exceptions, HAMLET mod-

1“HAMLET” stands for Heuristics Acquisition Method by
Leaming from sEarch Trees.



ifies the control rules themselves adding or removing their
applicability conditions. Also, Tadepalli applies it to game
playing, while we use it for general task planning.

While improving problem solving performance has been
largely studied, learning to improve solution quality has
only been recently pursued by some researchers, includ-
ing (Pérez & Carbonell 1994; Ruby & Kibler 1992). We
differ from and Pérez’s work in the fact that HAMLET per-
forms inductive refinement of the control rules, and in the
way positive examples are generated. Ruby and Kibler’s ap-
proach differs in the knowledge representation of the learned
control knowledge, since it is a case-based learner. HAMLET
combines the two kinds of optimization, by learning control
rules, that allow not only to do more effective search, but
also to achieve better solutions.

In the paper, we discuss what are learning opportunities
for problem solving, and how we extended previous EBL
work. We present HAMLET describing the main features of
its deductive, inductive, and refinement modules. Finally,
the paper shows empirical results on this work and draws
conclusions.

Learning Opportunities

In order to efficiently solve problems in real world appli-
cations, general-purpose problem solvers must use efficient
domain-independent heuristics to improve its search per-
formance. In this section we show that additional domain-
dependent control knowledge may be used to further im-
prove not only the problem solver performance but also
the quality of the solutions produced. To illustrate our
points, we use PRODIGY4.0, but the reasons we highlight
that make learning needed can, in general, improve any
problem solver’s performance.

The current nonlinear problem solver in PRODIGY,
PRODIGY4.0, follows a means-ends analysis backward
chaining search procedure reasoning about multiple
goals and multiple alternative operators relevant to the
goals. PRODIGY4.0 is a successor of the previous linear
PRODIGY2.0 (Minton ef al. 1989) and the first nonlinear and
complete NOLIMIT (Veloso 1989). The inputs to the basic
problem solver algorithm are the set of operators specifying
the domain knowledge, and a problem specified in terms of
an initial configuration of the world, and a set of goals to
be achieved. Table 1 shows the skeleton of PRODIGY4.0’s
planning algorithm.

The planning reasoning cycle involves several decision
points, namely: the goal to select from the set of pending
goals and subgoals; the operator to choose to achieve a
particular goal; the bindings to choose in order to instantiate
the chosen operator; apply an operator whose preconditions
are satisfied or continue subgoaling on a still unachieved
goal. Default decisions at all these choices can be directed
by explicit control knowledge.

Although PRODIGY can use a variety of powerful domain-
independent heuristics (Stone, Veloso, & Blythe 1994), it
is very difficult and costly to determine in general which
of these heuristics are going to succeed or fail. Therefore,
learning can be used for automatically acquiring control

1. Terminate if the goal statement is satisfied in the current state.

2. Compute the set of pending goals G, and the set of applicable
operators A. A goal is pending if it is a precondition, not
satisfied in the current state, of an operator selected to be in
the plan to achieve a particular goal. An operator is applicable
when all its preconditions are satisfied in the state.

3. Choose a goal G from G or select an operator A from A.
4. If G has been chosen, then

e Expand goal G, i.e., get the set O of relevant instantiated
operators that could achieve the goal G,
o Choose an operator O from O,
¢ Goto step 1.
5. If an operator A has been selected as directly applicable, then
e Apply A,
o Gotostepl.

Table 1: A skeleton of PRODIGY4.0’s planning algorithm
and choice points.

knowledge to override the default behavior of a particu-
lar domain-independent search heuristic to drive the plan-
ner more efficiently to a solution. Note that this need to
learn when particular domain-independent search strategies
do not produce desirable results is common to any plan-
ner (Veloso & Blythe 1994).

Another reason for the need of learning relates to the
issue of optimality of the solutions obtained by the problem
solver. Qur current measure of optimalityis the length of the
solution.? There are many domains in which the necessary
knowledge (o select the optimal solution is not explicit in
the definition of the domain knowledge or it is costly to do
a breadth-first search for finding it. In those cases, learned
control knowledge can direct the search to those optimal
solutions, as also pointed out by (Pérez & Carbonell 1994),

Extending Previous Work

HAMLET extends the EBL methods used with the linear plan-
ning algorithm of PRODIGY2.0 (Etzioni 1993; Minton 1988;
Pérez & Etzioni 1992) to apply to the nonlinear PRODIGY4.0.
This extension is needed along several aspects in order to
address new problems raised by the decisions on multiple
goal interleaving choices combined with multiple operator
and binding choices. We identify new learning opportu-
nities related to PRODIGY’s ability of postponing planning
commitments for efficiency and quality purposes. We in-
troduce new language primitives for describing the learned
control rules, in order to capture the information related to
these new choices.

HAMLET reduces the explanation effort by generating par-
tial (“bounded”) explanations of branching decisions made
during the search for a solution. HAMLET’s inductive learn-
ing module assures the incremental correctness of every

20ur method is not dependent of this particular metric, and can
use any operational optimality measure.



deduced control rule. The use of inductive learning elim-
inates the need for an axiomatic domain theory to support
the correct generalization of an episodic explanation, as re-
quired in EBL applied to PRODIGY2.0.

HAMLET’s Architecture

The inputs to HAMLET are a domain specified as a set of
planning operators, a set of training problems, and a qual-
ity measure. The output is a set of control rules. HAMLET
has three main modules: Bounded-Explanation, Induction,
and Refinement. The Bounded-Explanation module gen-
erates control rules from a PRODIGY search tree. These
rules might be over-specific or over-general. The Induc-
tion module addresses the problem of over-specificity by
generalizing rules when analyzing positive examples. The
Refinement module replaces over-general rules with more
specific ones when it finds situations in which the learned
rules lead to wrong decisions. HAMLET gradually learns
and refines control rules converging to a concise set of cor-
rect control rules, i.e. rules that are individually neither
over-general, nor over-specific.

Figure 1(a) shows HAMLET’s modules and their connec-
tion to PRODIGY, and Figure 1(b) presents an outline of
HAMLET’s algorithm. Here ST and ST’ are search trees gen-
erated by the PRODIGY planning algorithm, L is the set of
control rules, L’ is the set of new control rules learned by the
Bounded Explanation module, and L” is the set of rules in-
duced from L and L’ by the Inductive module. We describe
next the main features of the three modules of HAMLET,

Bounded Explanation

The Bounded-Explanation module learns control rules by
identifying important decisions made during the search for
a solution and extracting the information that justifies these
decisions from the search space. This explanation process
consists of four phases as follows.

Labeling the decision tree HAMLET traverses the search
tree bottom-up, starting from the leaf nodes. It assigns three
kinds of labels to the leaf nodes of the tree: success, if the
node corresponds to a correct solution plan; failure, if the
node is a dead end in the search space; and unknown, if
the planner did not expand the node. After labeling the
leaf nodes, HAMLET propagates the labels to all other search
tree nodes, using the algorithm described in (Borrajo &
Veloso 1994a), which is similar to the one used by other
systems, such as LEX (Mitchell, Utgoff, & Banerji 1983).
The algorithm labels a node as: success if any of its children
is a success and it does not have any unknown child; failure
if all its children are labeled as failure; and unknown if any
of its children is labeled as it unknown.

Credit Assignment The credit assignment is the process
of selecting important branching decisions that are respon-
sible for the successes and failures of a particular search

3We have empirical evidence for this convergence phenomena,
but one of our current research efforts is the formal study of the
convergence of HAMLET’s learning algorithm.

Learned
Quality } Control
Measure Knowledge
HAMLET | — -y
g,p]_::.tion || Inductive
Module Module
Training ,? l Lt
problems 8T 87 L
B e
-PRDDIGY Refinement
Domain | ot 817 module

@
Let L refer to the set of learned control rules.
Let ST refer to a search tree.
Let P be a problem to be solved.
Let Q be a quality measure.
Initially L is empty.
For all P in the set of training problems
ST = Result of solving P without any rules.
ST’ = Result of solving P with current set of rules L.
If positive-examples-p(ST, ST',Q)
Then L’ = Bounded-Explanation(ST, ST',Q)
L"=Induce(L,L")
If negative-examples-p(ST, ST',Q)
Then L=Refine(ST, ST',L"")
Return L
(b)

Figure 1: (a) HAMLET’s high level architecture; (b) A high-
level description of HAMLET’s learning algorithm.

branch. At these decision points learning occurs. Credit
assignment is done while labeling the search tree. HAMLET
decides that a branching decision is important, and therefore
a learning opportunity, if this decision (1) leads to one of the
optimal solutions and (2) differs from the default decision
made by domain-independent heuristics.

Generation of control rules At each decision choice to
be learned, HAMLET has access to information on the current
state of the world and on the meta-level planning informa-
tion, such as the goals that have not been achieved, the goal
the planner is working on, and the possible applicable op-
erators. This information is used by the generation module
to create the applicability conditions, i.e. the if-parts, of
the control rules. The set of features used in the if-parts
of control rules can be found in (Borrajo & Veloso 1994a).
Examples of features are: true-in-state that checks whether
a predicate is true in the current search state; candidate-
goal that checks whether a given goal is the one the plan-
ner is currently trying to achieve; or some-candidate-goals
that checks the set of alternative goals that have not been
yet achieved. The relevant features of the current state
are selected using goal regression similarly to foot-printing
in (Veloso 1992).

HAMLET learns four kinds of select control rules, corre-
sponding to PRODIGY’s decisions, as presented in Table 1,
which are generalized target concepts. HAMLET generates
a set of rules for each target concept, where the if-part of



Test sets Unsolved problems Solved by both configurations (271 problems)

Better solutions || Solution length Nodes explored

Number of | Number of || without with without | with || without | with || without { with
Goals Problems rules rules rules rules rules rules rules rules
1 100 5 0 0 11 327 307 2097 1569
2 100 15 6 0 25 528 479 3401 2308
5 100 44 23 0 29 789 708 4822 3472
10 100 68 35 1 22 731 640 3309 2846
20 75 62 45 0 8 348 322 1516 1360

50 25 24 18 0 0 34 34 143 141

[ Towmls | 500 || 218 | 125 [ 1 | 95 || 2757 [ 2490 ]| 15288 [ 11696 |

Table 2: Empirical results on increasingly complex problems in the logistics domain.

each rule is described as a conjunctive set of predicates.
As HAMLET can learn several rules for the same target con-
cept, the set of all rules can be viewed as the disjunction of
conjunctive rules.

Parameterization After a rule is generated, HAMLET re-
places specific constants inherited from the episodic plan-
ning situation with variables of corresponding types. Dis-
tinct constants are replaced with differently named vari-
ables, and when the rule is applied, different variables must
always be matched with distinct constants. This latter
heuristic may be relaxed in the process of inductive gen-
eralization of the leamed rules.

Inductive Generalization and Refinement

The rules generated by the bounded explanation method
may be over-specific as also noticed by (Etzioni & Minton
1992). To address this problem, we use the Inductive Learn-
ing module, which generalizes the learned rules by analyz-
ing new examples of situations where the rules are appli-
cable. We have devised methods for generalizing over the
following aspects of the learned knowledge: state; subgoal-
ing structure; interacting goals; and type hierarchy (Borrajo
& Veloso 1994a).

HAMLET may also generate over-general rules, either by
inducing or by doing goal regression when generating the
rules. Therefore, the over-general rules need to be refined.
There are two main issues to be addressed: how to detecta
negative example, and how to refine the learned knowledge
according to it. A negative example for HAMLET is a situ-
ation in which a control rule was applied, and the resulting
decision led to either a failure (instead of the expected suc-
cess), or a worse solution than the best one for that decision.

When a negative example is found, HAMLET tries to re-
cover from the over-generalization by refining the wrong
rule. The goal is to find, for each over-general rule, a
larger set of predicates that covers the positive examples,
but not the negative examples. For each generalization op-
erator, HAMLET has the inverse specialization operator. For
instance, if the generalization procedure intersected the if-
parts of two rules, the Recover-intersection specialization
operator backtracks on each preceding rule and adds condi-
tions from the if-part of the preceding rule to the if-part of
the more general rule, until they do not cover the negative
examples of the target concept(Borrajo & Veloso 1994b).

Empirical Results

We have carried out experiments on several domains, and
the results we report in this section were done on a trans-
portation domain used first in (Veloso 1992).4 In this do-
main, packages must be delivered to different locations in
several different cities. Packages are carried within the
same city in trucks and across cities in airplanes. At each
city, there are several locations, such as post offices and
airports. This domain poses many interesting problems of
interleaving of goals, and quality of the solutions, and it is a
close approximation to a real world logistics-transportation
domain with multiple routing alternatives.

We trained HAMLET with 400 randomly generated prob-
lems of one and two goals, and up to three cities and
five packages. HAMLET generated 26 control rules. Then,
we randomly generated 500 testing problems of increasing
complexity. Table 2 shows the results of those tests. We
varied the number of goals in the problems from 1 up to
50, and the maximum number of packages from 5 up to 50.
Notice that the problems with 20 and 50 goals are really
very complex especially in terms of finding good or optimal
solutions, involving solutions of over 100 steps.

In the experiments we compare two configurations,
namely PRODIGY not using and using the rules learned by
HAMLET. In both situations, PRODIGY was given a CPU
running time limit that varied with the number of goals
of the problem according to the formula Time_bound =
150 * (1 + mod (number_of_goals, 10)) in seconds. The re-
sults show a very significant decrease in the number of
unsolved problems when PRODIGY used the learned rules.
To compare the solution quality, we can only account for the
problems solved by both configurations. Table 2 shows that,
for alarge number of those problems, the solution generated
using the rules is of better quality than the one generated
without the rules. This shows that the learned rules drive
the planner to find solutions of quality in addition to doing
it efficiently, which supports our research goals underlying
HAMLET’s learning algorithm. The overall running times
also decreased using the rules, but not significantly. We
did not find empirically with our learned rules that the time
spent solving the problem degraded so much to consider it a
utility problem (Minton 1988). However, we are currently

*We are currently working on applying HAMLET to other real
world tasks.



developing efficient methods for organizing and matching
the learned control rules. We consider this organization es-
sential and part of the overall learning process (Doorenbos
& Veloso 1993).

Conclusions

We have presented HAMLET, a system that learns the situa-
tions in which there is a need to override the default search
behavior of a planner, to improve its performance, and also
the quality of the plans generated. HAMLET first bounds the
explanation of nonlinear problem solving decisions gener-
ating rules that might be over-specific or over-general, as it
does not use an axiomatic domain theory to guarantee the
correctness of the learned knowledge. The rules converge
to correctness by inductive generalization and refinement
through experience. Empirical results show that HAMLET
enables the planner to solve very complex problems. HAM-
LET produces solutions of high quality to complex problems
with significant efficiency.
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