
Combining Search and Analogical Reasoningin Path Planning from Road Maps �Karen Haigh Manuela VelosoSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh PA 15213fkhaigh,mmvg@cs.cmu.eduAbstractPath planning from road maps is a task thatmay involve multiple goal interactions andmultiple ways of achieving a goal. This prob-lem is recognized as a di�cult problem solv-ing task. In this domain it is particularly in-teresting to explore learning techniques thatcan improve the problem solver's e�ciencyboth at plan generation and plan execution.We want to study the problem from two par-ticular novel angles: that of real execution inan autonomous vehicle (instead of simulatedexecution); and that of interspersing execu-tion and replanning as an additional learn-ing experience. This paper presents the ini-tial work towards this goal, namely the inte-gration of analogical reasoning with problemsolving when applied to the domain of pathplanning from large real maps. We show howthe complexity of path planning is related tomultiple ways of achieving the goals. We re-view the case representation and describe howthese cases are reused in path planning wherewe interleave a breadth-�rst problem solvingsearch technique with analogical case replay.Finally, we show empirical results using a realroad map. IntroductionThe motivation and long-term goal of this work is to in-tegrate planning, real execution, and learning by anal-ogy in the domain of traversing road maps to achieve�This research was sponsored by the Avionics Labora-tory, Wright Research and Development Center, Aeronau-tical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No. 7597. The �rst author is alsosupported in part by the Natural Sciences and EngineeringResearch Council of Canada. The views and conclusionscontained in this document are those of the authors andshould not be interpreted as representing the o�cial poli-cies, either expressed or implied, of the U.S. Governmentor of the Canadian Government.

multiple goals. Prodigy, a planner and learner [Car-bonell et al., 1990b], will be integrated with an au-tonomous navigation vehicle which will execute theplans to achieve multiple goals while driving in a city.The planner will be given a road map, a set of goals,and the initial location of the vehicle. It will generatea near-optimal route that achieves all the goals. Weintend to use NavLab [Thorpe, 1990], an autonomousvehicle driven by a set of neural networks to execute theplan. NavLab will combine low-level perception withthe high-level reasoning of the plan which will guide itin makingmore complex decisions such as which way toturn at intersections in order to achieve the goals. Realexecution of the plan may lead to failures of plannedsteps, such as a blocked road. The vehicle will trans-mit this information to the planner for replanning andlearning.Several researchers investigate the problem of inter-leaving planning and execution [Hammond et al., 1990,Agre and Chapman, 1987, McDermott, 1978]. In thiswork we want to study the problem from two partic-ular angles: that of real execution in an autonomousvehicle (instead of simulated execution), and that of in-terspersing execution and replanning as an additionallearning experience. We envision breaking the repre-sentation gap between a high level reasoning plannerand a vehicle in the real-world executing the plan.We report on preliminary work towards reaching thismotivating scenario. This paper focuses on the devel-opment of a robust planning and learning system wherewe accumulate a library of cases as planning episodesto guide the initial planning as well as any replanningneeded at execution time.Path planning for multiple goals involves a largesearch space with a large set of alternative ways toachieve each individual goal and many possible goalinteractions. We initially investigate the issues of de-signing the domain using real road maps. Then we dis-cuss how analogical reasoning applies to problem solv-ing in this domain and show empirical results on theintegration with depth-�rst and breadth-�rst searchand discuss our on going implementation of best-�rstsearch. We explore in particular how case reuse a�ects



the planning time, since it is very important to reducethe search space, especially when replanning duringexecution.Path Planning from Road MapsIntroductionThe problem examined in this paper is how to �nd apath in a map when there are multiple goals. Goalsmay consist of moving to di�erent locations, gettingorders, and/or delivering packages.Path planning in graphs has been addressed by avariety of algorithms, such as Dijkstra's shortest pathalgorithm [Aho et al., 1974]. However, since our goalis to implement this in autonomous vehicles, we wantto be able to interleave path planning with execution.Paths will have to be modi�ed and altered during driv-ing (because of detours, for example) and, therefore,we need a method which is more 
exible than a short-est path algorithm, and where we can reuse previousexperience as in [Goel et al., 1992].Furthermore, our framework with real road maps di-verges from the more general framework of path plan-ning in arbitrary graphs. In fact, real road maps arenot static since they will have minor temporary varia-tions which will only be known at execution time. Thepath planning problem is also characterized by an ex-tremely large number of alternative ways of reachingtarget destinations, many of which will be equivalentfrom a distance point of view. The emphasis of thiswork is therefore on learning from experience in a realenvironment rather than a simulated one. We use ana-logical reasoning to enable the planner to accumulateand reuse its planning experience.Finally, our path planning process is not driven ex-clusively by �nding the path with the minimum dis-tance between locations. Our aim is rather to �ndacceptable solutions to multiple goals which can beachieved in several alternative ways, a problem re-ducible to the Hamiltonian circuit and therefore NP-hard. Reusing previous experiences will reduce thiscomplexity.The Domain RepresentationWhen designing a domain representation, we consid-ered how the representation would a�ect the ultimategoal: using this planner in the autonomous vehicle. Weneed a representation that adequately describes oneway streets, distances between the initial position andthe destination, and the direction of turns that willneed to be made.Undirected graphs do not su�ce since one waystreets can not be represented, and although directedgraphs would be able to handle this problem, thereis no easy way to represent turning direction. Weare therefore using a system which explicitly connectsone city block with the next one, thereby allowingus to store all this required information. The streets

are therefore divided into multiple segments separatedby intersections. We recently found access to a de-tailed database of the complete Pittsburgh street mapwith more than 20,000 street segments. The databaseincludes the spatial coordinates of the intersectionswhich we will use to de�ne the turning direction be-tween street segments [Bruegge et al., 1992].As an example, in our current simpli�ed represen-tation, the predicate (connected Street1 Street2Distance Turning-direction) encodes state infor-mation about the map. The domain is encodedas a series of operators that describe possible ac-tions. Currently we have operators that move agentsout of and into buildings, and move agents be-tween streets. For example, the (goto-adjacent-street<street1> <street2> <distance> ) operator movesthe agent between two adjacent streets, namely from<street1> to <street2>. The preconditions of this op-erator require that the two streets be connected, andthat the agent is at <street1>. It also calculates thetotal distance travelled by adding the new distance tothe current total.Standard Means-End Analysis SearchBecause of the reasons described in the introduc-tion of previous section, we used the prodigy plan-ning and learning system [Carbonell et al., 1990a].Prodigy's nonlinear planner uses means-ends analysisin its backward-chaining search procedure which canreason about multiple goals and multiple alternativeoperators relevant to the goals. This choice of opera-tors amounts to multiple ways of trying to achieve thesame goal.The planning reasoning cycle involves several deci-sion points, namely: which goal to select from the set ofpending goals and subgoals; which operator to chooseto achieve a particular goal; which bindings to chooseto instantiate the chosen operator; and whether to ap-ply an operator whose preconditions are satis�ed or tocontinue subgoaling on a yet unachieved goal.Dynamic goal selection from the set of pending goalsenables the planner to interleave plans, exploiting com-mon subgoals and addressing issues of resource con-tention. The planner returns a partially ordered planas a result of analyzing the dependencies among thesteps in the totally ordered solution found while plan-ning.In a typical road map, each street-section is con-nected to at most eight other street-sections. Thisbranching factor varies between two as the lowest value(i.e. a dead-end street) and eight as the highest (�ve-way intersections at both ends). The branching factorin the map used for our experiments ranges betweentwo and six, and averages about 4.4.Therefore for a problem of travelling n city blocks,search complexity is loosely bounded above by approx-imately 8n. This number is reduced by the fact thatthe average branching factor is lower, and also by elim-



n Pni=0 4:4i Pni=0 8i5 2134 374510 3:52� 106 1:23� 10915 5:80� 109 4:02� 1013Table 1: Complexity of search space (in number ofnodes expanded) for travelling n city blocksinating goal loops, for example <goto-adjacent-streetx y > followed by <goto-adjacent-street y x > [Car-bonell et al., 1992]. For even relatively small valuesof n, however, reaching a solution by straight-forwardbreadth-�rst search is an extremely slow and tediousprocess (see Table 1).Case Reuse Combined with SearchGiven the complexity described above, we feel that ap-plying analogy and case-based reasoning in the contextof map path planning is highly appropriate and evennecessary given the time restraints required when in-terleaving planning with execution. We can reuse casesin this context because one solution path will often bea subpath of another problem. If the smaller prob-lem has already been solved, we can then reuse it andsigni�cantly reduce the amount of search necessary to�nd the new solution.Case RepresentationIn the original solution path, prodigy had to makevarious decisions about which paths to follow. Of allthe nodes generated while solving a problem, only theones on the solution path are stored to create a case.Extraneous nodes are discarded. Each relevant deci-sion from the original solution (i.e. each node in thesolution path) and its justi�cation is stored in Lisp for-mat in order to make reloading the case in a prodigy-readable format very easy. Figure 1 contains an exam-ple of how a goal node would be stored. Essentially,it maintains all pointers to related nodes in the searchtree (which operators introduced it, any other applica-ble operators left, remaining goals). A complete casecontains nodes of a similar format describing decisionsand justi�cations for decisions made at operator nodes,binding nodes and applied operator nodes.(setf (p4::nexus-children (�nd-node 4))(list (p4::make-goal-node:name 5:parent (�nd-node 4):goal (p4::instantiate-consed-literal'(AT BARTLETT-2 JANE )):introducing-operators(list (�nd-node 4) ))))Figure 1: A sketch of a goal node in a case.

Note that a case is not used as a simple \macro-operator" [Fikes and Nilsson, 1971]. A case is selectedbased on a partial match to a new problem solvingsituation. Hence, as opposed to a macro-operator, acase guides and does not dictate the reconstruction pro-cess. In addition, intermediate decisions correspondingto choices internal to each case can be bypassed oradapted if their justi�cations no longer hold.Case ReusageWe follow the case reuse strategy as developed in[Veloso, 1992]. The replay technique involves a closelycoupled interaction between planning using the domaintheory, domain operators, and similar cases which arederivational traces of both successful and failed deci-sions in past planning episodes. The replay mechanisminvolves a reinterpretation of the decision justi�cationsin the context of the new problem, reusing past deci-sions when the justi�cations hold true, and replanningusing the domain theory when the transfer fails.Once one (or more) case is is found that is similarto the new problem solving situation, it is ready to bereused. The planner is called and given the the setof operators and the similar case as input. The replayalgorithm is implemented by interrupting the planningalgorithm at its decision points so that it may makechoices similar to the ones from the guiding case.Until there is a match between a subgoal of thecase and one of the candidate goals of the new prob-lem, prodigy does breadth-�rst-search to maximizethe chance that a match will be found with minimumdepth. As soon as this match has been found, prodigyimmediately follows the case using depth-�rst-search,and does not expand the rest of the nodes at thesame level as the matched node. Once case nodesfor which similarity justi�cations hold have been ex-hausted, prodigy returns to breadth-�rst-search untilits main goal state has been achieved (see Figure 2).This method allows us not only to minimize additionalsearching, but also to solve problems in which neitherthe goal state nor the initial state are the same as theoriginal case.Note that, optimality of paths is not necessarily pre-served by analogical transfer. The merging of optimalsubplans under a satis�cing approach may result in anon-optimal new plan. When there are multiple opera-tors to achieve goals, there is no known technique thatboth tries to maximize the reuse of previous experienceand also maximize the quality of the new similar solu-tion. We plan to investigate an exploration techniquethat allows untried or unjusti�ed steps in the new con-text to be searched, diverging from the direct reuseof the past experience. This exploratory search can beconducted when the planner is not otherwise occupied.It should be noted however, that we are not explicitlyconcerned with always �nding an optimal solution, butrather with �nding a reasonable solution.



t Node not matchedd Node matched in caserd Goal Nodet����� ��� \\\HHHHHt�� AAt t t t�� AAt t t��tddd�� AAt t rd tReusing a case of depth 4, a newproblem of depth 6 is reduced toP3i=0 4:4i + 3 + 4:4 = 32 nodesfrom about 7250 nodesFigure 2: Prodigy's node expansion tree when prob-lem solving using a caseExperiments using a Real MapThe MapThe map we used is that of Pittsburgh's Squirrel Hilldistrict, adjacent to Carnegie Mellon University andtypical of a city environment in which the autonomousvehicle might be used. Besides the residential housing,there is a small shopping strip in the area, a universityand a golf course, giving the vehicle a reasonably largeregion in which to run errands. The region containstwo one-way streets (Darlington-5 and 6, and Bartlett-4 and 5) and several dead-end streets. This diversity,combined with the forty-eight intersections, causes thesearch space to be highly complex. Figure 3 shows agraphical version of the current representation of themap.ResultsThe experiments we ran were constructed by extendinga base case involving two operators. There were eightcomposable problems built around each base case: ex-tending the base case by one operator (street) at theinitial point, extending it by two operators at the initialpoint, and then each of those three cases were extendedby one and two operators at the goal. Base cases wererandomly chosen from the map of Squirrel Hill, andthe composable problems were manually selected fortheir proximity to the base case.We �rst ran each problem with a breadth-�rst searchwith no analogy until the solution was found, and thenran the same problem using depth-�rst search withthe minimal depth-bound necessary to �nd a solution.Once these two runs were complete, we ran the sameproblem using analogy with all the cases that formedsub-paths to the solution.We expected that the total number of nodes ex-panded would be reduced from Pdi=0 4:4i where d =depth of the search, to a number Order ofPSi=0 4:4i+

C + PEj=1 4:4j where S = the number of operatorsadded at the start, C = number of nodes in the case'ssolution path, E = number of operators by which thecase was extended at the end, and S+C+(E�1) = d.Breadth-�rst search and depth-�rst search behavedas expected. Breadth-�rst search for a solution involv-ing six operators required between 6,600 and 30,000nodes, averaging about 15,000. The number of nodesexpanded in a depth-�rst search ranged from �ndingthe goal in the minimum number of nodes possible, to�nding the goal with nearly the same number of nodesas the equivalent breadth-�rst search.In all the problems solved by reusing cases, the num-ber of nodes expanded was reduced as drastically asexpected. Figure 4 shows a graph of our results, where`1S' (2S) represent problems built upon a case whichrequired adding one (two) <goto-adjacent-street> op-erators at the Start and `1E' (2E) represent problemsbuilt upon a case which required adding one (two) op-erators at the End in order to reach a solution.
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`1S' cases so closely approximated the minimum num-ber of nodes possible to �nd a solution. Once the casehas been exhausted, prodigy continues with breadth-�rst-search. Even if it can apply an operator on onebranch of the search, it may not yet have reached the�nal goal. Meanwhile, the other branches of the searchtree will still have subgoals to expand, and thereby cre-ate more nodes at the end of the problem than at thestart.The number of nodes expanded at the end of thecase so dominated the number of nodes expanded atthe beginning that we combined all the `1E' cases andall the `2E' cases for the purposes of simplifying thegraph.We also ran a few experiments in which the caseused did not form a proper sub-path of the optimal so-lution of the new problem, generating a solution thatwas non-optimal by one or two operators. The num-ber of nodes expanded by prodigy was approximatelydouble that of the proper sub-path problems, but eventhe most di�cult were solved in less than one hundrednodes; several orders of magnitude less than the equiv-alent breadth-�rst-search.Use of analogy instead of breadth-�rst-search re-sulted in a reduction in computation time from severalhours to under a minute for longer problems. Thisfact indicates that this system will be usable in thereal-time environment of interleaving planning and ex-ecution.Notice that the representation used and the exper-iments run are of reduced complexity. In this initialphase we focused on developing and validating the ba-sic framework. Re�nements and extensions of the ap-proach will result from the integration with the realautonomous vehicle.Discussion and Future WorkThe paper presents our initial accomplishments to-wards having a planner e�ciently plan paths in a realroad map. We implemented a real map of a consid-erably large part of Pittsburgh's Squirrel Hill district.Case reusage and analogical reasoning in path plan-ning with road maps is compatible with human intu-ition since not only is the road map the same in eachproblem and planning situations similar, but �ndingsolutions requires a lot of computation and search. Wehave shown in this paper that reusing cases in this con-text is feasible and e�cient.We are currently developing a large case libraryand organizing it for e�cient retrieval [Doorenbos andVeloso, 1993]. We are using spatial features of themaps for case indexation. We are extending the casesin the library by planning with more operators, addingmultiple goals, and generating alternative plans.Secondly, since plan quality might not be preservedby analogical reasoning with extension and adaptationsof problems, we plan to develop an exploratory modewithin the system. This addition will allow us to not

only ensure that optimal solutions are found for prob-lems solved using analogy, but also to store multipleoptimal solution paths for one problem.In this domainwe will also be investigating the merg-ing of previous solutions so that problems can be solvedusing more than one case, either by directly linkingseveral paths, or by merging subgoals [Veloso, 1993].Introducing abstraction planning to this domain isalso in our research agenda. We will extend the re-useand generalization of cases to di�erent levels of ab-straction, for example highway movement as opposedto major streets as opposed to minor streets. Anotherpossible method of abstracting this kind of problemis by moving between grid squares (i.e. A-3 to J-6).Since abstraction has already been implemented withinprodigy [Knoblock, 1991], we envision a smooth inte-gration.Finally, our immediate focus is to connect the plan-ner to the autonomous vehicle and set up the appro-priate communication framework.AcknowledgementsThe authors would like to thank Robert Driskill, Eu-gene Fink, and Bob Doorenbos for comments and sug-gestions on this paper as well as the whole prodigyresearch group for helpful discussions.ReferencesAgre, Phillip and Chapman, David 1987. Pengi: Animplementation of a theory of activity. In Proceedingsof the Sixth National Conference on Arti�cial Intelli-gence, San Mateo, CA. Morgan Kaufmann. 268{272.Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1974.The Design and Analysis of Computer Algorithms.Addison-Wesley, Reading, Massachusetts.Bruegge, Bernd; Blythe, Jim; Jackson, Je�; andShufelt, Je� 1992. Object-oriented system modelingwith omt. In Proceedings of the OOPSLA '92 Con-ference. ACM Press. 359{376.Carbonell, Jaime G.; Gil, Yolanda; Joseph, Robert;Knoblock, Craig A.; Minton, Steven; and Veloso,Manuela M. 1990a. Designing an integrated archi-tecture: The prodigy view. In Proceedings of theTwelfth Annual Conference of the Cognitive ScienceSociety, MIT, MA. 997{1004.Carbonell, Jaime G.; Knoblock, Craig A.; andMinton, Steven 1990b. Prodigy: An integrated archi-tecture for planning and learning. In VanLehn, K.,editor 1990b, Architectures for Intelligence. Erlbaum,Hillsdale, NJ. Also Technical Report CMU-CS-89-189.Carbonell, Jaime G.; ; and PRODIGY Re-search Group, the 1992. PRODIGY4.0: The man-ual and tutorial. Technical Report CMU-CS-92-150,School of Computer Science, Carnegie Mellon Univer-sity.
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