
Physics-Based Robot Motion Planning
in Dynamic Multi-Body Environments

Stefan Zickler

CMU-CS-10-115

May 10th, 2010

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Manuela M Veloso, Chair

Jessica K. Hodgins
James J. Kuffner Jr.

John E. Laird, University of Michigan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c� 2010 Stefan Zickler

This research was sponsored by Intelligent Automation, Incorporated under grant number 654-1 (prime
sponsor DARPA under grant number FA8650-08-C-7812); University of Southern California under grant
number 138803 (prime sponsor Office of Naval Research under grant number N00014-09-1031); Boeing
under grant number A003221; Department of Interior under grant number NBCH-1040007; National Sci-
ence Foundation under grant number IIS-0637069; and L3 Communication Integrated Systems, LD., under
grant number 4500244745. The views and conclusions contained in this document are those of the au-
thor and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: Robot Motion Planning, Physics-Based Planning, Uncertainty, Replanning,
Robot Soccer, Robot Minigolf

Abstract

Traditional motion planning focuses on the problem of safely navigating a
robot through an obstacle-ridden environment. In this thesis, we address the
question of how to perform robot motion planning in complex domains, with
goals that go beyond collision-free navigation. Specifically, we are interested in
problems that impose challenging constraints on the intermediate states of a
plan, and problems that require the purposeful manipulation of non-actuated
bodies, in environments that contain multiple, physically interacting bodies
with varying degrees of controllability and predictability. Examples of such do-
mains include physical games, such as robot soccer, where the controlled robot
has to deliver the ball into the opponent’s goal. For these domains, naviga-
tion only constitutes a small part of the overall planning problem. Additional
planning challenges include accurately modeling and exploiting the dynamic
interactions with other non-actuated bodies (e.g., dribbling a ball), and the
problem of predicting and avoiding foreign-controlled bodies (e.g., opponent
robots).

To plan in such domains, this thesis introduces physics-based planning
methods, relying on rich models that aim to reflect the detailed dynamics of
the real physical world. We introduce non-deterministic Skills and Tactics as
an intelligent action sampling model for effectively reducing the size of the
searchable action space. We contribute two efficient Tactics-driven planning
algorithms, BK-RRT and BK-BGT, and we evaluate their performance across
several challenging domains. We contribute a physics model parameter op-
timization method for increasing the planner’s physical prediction accuracy,
resulting in significantly improved real-world execution success rates. Addi-
tionally, we contribute Variable Level-Of-Detail (VLOD) planning, a method
for reducing overall planning time in uncertain multi-body execution environ-
ments.

Besides relying on an extensive simulated testbed, we apply and evaluate
our planning approaches in two challenging real-world robot domains. We con-
tribute the robot minigolf domain, where a robot uses physics-based planning
methods to solve freely configurable minigolf-like courses, e.g., by purposefully
bouncing a ball off from obstacles. We furthermore contribute a robot soccer
attacker behavior that uses physics-based planning to out-dribble opponents,
which has been successfully tested as part of the “CMDragons” robot soccer
Small Size League team at the RoboCup world cup in 2009.

iv

Acknowledgments

I would like to thank the many people who have supported me over the past
years as a graduate student and who have helped to facilitate this work.

First and foremost, I would like to thank my advisor, Manuela Veloso.
Manuela has been a constant source of guidance and encouragement throughout
my entire graduate career. I am grateful for all of her support and inspiration
which has ultimately made this thesis possible. I would also like to thank the
rest of my thesis committee: Jessica Hodgins, James Kuffner, and John Laird,
for sharing their time and expertise, and for providing constructive advice on
my work.

I would like to thank all of my collaborators, friends, and lab-mates, espe-
cially Joydeep Biswas, Stephanie Rosenthal, Sonia Chernova, Colin McMillen,
Douglas Vail, and James Bruce, for sharing the ups and downs of the PhD
program with me, and for providing me with invaluable discussions and ideas.

A big thank you goes to all of my CMDragons robot soccer team-mates and
collaborators, in particular James Bruce, Mike Licitra, Joydeep Biswas, Philip
Wasserman, and Gabriel Levi, who have collectively contributed to the robot
platform that enabled the experiments of this thesis, and who have allowed
the team to succeed at the various RoboCup competitions. Special credit goes
to James Bruce for having developed the majority of the CMDragons software
framework which acts as the team’s solid foundation to this day. I would also
especially like to thank Mike Licitra, for being a friend and colleague since our
undergraduate days, and for designing and building the most amazing soccer-
playing robots that consistently withstand all of our abuse.

Beyond CMU, I would like to thank all of the members of the RoboCup
Small Size League who have contributed to the development of the SSL-Vision
open-source vision system, in particular (but not limited to), Tim Laue, Oliver
Birbach, and Joydeep Biswas.

Last, but not least, I want to express my deepest thanks to my family.
Without their love and support, this thesis would not have happened. I want
to thank my parents for having always supported my endeavors, wherever they
have led me. Finally, I want to thank my wife Shannon for having been my
constant companion along the way. She has always believed in me and has been
my source of strength and sanity throughout the entire time. Words cannot
capture my gratitude.

vi

Things are only impossible until they’re not.
Jean-Luc Picard (Star Trek: The Next Generation)

viii

Contents

1 Introduction 1

1.1 Approach . 3

1.1.1 Efficient Planning in Physically Complex Domains 3

1.1.2 Physics-Based Planning under Uncertainty 4

1.1.3 Evaluation . 6

1.2 Contributions . 7

1.3 Document Outline . 7

2 Physics-Based Planning Model and Basic Algorithm 11

2.1 Definitions . 11

2.1.1 Rigid Bodies and Parameters . 12

2.1.2 States, Actions, and Domain Model 13

2.1.3 State Transitions . 14

2.1.4 Intermediate Constraints and Planning Problem Definition 15

2.2 Rigid Body Simulations . 16

2.2.1 Level of Time Discretization . 16

2.2.2 Determinism . 18

ix

2.3 Body Types . 18

2.4 Problem Classes and Challenges . 20

2.5 A Basic Physics-Based Planning Algorithm 23

2.6 Chapter Summary . 24

3 Applications and Domains 25

3.1 Application in Robot Motion Planning . 25

3.1.1 Navigation Domain . 25

3.1.2 Robot Soccer Domain . 27

3.1.3 Robot Minigolf Domain . 28

3.2 Application in Computer Animation . 29

3.2.1 Many-Dice Domain . 31

3.2.2 Pool Table Domain . 31

3.3 Chapter Summary . 33

4 Non-Deterministic Skills and Tactics 35

4.1 Skills and Tactics . 35

4.2 Sampling-Based Skills . 36

4.3 Non-Deterministic Tactics . 40

4.4 Chapter Summary . 43

5 Efficient Planning via Skills and Tactics 45

5.1 Skills and Tactics in the State Space and Domain 45

5.2 A Tactics-Based Planning Example . 46

x

5.3 BK-RRT Algorithm . 48

5.3.1 Preventing State Duplications: the Busy Flag 52

5.3.2 Removing Stale Branches: the RollBack Function 54

5.3.3 RRT as a Subset of BK-RRT . 54

5.3.4 RRT Parameters and Distance Functions 56

5.4 BK-BGT Algorithm . 57

5.4.1 Computational Complexity of BK-BGT vs. BK-RRT 61

5.4.2 Lack of RRT’s Random Sample . 61

5.5 Algorithm Properties and Variations . 62

5.5.1 Completeness . 62

5.5.2 Optimality and Multi-Solution Planning 63

5.5.3 Hybrid Approaches . 64

5.6 Chapter Summary . 64

6 Empirical Evaluation in Simulated Domains 65

6.1 Implementation and Visual Results . 65

6.1.1 Navigation Domain . 66

6.1.2 Simulated Robot Minigolf Domain 68

6.1.3 Simulated Robot Soccer Domain 68

6.1.4 Pool Table Domain . 70

6.1.5 Many-Dice Domain . 72

6.2 Performance Analysis . 72

6.2.1 Analysis of BK-BGT’s µ Parameter 75

xi

6.2.2 Analysis of Hybrid Approaches . 75

6.2.3 Analysis of the RollBack Function 77

6.2.4 Tactically Unconstrained Multi-Skill Planning 77

6.2.5 Comparison to Traditional Skills and Tactics 80

6.3 Chapter Summary . 81

7 Planning in Real-World Dynamic Environments 83

7.1 Physics-Based Planning in the CMDragons Multi-Robot System 83

7.1.1 Physics-Based Planning as a Single-Robot Behavior 84

7.1.2 Modeling a CMDragons Robot . 86

7.2 Single-Shot vs. Anytime Planning . 87

7.2.1 Single-Shot Planning . 88

7.2.2 Anytime Planning . 89

7.2.3 Planning and Execution in a Closed-Loop System 91

7.3 Robot Soccer . 94

7.3.1 Tactics Model . 95

7.3.2 Opponent Prediction Model . 97

7.3.3 State Evaluation Function . 98

7.3.4 Results . 100

7.4 Planning in Predictable Dynamic Domains 104

7.4.1 A Robot Minigolf Problem . 104

7.4.2 Challenges and Approach . 105

7.4.3 Results . 107

xii

7.5 Chapter Summary . 108

8 Parameter Optimization of Physics-Based Models 109

8.1 Approach Description . 110

8.2 Application in Robot Minigolf . 111

8.2.1 Parameters . 112

8.2.2 Ground Truth Data . 112

8.2.3 Error Functions . 113

8.2.4 Experimental Evaluation . 115

8.3 Chapter Summary . 119

9 Variable Level-Of-Detail (VLOD) Planning 121

9.1 Algorithm Description . 122

9.1.1 Definition of Detail and Collision Matrix 123

9.1.2 VLOD Planning Algorithm . 125

9.2 Experimental Evaluation . 127

9.2.1 Performance Metric . 130

9.2.2 The Merit of Replanning in Uncertain Domains 130

9.2.3 VLOD Performance Analysis . 132

9.3 Chapter Summary . 134

10 Related Work 135

10.1 Discrete Motion Planning . 135

10.2 Sampling-Based Motion Planning . 136

xiii

10.3 Efficient Replanning and VLOD Planning 137

10.4 Animation Planning . 139

10.5 Manipulation Planning . 141

10.6 Robot Tactics and Control Architectures 142

10.7 Robot Minigolf . 143

10.8 Model Parameter Optimization . 144

11 Conclusion and Future Work 145

11.1 Contributions . 145

11.2 Future Work . 148

A The CMDragons Multi-Robot System 151

A.1 The RoboCup Small Size League (SSL) . 151

A.2 Robot Hardware . 153

A.2.1 Robots . 153

A.3 Software . 154

A.3.1 Vision . 155

A.3.2 Soccer . 156

A.3.3 GUI . 159

A.3.4 Simulator . 160

A.4 Appendix Summary . 161

B The SSL-Vision Shared Vision System 163

B.1 Framework . 164

xiv

B.1.1 The Capture Loop . 166

B.1.2 Parameter Configuration . 167

B.2 RoboCup SSL Image Processing Stack . 167

B.2.1 CMVision-Based Color Segmentation 169

B.2.2 Camera Calibration . 169

B.2.3 Pattern Detection . 170

B.2.4 System Integration and Performance 170

B.3 Appendix Summary . 171

C Example Skills 173

C.1 Sampling-Based Wait Skill . 173

C.2 Sampling-Based Kick Skill . 174

C.3 Biased Fall Down Skill . 174

D List of Notation 177

E List of Videos 179

Bibliography 181

xv

xvi

List of Figures

2.1 A physics engine computes state transitions. 14

2.2 An example of successful and unsuccessful collision detection. 17

2.3 Rigid body classes . 19

2.4 An example manipulation problem. 22

3.1 The “maze” navigation domain. 26

3.2 A game in the RoboCup Small Size League. 27

3.3 A course in the robot minigolf domain. 28

3.4 An initial and a goal state in the many-dice domain. 31

3.5 A problem in the pool table domain. 32

4.1 Structure of a sampling-based Skill. 37

4.2 Example of a non-deterministic Tactic. 42

4.3 A robot soccer example Tactic. 43

5.1 A Tactics-based planning example. 47

5.2 A visual demonstration of the standard RRT algorithm. 55

5.3 A trapezoidal motion model. 57

5.4 Balanced Growth Trees under different maximum tree sizes and values of µ. 60

xvii

6.1 Example search trees from the navigation domain. 66

6.2 Tactics used in the navigation domain. 67

6.3 The Tactic used in the simulated robot minigolf domain. 67

6.4 An example of the simulated robot minigolf domain. 67

6.5 The Tactic used in the simulated robot soccer domain. 69

6.6 An example of the simulated robot soccer domain 69

6.7 The chained Skills and Tactics model used in the pool table domain. 70

6.8 A solution in the pool table domain. 70

6.9 The Tactic used for the many-dice domain. 71

6.10 A solution sequence of the many-dice domain. 71

6.11 BK-RRT analysis of time spent in node selection, physics, and tactics. . . . 74

6.12 Runtime comparison of BK-RRT and BK-BGT node selection. 74

6.13 Performance analysis of BK-RRT and BK-BGT. 76

6.14 A Robot Minigolf Tactic without Skill-transition constraints. 78

6.15 A Robot Soccer Tactic without Skill-transition constraints. 78

7.1 A CMDragons robot shown with and without its protective cover. 84

7.2 The CMDragons system infrastructure. 85

7.3 The rigid body models of a CMDragons robot and ball. 86

7.4 The physical model of the dribbler bar. 88

7.5 An illustration of sequential anytime replanning. 92

7.6 The Tactic used for the controlled robot in the PhysicsDribble behavior. . 96

7.7 An example video sequence demonstrating the PhysicsDribble behavior. . . 102

xviii

7.8 Footage from RoboCup 2009, showing the PhysicsDribble behavior. 103

7.9 Frames from the robot minigolf domain with a rotating obstacle. 106

7.10 Impact of observation noise on execution success rate in the robot minigolf
domain. 107

8.1 The robot minigolf domain. 112

8.2 Parameter values over optimization iterations. 116

8.3 Root mean square error over optimization iterations. 116

8.4 A “double bounce” example from the robot minigolf domain. 117

8.5 A robot minigolf example combining a dynamically rotating obstacle with
a single bounce. 118

9.1 An illustration of VLOD planning. 127

9.2 A search tree in the Hallway domain. 128

9.3 A solution trajectory in the Hallway domain. 128

9.4 A search tree in the Maze domain. 129

9.5 A solution trajectory in the Maze domain. 129

9.6 Analysis of the dependence between domain uncertainty and the optimal
replanning interval in the Hallway domain. 131

9.7 VLOD performance analysis for the Hallway and Maze domains. 133

A.1 A game in the RoboCup Small Size League. 152

A.2 Five CMDragons robots, one shown without its protective cover. 153

A.3 The CMDragons system infrastructure. 155

A.4 A screenshot of the CMDragons Viewer. 160

A.5 A visualization of the Simulator’s internal state. 161

xix

B.1 Teams mounting their vision equipment before a RoboCup competition. . . 164

B.2 The extendible, multi-threaded processing architecture of SSL-Vision. . . . 165

B.3 Screenshot of SSL-Vision. 168

xx

List of Tables

6.1 Performance comparison of BK-RRT and BK-BGT. 73

6.2 Impact of the RollBack function on BK-BGT performance. 77

6.3 Performance of tactically unconstrained planning. 78

6.4 Success rate in a simulated “attacker vs. two defenders” scenario. 81

7.1 Success rate of reactive behavior vs. physics-based planner. 101

7.2 Planning statistics collected from the PhysicsDribble behavior. 101

7.3 Hole-in-one success rate with rotating obstacles. 107

8.1 Values of initial and optimized parameters. 115

8.2 Success rates of initial vs. optimized parameters. 118

B.1 Single frame processing times for the plugins of the default RoboCup stack. 171

xxi

xxii

List of Algorithms

1 BasicPlanner . 24

2 “Drive to Sampled Target” Example Skill 38

3 Transition Function g . 41

4 BK-RRT . 50

5 SelectNodeRRT . 51

6 TacticsDrivenPropagate . 52

7 RollBack . 53

8 BK-BGT . 59

9 SelectNodeBGT . 59

10 BK-BGT-Anytime . 90

11 ComputeDribbleAction . 97

12 EvHandling . 99

13 Eval . 111

14 ComputeVelError . 113

15 ComputeAngleError . 114

16 ExecuteAndReplan . 123

17 BK-RRT-VLOD . 125

xxiii

18 SetupCollisionMatrix . 126

19 “Wait Sampled Time” Skill . 173

20 “Sampled Kick” Skill . 175

21 “Biased Fall Down” Skill . 176

xxiv

Chapter 1

Introduction

Motion planning for mobile robots acting in the physical world is a challenging task. Tra-
ditionally, motion planning focuses on the problem of safely navigating a robot to a specific
destination through an obstacle-ridden environment. More specifically, a motion planner’s
objective is to find a sequence of control actions that, when applied, lead the robot from its
initial state to some goal state. In this thesis, we address the question of how to perform
motion planning in complex environments that go beyond traditional navigation planning.
Concretely, we are interested in domains with additional goals, such as the purposeful ma-
nipulation of non-actuated bodies, and domains that impose additional constraints on the
intermediate states of a plan. Furthermore, we focus on planning in dynamic environments
that contain multiple physically interacting bodies with varying degrees of controllability
and predictability.

One example domain, that also happens to be a significant source of motivation for this
thesis, is robot soccer. The challenges in robot soccer are immense. Besides being able to
navigate, a soccer-playing robot needs to be able to purposefully manipulate the ball (e.g.,
dribble) with the strategic objectives to keep it away from opponents and to eventually
pass it to a teammate or deliver it into the opponent’s goal box. For a motion planner,
this is a challenging task, because the non-actuated ball can only be indirectly controlled
through the means of targeted collisions exerted by the controllable robot, thus requiring
predictive knowledge about the physical interactions between the domain’s bodies. This
planning task is further complicated by the fact that the motions of adversarial robots are
uncertain to predict, sensor input has noticeable latency, and a robot’s execution is never
completely accurate.

Another challenging example domain which we introduce in the thesis, is robot minigolf,
where a robot is required to purposefully bounce the ball off obstacles to achieve a hole-

1

in-one. Because the robot can only exert control upon the ball during putting, a planner
must be able to make accurate long term predictions about the ball and its interactions
with other bodies, such as the floor or obstacles, in order to find an effective action for the
robot to actuate the ball.

Moving even beyond robotics, another example is the automated control of many simulated
physically interacting bodies in computer animation. Frequently, such animation problems
not only require that the bodies reach a particular goal state, but also have additional
constraints on the intermediate states of the solution sequence, such as the requirement
that the bodies expose some specific visual behavior. A motion planner needs to include
such constraints when selecting actions for the animated bodies.

This thesis addresses the problem of planning in such complex environments by introduc-
ing and investigating physics-based motion planning. We contribute a formal planning
model that uses rigid body dynamics to represent the physical world. In this model, state
transitions are performed by invoking a black-box physics engine which is able to accu-
rately simulate the complex physical interactions between multiple mass-based bodies, thus
allowing the representation of many interesting and novel motion planning problems.

To make search in the physics-based control space computationally feasible, this thesis con-
tributes non-deterministic Skills and Tactics as a method to guide the planning algorithm
and to reduce the size of the searchable action space. These Skills and Tactics make it pos-
sible to encode a variable amount of domain-dependent knowledge into the planning stage,
making search possible even for problems with challenging goals, such as the purposeful
manipulation of non-actuated bodies in the presence of other foreign-controlled bodies.

Additionally, Skills and Tactics also address the problem of planning in domains that have
constraints on the intermediate states of the solution sequence (e.g., animation domains).
Skills and Tactics can be used as a behavior model which constrains the set of selectable
actions to sequences that are aimed to meet the intermediate state and goal requirements
of the problem.

The thesis then introduces two concrete planning algorithms that rely on the non-deter-
ministic Skills and Tactics for their action selection, but differ in the way they construct
the search tree: Behavioral Kinodynamic Rapidly-Exploring Random Trees (BK-RRT) and
Behavioral Kinodynamic Balanced Growth Trees (BK-BGT).

The thesis also contributes several approaches to address the problem of planning and exe-
cution under uncertainty. We contribute a method to automatically optimize the parame-
ters of the planner’s physical domain model to best match the real world and to ultimately
yield better planning and execution accuracy. Furthermore, to plan in rapidly changing
environments with unpredictable foreign-controlled bodies, we present an anytime-version

2

of our BK-BGT algorithm that delivers partial solutions and thus can be used for fre-
quent replanning. Finally, we contribute Variable Level-Of-Detail (VLOD) planning as a
novel method for reducing overall computational time when planning in environments with
poorly predictable bodies.

1.1 Approach

This thesis seeks to answer the following questions:

• How can a motion planning algorithm efficiently find solutions for chal-
lenging control problems in physically complex environments?

• How can the above approach be applied on real-world robots to accurately
solve motion planning problems in the presence of uncertainty?

1.1.1 Efficient Planning in Physically Complex Domains

• How can we model and plan in physically complex environments?

To successfully plan in physically complex environments, we need a model that is suf-
ficiently detailed to accurately predict the dynamics of the real world. In Chapter 2,
we introduce a formal planning model that utilizes Rigid Body Dynamics to provide
a computationally feasible approximation of basic Newtonian physics, allowing the
simulation of the physical interactions between multiple mass-based non-deformable
bodies. In this model, a planning state is represented as the internal state of the
entire rigid body system, whereas actions are represented as continuous forces and
torques that can be applied to selected bodies. A state transition is performed by
applying the action’s forces and torques to a particular state and forward simulating
the rigid body system by some timestep. A physics-based motion planning algorithm
then searches over different possible sequences of actions to find an acceptable goal
state.

Using this physics-based planning model, it is possible to represent a rich variety of
interesting and novel motion planning problems. Chapter 3 presents several example
domains for which physics-based planning methods are well-suited. While the main
focus of this thesis is robot motion planning, we furthermore demonstrate that our
planning model is also applicable to solve difficult control problems encountered in
the world of computer animation. Understanding the unique potential and challenges
of the physics-based planning model is a key objective of this thesis.

3

• How can we make physics-based planning efficient?

Given our physics-based motion planning model, we focus on how to search for so-
lutions efficiently. Because we are interested in real-world applications, we must
discover planning methods that are able to find solutions in a reasonable amount
of time. Searching the space exhaustively is infeasible, due to the fact that actions
consist of continuous forces and torques that can be chained in arbitrarily long se-
quences.

In order to search the continuous space, we focus on sampling-based planning meth-
ods which explore the search space by non-deterministically selecting actions. A
key aspect to efficient planning lies in how these actions are sampled. Especially
in physics-based planning problems that require the robot to manipulate other rigid
bodies, pure traditional navigation planning algorithms (e.g., Rapidly-Exploring Ran-
dom Trees (RRT)) are not well suited, because they lack an informed method to
reduce the set of searchable actions, thus making efficient planning difficult.

In Chapter 4 of this thesis, we introduce a new method for constraining the size of
the applicable action space. We present a behavioral model consisting of sampling-
based Skills and Tactics, limiting the motion planner’s search to a smaller set of
actions, allowing a more informed search toward the goal state. In Chapter 5 we
contribute two concrete planning algorithms that implement this action sampling
model: Behavioral Kinodynamic Rapidly-Exploring Random Trees (BK-RRT) and
Behavioral Kinodynamic Balanced Growth Trees (BK-BGT).

1.1.2 Physics-Based Planning under Uncertainty

A major focal point of this thesis is to investigate how physics-based motion planning can
be applied in real-world robot environments, characterized by the presence of uncertainty.
Robot sensing is typically imperfect and accompanied by latency. Planning itself introduces
additional latency, thus effectively out-dating the planner’s original assumptions about the
world’s initial state by the time that the robot begins to finally execute the planner’s
solution. Even when using rich physics-based models, the planner’s predictions are bound
to never be completely accurate. Furthermore, a domain may contain bodies that are
controlled by a foreign entity, thus making accurate predictions extremely unlikely.

This thesis addresses the problem of uncertainty through the following questions:

• How can we increase model accuracy?

A significant source of uncertainty is model inaccuracy. To accurately predict real-
world physics, the planner’s domain model needs to be carefully configured through

4

various parameters. Typically, however, it is not inherently clear what the optimal
parameter values are. Resorting to best-guessed values can lead to false predictions
during planning and ultimately result in failure during real-world execution. Chap-
ter 8 introduces an automated physics-based model parameter optimization technique
that is able to improve the physics-based planner’s real-world execution accuracy by
finding the set of parameter values that minimizes the error between the simulated
model and the real-world.

• How can we plan in real-world dynamic environments?

Motion planning can become very challenging when the robot’s surroundings keep
changing during the course of planning and execution.

In some instances, changes in the domain can be relatively accurately predicted
during the planning stage by using sensing and motion extrapolation techniques.
However, even with very accurate sensing and prediction models, execution will only
succeed if the robot is able to accurately perform and time the planner’s solution.
Chapter 7 discusses all of these prediction and execution challenges in detail and
demonstrates how our physics-based motion planner can be integrated into a dynamic
real-world robot system.

In some cases, however, long-term prediction of the domain’s dynamics becomes
impossible. An extreme example are domains that contain other unpredictable, or
even adversarial bodies that are controlled by an external entity. Any predictions or
extrapolations made in such domains will rapidly diverge from reality, the further we
predict into the future. In such environments, the only feasible way to deal with the
domain’s uncertainty is replanning. When using replanning, the robot only executes
a portion of the planner’s generated solution after which it re-observes the state of the
world and then repeats the planning process using the newly observed world state
as its new initial state. This process is repeated in a continuous replanning loop.
Chapter 7 investigates the trade-offs and presents an integration of rapid replanning
into a dynamic physics-based domain.

• How can we replan more efficiently in the presence of poorly predictable
bodies?

A major problem of replanning is its computational cost. At each replanning itera-
tion, the planner performs an intensive search for a complete solution that will bring
the robot from its current state all the way to the final goal state. During this search,
our physics-based motion planner will ensure that the resulting plan is dynamically
sound and collision-free by employing its computationally expensive models to pre-
dict the robot’s motions and its interactions with the predicted environment. Such
an elaborate search might seem unnecessary, given the fact that the robot will only
execute a small portion of the resulting plan, before discarding it and re-invoking

5

the planner to start from scratch in the next replanning iteration. However, simply
limiting the planner’s search depth, an approach also known as finite-horizon plan-
ning, is dangerous because it can lead to a robot becoming stuck in a local search
minima as there are no guarantees that a partial plan will actually lead to the final
goal state.

In Chapter 9 of this thesis, we introduce Variable Level-Of-Detail (VLOD) plan-
ning, a novel approach to reduce the computational overhead of replanning in poorly
predictable multi-body environments. VLOD planning is able to focus its search
on obtaining accurate short-term results, while considering the far-future with a
different level of detail, selectively ignoring the physical interactions with poorly pre-
dictable dynamic objects (e.g., other mobile bodies that are controlled by external
entities). Unlike finite-horizon planning, which limits the maximum search depth,
VLOD planning deals with local minima and generates full plans to the goal, while
requiring much less computation than traditional planning.

1.1.3 Evaluation

We use several simulated and real-world domains to experimentally evaluate the algorithms
presented in this thesis. Chapter 3 provides a detailed overview of the domains.

For the real-world domains, we use the CMDragons multi-robot system as our experimen-
tal platform. The CMDragons system consists of multiple small homogeneous robots that
are wirelessly controlled by an offboard computer featuring an overhead global vision sys-
tem for robot localization. Using the CMDragons system, we contribute two real-world
experimental domains:

• Robot Soccer
The robot soccer domain requires a robot to autonomously play a game of soccer
against a robot opponent. Robot soccer is a challenging planning environment be-
cause the game is very fast-paced and adversarial. Succeeding in robot soccer requires
both low-level ball manipulation capabilities, as well as higher level tactics.

• Robot Minigolf
The robot minigolf domain requires a CMDragons robot to putt a golf ball into a
hole by purposefully bouncing it from wooden bars. The initial positions of the
hole, bars, and golf ball can be freely configured to build novel and challenging
course configurations. Planning in the minigolf domain can be extremely challenging
because it requires an accurate model of the domain’s dynamics. To further increase
the challenge, minigolf courses can also contain moving obstacles, thus requiring
extremely accurate sensing, planning, and execution timing from the robot.

6

1.2 Contributions

This thesis makes the following contributions:

• An introduction to physics-based motion planning in dynamic multi-body environ-
ments. We introduce a formal planning model based on rigid body dynamics and
specify its unique planning characteristics and challenges.

• Non-deterministic Skills and Tactics as an efficient action sampling model.

• Two efficient Tactics-based planning algorithms: Behavioral Kinodynamic Rapidly-
Exploring Random Trees (BK-RRT) and Behavioral Kinodynamic Balanced Growth
Trees (BK-BGT).

• Variable Level-Of-Detail planning, a method for reducing overall planning time in
uncertain multi-body execution environments that require replanning.

• A method for increasing physics-based planning accuracy through automated physics
model parameter optimization.

• An anytime planning version of BK-BGT and its integration into a robot soccer
attacker behavior which has been successfully tested at the RoboCup Small Size
League World Cup.

• A minigolf-playing robot that is able to autonomously solve complex novel course
configurations using our physics-based planning approach.

1.3 Document Outline

• Chapter 1 – Introduction
We provide an introduction to this thesis. We outline the core questions that this
thesis seeks to answer and we summarize our major contributions.

• Chapter 2 – Physics-Based Planning Model and Basic Algorithm
We present a formalization of the physics-based motion planning problem. We intro-
duce a taxonomy of body types that can be encountered in physics-based domains
and we highlight some of the key challenges when planning in complex multi-body
environments. Finally, we present a basic skeleton planning algorithm that the re-
maining algorithms in this thesis are based on.

7

• Chapter 3 – Applications and Domains
We present possible applications for our work and provide an overview of the various
domains used for evaluation throughout this thesis, including simulated and real-
world implementations.

• Chapter 4 – Non-Deterministic Skills and Tactics
We introduce a novel version of Skills and Tactics as a method for efficiently reducing
the size of the physics-based search space by constraining the set of applicable actions.

• Chapter 5 – Efficient Planning via Skills and Tactics
We introduce two concrete Skills and Tactics-driven planning algorithms: BK-RRT
and BK-BGT.

• Chapter 6 – Empirical Evaluation in Simulated Domains
We evaluate the performance of the BK-RRT and BK-BGT algorithms in several
simulated domains.

• Chapter 7 – Planning in Real-World Dynamic Environments
We demonstrate how our planning approaches can be applied to real-time robot
systems with domains containing foreign-controlled bodies. We discuss and evalu-
ate various integration challenges. As specific examples, we present our planner’s
integration into the robot minigolf and robot soccer domains.

• Chapter 8 – Parameter Optimization of Physics-Based Models
We present an automated physics model parameter optimization approach. We ex-
perimentally evaluate the approach in the robot minigolf domain.

• Chapter 9 – Variable Level-Of-Detail Planning
We introduce and evaluate Variable Level-Of-Detail (VLOD) planning as a method
for reducing overall planning time in uncertain multi-body execution environments.

• Chapter 10 – Related Work
We discuss previous work that relates to this thesis.

• Chapter 11 – Conclusion and Future Work
We conclude this thesis with a summary of its contributions and with a discussion
of possible directions for future work.

• Appendix A – The CMDragons Multi-Robot System
We present the CMDragons multi-robot system that is used for the robot soccer and
robot minigolf domains. We explain the robot hardware and the system’s overall
behavioral control architecture.

8

• Appendix B – The SSL-Vision Shared Vision System
We present SSL-Vision, the open source vision system that provides sensing for the
CMDragons multi-robot system.

• Appendix C – Example Skills
We show concrete examples of multiple selected Skills.

• Appendix D – List of Notation
We provide an index of frequently used notation in this thesis.

• Appendix E – List of Videos
We provide a list of supplemental videos for this thesis, available to download and
view at http://szickler.net/thesis/.

9

http://szickler.net/thesis/

10

Chapter 2

Physics-Based Planning Model and
Basic Algorithm

This chapter formally introduces the physics-based motion planning model, including its
states, actions, and state transitions. Furthermore, we discuss some of the unique chal-
lenges encountered in many physics-based planning problems. Finally, we present a baseline
planning algorithm for finding solutions in the physics-based motion search space.

2.1 Definitions

We first define the general planning problem. Let X be the state space, let xinit ∈ X be
the initial state, let Xgoal ⊂ X be a set of goal states, and let A be a set of possible actions.
Furthermore, let e be a state transition function that can apply an action a ∈ A to a
particular state x ∈ X and compute a succeeding state x� ∈ X, that is: e : �x, a� → x�.

A planner’s objective is to find a sequence of actions a1, . . . , an, which, when applied in
order and starting from xinit, ends in a goal state xgoal ∈ Xgoal. Additional constraints can
be imposed on all the intermediate states of the action sequence by defining only a subset
of the state space to be valid (Xvalid ⊆ X) and requiring that all states of the solution
sequence xinit, x1, x2, . . . , xgoal are elements of Xvalid.

Motion planning describes planning models where the state space X represents some set
of physical configurations and the actions in A correspond to motions applicable to that
space. Chapter 10 contains a detailed discussion of many traditional motion planning
models and methods.

11

We introduce a physics-based planner as a special type of motion planner which uses
domain models that aim to reflect the inherent physical properties of the real world. The
Rigid Body Dynamics model [5, 6] provides a computationally feasible approximation of
basic Newtonian physics, and allows the simulation of the physical interactions between
multiple mass-based non-deformable bodies. The term Dynamics implies that rigid body
simulators are second order systems, able to simulate physical properties over time, such as
momentum and force-based inter-body collisions. Physics-based planning can be seen as
an extension to kinodynamic planning [30], adding the simulation of rigid body interactions
to traditional second order navigation planning [93].

2.1.1 Rigid Bodies and Parameters

Our physics-based planner models the physical world as a rigid body system, composed of
n rigid bodies r1 . . . rn.

Definition 2.1.1 (Rigid Body). A rigid body r is defined by two disjoint subsets of
parameters r = �r̂, r̄� where

• r̂ : the body’s mutable state parameters,

• r̄ : the body’s immutable parameters.

Mutable Body Parameters

Definition 2.1.2 (Mutable Body Parameters). The body’s mutable parameters, r̂, are the
parameters of the body that are allowed to be manipulated during the course of planning
through the application of actions. Let r̂ be a tuple, containing the second order state
parameters of the rigid body, namely its position, orientation, and their derivatives:

r̂ = �α, β, γ, ω�

where

• α : position (3D vector),

• β : orientation (3×3 rotation matrix),

• γ : linear velocity (3D vector),

• ω : angular velocity (3D vector).

12

Immutable Body Parameters

Definition 2.1.3 (Immutable Body Parameters). The body’s immutable parameters, r̄,
are the parameters that describe the fixed nature of each body and that remain constant
during the course of planning. More concretely, r̄ is a tuple r̄ = �φShape, φMass, φMassC,
φFricS, φFricD, φRest, φDampL, φDampA�, describing all of the rigid body’s inherent physical
parameters, where:

• φShape : shape description of the body (3D mesh or other 3D primitive),

• φMass : mass of the body,

• φMassC : center of mass in body’s coordinate frame (3D vector),

• φFricS : static friction coefficient,

• φFricD : dynamic friction coefficient,

• φRest : restitution coefficient,

• φDampL : linear damping coefficient,

• φDampA : angular damping coefficient.

It should be noted that the above list represents a non-exhaustive set of physical body
parameters that are typically supported by modern rigid body simulation techniques. Many
modern rigid body simulators support additional body configuration parameters that could
be added to r̄ if needed. For example, several simulators support the application of multiple
materials, and therefore multiple friction and restitution coefficients, for different locations
on a single rigid body shape.

2.1.2 States, Actions, and Domain Model

Definition 2.1.4 (State and State Space). The physics-based planning state space X is
defined by the mutable states of all n rigid bodies in the domain and time t. That is, a
state x ∈ X is defined as the tuple

x = �t, r̂1, . . . , r̂n�.

13

Definition 2.1.5 (Action and Action Space). The action space A is the set of the appli-
cable controls that the physics-based planner can search over. An action a ∈ A is defined
as a vector of sub-actions a = �â1, . . . , ân�, where âi represents a pair âi = �force, torque�,
where force and torque are each 3D vectors, applicable to a corresponding rigid body ri.

Definition 2.1.6 (Domain). A physics-based planning domain d is defined as the tuple
d = �G, r̄1 . . . r̄n, A� where

• G : global gravity force vector,

• r̄1 . . . r̄n : immutable parameters of all n rigid bodies,

• A : the set of applicable actions.

Similarly to the tuple of physical parameters r̄, the domain description tuple d is not neces-
sarily exhaustive and could be extended to include additional configuration parameters for
certain features of a particular rigid body simulation technique. One example of such an
additional feature would be the modeling of joints. Similar to their anatomical equivalent
connecting two bones, a joint can link multiple rigid bodies together by enforcing a certain
set of kinematic motion contraints between them. Examples include spherical joints, revo-
lute joints, or prismatic joints. Because the definition of the joint (i.e., its type and motion
limits) do normally not change throughout the life of the rigid body system, we could en-
code them as part of the domain description, that is: d = �G, r̄1 . . . r̄n, A, joint1, joint2, . . . �.

2.1.3 State Transitions

Figure 2.1: A physics engine computes state transitions.

14

A physics-based planner searches for solutions by reasoning about the states resulting from
the application of possible actions. The state transition computations are performed by
simulation of the rigid body dynamics. The task of computationally simulating rigid body
dynamics is well-understood [6]. There are several robust third-party rigid body simulation
frameworks freely available, such as the Open Dynamics Engine (ODE) [81], and NVIDIA
PhysX [24]. Frequently referred to as physics engines, our planning approach employs one
of these simulators as a “black box” to simulate state transitions in the physics space (see
Figure 2.1).

Definition 2.1.7 (State Transition Function). We define the physics state transition func-
tion e:

e : �r̂1, . . . , r̂n, a, G, r̄1, . . . , r̄n, ∆t� → �r̂�
1
, . . . , r̂

�
n, L�.

The transition function e is part of the physics engine. Given a current state of the world x,
the planner supplies the contained rigid body states r̂1, . . . , r̂n and a control action vector a

to the the simulation function e. Using the immutable state parameters r̄1, . . . , r̄n and the
global gravity vector G (both contained in the domain description d), the physics engine’s
e function then simulates the rigid body dynamics forward in time by a fixed timestep
∆t, delivering new states for all rigid bodies r̂�

1
, . . . , r̂�n. These rigid body states are then

stored in the new resulting planning state x� along with its new time index t� = t + ∆t.
Additionally, e also returns a list of collisions L = �l1, l2, . . . � that occurred during forward
simulation. Each item l ∈ L is an unordered pair l = �λ1, λ2�, consisting of the indices of
the two rigid bodies rλ1 , rλ2 involved in the collision.

2.1.4 Intermediate Constraints and Planning Problem Definition

Generally, the goal of a planner is to find a sequence of actions, that, when applied in
sequence by using the transition function e, leads from some initial state xinit to a valid
goal state xgoal ∈ Xgoal. However, some problems might have additional requirements on
the intermediate states of the solution sequence. For example, in a navigation domain,
it is typically desirable that collisions never occur within a solution. To enforce such
intermediate state constraints, we introduce the Validate function that checks the state
transition function’s output (namely the resulting state x� and the list of collisions L) to
determine whether x� is a valid state:

Definition 2.1.8 (Validation Function).

Validate(x�, L) =�
true if x� is valid,

false if x� is invalid.

15

The actual internal mapping of the Validate function (i.e. which specific inputs should
generate a false as output) is problem-dependent, and needs to be provided, similar to the
actual set of goal states. For problems without intermediate state constraints, the function
can simply be configured to always return true, thus making any newly generated state x�

a valid state.

Definition 2.1.9 (Problem). Given a particular domain, it is possible to represent many
planning problems. A particular planning problem is defined by its domain d, its initial
state xinit, the set of valid goal states Xgoal, and any constraints on the intermediate states,
defined by the validation function Validate.

2.2 Rigid Body Simulations

Our state transition model effectively treats the physics engine as a “black box,” sepa-
rating our planning approaches from the question of how the engine’s internal rigid body
dynamics simulations are actually implemented. Nevertheless, it is important to discuss
and understand several key aspects of the engine’s internal simulation techniques because
their configuration can have significant implications on the quality and computational per-
formance of the engine’s simulations.

2.2.1 Level of Time Discretization

In Section 2.1.3, we have shown how to invoke the forward simulation function e by passing
it a set of rigid body states, their actions, a domain description, and a timestep ∆t.
To deliver the resulting body states and collision list that e returns, the physics engine
needs to accurately compute and resolve the physical motions and interactions of the
rigid bodies. Current physics engines rely on discrete timestep approaches that repeatedly
apply integration techniques to forward-predict the state of bodies for some fixed internal
timestep t̄, attempting to approximate the true continuous motions of real rigid bodies.
Note, that we differentiate this internal timestep t̄ from the timestep ∆t that is passed into
e. The value of t̄ is some unit fraction of ∆t, that is t̄ = ∆t/steps where steps is a positive
integer, defining the number of internal integration steps to be performed per invocation
of e.

The value of t̄ plays an important role in controlling the accuracy and performance of
the rigid body simulations. Generally speaking, a smaller value of t̄ delivers more accurate
predictions of rigid body interactions, but also incurs greater computational cost. Similarly,
selecting a large value of t̄ (at most t̄ = ∆t), is likely to result in computationally faster,

16

but less accurate simulations. The primary cause for this behavior is that between each
internal timestep, the physics engine will perform collision checks to detect whether any of
the rigid bodies are currently penetrating one another. If a collision is detected, the engine
will attempt to resolve it, by computing the resulting forces of the collision and by adjusting
the positions of the bodies involved. The more frequently these checks are performed and
resolved, the more accurately does the resulting motion sequence approximate the true rigid
body collision. However, each collision check and resolution comes at a computational cost.

Choosing a larger value of t̄ can not only lead to less accurate collisions, but can in fact
also lead to completely missed collisions. This error is particularly likely to arise, if the
domain contains fast moving bodies. Figure 2.2 shows an example of how choosing different
values of t̄ can affect collision detection. Each subfigure shows a ball body approaching a
rectangular body with the same initial conditions. In subfigure (a), the timestep is small
enough so that the engine correctly detects the collision between the two bodies, allowing
collision resolution to take place and forcing the ball body to its correct post-collision path.
In subfigure (b), however, a larger value of t̄ yields much longer distances travelled by the
ball between individual collision checks, thus never actually detecting the collision between
the two bodies, delivering a physically incorrect result.

Figure 2.2: An example of successful (a) and unsuccessful (b) collision detection.

Several modern physics engines (e.g., [24]) provide continuous collision detection (CCD)
methods, that attempt to detect collisions even when occurring completely between two
succeeding timesteps. Although CCD does avoid the problem of missed collisions, it is a
computationally intensive process, especially when body shapes are complex. Furthermore,
CCD typically assumes a linear interpolation between body positions, which can still lead
to inaccurate collision detections.

In this thesis, we do not use CCD in any of our experiments, but instead select a ∆t =
1/60s, and steps = 4, thus letting t̄ = 1/240s for all experiments, unless noted otherwise.
These values are sufficiently small to allow accurate collision detection and resolution in

17

our domains, while also being computationally feasible.

2.2.2 Determinism

Besides the level of time discretization, another interesting aspect to discuss is determinism.
We call the simulation function e deterministic, if the mapping from its input to its output
does not change. In other words, if we were to call e multiple times with identical input
states and actions, then its generated output states and collisions should be exactly the
same, every single time. Such determinism is typically a desirable quality because it ensures
consistency during simulations and scientific experiments.

Although one would expect a physics engine’s simulation routine to behave determinis-
tically, this is indeed not the case for many modern engines, including the engine used
throughout our experiments (NVIDIA PhysX Version 2.8.1). The precise reasons for this
behavior are not disclosed by the creators of the engine, but it is fair to assume that
they consider small amounts of non-determinism acceptable in order to increase compu-
tational performance. Example causes for this non-determinism could be algorithms that
use un-initialized memory blocks containing random data, or algorithms that use pseudo-
random-number-generators in order to perform certain optimizations. Despite the fact that
we were able to detect occasional non-determinism in our engine of choice, its effects were
generally negligible, especially when compared to the impact of the controlled variables in
our experiments. Interestingly, full determinism was recently announced as a new feature
in a future version of the engine employed in our experiments.

2.3 Body Types

The difficulty of physics-based planning problems is clearly related to the types of bodies
present in the domain. We introduce a hierarchy to classify the types of bodies in our
domain model (see Figure 2.3).

Every body is by definition a rigid body. There are static rigid bodies that do not move,
even when a collision occurrs, which are often used to model the ground plane and all
non-movable bodies, such as walls and heavy objects. All other bodies are manipulatable,
meaning that they react to collision forces exerted upon them. Among these, the planner
can directly control the actively controlled bodies, i.e., the planner has available actions
directly applicable to these bodies.

There are two other groups of bodies that are manipulatable, but not actively controlled,

18

Figure 2.3: Rigid body classes

namely passive and foreign-controlled bodies. Passive bodies can only be actuated by
external influences and interactions, such as being carried or pushed. Foreign-controlled
bodies are actively actuated, but by external control to our planner.

The predictability of the actions taken by foreign controlled bodies can vary. An example
of predictable foreign-controlled bodies are objects that are continuously actuated with a
clearly observable and linearly extrapolatable motion, such as an escalator or a windmill.
An example of a much less predictable body would be a robot executing a “random walk”,
repeatedly changing its direction of motion in an unpredictable fashion. Similarly, the
actions of adversarial robots (e.g., the opponent robots in robot soccer) are typically not
fully predictable. However, as we show in the following chapters, it can still be helpful
to create models that will assume an adversary’s likely action to be taken. Furthermore,
in most domains, the possible motions of foreign-controlled bodies can be bounded, due
to physical limits on the body’s maximum acceleration, given some knowledge about its
mass and types of actuators. Such bounds effectively constrain the possible space that the
foreign-controlled body can reach within a particular amount of time, regardless of what
action it chooses to execute.

Definition 2.3.1 (Rigid Body Classes). The classification hierarchy in Figure 2.3 defines
corresponding sets of rigid bodies which we refer to as BRigid, BManip, BStatic, BControlled,
BPassive, BForeign, with the following relationships:

• BRigid = {r1, . . . , rn},

• BManip ∪BStatic = BRigid where BManip, BStatic are disjoint sets,

• BControlled ∪BPassive ∪BForeign = BManip where
BControlled, BPassive, BForeign are all mutually disjoint sets.

19

2.4 Problem Classes and Challenges

Given our formal planning model definitions and classification of body types, we now
discuss the different possible types of planning problems and their unique challenges. First,
we identify two main problem classes:

• PNav - Navigation Problems
Problems in this class require that the actively controlled body reaches a particular
target state. In other words, the set of goal states is defined by some constraints on
the actively controlled body’s state (e.g., its position, orientation, velocity, or some
combination thereof).

• PMan - Manipulation Problems
Problems in this class require that a passive body reaches a particular target state,
meaning that the set of goal states is defined by some constraints on the passive
body’s state.

The two problem classes are not mutually exclusive. It is possible to construct a set of goal
states that requires both actively controlled and passive bodies to reach a particular state,
thus creating a planning problem that is a member of both the classes PNav and PMan.

Robot navigation is a prime example of a PNav problem. Given an initial position, the
planner’s goal is to find a sequence of actions that will lead the actively controlled robot
to some goal position. As we discuss in Chapter 10, this is a well-explored problem that
can often be solved sufficiently well with existing planning techniques.

Problems in the class PMan however, can be significantly more challenging than problems of
class PNav. The core reason for this is the lack of direct controllability over the passive body.
In a typical problem of class PMan, the planner has to find actions for the actively controlled
body to manipulate the passive body into its goal state. The task of manipulating a passive
body can be challenging for several reasons:

• Lack of Simple Goal Heuristics
The searchable space of actions in our planning model is extremely large, for problems
of either class PMan or PNav. At any given point in time, the planner can choose from
a continuous set of forces and torques to be applied on the actively controlled body.
Navigation planning problems of class PNav can overcome searching this vast space
through the use of relatively simple heuristics. Given a particular state, it is possible
to heuristically bias the search toward the goal state by selecting actions which are
likely to lead the robot towards its goal location. Computing such heuristics can be

20

as simple as taking the Euclidean distance between the controlled body and the goal
state to express the relative progress toward achieving the goal. Chapter 10 discusses
several traditional planning methods that heavily rely on such heuristics.

In problems of PMan however, it is not always clear how to choose the action which is
likely to bring the search closer to the goal state. Remember, that in a manipulation
problem, the goal is defined in terms of parameters of the passive body which is being
manipulated. However, the planner needs to choose between actions for the actively
controlled body. Therefore, the planner would require a heuristic that is able to
measure how far the actively controlled body is in achieving the overall domain goal.
Defining such a heuristic can be difficult, as the active body’s state itself is unrelated
to the domain goal. To be useful, the heuristic would need some kind of reasoning
as to which controlled body action is likely to lead to a successful manipulation of
the passive body. Such reasoning, however, is difficult to define, because it strongly
depends on the actual physical collision dynamics of the bodies involved.

• Passive Body Dynamics
A related challenge for problems in class PMan is that the planner has to accurately
predict and deal with the complex dynamics of the passive body that it is trying to
manipulate. Figure 2.4 shows an example illustrating this problem. Here, the goal
is to manipulate the ball efficiently around the 90 degree corner in the corridor. In
order to do so, the controlled robot needs to anticipate the ball’s momentum after it
has been set into motion. In order to change the ball’s direction efficiently, it requires
a sophisticated control strategy, moving the robot ahead of the ball, re-aligning to
counter-act the ball’s anticipated approach vector, and then re-accelerating it into
the final desired direction.

• Bifurcations of the Space
A third reason for the increased difficulty of class PMan is that the effects of rigid
body collisions add discontinuities to the search space by introducing bifurcations.
For example, in the game of pool, a cue ball could either hit a target ball, thus giving
it a final bump into its pocket, or it could miss it, not having any effects on the
target ball at all. Thus, even a small error in the goal-heuristic can often decide
between complete success or failure. In traditional navigation problems, on the other
hand, the relationship between the space of actions and their resulting motions is
typically more continuous and therefore less fragile to non-optimal action selection.
For example, in many navigation problems, a non-optimal goal-trajectory can still
lead to an acceptable solution. This discontinuity in the search space is worsened
in manipulation problems where entire chains of accurate collisions are required to
reach the goal state.

21

Figure 2.4: Deliberately manipulating a passive body solely through the means of collisions
can require elaborate maneuvers by the controlled body to counter-act undesired effects of
the passive body’s dynamics.

The difficulty of planning problems in our model does not only depend on whether the
problem belongs to PMan or PNav. Problems of either class can become significantly more
challenging for several other reasons, in particular including the following:

• Intermediate State Constraints
In some domains, the planner is not only required to find a solution sequence of ac-
tions that leads to a goal state, but it is also required to ensure that the intermediate
states of this solution sequence meet some particular user-defined constraints. In
our planning model, The Validate function (see Definition 2.1.8) is used to encode
such intermediate constraints. For example, in robot navigation domains, a typical
constraint would be that the controlled robot does not collide with any other body
in any of the states of the entire solution sequence. In computer animation domains,
such intermediate constraints are often more subtle, requiring that the body’s behav-
ior during the solution sequence fullfils some particular requirements imposed by an
animator. For example, if we were to use physics-based motion planning to compute
the actions to be taken for an animated ice skating character, it might be desirable
that the character performs a particular series of tricks on its path from its initial
state to its goal state. Imposing such additional constraints can make a search for
solutions challenging, as the set of valid solutions is reduced in size while the search-
able action space remains the same. In Chapter 4, we present models that attempt
to solve this problem by reducing the size of the searchable action space.

• Unpredictable and Adversarial Bodies
Both navigation and manipulation problems can become significantly more challeng-
ing when poorly predictable foreign-controlled bodies are present in the domain.
Adversarial domains are an extreme example, where foreign-controlled bodies are

22

not only poorly predictable, but are indeed actively attempting to stop the planner
from succeeding.

2.5 A Basic Physics-Based Planning Algorithm

Given our formal planning model, we now outline a basic planning algorithm that searches
for valid solutions in the physics-based planning space.

Algorithm 1 shows our basic planner. Note, that we use the dot symbol to indicate access
to a member of a tuple (e.g., x.t refers to the t item stored in x). The algorithm is
based on a purely forward planning tree-based search. We initialize the search with a tree
containing only the initial state xinit ∈ X as its root. We then enter the main planning
loop, which runs for a predefined maximum number of search iterations z, if no solution
is found earlier. On each iteration, the algorithm calls a function SelectSourceNode to
select an existing node x from the tree. How this node is best selected is an interesting
question that will be addressed in Chapter 5, but for now, let us assume that the planner
is uninformed and randomly selects an existing node from tree. Next, the planner calls the
function GenerateAction to generate an action a from the action space A. How this action
is generated can strongly influence the overall behavior and performance of our planner
and will be discussed in detail in Chapter 4. For simplicity, let us again assume a purely
uninformed approach, selecting a random action from the space of possible actions A.

After selecting the source node x and generating an action a, the planner can now invoke
the physics transition function e that will forward-simulate the rigid body dynamics and
generate the new rigid body states r̂1, . . . , r̂n as well as a list of collisions L that occurred
during the forward simulation. The new rigid body states and the new timestamp t� are
then combined to form the resulting state x�. The Validate function then checks whether
the resulting state is a valid state by making sure that it did not validate any user-defined
constraints and that no undesired collisions occurred in L. If accepted, the algorithm adds
x� to the search tree as a child of its source node x and furthermore stores the action within
the branch.

The complete loop of node selection and tree expansion is repeated until the algorithm
either reaches a goal state (i.e., x� ∈ Xgoal), or until it reaches the maximum allowed
number of iterations z, at which point the search returns failure. Once a goal state is
reached, the algorithm simply traces back the chain of states and actions from the goal
state to the root of the tree and returns it in reverse order as the final solution sequence
in the form �xinit, a1, x2, a2, x3, . . . , xgoal�.

23

Algorithm 1: BasicPlanner
Input: Domain: d, initial state: xinit, set of goal states: Xgoal, timestep: ∆t,

validation function: Validate, max iterations: z.
tree ← NewEmptyTree();
tree.AddNode(xinit);
for iter ← 1 to z do

x ← SelectSourceNode(tree);
a ← GenerateAction(x, d.A);
�r̂�

1
, . . . , r̂�n, L� ← e(x.�r̂1, . . . , r̂n�, a, d.G, d.�r̄1, . . . , r̄n�, ∆t);

t� ← x.t + ∆t;
x� ← �t�, r̂�

1
, . . . , r̂�n�;

if Validate(x�, L) then
tree.AddNode(x�);
tree.AddEdge(x, x�, a);
if x� ∈ Xgoal then

return TraceBack(x�, tree);

return Failed;

2.6 Chapter Summary

In this chapter, we have formally introduced physics-based planning, defining its state,
action, domain, and transition models. We have shown how to employ a physics engine to
perform the underlying rigid body simulations and we have discussed how simulation qual-
ity can be affected by the internal configuration of the physics engine. We have furthermore
introduced a hierarchy of body types that we can encounter in physics-based domains and
we have discussed the different classes of problems and challenges that a physics-based
planner may encounter. Finally, we have presented a basic example for a physics-based
planning algorithm.

In the following chapters, we present physics-based planning methods that build upon
the basic algorithm presented in this chapter. In particular, we introduce methods that
aim to specifically address all of the planning challenges discussed in Section 2.4. The next
chapter introduces a set of domains that collectively covers all of these planning challenges,
allowing us to exhaustively test our approaches throughout the remainder of this thesis.

24

Chapter 3

Applications and Domains

This chapter presents target applications for our motion planning approaches and con-
cretely introduces multiple example domains that are used for evaluation throughout this
thesis.

3.1 Application in Robot Motion Planning

The primary target application of our work is robot motion control in complex environ-
ments. Real-world robot motion control is naturally challenging due to the presence of sen-
sory noise and execution uncertainty. Additionally, many robot domains have strict timing
and computational constraints, requiring efficient planning within a limited amount of time.
Besides such traditional challenges, we are furthermore interested in testing our planner’s
performance on the challenges that we discussed in Section 2.4, including the manipulation
of passive bodies and the presence of not perfectly predictable foreign-controlled bodies.
To evaluate our approach, we introduce multiple robot domains, collectively covering many
interesting motion planning challenges.

3.1.1 Navigation Domain

In the navigation domain, a robot’s objective is to navigate from some initial configura-
tion to some goal configuration while avoiding collisions with obstacles. Obstacles in the
domain can be static, such as surrounding walls, or they can be foreign-controlled dynamic
obstacles, such as other robots (see Section 2.3 for a formal definition of different body

25

types). The navigation domain is challenging for several reasons:

• Dynamics
Real robots have a non-zero mass which in turn implies that they are unable to make
arbitrary changes to velocity (e.g., a robot is unable to stop instantaneously). There-
fore, for safe and precise navigation, a planner must accurately model the robot’s
dynamics, including momentum, friction, and limits in applicable acceleration.

• Efficient Exploration
The navigation domain may contain a challenging configuration of stationary obsta-
cles (e.g., walls). A planner must be able to efficiently search this space to find a valid
trajectory to the goal configuration without getting stuck in local search minima.

• Foreign-Controlled Obstacles
The navigation domain may contain moving obstacles that furthermore might not
be perfectly predictable (e.g., foreign-controlled robots). Navigating through an en-
vironment with moving obstacles requires a planner to have accurate models for
predicting the obstacles’ dynamics. Furthermore, because perfect prediction is not
always possible, we must find other methods for dealing with the domain’s uncer-
tainty.

Figure 3.1: The “maze” navigation domain.

We implement the navigation domain in simulation, allowing us to define arbitrary motion
planning problem instances with freely configurable stationary walls, moving obstacles,
and a controllable degree of simulated domain execution uncertainty. Figure 3.1 shows
a “maze” problem instance from the navigation domain, requiring a robot (light green
cylinder) to find a trajectory from the start location to the goal area without colliding

26

with any moving obstacles (dark cylinders). Chapter 9 shows how to efficiently plan in
this domain using Variable Level-Of-Detail planning.

3.1.2 Robot Soccer Domain

The robot soccer domain requires a robot to autonomously play a game of soccer against
one or more robot opponents. Modeled after the RoboCup Small Size League [77], the
robot can use its built-in ball actuators to dribble or kick the ball. Figure 3.2 shows a
real-world RoboCup robot soccer game. In this thesis, we focus on single-robot planning
problems within the robot soccer domain, such as one-vs-one, or one-vs-multiple game
scenarios that require the controlled robot to out-dribble opponents and score a goal.

Figure 3.2: A game in the RoboCup Small Size League.

Besides the challenges in the previously described navigation domain, the robot soccer
domain features multiple additional challenges:

• Ball Manipulation
To effectively play soccer, a robot must be able to purposefully dribble the ball. As
we explain in Chapter 2.4, manipulation of a passive body poses a difficult challenge
for a motion planner. Furthermore, it requires an accurate model that can predict
the ball’s dynamics and its complex interactions with the robots and the playing
surface.

• Adversarial Robots
Robot soccer is uniquely challenging due its extremely adversarial nature. Executing
a wrong action in real-time robot soccer is not only likely to delay progress toward

27

the goal state (of scoring a goal), but is in fact very likely to lead further away from
it because the other team could take control of the ball and score a goal.

We implement the robot soccer domain both in our planner’s simulation environment and
on real robots, using the CMDragons multi-robot system (see Appendix A). Chapter 7
presents the integration of our planner into the CMDragons robot system and its evaluation.

3.1.3 Robot Minigolf Domain

Inspired by real-world minigolf, the robot minigolf domain requires a robot to putt a golf
ball into a hole by purposefully bouncing it off other obstacle bodies. The positions of the
ball, obstacles, and hole can all be freely configured. Figure 3.3 shows an example course in
the minigolf domain. To achieve a hole-in-one, the robot (A) must find a solution similar
to the one indicated by the arrows, bouncing the ball of the wooden bars (C) and into the
U-shaped “hole” (B). The following challenges make the robot minigolf domain an ideal
testbed for our planning approach:

Figure 3.3: A course in the robot minigolf domain.

• Prediction of Multi-Body Interactions
To play minigolf successfully, a motion planner requires an accurate predictive model
of the ball’s interactions with the environment. Chapter 8 uses the robot minigolf
domain to demonstrate how automated model parameter optimization techniques
can be used to improve execution success rates.

28

• Prediction of Foreign-Controlled Moving Bodies
As an additional challenge, courses in the robot minigolf domain may contain moving
obstacles that cannot be directly controlled by the robot. To succeed, the robot must
be able to observe and extrapolate the motions of the obstacles and carefully time
its execution.

We evaluate our planner’s performance in the robot minigolf domain in simulation and on
real robots, using the CMDragons system.

3.2 Application in Computer Animation

Although the primary target application of our work is robot motion control, much of our
planning approach is also highly relevant to problems encountered in the world of computer
animation.

Rigid body dynamics simulations are a popular tool for generating realistic looking multi-
body motion sequences in computer animated movies and video games. After defining
initial states for a set of rigid bodies, a physics engine can be used to automatically com-
pute the forward simulation of Newtonian mechanics, realistically generating the physical
motions and interactions of the bodies.

A problem commonly occurs however, when the animation should reach a particular out-
come that is not achievable by the pure automatic forward simulation of a physics engine.
For example, the goal could be that some of the rigid bodies end up in a particular final
state that is unlikely to occur naturally. Additionally, some of these rigid bodies might
have to behave actively during the animation and expose some desired visual behavior. Fi-
nally, a rigid body might even need to purposefully manipulate other rigid bodies (through
the means of collisions) in order to achieve the goal state for the animation.

In order to satisfy such custom constraints on the animation’s behavior, intermediate
control actions (consisting of forces and torques) need to be applied to some of the rigid
bodies. Manually finding a set of acceptable control actions, however, can pose a difficult
and labor-intensive challenge. Oftentimes, a human animator may not know how to adjust
the available control actions to achieve a particular desired outcome of the simulation. Even
with aggressive trial and error, many domains may simply be too complex or too highly
constrained to be controlled manually. More importantly, there are several applications
which do not have the luxury of relying on the guidance of a human animator. For example,
in video games that feature rigid bodies, the automatic generation of intelligent control
actions for computer-controlled opponent bodies might be needed. Because the initial state

29

is subject to change (due to an evolving game-state and unpredictable player-input), an
animator cannot manually adjust these controls in advance.

The planning approaches introduced in this thesis can be used to automatically solve
difficult rigid body control problems. In many aspects, the planning problems encountered
in computer animation are very similar to the planning problems in our robot domains.
However, there exist a few significant differences:

• No Sensory Noise and Better Domain Predictability
Computer animation domains do not need to deal with the difficulties of sensing and
execution that are common in real-world robot domains. In computer animation
tasks, the planner’s internal state constitutes the true world state. An execution
therefore simply consists of re-playing the state-sequence generated by the planner
and consequently carries no execution uncertainty. A notable exception are real-
time computer games where some of the system’s state might change unexpectedly
during execution (e.g., due to a human player’s unpredictable control over a rigid
body). In this case the problem becomes more similar to robot domains and will
require methods for handling the effects of uncertainty, such as the ones we present
in Chapters 7 and 9.

• Actuation of Seemingly Passive Bodies
During execution in robot motion planning problems, the only control that a planner
can exert is over actively controlled bodies (i.e., the robot itself). Passive bodies in
the domain can – by definition – not be actively controlled, except through indirect
means, such as collisions. In computer animation domains, however, every body is
in fact actively controllable, because the planner has no real restrictions on exerting
forces and torques on any simulated body during execution. Of course, to achieve
realistic motion sequences involving interactions of many non-actuated bodies (e.g.,
a large number of falling dice), the bodies should appear to be passive. Nevertheless,
in order to achieve a particular desired outcome of an animation sequence, it is
often feasible to allow the planner to actively adjust the forces and torques of such
seemingly passive bodies, as long as the resulting animation looks plausible to the
target audience. This concept, also known as physical plausibility, is used frequently
in computer animation by slightly perturbing and manipulating seemingly natural
processes to achieve a specific desired behavior.

We introduce two computer animation domains that we test our approach on.

30

3.2.1 Many-Dice Domain

The objective in the many-dice domain is to control the fall of 400 dice, each initialized to
a random position. The fall and the collisions of the dice are supposed to look physically
plausible. However, the domain’s goal condition requires that all dice land in a way that
they form a particular logo as they are coming to a rest, a condition that is extremely
unlikely to occur naturally. Figure 3.4 shows an initial state (left) and a goal state (right)
of the many-dice domain. At the initial state, the dice are randomly shuffled and assigned
positions above a grid of spherical obstacles. The goal is that the dice land in the bucket
and form the “EG” logo of the Eurographics association. This domain is representative of
many challenging computer animation tasks for two reasons:

• Physically Plausible Control
The domain is challenging from a control standpoint. Although the planner is tech-
nically able to fully actuate each individual die, it must do so very intelligently and
subtly in order to maintain the illusion of a natural looking free-fall and plausible
inter-body collisions.

• Large Number of Bodies
The many-dice domain makes a very interesting planning problem due to its massive
scale. Unlike most typical robot domains where a planner controls the actions of a
single robot, the many-dice domain constitutes a joint control problem with a large
number of controllable degrees of freedom, thus requiring very efficient planning
methods.

Figure 3.4: An initial and a goal state in the many-dice domain.

3.2.2 Pool Table Domain

The pool table domain requires the planner to solve challenging “trick-shot” problems,
generating sequences of a single cue ball interacting with multiple pool balls to create a

31

desired outcome. Figure 3.5 shows an example problem in the pool table domain where
the goal is to actuate the cue ball (A) in such a way that it does not touch the three balls
near the mid-pocket (B), but hits the solid yellow ball (C), which in turn will roll and
bump the solid blue ball (D) into its pocket. From a planning standpoint, the pool table
domain is challenging because of the following reason:

• Plausibility of Ball Trajectories
Although the planner technically has full control over each ball’s actuation, the re-
sulting motion sequence should give the illusion that only the cue-ball was given
an initial impulse with an extremely correctly estimated amount of force and spin.
Therefore, any additional actuation exerted on the cue-ball and its interacting balls
needs to be applied in a very constrained manner to not appear overly unnatural. In
Chapters 4 and 5 we introduce models that allow such accurate behavioral control
over the bodies’ actuations.

• Chains of Collisions
The pool table domain is interesting because it requires chains of collisions. For
example, in Figure 3.5, the cue ball (A) should hit the yellow ball (C) which in
turn should hit the blue ball (D). Such chains of collisions are extremely fragile
because even a small error at any of the collision points can destroy the success of
the remaining sequence (also see Chapter 2.4 for a more in-depth discussion of this
challenge). Chapter 6 demonstrates how to chain behavioral control models, allowing
robust and efficient planning in the pool table domain.

Figure 3.5: A problem in the pool table domain.

32

3.3 Chapter Summary

We have introduced robot control and computer animation as two possible applications
for our physics-based motion planning approaches. To evaluate our work in robotics ap-
plications, we have introduced the navigation, robot soccer, and robot minigolf domains.
To evaluate our approach’s applicability to computer animation tasks, we have introduced
the many-dice and pool table domains. We have discussed the unique challenges for each
introduced domain, collectively forming a comprehensive testbed for our motion planning
approach.

33

34

Chapter 4

Non-Deterministic Skills and Tactics

In Chapters 2 and 3, we have formally introduced the physics-based planning model and
several challenging planning domains. As we have discussed in Section 2.4, automatically
finding solutions in large continuous action spaces can be difficult, especially if the problem
requires purposeful manipulations of passive bodies, contains behavioral constraints on the
intermediate states of the solution sequence, or contains foreign-controlled bodies.

Exhaustively searching the action space for solutions is infeasible due to its continuous
nature. Instead, our planning approach uses sampling to select actions from the continu-
ous action set A. However, using an uninformed approach (e.g., purely random uniform
sampling from the set A), is unlikely to find valid planning solutions within a reasonable
amount of time, even for simple domains. Consequently, we need to find methods that
are able to plan more efficiently in the physics-based space. In this chapter, we introduce
non-deterministic Skills and Tactics as an intelligent model for sampling actions.

4.1 Skills and Tactics

In order to increase planning efficiency, we focus on the problem of reducing the size of
the searchable action space. In particular, we introduce a sampling-based action selection
model that guides the planner by intelligently selecting actions that are specifically aimed
to bring the planner closer to its goal state.

Our model is based on the idea of traditional reactive robot controllers, as they are for
example used in robot soccer. Among the many reactive behavioral control architectures,
e.g., [8, 25, 56], we choose the Skills, Tactics, and Plays (STP) architecture, as it has

35

effectively been used in real-time adversarial robot domains [13] (also see Section 10.6 for
a review of robot control architectures). In our work, each controllable rigid body is syn-
onymous to an agent in STP. In STP, a Play captures the behavior assignments of a group
of multiple agents. A single agent’s behavior is modeled as a reactive Tactic, representing
a finite state machine (FSM) of lower-level Skills, which act as pre-programmed, reactive
control blocks, each implementing an intelligent state-dependent control policy. For the
scope of this thesis, we assume fixed role assignments for all the controlled bodies in the
domain, and therefore we do not require the multi-agent “Play” component of STP.

Traditionally, STP’s Skills and Tactics run online during execution, as purely reactive
controllers, without any planning at the Tactics level [18]. In our work however, a planner
uses Skills and Tactics as an action sampling model. Instead of being a reactive controller
as in traditional STP, the Tactics’ and Skills’ new role is to guide the planner’s search by
imposing constraints on the searchable action space. For this purpose we introduce and
formalize a new, probabilistic version of Skills and Tactics that uses random sampling to
choose from a set of possible actions.

4.2 Sampling-Based Skills

The purpose of a Skill is to act as a non-deterministic controller that generates actions
through the means of random sampling in combination with some domain knowledge.

Definition 4.2.1 (Skill). We define a Skill s = �C, D, f� where

• C is a set of configuration constants,

• D is a set of sampling distributions,

• f is the operator function f : �C, D, V, x, a� → �a�, V �, b�, where a and a� are actions
(consisting of force/torque sub-actions as introduced in Chapter 2), V and V � are
sets of variables and b is a boolean busy flag.

Figure 4.1 shows the general structure of a sampling-based Skill. The Skill’s operator
function f is the part of the Skill that generates control actions, consisting of force/torque
sub-actions (see Chapter 2). Part of f ’s input are the state of the world x and a set of
actions a that it can modify. f produces the modified set of control actions a� and the
boolean “busy flag” b, to be explained in an example later in this section and in Chapter 5.

The set of constants C contains any configuration parameters that define how the Skill
should operate. The precise contents of C depend on the actual Skill. For example, C

36

could contain the index i of the rigid body ri that this Skill should generate actions for,
or it could contain values that limit the maximum velocity of the controlled body. The
values of these configuration parameters remain the same throughout the life of the Skill
(thus called constants).

The set of variables V also allows storage of arbitrary Skill-dependent parameters, similar
to C, except that V is stored externally to the Skill and that the operator function f can
change the contents of V by producing a modified set of variables V � as output. As we will
show later in Section 5.3, V can be used to maintain state information between multiple
successive calls of the same Skill.

Finally, the set of sampling distributions D is the component that makes the Skill non-
deterministic because the operator function f can randomly sample values from these
distributions and use them for the computation of control actions. The concrete nature
and number of sampling distributions stored in D is dependent on the actual Skill. For
instance, in the shortly following example Skill, D contains a sampling distribution for
randomly selecting a point to drive toward. The fact that f can randomly sample from
the distributions in D means that multiple calls to f with the same input arguments can
each non-deterministically produce a slightly different set of actions a� where the degree of
random perturbation depends on the underlying distributions D.

Figure 4.1: Structure of a sampling-based Skill.

An Example Skill

Algorithm 2 shows the internals of an example Skill, including its constants C, its sampling
distributions D, and its operator function f . The purpose of this example Skill is to
generate control actions that will move a rigid body toward a randomly selected point.
The set of constants C contains all the parameters that configure the Skill’s behavior,

37

Algorithm 2: “Drive to Sampled Target” Example Skill
Constants C:
• Index of controlled rigid body: i

• Maximum linear body velocity and acceleration: max vel, max acc
• Maximum angular body velocity and acceleration: max ang vel, max ang acc
Sampling Distributions D:
• Distribution of possible navigation target locations: locations

Function f(C, D, V, x, a) :
a� ← a;
V � ← V ;
i ← C.i;
if target location /∈ V then

target location ← SampleFromDistribution(D.locations);
V � ← V � ∪ {target location};

target heading ← V �.target location− x.r̂i.α;
target heading ← target heading

�target heading� ;

// Motion control functions [15] compute the necessary
forces/torques to turn/drive towards the target location:

a�.âi.force ← DriveToLoc(x.r̂i, target location, C.max vel, C.max acc);
a�.âi.torque ←
TurnToHeading(x.r̂i, target heading, C.max ang vel, C.max ang acc);

if ReachedHeading(x.r̂i, target heading) and ReachedLocation(x.r̂i,
target location) then

// Body has reached the target
b ← false;

else
// Body still navigating to the same target
b ← true;

return �a�, V �, b�;

38

such as the index i of the body ri that the Skill is supposed to control, and limits on the
maximum velocity and acceleration that should be achieved by the body. The set D of this
example Skill contains a single sampling distribution (locations) from which random target
locations can be sampled. The precise configuration of the distribution depends on the
domain that the Skill operates in. For example, if the domain is limited to a rectangular
area of known size, then it makes sense to configure locations to uniformly sample random
points from that particular area.

The Skill’s operator function f performs the task of generating the actual control actions
for the rigid body. When called, the Skill first checks whether a previously sampled target
location already exists in the set of variables V . If not, the Skill non-deterministically
samples a new target location from the location distribution (locations) and adds it to
the modified set of variables V ’. Next, the Skill computes a unit vector, pointing from
the controlled body’s current position toward the target location, representing the desired
target heading of the controlled body. The target location and heading are then passed
into two low-level motion control functions that compute the required low-level forces and
torques to move the body toward target location and target heading. If the controlled body
has reached the target location and heading then the busy flag b is set to false, indicating
to the Skill’s caller (i.e., the planner, as we will introduce in Chapter 5), that on its next
call, the Skill should choose a new random target and therefore act non-deterministically.
If, on the other hand, the controlled body has not yet reached its target, then b is set to
true, indicating to the Skill’s caller that the Skill is still in the process of moving the body
toward its current target, and therefore should continue to do so when called the next time,
without selecting a new target. As we will further explain in Chapter 5, it is up to the
Skill’s external caller to decide what to do with the modified set of variables V � and with
the value of the busy flag b which are returned by the function f . For now, let us assume
that, if b is true, then the output V � will be passed back into f as V during the successive
call of the Skill. Otherwise, V will be set to the empty set for the next call of f .

The “Drive to Sampled Target” Skill of Figure 2 is only one particular example of a non-
deterministic Skill. Appendix C shows several additional example Skills, each implementing
unique tasks via their operator function f , and each using different sets of configuration
constants C, sampling distributions D, and each storing different types of variables in the
set V .

Skills as Reusable Behavior Building Blocks

The Skill’s operator function f , and its parameters D and C all need to be manually defined
and therefore assume some knowledge about the domain and its physical properties, such as
the reasonable ranges of applicable forces and torques. Typically, a single Skill implements

39

a particular control objective such as “drive towards a sampling-based location,” “push
some target rigid body towards a sampling-based target region,” or “turn a sampling-
based amount.” Designing these actual Skills does take some programmatic effort and it
can be argued that some Skills are fairly domain-dependent. However, many Skills can be
used as template-like “building blocks” that apply to a variety of domains. Given a library
of Skills, it is possible to rapidly create new Tactics (described in the following section)
that are well-suited for solving a particular domain.

4.3 Non-Deterministic Tactics

So far, we have introduced sampling-based Skills as a non-deterministic action sampling
model for simple control tasks. Next, we introduce non-deterministic Tactics as a method
for constructing more sophisticated control behaviors, consisting of multiple Skills.

Definition 4.3.1 (Tactic). We define a Tactic τ = �S, Π, σinit� where

• S: a set of k Skills �s1, . . . , sk�,

• Π: the function Π : �σ,σ�, x� → p, computing p, the transition probability from sσ

to sσ� , depending on the world state x,

• σinit: the index of the initially active Skill sσinit ∈ S.

A Tactic is composed of a set of Skills and a set of possible transitions between these
Skills. This model is similar to a classic Non-deterministic Finite State Machine (with
Skills corresponding to FSM states), except that in our case, any transition probability p

can change dynamically during the life of the Tactic because it is generated by the function
Π : �σ, σ�, x� → p, thus depending on the world state x.

Definition 4.3.2 (Tactic State Transition Function). To actually perform non-determin-
istic state transitions between Skills, using the probabilities generated by Π, we define the
transition function

g : �S, Π, σ, x� → σ
�
,

taking a Tactic’s set of Skills S, its probability function Π, an index σ pointing to a Skill
sσ ∈ S, and a state of the world x to produce a new index σ� pointing to a Skill sσ� .
Algorithm 3 shows how g computes these state transitions probabilistically.

Figure 4.2 shows an example diagram of a Tactic. In this case, the Tactic contains four
Skills (s1, . . . , s4). There are several possible types of transitions between these Skills:

40

Algorithm 3: Transition Function g

Input: S = {s1, . . . , sk}, Π, σ, x

probSum ← 0;
for j ← 1 to k do

probSum ← probSum + Π(σ, j, x);

if probSum > 0 then
rndVal ← Sample(0, Max(1, probSum));
tempSum ← 0;
for j ← 1 to k do

tempSum ← tempSum + Π(σ, j, x);
if tempSum > rndVal then

return j;

return σ;

• Deterministic Transitions
The transition between Skills s1 and s2 in Figure 4.2 is deterministic. In the de-
terministic case, the probability function Π(1, 2, x) always returns 1.0, independent
of the state x, thus always enforcing a transition from Skill s1 to Skill s2. Conse-
quently, in the deterministic case, all other outgoing transitions from s1 will generate
a zero-probability, that is, ∀σ� �= 2 : Π(1, σ�, x) = 0.

• Non-Deterministic Transitions
The outgoing transitions from the Skill s2 in Figure 4.2 are non-deterministic. That
is, when executing the transition function on s2, we will either end up in Skill s3 with
a 0.4 probability (because Π(2, 3, x) = 0.4) or we will remain in Skill s2 with a 0.6
probability (because Π(2, 3, x) = 0.6). By being modeled in this non-deterministic
fashion, each execution of the Tactic can result in a different sequence of transitions
between Skills, thus covering different parts of the search space. Similar to the
deterministic case, the transition probabilities in this example are constant, and do
not change based on the system state x.

• State-Dependent Transitions
The transition from Skill s3 to Skill s4 in Figure 4.2 is state-dependent. The prob-
ability function Π(3, 4, x) returns 1.0 if some property within the world state x is
met, and it returns 0.0 otherwise. In the latter case, all outgoing connections from
s3 are in fact zero, which implies a self-transition based on the definition of g, as
shown earlier in Algorithm 3. Although not shown specifically in Figure 4.2, it is
furthermore possible to combine state-dependent transitions with non-deterministic
transitions, i.e., by having multiple non-zero outgoing transition probabilities whose
concrete values depend on the state x. Also note, that we do not have to worry that

41

Figure 4.2: Example of a non-deterministic Tactic.

all currently applicable probabilities generated by Π(σ,σ�, x) for a particular current
σ need to sum to one, because the function g samples uniformly over the sum of all
applicable probabilities, effectively auto-normalizing them.

The concrete values for defining a Tactic τ (i.e., the set of Skills S, the probability function
Π and the index of the initial Skill σinit) are all provided by the user and are domain-
dependent.

Busy Skills Prevent State Transitions

Note that any of the above state transitions are only performed if the currently active Skill
is not busy (i.e., the Skill’s operator function f returned b = false as its busy flag on its
latest call). If, on the other hand, the Skill is currently busy (i.e., b = true), then no state
transition is performed (i.e., g is never called), and we will remain in the same Skill.

An Example Tactic

Figure 4.3 shows an example Tactic implementing a robot soccer behavior. The Tactic con-
tains Skills to drive toward the ball (“drive to ball”), push the ball toward a sampling-based
location (“sampled dribble”), kick the ball toward a random point in the goal (“sampled
goalkick”), or kick the ball by a short distance toward a randomly selected point (“sampled

42

Figure 4.3: A robot soccer example Tactic.

minikick”).

This Tactic contains a combination of state-dependent, non-deterministic, and determin-
istic transitions. For example, the transition from “drive to ball” to “sampled dribble”
depends on the state of the world x, because it is only performed if the robot has reached
the ball. The outgoing transitions of the “sampled dribble” Skill are non-deterministic:
remaining within the “sampled dribble” Skill with a 0.7 probability, or switching into one
of the kick Skills with the remaining probability. The transition from the “sampled mini-
kick” to the “drive to ball” Skill is deterministic, letting the controlled robot immediately
work on re-obtaining the ball after it has kicked it.

Deterministic Skills and Tactics

It should be noted that our introduced Skills and Tactics model is a superset that contains
their traditional deterministic versions. In our formal model, we can define a deterministic
Tactic as a Tactic which cannot have multiple outgoing state transitions from any sσ

with probability greater than 0 for any x. Similarly, we define a deterministic Skill as
one where there is a single deterministic mapping from states to actions. Therefore, in a
deterministic Skill, D = ∅, because no sampling distributions are needed for deterministic
decision making.

4.4 Chapter Summary

In this chapter, we have introduced non-deterministic Skills and Tactics as an intelligent ac-
tion sampling-model. In the following chapter, we introduce concrete planning algorithms

43

that rely on non-deterministic Skills and Tactics during search.

44

Chapter 5

Efficient Planning via Skills and
Tactics

In Chapter 4 we have introduced non-deterministic Skills and Tactics as an action sampling
model. In this chapter, we introduce and compare two concrete Skills and Tactics-driven
randomized physics-based planning algorithms, namely Behavioral Kinodynamic Rapidly-
Exploring Random Trees (BK-RRT) and Behavioral Kinodynamic Balanced Growth Trees
(BK-BGT).

5.1 Skills and Tactics in the State Space and Domain

Definition 5.1.1 (State Space with Tactical State). In order to use Skills and Tactics as
a sampling model for our planner, we need to store their variable parameters as part of
the state space. More formally, we redefine a state x ∈ X as:

x = � t, r̂1, . . . , r̂n, σ1, . . . ,σh, V1, . . . , Vh, b∧, b1, . . . , bh �,

including the indices to the currently active Skill for each Tactic (σ1, . . . ,σh), as well as the
internal variable state V of the currently active Skill for each of the h Tactics. Finally, b∧,
and b1, . . . , bh are all boolean values, indicating whether the entire state x and/or any of
its active Skills sσi are currently “busy”, to be further explained later in this chapter. The
number of Tactics h is dependent on the number and types of bodies within the domain.
Each actively controlled body has a corresponding non-deterministic Tactic consisting of

45

sampling-based Skills that generate the body’s actions. Additionally, we construct reactive,
deterministic Tactics with deterministic Skills to act as prediction models for each foreign-
controlled body. Even if a foreign-controlled body’s exact Tactic is not known (which
is typically the case for adversarial robots), it may still be useful to model its roughly
expected behavior rather than assuming it is static. Finally, passive bodies in the domain
are non-actuated and do not require a Tactic.

In Section 2.1.2, we defined a general physics-based planning domain to consist of a global
gravity vector, G, the bodies’ immutable parameters r̄1 . . . r̄n, and the action space A that
defines the set of applicable actions. Note, however, that the purpose of Skills and Tactics
also is to constrain the set of selectable actions. Therefore, we redefine d, replacing A with
the set of Tactics that act as a sampling-based method to constrain the action space.

Definition 5.1.2 (Tactics-Based Domain). A Tactics-based planning domain d is defined
as:

d = �G, r̄1 . . . r̄n, τ1, . . . , τh �,
where h is the total number of Tactics.

5.2 A Tactics-Based Planning Example

Before introducing our actual Tactics-based planning algorithms in full detail, we first
present a simple example to illustrate how a physics-based planner can use Skills and
Tactics to perform its search.

Figure 5.1 shows a Tactics-based planning example in a simple robot soccer domain. The
Tactic for the controlled body (Figure 5.1 (a)) models the behavior of a robot soccer
“attacker”. Figure 5.1 (b) shows the initial state xinit. The goal of the domain is to let the
robot body (dark cut-off cylinder) deliver the ball (orange circle) into the goal box (shaded
rectangle). In the initial state, the current time index t is 0, and the Tactic is in its initial
“get ball” Skill.

Starting from the initial state, the planning algorithm constructs a tree of succeeding states,
with the objective that one of the tree’s nodes happens to be a valid goal state. The basic
algorithm is conceptually similar to the BasicPlanner algorithm presented in Section 2.5,
except that its states now include the Tactics state (particularly, the index of the currently
active Skill), and its actions are constrained to the ones generated by the Tactic’s Skills. To
construct the search tree, the algorithm repeatedly selects a source node from the existing
tree and generates a new succeeding child node. Figures 5.1 (b) and (c) demonstrate the
growth of the first branch in the search tree. Given the initial state (Figure 5.1 (b)), the

46

Figure 5.1: A Tactics-based planning example.

47

planner calls the operator function f of the currently active Skill (given by the source
node’s state xinit). Taking the current state of the world xinit as input, the Skill’s operator
function f then computes an action, consisting of forces and torques, applicable to the
controlled robot body. The planner then provides this action, along with the current state
of the world, to the physics engine’s state transition function e to compute the succeeding
state (where t = 1). The action is stored within the branch that connects the source node
to the succeeding node. Furthermore, from the source state xinit, the planner invokes the
Tactics state transition function g to compute the successive Tactics state. In this example,
the Tactic remains in the “get ball” Skill, because the robot in xinit (Figure 5.1 (a)) has
not met the condition of reaching the ball (defined in the Tactics model in Figure 5.1 (a)).
The resulting state (including the body states, the Tactic state, and the time-index t) is
added to the tree as a child of xinit.

The planner then repeats this tree growth mechanism, each time selecting some source
node from the existing tree and computing a new successor state. The actual method of
node selection is a key performance factor for the planning algorithm, and will be presented
in the following sections. For now, let us assume that the planner selects a random node.
Figure 5.1 (d) shows the tree after several iterations, highlighting two new states, where
the Tactic now happens to be in the “dribble” Skill which non-deterministically generates
actions that control the robot to dribble the ball into some sampling-based direction.
Note, however, that also the Tactic itself (Figure 5.1 (a)) is non-deterministic, allowing
transitions from “dribble” to “kick” with a 0.5 probability. Figure 5.1 (e) highlights this
non-determinism, showing two states, each with time-index t = 3, but each with a different
active Skill (namely one in “kick” and one in “dribble”).

The tree growth continues until, in one of the branches, the robot performs a successful
kick toward the goal, and the ball ends up inside of the goal-box (Figure 5.1 (f)). Once
such a goal state is found, the planner simply back-traces the branches toward the root
and returns the actions contained within them as the final solution sequence (Figure 5.1
(g)).

5.3 BK-RRT Algorithm

We are now ready to introduce concrete physics-based planning algorithms that use Skills
and Tactics as their action sampling model. We present two algorithms that share the
same fundamental forward-planning loop, but differ in the way they control the growth
of the search tree. We name these two algorithms as Behavioral Kinodynamic Rapidly-
Exploring Random Trees (BK-RRT) and Behavioral Kinodynamic Balanced Growth Trees
(BK-BGT). First, in this section, we present the BK-RRT algorithm. We follow with

48

BK-BGT in Section 5.4.

Algorithm 4 shows BK-RRT. In terms of notation, we use the dot symbol to indicate access
to a member of a tuple (e.g., x.t refers to the t item stored in x). Before we begin to explain
the algorithm, we need to define several assumptions about the initial state xinit. Recall
that a state in our model is defined as:

x = � t, r̂1, . . . , r̂n, σ1, . . . ,σh, V1, . . . , Vh, b∧, b1, . . . , bh �.

For the initial state xinit, we assume that the active Skill index for each Tactic is set to
the initial Skill index as defined in the corresponding Tactic (i.e., σ1 ← τ1.σinit, . . . , σh ←
τh.σinit). Furthermore, in xinit, all sets of variables are empty (i.e., V1 ← ∅, . . . , Vh ← ∅)
and all busy flags are set to false (i.e., b∧ ← false and b1 ← false, . . . , bh ← false). Finally,
for convention throughout this thesis, we also assume that xinit.t ← 0.

Having defined these requirements for the initial state, we now explain BK-RRT as shown
in Algorithm 4. First, we initialize the search with a tree containing the initial state
xinit ∈ X, and set the boolean variable busy to false. We then enter the main planning
loop, which runs for a predefined domain-dependent maximum number of search iterations
z, if no solution is found earlier. On each iteration, assuming busy is false (which is the
case initially), the algorithm calls the SelectNodeRRT algorithm to select a node x from
the existing tree which it will expand from. The difference between BK-RRT and BK-BGT
lies precisely in this node selection function.

BK-RRT selects nodes similarly to the traditional Rapidly-Exploring Random Trees (RRT)
search [57]. Algorithm 5 shows the SelectNodeRRT function used in our BK-RRT algo-
rithm. The function SampleRandomState uses an internal probability distribution to pro-
vide a sample y, taken from the sampling space Y that is some predefined subspace of
X. The function then iterates over all states in the tree, to find the nearest neighbor to
the random sample y by using some distance function ComputeDistance. Note, that only
“non-busy” nodes (i.e., x.b∧ = false) are considered during the nearest neighbor search.
The precise purpose of the “busy” flags will be explained in Section 5.3.1; for now it suf-
fices to say that we can only grow branches from “non-busy” nodes. The function then
returns a tuple with the nearest neighbor xnearest and the sample y. As with traditional
RRT, it is important that the sampling space Y , the underlying probability distribution,
and especially the distance function are all carefully chosen to match the domain. We
postpone the discussion about selecting these parameters for Section 5.3.4 and continue
with the explanation of the remaining BK-RRT algorithm.

After selection of the source node x, the algorithm then calls TacticsDrivenPropagate
with the purpose to generate a succeeding state x� from the source state x. Algorithm 6
shows this Tactics-driven propagation function. The function begins by instantiating the
succeeding state x�, initially as a copy of x. Furthermore, it generates an empty action

49

Algorithm 4: BK-RRT
Input: Domain: d, Initial state: xinit, set of goal states: Xgoal, RRT sampling space:

Y , timestep: ∆t, validation function: Validate, max iterations: z.
tree ← NewEmptyTree();
tree.AddNode(xinit);
busy ← false;
for iter ← 1 to z do

if busy = true then
x ← x�;

else
�x, y� ← SelectNodeRRT(tree, Y); // See Alg. 5

�x�, L� ← TacticsDrivenPropagate(x, y, ∆t, d); // See Alg. 6
busy ← x�.b∧;
if Validate(x�, L) then

tree.AddNode(x�);
tree.AddEdge(x, x�, a);
if x� ∈ Xgoal then

return TraceBack(x�, tree);

else
if busy = true then

RollBack(x, tree); // See Alg. 7

busy ← false;

return Failed;

a ∈ A, containing only zero-filled vectors for all force/torque pairs of all sub-actions. Next,
it iterates over each Tactic and, assuming the Tactic’s active Skill was not marked as
“busy” (x.bi = false), performs its state transition by calling g. If the Skill was marked
as “busy” then no state transition is performed and its variables are obtained from its
previous state. After storing the new Tactics state σ� into x�, the algorithm then calls the
active Skill’s operator function f .

Note, that the contents of the variables V passed into f includes the random RRT sample
y because it was added earlier (V ← {y}), thus allowing the Skill to make use of y. As we
will further explain in Section 5.3.3, this in fact implies, that the traditional RRT algorithm
is actually a subset of the introduced BK-RRT algorithm.

Each call to the operator f returns a tuple including the boolean “busy flag” value bi. As
we will explain in more detail in Section 5.3.1, the purpose of this boolean flag is to let a
Skill report that it is currently executing a linear control task that does not require any

50

Algorithm 5: SelectNodeRRT
Input: Tree: tree, RRT sampling space: Y

y ← SampleRandomState(Y);
xnearest ← ∅;
mindist ←∞;
foreach x ∈ tree do

if x.b∧ = false then
dist ← ComputeDistance(x, y);
if dist < mindist then

mindist ← dist;
xnearest ← x;

return �xnearest, y�;

branching because its action selection is currently deterministic. Furthermore, because bi

is stored into x�, it signals to the BK-RRT algorithm to not perform any state transitions
on the Tactic τi that has a currently busy Skill (by not calling g if x.bi = false). The global
flag x�.b∧ is set to the logical and of all the individual Skill’s bi flags.

The algorithm is now ready to invoke the physics engine by calling the simulation function
e, using as input the rigid body states r̂1, . . . , r̂n contained in the source state x, the
forces and torques defined by a, the global gravity vector G, the immutable rigid body
parameters (contained in the domain description d), and the simulation timestep ∆t. The
physics engine returns a new set of rigid body states that are stored into the new state x�,
and the list of collisions L.

After returning from the TacticsDrivenPropagate function, the BK-RRT algorithm (Al-
gorithm 4) then stores the busy flag x�.b∧ into the local busyvariable and moves on by
calling the Validate function (see Definition 2.1.8) to check whether the new state x�

should be considered valid, based on the state itself and on the list of collisions L that
occurred during forward simulation from x to x�.

If the succeeding state x� is determined to be invalid, then the algorithm invokes the
RollBack function (see Algorithm 7) if the busy flag is currently set to true. The purpose
of this RollBack function is explained in Section 5.3.2, following the discussion of the busy
flag (see Section 5.3.1).

If successfully validated, the algorithm adds x� to the search tree as a child of its source
node x and furthermore stores the action within the branch. The complete loop of node
selection and tree expansion is repeated until the algorithm either reaches a goal state (i.e.,
x� ∈ Xgoal), or until it reaches the maximum allowed number of iterations z, at which point

51

Algorithm 6: TacticsDrivenPropagate
Input: Source state: x, random sample: y, timestep: ∆t, domain: d.
x� ← x;
�τ1, . . . , τh� ← d.�τ1, . . . , τh�;
a ← [0, . . . , 0];
for i ← 1 to h do // Iterate over all Tactics

�S = �s1, . . . , sk�, Π, σinit� ← τi;
if x.bi = false then // Check whether τi is busy

σ� ← g(S, Π, x.σi, x); // Compute Skill transition
V ← {y}; // Make y available to Skill’s variables

else
σ� ← x.σi; // τi is busy; maintain previous Skill
V ← x.Vi; // Maintain previous variables

�C, D, f� ← sσ� ;
�a, V, bi� ← f(C, D, V, x, a); // Apply Skill
x�.σi ← σ�;
x�.Vi ← V ;
x�.bi ← bi;

x�.b∧ ← b1 ∧ b2 ∧ · · · ∧ bh; // Compute global busy flag
�x�.�r̂1, . . . , r̂n�, L� ← e(x.�r̂1, . . . , r̂n�, a, d.G, d.�r̄1, . . . , r̄n�, ∆t); // Transition
x�.t ← x.t + ∆t;
return �x�, L�;

the search returns failure. Once a goal state is reached, the algorithm simply traces back
the chain of states and actions from the goal state to the root of the tree and returns it in
reverse order as the final solution sequence in the form �xinit, a1, x2, a2, x3, . . . , xgoal�.

5.3.1 Preventing State Duplications: the Busy Flag

The BK-RRT algorithm makes use of the “busy flag” bi as returned by the currently
active Skill’s operator function f for each Tactic (see Algorithm 6). The purpose of this
boolean flag is to let a Skill signal that it is currently behaving deterministically (even if
it is a non-deterministic Skill), meaning that its function f would always make exactly
the same modifications to the action a if we would call it multiple times with the same
current input arguments. Note, however, that we might have multiple Tactics that contain
non-deterministic Skills (e.g., each controlling a separate controlled body). We should only
mark an entire state as busy if all the currently active Skills among all Tactics are currently
behaving deterministically. Therefore, the algorithm computes the global busy flag b∧ to

52

Algorithm 7: RollBack
Input: State: x, Tree: tree.
while x.b∧ = true do

xparent ← tree.GetParentNode(x);
tree.DeleteNode(x);
x ← xparent;

return;

be the logical and of all the individual Skill’s busy flags.

A busy state x implies that there currently is no potential for search, because none of the
currently active Skills can currently perform any random sampling over different possible
actions. Consequently, it would be a waste of resources if the planning algorithm would
grow more than one outgoing branch from the node x if the Skill is currently busy, because
each outgoing branch would lead to exactly the same succeeding state x�, cluttering the
search tree with multiple copies of the same state.

The BK-RRT algorithm does several things to prevent such unnecessary duplication in
states. First, the RRT node selection function (see Algorithm 5) ensures that only non-
busy nodes are selected to have branches grown from them, because only non-busy nodes
are actually decision points in the search. Second, whenever a new busy state is generated,
the BK-RRT planning loop (see Algorithm 4) will extend its next iteration from x� instead
of invoking the RRT node selection function, thus forcing a continued, greedy single branch
expansion for as long as all Skills report that they are busy or until an invalid state is
generated.

In order to not “get stuck” indefinitely in a greedy branch expansion loop, it is expected
that all Skills will eventually “time out” and report a non-busy flag. Alternatively, one
could limit the maximum number of repeated greedy expansions in the BK-RRT algorithm
by simply adding a counter variable, allowing the algorithm to force the state to become
non-busy after a fixed number of busy iterations.

The overall increase in planning performance due to the use of the busy flag depends
strongly on the type of domain and especially on the type of Skills involved. There are
many domains where non-deterministic decision making only occurs at certain key events,
and the Skills behave deterministically otherwise. In such domains, preventing unnecessary
branching and state duplication can have an extremely positive impact on performance.
As a simple example, consider a Skill that has the purpose of making a robot drive toward
a randomly chosen point, similar to the example shown in Section 4.2. In this case, there
really only is a single point in time where the Skill performs random sampling, namely at
the beginning of its execution, when randomly selecting which point to drive towards. Once

53

“committed”, the calls to this Skill in succeeding states will simply perform deterministic
controls that will make the robot drive to the previously non-deterministically selected
point. Letting the planner be aware of where the non-determinism occurs via the busy flag
allows the planner to focus its entire search solely on true decision points, yielding a much
faster search. Appendix C shows the internals of several Skills that make further use of
the busy flag.

5.3.2 Removing Stale Branches: the RollBack Function

In the previous section we discussed how the BK-RRT algorithm uses the busy flag to
perform greedy state expansions. However, we also need to consider what happens if
we encounter an invalid state x� (i.e., Validate returns false) during a greedy branch
expansion induced by the busy flag. As defined in the BK-RRT algorithm, the invalid
state x� is of course not added to the tree in this case. However, in the case of a greedy
state expansion, we should also take a look at the chain of busy states that led to the
invalid state x�. Remember, that, due to our previous definition of the busy flag, busy
states are guaranteed to only have a single child. Furthermore, busy states will never be
selected again as a source node during the standard node selection process. Therefore,
the entire chain of busy states that was generated during the greedy branch expansion
(that ultimately ended in failure when generating the latest state in the branch x�) can be
considered stale, meaning that none of the nodes in this busy chain will ever be selected
again, and therefore none of them will ever contribute to lead towards a goal state as part
of a solution sequence.

Because such stale branches consume memory, it makes no sense to keep them around in
the tree. Therefore, we introduce the RollBack function (see Algorithm 7) that is called
when an invalid state is encountered during a busy state expansion (see Algorithm 4). The
concept of the RollBack function is very simple: given an invalid state, we follow up its
chain of parents, removing nodes until we encounter a non-busy state. Note, that without
the RollBack function, the remaining BK-RRT algorithm would still be completely sound.
However, as we will show in Section 6.2, the RollBack function can help to significantly
reduce overall tree sizes.

5.3.3 RRT as a Subset of BK-RRT

In this section we investigate how our BK-RRT algorithm relates to the traditional RRT
algorithm [57]. Similar to BK-RRT, traditional RRT relies on random sampling to con-
struct a search tree through the continuous state space. Figure 5.2 illustrates the growth

54

of a traditional RRT search tree through a non-dynamic 2D environment. The RRT al-
gorithm grows the tree by repeatedly sampling a random state configuration y from some
underlying continuous sampling space Y , then finding the closest node x to the sample y

among all nodes currently in the search tree, and growing a fixed distance branch from x

toward the sample y, generating a new child node x�. The result of consistently repeating
this node selection and expansion process is a random, but very efficient coverage of the
continuous search space.

Figure 5.2: A visual demonstration of the standard RRT algorithm.

BK-RRT uses a node selection scheme identical to RRT, except that BK-RRT adds the
feature of the “busy” flag. Both algorithms sample a configuration y from a space Y and
locate the nearest neighbor in the tree, using some distance function.

However, BK-RRT and RRT behave differently when expanding from the selected node.
Traditional RRT always extends its new branch directly toward the sample y. In the
non-dynamic example shown in Figure 5.2, this expansion is as simple as constructing and
scaling a virtual line from x to y (i.e., x� = x + dist Norm(y − x), where Norm normalizes
a vector to unit length and dist is a scalar value indicating the desired expansion step
length). Although this expansion step can be more complex in dynamic environments [60],
traditional RRT will always attempt to grow the branch toward the sample y.

In the case of BK-RRT, however, actions are sampled from our Skills and Tactics model.
Because the Skills and Tactics can be configured to generate any action a ∈ A, there is
clearly no guarantee that the generated action will actually lead toward the random sample
y that was constructed and used during the node selection step. Unlike traditional RRT,

55

however, BK-RRT’s Skills and Tactics sampling model allows the selection of actions in a
manner that makes intelligent decisions based on the current source state x, thus allowing
the planner to constrain the search space in a task-oriented manner.

Furthermore, the BK-RRT Skill operator function f does indeed have access to the random
sample y that was used during node selection (because it was added to the Skill’s Variable
set, i.e. V ← {y} in Algorithm 6). A Skill could therefore make use of the sample y and
generate actions that depend on its concrete values.

Most interestingly, this availability of y to the Skill’s operator function does in fact imply
that the traditional RRT algorithm is actually a subset of BK-RRT. If we imagine a Tactic
containing a single Skill that only implements the typical RRT “generate an action to
directly extend from x towards y” operation, then this BK-RRT search would behave
algorithmically identical to standard RRT.

The decision on how much to emulate the standard RRT behavior by generating actions
that lead toward y vs. how much to select other actions via Skills and Tactics, depends
mostly on the domain. The beauty of BK-RRT is that it allows embedding of arbitrary
amounts of Tactics-based domain specialization, with the very general traditional RRT
expansion scheme being one extreme on that spectrum.

5.3.4 RRT Parameters and Distance Functions

Both traditional RRT and BK-RRT rely on several crucial parameters to work efficiently.
In particular, the SelectNodeRRT function (see Algorithm 5) requires that the sampling
space Y and the nearest neighbor distance function are defined in a way that allows an
effective exploration of the search space, given a particular type of domain.

When employed in non-dynamic domains, RRT can typically be configured to let X = Y

and to simply use Euclidean distance for computing the distance between x ∈ X and y ∈ Y

during the nearest neighbor lookup.

However, because we are planning through a physics-based, second order time-space envi-
ronment, using a Euclidean nearest neighbor distance approach will fail. This is because
the Euclidean distance between two nodes’ positions would ignore the fact that the nodes
have velocities attached to them and therefore would not provide a good indication of how
long it would actually take for an actively controlled body to reach a particular sampled
configuration y. A much more reliable approach is to define the distance function based
on estimated time to get from x to y, rather than pure positional distance.

56

Figure 5.3: A trapezoidal motion model.

For our experimental domains, we use an acceleration-based “trapezoidal” motion model
to compute the minimal estimated time for the controlled rigid body in x to reach its
target configuration in y. Figure 5.3 shows a visualization of the trapezoidal model for
computing the estimated time of a 1-dimensional movement. The model is configured by
providing it with values for the body’s maximum acceleration, deceleration and velocity
(v-max). We can then query this model, providing it the body’s initial velocity (which is
zero in Figure 5.3), a distance to be traversed, and a desired target velocity to be achieved
at the target point. The model will then compute the estimated amount of time required
to reach the target. This 1-dimensional trapezoidal motion model can be applied to higher
dimensions (e.g., to the 2D translating omni-directional robot model used in robot soccer)
by optimally decomposing the higher dimensional vectors into their 1D components, with
the goal of minimizing the maximum time over all individual 1D trapezoidal functions.

5.4 BK-BGT Algorithm

RRT’s combination of node-selection and extension has the clear advantage of providing
a relatively efficient and uniform coverage of the work-space [57]. This uniform expansion
however, comes with the trade-off of computational time. Because BK-RRT requires a
nearest neighbor distance lookup over all existing nodes in the tree on every iteration,
the computational time grows quadratically as the tree size increases. Also note that,
unlike in non-dynamic motion planning, this nearest neighbor lookup process cannot always
be trivially sped up through the use of pre-sorting the tree in a data-structure (such as
KD-Trees), due to the potential non-linearity and assymmetry of the time-based distance
function that is required in dynamic environments (see Section 5.3.4). A related concern is
that the user might have too many proverbial knobs to tweak to adapt RRT for a particular
domain. Wise decisions need to be made about how to define the distance function and

57

which dimensions of the state space X are to constitute the sampling-space Y . Once
defined, the user needs to choose a well-working sampling-distribution.

Considering all these programmatic and computational challenges, it is questionable wheth-
er the advantages of RRT, such as its probabilistically uniform and rapid growth through
space, are actually a significant requirement for the tactically constrained domains that
we encounter. This is particularly true if none of the Tactic’s Skills even make use of the
random sample y, and thus in no way implement the traditional RRT “extend towards
y” operation. For many tactically constrained models, it might in fact make more sense
to abandon any attempts to model complicated distance functions that involve knowledge
about body motions and the state space, and instead focus on a fast and random growth
of the search tree itself.

To test this hypothesis, we introduce a less informed approach that has only the objective
to expand the search through our Tactics space in a fast and well-balanced fashion. We call
this algorithm Behavioral Kinodynamic Balanced Growth Trees (BK-BGT). Algorithm 8
shows the outer planning loop of BK-BGT which is nearly identical to BK-RRT (Algo-
rithm 4). The significant difference however, is the method of the selection of the node
x.

Algorithm 9 shows this new Balanced Growth Trees (BGT) node selection method. Where
BK-RRT required a sampling distribution and a nearest neighbor lookup, the only param-
eter of the BGT node selection is a single constant µ which represents the desired ratio
between average leaf depth and average tree branching factor.

At each call, the current ratio of the tree’s average leaf depth and average branching factor
is compared to µ. If the ratio is greater than µ, then the algorithm will attempt to increase
the tree’s average branching factor (and thus decrease the overall ratio) by growing its
next branch from a randomly chosen non-busy non-leaf node. If the current ratio is less or
equal to µ, then the algorithm will attempt to increase the tree’s average leaf depth (and
thus increase the overall ratio) by extending from a non-busy leaf node.

Effectively this means that a large value of µ leads the algorithm to expand further into the
future, but creates a “thinner” tree, whereas a smaller value of µ focuses on a more dense
expansion, but with a more limited average time horizon. Figure 5.4 shows the effects of
choosing different values of µ to a search tree’s depth and breadth.

58

Algorithm 8: BK-BGT
Input: Domain: d, Initial state: xinit, set of goal states: Xgoal, timestep: ∆t,

validation function: Validate, BGT ratio: µ, max iterations: z.
tree ← NewEmptyTree();
tree.AddNode(xinit);
busy ← false;
y ← ∅;
for iter ← 1 to z do

if busy = true then
x ← x�;

else
x ← SelectNodeBGT(tree, µ); // See Alg. 9

end
�x�, L� ← TacticsDrivenPropagate(x, y, ∆t, d); // See Alg. 6
busy ← x�.b∧;
if Validate(x�, L) then

tree.AddNode(x�);
tree.AddEdge(x, x�, a);
if x� ∈ Xgoal then

return TraceBack(x�, tree);
end

else
if busy = true then

RollBack(x, tree); // See Alg. 7
end
busy ← false;

end
end
return Failed;

Algorithm 9: SelectNodeBGT
Input: Tree: tree, BGT ratio: µ.

if
�

AverageLeafDepth(tree)
AverageBranchingFactor(tree)

�
> µ then

// Select a random non-busy non-leaf:
x ← RandomNonLeaf(∀x ∈ tree : x.b∧ = false);

else
// Select a random non-busy leaf:
x ← RandomLeaf(∀x ∈ tree : x.b∧ = false);

end
return x;

59

Figure 5.4: Examples of Balanced Growth Trees under different maximum tree sizes (hor-
izontal axis) and values of µ (vertical axis).

60

5.4.1 Computational Complexity of BK-BGT vs. BK-RRT

One major advantage of BK-BGT, when compared to BK-RRT, is its computational perfor-
mance. If carefully implemented, BK-BGT’s SelectNodeBGT function requires in the worst
case O(log |tree|) per call, where |tree| denotes the number of nodes in the tree. This run-
time is achieved by keeping running values of the average branching factors and node depths
as the tree grows, thus transforming the AverageLeafDepth and AverageBranchingFactor
functions in Algorithm 9 to each only consume constant time per call, independent of the
current tree size. Additionally, we can maintain running sets (using e.g. balanced binary
trees or a hash table) of what nodes are leaf nodes or non-leaf nodes, resulting in a worst
case of O(log |tree|) for the selection of a random non-busy node during SelectNodeBGT.
Consequently, the BK-BGT algorithm’s execution time scales with a worst case time of
O(iter log |tree|), where iter is the number of total iterations in the outer planning loop
(which can be greater than tree because invalid states are still counted as iterations, but do
not contribute to the tree size). In comparison, RRT runs in O(iter |tree|) time. Further-
more, from a real-world computational time perspective, each of BGT’s individual lookup
operations are relatively short and simple. BK-RRT’s distance function, on the other hand,
can take excessive amounts of real-world computational time (depending on the domain),
worsening the effects of its approximately quadratic runtime. In Section 6.2, we verify
this claim experimentally by comparing observed node selection times of BK-RRT and
BK-BGT.

5.4.2 Lack of RRT’s Random Sample

Although the BK-BGT outer planning loop (see Algorithm 8) is very similar to BK-RRT
(Algorithm 4), there remains one subtle, but important, difference. Unlike BK-RRT’s node
selection function, BK-BGT’s SelectNodeBGT does not internally generate nor return a
random sample y, because it would serve no purpose during its node selection process.
Therefore, the BK-BGT algorithm defines y = ∅ which is then passed normally into the
TacticsDrivenPropagate function. In other words, when using BK-BGT, Skills and
Tactics are not passed an externally generated sample that they could be used to “extend
towards” as is the case in BK-RRT. Consequently, Skills and Tactics are expected to
generate useful actions, even without the presence of an externally generated sample y.

61

5.5 Algorithm Properties and Variations

Now that we have defined BK-RRT and BK-BGT, we discuss their planning behavior in
terms of optimality and completeness. Furthermore, we present several possible variations
to the BK-RRT and BK-BGT algorithms and discuss their trade-offs.

5.5.1 Completeness

Completeness is the property that a planner is guaranteed to find a solution if it exists or
that it will return failure otherwise, in either case within some finite amount of time [58].
Our presented BK-RRT and BK-BGT planning approaches work by randomly sampling
specific actions from an underlying continuous action set. Therefore, it is infeasible for the
planner to explore every possible action sequence in a finite amount of time. Additionally,
the presented planners have no direct means of verifying that no solution exists for a
particular domain. Consequently, as is typically the case with sampling-based planners,
neither BK-RRT nor BK-BGT are strictly complete.

A related property, that is relevant for sampling based planners, is probabilistic complete-
ness. A planner is probabilistically complete if the probability that the planner finds a
solution (if a solution exists) goes to 1 as planning time goes to infinity [58]. Traditional
non-dynamic RRT has been shown to be probabilistically complete [47]. In our dynamic
case, this probabilistic completeness property hinges on whether RRT’s nearest neighbor
distance function and the extend operator are able to maintain their traditional soundness
properties of continually “making progress”, namely that a succeeding node x� grown from
a node x toward sample y will automatically become the new closest node to the sample y

among all nodes in the tree. Unlike in traditional RRT, the physics-based dynamic plan-
ning environment of BK-RRT typically requires custom definitions of the sampling space
Y , the distance function, and the “extend toward y” operator, all depending strongly on
the type of domain and its bodies. Therefore, we cannot make any general claims about
BK-RRT’s probabilistic completeness.

Unlike BK-RRT however, BK-BGT does not rely on any sampling-based nearest neighbor
lookups, distance functions, or extend operators. In fact, assuming an unconstrained Tac-
tics model (i.e., a single Skill that uniformly selects a random action from A), BK-BGT
would, in the infinite time limit, converge to cover the entire search space, thus making
it probabilistically complete. The reasoning behind this is quite intuitive: over the entire
runtime of BK-BGT, the BGT node selection will continually alternate between expand-
ing from a random leaf or a random non-leaf in the tree, thus ensuring that during the
entire course of planning, the search tree can be extended from any existing node with a

62

non-zero probability. Each such expansion will select any random action from A with a
non-zero probability, thus overall ensuring discoverability of all possible action sequences
with non-zero probability, leading to an exhaustive, but BGT-balanced, brute force search
over the entire continuous action space A.

Of course, such an unconstrained brute force search is computationally infeasible in most
finite-time applications. In real-world use, BK-BGT’s set of selectable actions at each
iteration is constrained by its particular Skills and Tactics model. Solutions that require
action sequences not generatable by the provided Skills and Tactics can obviously never
be found. Therefore, we can only claim probabilistic completeness for BK-BGT within the
constraints of its Skills and Tactics model.

5.5.2 Optimality and Multi-Solution Planning

Optimality is the property that the returned solution of a planning algorithm is also guar-
anteed to be the best solution. In non-dynamic planning, the definition for best typically
means that the shortest path leading to the goal state is returned. However, in our dynamic
environments, it makes more sense to reason about the shortest trajectory in terms of time,
rather than in terms of distance. Depending on the domain, other metrics for optimality
might be desirable, such as the solution with the least curvature, or the solution with the
least multi-body interactions.

No matter what definition we choose for optimality, neither BK-RRT nor BK-BGT can
generally guarantee that their generated solutions are optimal. This is due to the fact
that either algorithm will return the first solution it encounters, and that for any solution
encountered, there is no definite guarantee that there does not exist a better one. This
non-optimality is a common property for sampling-based planners.

A common solution to this non-optimality property of sampling-based planning, is to let
the algorithm keep planning even after a valid goal state has been found, thus potentially
generating additional valid, but different, solutions. Any of the previously described op-
timality metrics could then be used to automatically compare the multiple solutions and
return the best one. How long to plan for and how many solutions to compare are of course
user-defined settings and depend on the circumstances of the application. Although such
an automated solution selection process is likely desirable in most applications, including
robotics, there are some domains where a manual selection might be preferable. For exam-
ple, in computer animation applications, it might be desirable to let a computer animator
manually inspect the multiple solutions found, and select the visually most appealing one (a
metric that is hard to quantify computationally). In the graphics community, this process
has also been referred to as “many-worlds browsing” [85].

63

5.5.3 Hybrid Approaches

The main difference between BK-RRT and BK-BGT is the method of node selection. It
is therefore important to point out the possibility of “hybrid” planning approaches which
combine RRT and BGT search methods rather than choosing one of the two extremes. One
simple way of implementing such a hybrid planner is to non-deterministically select one
of the two node selection methods during each planning iteration. Note, that by choosing
such a hybrid implementation, one would also have to deal with the configuration of both
methods. In other words, one of the main appeals of BGT, namely not having to define
sampling spaces, sampling distributions, and distance functions for a particular domain,
disappears. Nevertheless, it might make sense for some domains to pursue such a hybrid
approach, as it could increase the tree expansion rate of the overall algorithm due to the
faster BGT approach, while still providing some geometrically structured coverage of the
work-space, due to RRT. We analyze the performance of such a hybrid approach as part
of our results in Section 6.2.

5.6 Chapter Summary

In this chapter, we have introduced two concrete Skills and Tactics-driven planning al-
gorithms, namely Behavioral Kinodynamic Rapidly-Exploring Random Trees (BK-RRT)
and Behavioral Kinodynamic Balanced Growth Trees (BK-BGT). We have introduced the
busy flag and the RollBack function as key features of our algorithms and we have shown
how to combine BK-RRT and BK-BGT into a hybrid planning approach.

In the following chapter, we evaluate and compare these algorithms experimentally in
several simulated domains.

64

Chapter 6

Empirical Evaluation in Simulated
Domains

In Chapter 5 we have introduced two concrete Skills and Tactics-driven randomized physics-
based planning algorithms, namely Behavioral Kinodynamic Rapidly-Exploring Random
Trees (BK-RRT) and Behavioral Kinodynamic Balanced Growth Trees (BK-BGT). In this
chapter we evaluate these algorithms empirically in several challenging simulated domains
and provide a detailed analysis of their performance characteristics.

6.1 Implementation and Visual Results

We tested BK-RRT, BK-BGT, and hybrid approaches in multiple simulated domains.
We implemented the algorithms in C++, using NVIDIA PhysX Version 2.8.1 [24] as the
underlying physics engine. All random sampling functions were implemented to use the
Mersenne-Twister pseudo-random number generator [66]. All the results were computed
using a single desktop computer with an Intel Core processor.

In this section, we first present the individual domain configurations, including their Skills
and Tactics models, interleaved with visual example results for each domain. We then
show and discuss our planners’ quantitative performance for these domains in Section 6.2.

65

6.1.1 Navigation Domain

The navigation domain is a traditional trajectory planning problem and requires a robot
rigid body to reach a target area by navigating through a U-shaped environment (see
Figure 6.1).

For this domain, the Tactics model used with our BK-RRT algorithm consists of only
a single Skill (Figure 6.2 (a)), effectively implementing the traditional, standard RRT
algorithm [57]. The internal RRT sampling distribution over the sampling space Y from
which y is sampled, is configured to provide either a random location sampled from the
domain (with probability p), or a random location from the goal area (with probability
1-p) on each iteration. The Skill will then apply a control action, accelerating the robot
toward the sample y, using an internal implementation similar to the one presented in
Algorithm 2 of Section 4.2. This effectively leads RRT to expand its branches throughout
the domain, while also being biased to grow towards the goal location. Figure 6.1 (a) shows
this typical RRT growth (with p = 0.7).

(a) BK-RRT Version. (b) BK-BGT Version.

Figure 6.1: Example search trees from the navigation domain. The initial state is in the
center of the “start” area on the top right, the goal is to reach the shaded area on the
bottom right.

Recall, that for BK-BGT, there is no global sampling distribution from which a sample y

is generated. Instead, we implement a functionally identical sampling behavior explicitly
through a Tactic with two Skills (Figure 6.2 (b)) that accelerate the robot towards a random
location from the domain, or towards the goal location respectively. However, unlike RRT,

66

(a) BK-RRT Version.

drive

toward

random

loc.

p

drive

toward

goal

1-p

p

1-p

(b) BK-BGT Version.

Figure 6.2: Tactics used in the navigation domain.

wait

sampled

time

drive to

sample
1.00 kick to

sample
1.00

done
1.00

Figure 6.3: The Tactic used in the simulated robot minigolf domain.

Figure 6.4: The simulated robot minigolf domain. The left image shows the initial state.
The controlled robot is the dark cylinder on the left. The bar-shaped obstacle at the center
of the course is rotating at constant velocity and thus represents a predictable, foreign-
controlled body. The goal is to deliver the ball into the U-shaped area at the bottom right.
The center image shows the planner’s search tree with all the red nodes representing ball
positions. The right image shows a legal solution found by the planner: the robot body
waits an appropriate amount of time and then accurately manipulates the ball to use the
rotating obstacle as a bounce-platform, leading it into the goal position.

67

BGT does not have the guarantee that the node from which it expands the tree is actually
anywhere close to the sample which it is accelerating the robot towards. Given that there
are no other Tactical constraints for this domain, this leads to a less efficient growth of
BGT, as can be seen in Figure 6.1 (b).

6.1.2 Simulated Robot Minigolf Domain

In the simulated robot minigolf domain (also see Section 3.1.3), a robot rigid body has
the objective of putting a ball through a course with a moving obstacle. Figure 6.3 shows
the Tactics model, allowing the robot body to wait for a sampling-based amount of time,
position itself at a sampling-based location, and then drive into and putt the ball towards a
sampling-based target with a sampling-based velocity. Note that the “wait sampled time”
Skill, plays a significant role because the obstacles in the domain are moving, thus making
the robot’s timing critically important. The internals of that particular Skill are given in
Appendix Section C.1. Figure 6.4 shows one particular solution from this domain.

6.1.3 Simulated Robot Soccer Domain

The simulated robot soccer domain (also see Section 3.1.2) significantly enhances the con-
cept of goal-driven manipulation of a passive body, and aims to demonstrate the unique
tactical planning abilities of our planner. This domain models a single attacker vs. multi-
ple opponents soccer situation, containing three dynamic adversary rigid bodies that are
running deterministic adversarial Tactics to block the ball from the goal. Note that, for
this simulated version of robot soccer, we assume perfect predictability for the opponents’
actions. We will discuss how to plan without this assumption when we present a real-world
implementation of the robot soccer domain in Chapter 7. Nevertheless, from a planning
perspective, the simulated soccer domain represents a very difficult problem. Not only
does the actively controlled robot need to navigate around moving bodies, but it also
needs to exert accurate control on the ball to achieve the scoring of a goal in an adversarial
environment.

To achieve this task, the controlled body features a rather complex tactical model as shown
in Figure 6.5. This Tactic allows a robot-body to drive toward the ball, drive with the ball
toward a sampling-based location (“dribble”), flat kick or upwards kick the ball towards a
sampling-based target near the robot (“minikick” and “minichip”), or towards a sampling-
based point in the goal (“kick”). Appendix Section C.2 shows the details of the “Sampled
Kick” Skill that is used with slightly different parameters for both the “sampled kick” and
“minikick” of this Tactics model. This domain generated various interesting solutions, one

68

drive to
ball

sampled
dribble

1.00 if
have ball

1.00 if
lost ball

0.70

sampled
minikick

0.10

sampled
minichip

0.15

sampled
kick

0.05

1.00

1.00

wait1.00

Figure 6.5: The Tactic used in the simulated robot soccer domain.

Figure 6.6: An example of the simulated robot soccer domain. (a) The initial configuration
of the bodies. The controllable robot-body is initially at the top right, and the planning goal
is to deliver the ball to the goal while avoiding the defenders and goalie robot bodies; (b)-
(d) Snapshots of one solution found by the planner; (e) The entire search tree representing
the positions of all rigid bodies, including ball (yellow nodes), controlled body (green
nodes), and defenders (other colors).

69

of which is shown in Figure 6.6.

6.1.4 Pool Table Domain

Figure 6.7: The chained Skills and Tactics used for the pool table domain. The cue ball
uses the Tactic consisting of the left three Skills (red), whereas the intermediate ball uses
the remaining four Skills on the right (green).

Figure 6.8: A solution in the pool table domain. Given the initial state in the left image,
the planner finds several acceptable solutions (center image) and automatically selects one
for execution (right image).

The pool table domain (also see Section 3.2.2) demonstrates the ability to chain multiple
Tactics, as shown in Figure 6.7. The goal of the domain (see Figure 6.8) is to let the
cue ball (A) hit the yellow ball (C) which will then roll into the blue ball (D), delivering
it into its pocket, all without letting the cue ball collide with any of the three obstacle
balls (B). Note, that in this domain, the pool balls are treated as active bodies, but with
limited actuation abilities. While the initial force is applied directly to the cue ball, the
following balls obtain their force passed on through the collision. The balls’ Tactics, and
in particular the “sampled spin” Skill is able to slightly perturb their natural path by
applying a sampling-based spin towards the target. The ability of the planner to sample
from different degrees of these perturbations (thanks to the sampling-based Skill) allows
the automatic selection of a solution which will not collide with any striped balls, and yet
requires a minimum of perturbation from their natural passive behavior.

70

Figure 6.9: The Tactic used for the many-dice domain. Each die carries its own instance
of this Tactic.

Figure 6.10: A solution sequence of the many-dice domain. 400 randomly initialized dice
fall towards a grid of spherical obstacles (top row, left to right). After bouncing through
the grid, they fall into a bucket where they come to a rest (bottom row, left to right) and
form the Eurographics (EG) logo.

71

6.1.5 Many-Dice Domain

The many-dice domain (also see Section 3.2.1) represents a traditional computer animation
task and aims to demonstrate the ability of our planner to run several hundred Tactical
instances concurrently. The objective in this domain is to control the fall of 400 dice,
each initialized to a random position. While their fall and collisions are supposed to look
physically plausible, they also have the target objective of forming the Eurographics logo.
This is achieved by providing each die with a separate instance of the Tactic shown in Figure
6.9. This domain is challenging because although we are able to actuate the individual dice,
we are interested in achieving the illusion of a natural looking free-fall. At the same time,
the dice still have to passively react to various collisions with spherical objects and with
other dice. In order to achieve this goal, the Tactical model carries multiple Skills, each
representing a different state of the fall based on a die’s current position and velocity. These
Skills are again sampling-based, but probabilistically biased to create motions towards the
die’s final target position (which is determined at initialization). Appendix Section C.3
shows the internal details of the “biased fall down” Skill. Figure 6.10 shows a visual result
sequence of this domain.

6.2 Performance Analysis

We tested the BK-RRT and BK-BGT algorithm on all of the simulated domains introduced
above. Table 6.1 shows average real world clock planning times, tree sizes, planning loop
iterations (i.e., final value of iterin the BK-RRT and BK-BGT algorithms), and success
rates. We used a planning timestep ∆t of 1/60th of a second. BK-BGT µ values were
selected experimentally, to be explained in more detail in Section 6.2.1. For the navigation,
robot minigolf, robot soccer, and pool table domains, the planner’s search was limited to
25000 nodes or 50000 iterations (whichever occurred first). A success in these domains was
counted if the planner reached a goal state within these search limits, a failure otherwise.
For the many-dice domain, we did not define a boolean goal state. Instead, the planner
was setup to search until a maximum number of 15000 nodes was reached and then return
the best solution, using a goal evaluator metric. This metric was defined as the sum of
square distances of all dice to their desired goal positions.

In the traditional navigation domain, BK-RRT clearly dominates, requiring less planning
time, nodes, and iterations than BK-BGT, and furthermore delivering valid solutions for
all of the 100 trials (vs. BK-BGT’s 53%). These results clearly emphasize the advantage
of a RRT-based search scheme in tactically unconstrained motion planning environments
and go hand in hand with the observed visual growth of the search trees in Figure 6.1.

72

Navigation Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 100 n/a 0.18 ± 0.08 1086 ± 369 1733 ± 686 100%
BK-BGT 100 1000 3.14 ± 1.35 13713 ± 5774 36873 ± 15908 53%

Robot Minigolf Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 100 n/a 4.28 ± 5.20 16898 ± 10606 16898 ± 10606 41%
BK-BGT 100 10 0.33 ± 0.38 3484 ± 4159 3485 ± 4158 99%

Robot Soccer Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 100 n/a 5.34 ± 2.02 21757 ± 7434 22484 ± 8152 20%
BK-BGT 100 100 0.55 ± 0.47 1723 ± 1306 2338 ± 1966 100%

Pool Table Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 100 n/a 1.76 ± 0.64 3887 ± 1670 15033 ± 5510 100%
BK-BGT 100 1000 0.21 ± 0.19 1284 ± 1510 1653 ± 1596 100%

Many-Dice Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 6 n/a 1278.61 ± 7.03 15000 ± 0† 15000 ± 0† 100%‡

BK-BGT 6 1000 304.58 ± 10.08 15000 ± 0† 15000 ± 0† 100%‡

† Many-dice used a fixed preset tree size.
‡ Many-dice did not have a boolean goal state; instead the solution with the smallest

overall distance to the target-configuration was selected from the full tree.

Table 6.1: Performance comparison of BK-RRT and BK-BGT across multiple domains.
N is the number of trials. The ± symbol indicates Standard Deviation. For all domains
except many-dice, each planning trial was limited to 25000 nodes or 50000 iterations
(whichever occurred first).

73

In the robot minigolf, robot soccer, and pool table domains, however, BK-BGT consistently
outperforms BK-RRT, requiring less planning time, nodes, and iterations. In fact, in the
robot minigolf and robot soccer domains, BK-RRT frequently fails to deliver any valid
solution within the allotted planning tree size. These results support our hypothesis that
there is little to none benefit of RRT’s node selection scheme in domains that are tactically
constrained and that do not make use of RRT’s random sample y. Within these domains,
BK-BGT’s fast and well-balanced node selection approach allows an extremely efficient
search through the action space that is defined by the Skills and Tactics. Finally, for
the many-dice domain, BK-RRT requires an excessive amount of time, due to the heavy
computations by the RRT nearest neighbor distance function for a 400 body dynamic
environment.

An additional disadvantage of BK-RRT, when compared to BK-BGT, is its computational
complexity that grows rapidly with larger tree sizes. Figure 6.11 shows a timing analysis of
the BK-RRT algorithm, breaking down the total time spent during search into RRT node
selection, Skills and Tactics execution, and physics engine simulations. As expected, RRT’s
node selection quickly becomes the bottleneck for larger search trees, due to its quadratic
scalability. Figure 6.12 shows the direct comparison of the time consumed by BK-RRT’s
SelectNodeRRT vs. BK-BGT’s SelectNodeBGT functions over growing tree sizes. These
results validate our computational complexity discussions from Section 5.4.1.

Figure 6.11: BK-RRT analysis of accumu-
lated time spent in node selection, physics,
and tactics computations respectively over
increasing tree sizes.

Figure 6.12: Comparison of the computa-
tional runtime of the BK-RRT and BK-
BGT node selection algorithms over in-
creasing search tree sizes.

74

6.2.1 Analysis of BK-BGT’s µ Parameter

As we have discussed in Section 5.4, BK-BGT’s tree growth is controlled by the value
of the µ parameter. In this section, we investigate how the selection of the µ parameter
affects planning performance in our simulated domains. Figures 6.13(a) and 6.13(b) show
the impact of different µ values on mean planning time and success rate in the navigation,
robot minigolf, robot soccer, and pool table domains. Across all the domains, choosing
an inappropriately small µ value leads to significantly reduced success rates. This is to be
expected, as BK-BGT with a small µ value will focus its search on breadth, not achieving
sufficient depth to encounter a goal state in the allotted number of planning iterations.
Interestingly, especially in the robot minigolf domain, choosing a large value of µ can also
led to diminished performance, because the planner focuses its search on a deep exploration
of the state space, not covering as many near term alternatives. As mentioned previously,
the many-dice domain does not use a boolean goal state, but instead tries to find the best
state within a search of limited tree size. Figure 6.13(c) shows the effects of different µ

values on the quality of solutions. Based on these results, we have chosen the µ values for
our other performance experiments.

6.2.2 Analysis of Hybrid Approaches

In Section 5.5.3, we have introduced the concept of a hybrid planning approach that ran-
domly selects between an RRT-based and BGT-based node selection at each planning iter-
ation. We implemented support for such a hybrid selection scheme in our planner, which is
able to select the BGT node selection behavior with a user-definable probability p and the
BK-RRT behavior with the corresponding probability 1 − p. In Figures 6.13(d), 6.13(e),
and 6.13(f) we present the impact of varying this probability on planning time, tree size,
and success rate. Note that, for the values of p = 0 and p = 1, the results correspond with
the pure BK-RRT and BK-BGT results shown in Table 6.1.

For most of the domains, the transition between the two pure planning methods behaves
monotonically. The graphs suggest that for each of the domains, the best planning method
is in fact either pure BK-RRT (navigation domain) or pure BK-BGT (other domains).
However, one consistent advantage of the hybrid selection scheme is that it delivers better
results than the worst case extreme of wrongly choosing either of the pure BK-RRT or BK-
BGT planning methods for a particular domain. Therefore, in particular if the domain
might not be well known or no previous evaluation of BK-RRT vs. BK-BGT for the
domain exists, a hybrid approach should be considered a safe default, delivering acceptable
performance, without being fully exposed to certain unique weaknesses of either BK-RRT
or BK-BGT.

75

0

1

2

3

4

5

6

7

8

0.1 1 10 100 1000 10000

M
ea

n
P

la
n
n
in

g
T

im
e

(s
ec

on
d
s)

µ

Navigation Domain
Minigolf Domain

Soccer Domain
Pool Table Domain

(a) Impact of µ on BK-BGT planning time.

0

20

40

60

80

100

0.1 1 10 100 1000 10000

M
ea

n
R

at
e

of
S
u
cc

es
s

(%
)

µ

Navigation Domain
Minigolf Domain

Soccer Domain
Pool Table Domain

(b) Impact of µ on BK-BGT planner success rate.

0

50000

100000

150000

200000

250000

300000

350000

0.1 1 10 100 1000 10000

B
e
st

G
o
a
l
E

v
a
lu

a
to

r

µ

(c) Impact of µ on result quality in the many-dice
domain (lower goal evaluator values are better).

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

M
ea

n
P

la
n
n
in

g
T

im
e

(s
ec

on
d
s)

Hybrid Algorithm Selection (0: pure BK-RRT; 1: pure BK-BGT)

Navigation Domain
Minigolf Domain

Soccer Domain
Pool Table Domain

(d) Impact of algorithm selection on planning time.

0

5000

10000

15000

20000

25000

0 0.2 0.4 0.6 0.8 1

M
ea

n
T
re

e
S
iz

e

Hybrid Algorithm Selection (0: pure BK-RRT; 1: pure BK-BGT)

Navigation Domain
Minigolf Domain

Soccer Domain
Pool Table Domain

(e) Impact of algorithm selection on tree size.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

M
ea

n
R

at
e

of
S
u
cc

es
s

(%
)

Hybrid Algorithm Selection (0: pure BK-RRT; 1: pure BK-BGT)

Navigation Domain
Minigolf Domain

Soccer Domain
Pool Table Domain

(f) Impact of algorithm selection on success rate.

Figure 6.13: Performance analysis of BK-RRT and BK-BGT.

76

6.2.3 Analysis of the RollBack Function

We have introduced the RollBack function (see Section 5.3.2) as a method for removing
stale nodes that are generated when the busy flag triggers a greedy branch expansion
that leads into an invalid state. Table 6.2 compares the performance of BK-BGT with and
without the RollBack function enabled, across the navigation, robot minigolf, robot soccer,
and pool table domains. In all of the domains, the RollBack function is able to significantly
reduce the resulting tree sizes. Only in the navigation domain does the RollBack function
increase planning time, because by removing stale nodes, it allows the planner to continue
its search longer before hitting the 25000 node limit. Consequently, thanks to the RollBack
function, the navigation domain’s success rate is also increased by 39 percentage points. In
all other domains, planning times are in fact decreased, most likely because reduced tree
sizes also lead to faster node selection during each iteration.

Time (s) Nodes Success
Domain NRB RB %∆ NRB RB %∆ NRB RB ∆
Navigation 2.04 3.14 53.9% 23556 13713 −41.8% 14% 53% 39pp
Minigolf 0.33 0.33 0.0% 3847 3484 −9.4% 100% 99% -1pp
Soccer 0.63 0.55 −12.7% 2683 1723 −35.8% 100% 100% 0pp
Pool Table 0.22 0.21 −4.5% 1654 1284 −22.4% 100% 100% 0pp

Table 6.2: BK-BGT performance comparison without the RollBack function (NRB) and
with the RollBack function (RB), using the same values for µ and N as in Table 6.1.

6.2.4 Tactically Unconstrained Multi-Skill Planning

The Tactics used for the experimental domains (e.g., Figures 6.3 and 6.5) rely on manually
defined probabilities and events to constrain the possible transition sequences between indi-
vidual Skills. An interesting question is whether or not such manual transition constraints
are actually necessary for efficient planning, or whether it is possible to completely rely on
the planner to automatically choose between any possible Skill transitions to automatically
find valid solutions. Figures 6.14 and 6.15 show versions of the Soccer and Minigolf Tactics
which do not impose any bias or constraints on the possible transition sequences between
Skills, but instead allows the planner to transition between any two Skills in the Tactic
with equal probability.

The potential advantage of such an unconstrained Tactics model is that no human domain
knowledge is required to define the transition probabilities between Skills. Instead, the
Tactic is defined solely by its set of usable Skills, allowing the planning algorithm to freely
explore any possible sequence throughout this set of Skills. Of course, by not imposing

77

Figure 6.14: A Robot Minigolf
Tactic without Skill-transition
constraints.

Figure 6.15: A Robot Soccer Tactic without Skill-
transition constraints.

any constraints on the possible transitions between Skills, the planner’s search becomes
less informed, potentially having to cover a larger search space, which can result in longer
planning times. On the other hand, an unconstrained Tactic also opens up the possibility
of the planner finding novel solutions based on Skill transition sequences that cannot be
found with a manually constrained Tactic that prevents certain transition sequences.

Tactically Unconstrained Robot Minigolf Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 100 n/a 2.74 ± 0.98 22192 ± 7503 22488 ± 7597 13%
BK-BGT 100 10 2.48 ± 1.03 20854 ± 8892 20944 ± 8905 18%

Tactically Unconstrained Robot Soccer Domain
Algorithm N µ Time (s) Nodes Iterations Success
BK-RRT 100 n/a 5.95 ± 2.20 21416 ± 7461 22362 ± 7782 25%
BK-BGT 100 100 1.56 ± 1.33 4340 ± 3630 6113 ± 5265 100%

Table 6.3: Performance of tactically unconstrained planning.

We test the ability of our planner to find solutions with unconstrained Tactics in the
simulated robot minigolf and soccer domains. Our experimental setup is identical to the
one of Section 6.2, except that the planner now uses the unconstrained Tactics (Figures 6.14

78

and 6.15). Table 6.3 shows the planning performance results. Comparing these results with
the previous ones from the manually constrained Tactics (see Table 6.1), we make several
key observations.

Using an unconstrained Tactics model in the minigolf domain, the overall success rates
(given a limited planning tree size of 25000 nodes) are low, indicating that the planner
struggles to find transition sequences between Skills that lead to a valid solution. Interest-
ingly, a planning time comparison between the BK-RRT experiments of the unconstrained
and traditional minigolf domain suggests that the planner is actually exploring the space
more quickly (i.e., taking less time per node) when using the unconstrained Tactic. A
likely reason for this reduction in planning time is the fact that the unconstrained Tactic
allows the planner to more frequently select Skills that do not actually manipulate the ball
(such as the “wait” Skill), leading to less computational overhead by the Skill, and by the
physics engine. Visual results in the unconstrained minigolf domain support this evidence,
as the planner frequently selects sequences of Skill executions that perform nonsensical,
but computationally cheap sequences of actions (e.g., a robot positioning itself, waiting,
re-positioning itself, waiting more, without actually manipulating the ball).

In the robot soccer domain, overall success rates are relatively similar between uncon-
strained and constrained Tactics, with a slight advantage to the unconstrained Tactic,
suggesting that the planner is able to find valid sequences of Skills, even without manual
Skill transition constraints. However, the unconstrained search consumes slightly more
time on average than a manually constrained Tactic, suggesting that the manual definition
of transition probabilities has at least a small impact in increasing planning performance
for this domain.

The Lack of Behavioral Modeling Abilities of Unconstrained Tactics

Success rates and planning times are only a partial indicator for the planner’s overall
performance. Another metric to consider is the quality of the solutions generated by the
planner. Note, that the manually defined transition probabilities of a Tactic not only serve
the purpose of reducing planning times, but also simultaneously act as a tool to constrain
the resulting behavior sequences of the bodies, by preventing the search over transition
sequences that are undesired. For example, in the simulated robot soccer domain, the
Tactics model (see Figure 6.5) ensures that the robot will only enter a “dribble” Skill after
obtaining the ball, and that the robot will only “wait” after having kicked the ball. Without
such manual guidance, the planner can find action sequences that, despite reaching a valid
goal state, are highly non-optimal, and behaviorally odd. For example, when using the
unconstrained Tactic in the robot soccer domain (Figure 6.14), many solutions contain
sequences where the controlled robot would completely stop and wait for the ball to stop

79

rolling, while being in the midst of out-dribbling an opponent, because the planner was
allowed to select the “wait” Skill at any point in time. Although, the overall sequence still
eventually reaches the goal state, such a solution would be highly undesirable in a real
robot soccer environment.

In computer animation domains, the resulting visual behavior of the bodies is especially
important. The reason why Table 6.3 omits results in the pool table and many-dice domains
is because the planner is not able to generate plausible results for these domains without the
behavioral model provided by the manual Tactic. For example, in the many-dice domain,
the Tactics model (see Figure 6.9) is designed to achieve the illusion of physically plausible
movements of the dice, by only allowing forces and torques to be applied during certain
key-events, such as collisions. Removing these manually defined constraints, and letting
the planner freely choose when to transition between Skills, yields solutions that reach the
goal state through a visually implausible sequence of events, such as dice changing their
directions in mid-flight.

The pool table domain further demonstrates how crucial the manually defined Skill tran-
sitions in the Tactics model are for enforcing visually plausible solutions. The chained
Tactics model (see Figure 6.7) ensures that the intermediate ball (labeled C in Figure 6.8)
only is actuated toward the target after being hit by the cue ball (A). Without such manual
constraints, the planner could simply generate solutions where the intermediate ball starts
rolling even before being hit by the cue ball, which makes no sense given the rules of pool,
and therefore defies the animation’s goal of being visually plausible.

Conclusively, Tactics should be seen not only as a means for increasing planning efficiency
through informed decision making, but also as an important behavioral control tool for
constraining the visual sequences of the bodies.

6.2.5 Comparison to Traditional Skills and Tactics

In addition to analyzing our algorithm’s performance and showing visual solutions, we
are also interested in comparing the qualitative performance of our planning approach to
traditional reactive control methods as they are currently used in many robotics applica-
tions, such as robot soccer. To do so, we designed an experiment in the simulated soccer
environment where the controlled robot body and the soccer ball are placed at a randomly
initialized location. The controlled body’s goal is to deliver the soccer ball into the goal
box which is protected by two reactive defenders. We executed a traditional, deterministic
version of Skills and Tactics on this controlled body over multiple randomly initialized
trials. The deterministic control approach followed a simple reactive soccer policy of drib-
bling the ball and shooting it into the corner of the goal box with the widest opening. We

80

compared the success rate (resulting in a goal) of the deterministic execution with trials
generated with our BK-BGT approach and the Tactic shown in Figure 6.5, using different
maximum search tree sizes. Table 6.4 shows the results.

Method Tree Size Success
Deterministic Tactic n/a 30%
BK-BGT 1000 25%
BK-BGT 2500 40%
BK-BGT 5000 55%
BK-BGT 10000 60%

Table 6.4: Average success rate in a simulated “attacker vs. two defenders” scenario. Each
row was computed from 20 randomly initialized trials.

We can see that even with relatively small search tree sizes, we obtain a greater average
success rate than traditional methods. The reason for this outcome is that our physics-
based planning approach has the power to find many intricate, physics-based solutions
which the reactive version will never execute based on its fixed policy.

6.3 Chapter Summary

In this chapter, we have evaluated and compared the BK-RRT and BK-BGT algorithms
empirically in several simulated domains. We have presented concrete Tactics models,
visual results, and an exhaustive performance analysis. We have furthermore evaluated
a hybrid planning scheme, the impact of the RollBack function, and an unconstrained
Tactics approach.

In the following chapters, we discuss how our introduced planning approaches can be
extended to be efficiently applied in uncertain and real-time robot environments.

81

82

Chapter 7

Planning in Real-World Dynamic
Environments

In the previous chapters, we have introduced our Skills and Tactics-driven, physics-based
planning approaches and have demonstrated their performance in fully predictable, simu-
lated domains. In this chapter, we address the question of how to integrate these planning
algorithms into a real-world robot system. In particular, we introduce a real-world version
of the robot soccer domain as a testbed for demonstrating how to efficiently plan in an
adversarial and not fully predictable environment, requiring real-time decision making. We
present an anytime planning version of the BK-BGT algorithm that guarantees to deliver
partial planning solutions within a fixed finite amount of planning time. Finally, using the
same robot platform, we introduce a real-world version of the robot minigolf domain, and
demonstrate our planner’s execution timing capabilities in minigolf courses containing a
moving obstacle body.

7.1 Physics-Based Planning in the CMDragons Multi-
Robot System

We evaluate our physics-based planning algorithms using the Carnegie Mellon CMDragons
multi-robot system. The CMDragons platform is a collaborative effort and builds upon
the research and development contributions of its current and past team members [18,
87]. Special acknowledgment goes to James Bruce, for developing most of the current
CMDragons software framework, and Mike Licitra for developing the current CMDragons
robots.

83

Developed for its primary application of playing robot soccer in the RoboCup Small Size
League (SSL), the CMDragons system consists of seven homogeneous robots that are wire-
lessly controlled by an offboard computer. Robot and ball localization is provided by two
overhead-mounted cameras connected to the external computer, running the SSL-Vision
open source vision system (see Appendix B). Each robot (see Figure 7.1) is approximately
18cm in diameter and features a 4-wheeled omni-directional drive system allowing stable
driving speeds of over 2m/s. Each robot is equipped with two solenoid-based kicking de-
vices, allowing it to kick a golf ball at variable strength, flat at up to 15m/s, or at an upward
angle to a landing distance of about 4.5m. Each robot furthermore carries a rubber-coated
motorized “dribbler-bar” that is able to exert back-spin onto the golf ball for manipulation
purposes. The entire CMDragons system is explained extensively in Appendix A.

Figure 7.1: A CMDragons robot shown with and without its protective cover.

7.1.1 Physics-Based Planning as a Single-Robot Behavior

In order to evaluate our physics-based planning approaches using the CMDragons sys-
tem, we must first investigate how to best integrate our planner into the existing system
infrastructure. CMDragons features a modular software infrastructure (see Figure 7.2) con-
sisting of the four components Vision, Server, Soccer, and GUI, that are interconnected
via UDP networking. The Server module receives the raw positions and orientations of all
robots and the ball from the Vision module at 60Hz intervals. The server’s Tracker then
post-processes this raw data using a Kalman filter [89], providing a reasonably accurate

84

estimate of the positions and velocities of the robots and ball. These state estimates are
then provided to the Soccer module’s world model. The Soccer module implements all the
intelligent robot soccer decision making, including multi-robot strategy, and single-robot
control. The output of the Soccer module is a set of low level motion and actuation com-
mands that are sent back to the Server, which in turn communicates them to the robots
via the wireless radio.

Figure 7.2: The CMDragons system infrastructure, including the integration of physics-
based planning.

The Soccer component relies on the Skills, Tactics, and Plays (STP) [13] model to perform
its intelligent decision making. The multi-robot strategy layer uses a Playbook, consisting
of multiple Plays, each describing a set of individual “roles” to be distributed among
the available robots. Plays are selected based on a set of pre-conditions. For example, a
“defensive” play will only be assigned if its precondition is met that the opponent currently
has ball possession. If multiple plays are simultanously applicable, then one of them is
chosen randomly.

Once selected, a play will assign the individual single-robot behaviors to the robots. Tra-
ditionally, in the STP-model, these individual behaviors are implemented as reactive Skills
and Tactics that do not perform any physics-based planning. Each such reactive behav-
ior typically investigates the current state of the world, performs some analytic decision
making (also see Appendix A), optionally invokes a traditional navigation planner (that is
unaware of the tactical goals and not capable of planning multi-body interactions or ball
manipulations), and then returns a final robot motion command to the Server.

85

We integrate our physics-based planner within this single-robot component of the Soccer
module. In particular, we introduce a new type of Physics-Based Planning Behaviors
that can exist side-by-side to the traditional reactive behaviors already present in the
system. Internally, each physics-based planning behavior carries its own non-deterministic
Skills and Tactics model (see Chapter 4) and uses the BK-RRT/BK-BGT algorithm (see
Chapter 5) to search over possible action sequences sampled from that model. The physics-
based planning behavior then forwards the planner’s solution to the Server for execution,
which we explain in more detail in Section 7.2.3.

7.1.2 Modeling a CMDragons Robot

In order to perform physics-based planning in the CMDragons system environment, it is
crucial that the robot and its environment are accurately modeled. The CMDragons server
component is able to provide us with accurate estimates of the location, orientation, and
velocity of the robots and ball, thus providing us all the values to define the initial body
state parameters r̂1, . . . , r̂n that are part of xinit. However, we also need to define the fixed
rigid body parameters r̄1, . . . , r̄n that describe the bodies’ shapes, masses, and material
properties.

Figure 7.3: The rigid body models of a CMDragons robot and ball.

Figure 7.3 shows a rendering of the robot and ball rigid bodies. The CMDragons robot
rigid body is modeled using a convex triangulated mesh in combination with other convex
body primitives. The golf ball is approximated by using a simple sphere.

In order to deliver solutions that are executable in the real world, it is important that our
planner has an adequate model of the robot’s ball manipulation capabilities. A particularly

86

challenging issue is to correctly model the robots’ dribbler bar. One possible approach is
to model the dribbler implicitly, by defining an actively actuated, rotating, high-friction
rigid body cylinder that is connected to the robot rigid body by using a rotary joint. In
practice however, this approach led to simulation instability and failed to accurately model
the dribbling behavior, possibly due to the accumulation of joint-error and an insufficient
simulated torque transfer between the bar and the ball.

A more stable approach, is to model the dribbling action explicitly: whenever the ball
is in contact with the dribbler-bar, the currently active Skill can directly apply a torque
to the ball body. The exact dribbling behavior can be controlled by modifying the static
rigid body parameters that influence the ball’s dynamics. Figure 7.4 shows a diagram
of the dribbling model. Model parameters that strongly affect the ball’s behavior during
dribbling are the applied torque (torque), the friction in relation to the floor (fric2), and
the friction in relation to the dribbler bar (fric1). The dribbler bar uses an anisotropic
friction model, defining low friction against the vertical direction of the bar, thus roughly
simulating a freely spinning bar, and higher friction against the horizontal direction of the
bar, thus modeling the high friction of the bar’s rubber. In addition to friction, we can
control the ball’s coefficient of restitution against the dribbler (rest1) and the floor (rest2)
respectively. Naturally, rest1 will be a fairly low coefficient, thus roughly modeling the
dribbler’s softness and damping, whereas rest1 is likely to be a slightly higher coefficient
to model the bounciness of the carpet. Note that, given our formal domain model (see
Section 2.1.1), the interaction coefficient of two materials is actually computed as the mean
of the individual coefficients of the two materials involved. For example, the restitution
parameter between the ball and the floor, rest2, is computed as the mean of the two
individual restitution parameters of the ball and floor rigid bodies (i.e., r̄ball.φRest and
r̄floor.φRest). We manually tweaked all of these individual parameters of the dribbling model
to best resemble the robot’s actual behavior. In Chapter 8 we present automated parameter
optimization techniques that can be used to further improve physics model accuracy.

We model the robot’s driving motions in an explicit manner as well. Instead of modeling
the wheels as separate rigid bodies that impose friction on the floor, we model the robot
as having a flat, low friction base-plate. The Skills then directly apply forces and torques
to the robot body to simulate its motions. Kicks and chip-kicks are simulated in a similar
fashion, by exerting linear force impulses directly on the ball body.

7.2 Single-Shot vs. Anytime Planning

Another interesting question, when planning in real-world environments, is when and how
long to plan. Generally, we can distinguish between two fundamental paradigms: single-

87

Figure 7.4: The physical model of the dribbler bar.

shot planning and anytime planning. We explain each of these approaches and discuss
their trade-offs.

7.2.1 Single-Shot Planning

By single-shot planning, we refer to the traditional planning task of finding a complete
solution sequence from an initial state xinit to some goal state xgoal ∈ Xgoal. The key
requirement for single-shot planning is that there exists a clearly defined set of goal states
that can either be reached or not reached. Reaching a valid goal state would be considered a
success, anything else would be considered a failure. The BK-BGT and BK-RRT algorithm
versions as presented in Chapter 5 use this single-shot paradigm: the algorithms return
a solution sequence if a goal state is found, or failure if the maximum allowed number of
iterations is exceeded.

Of course, one problem of single-shot planning is that it is difficult to predict how long the
planner will need to find a solution that leads to a goal state. As we have seen in our results
in Section 6.2, planning times for successful single-shot solutions in our testing domains are
typically in the range of seconds and furthermore have a significant amount of deviation
between individual trials, mostly due to the random nature of our planning approaches.
Requiring such a long and not fully predictable amount of time to find a solution might be
an acceptable trade-off if the solutions do indeed lead to a valid goal state when executed,
and in particular if the domain does not change unpredictably during the course of planning.
Minigolf is a good example for such an environment: it is perfectly acceptable for the player
to require several seconds of planning time before executing its move. Because the golf-ball

88

and the environment do not move during planning (with a few predictable exceptions, as
we will discuss in Section 7.4), the resulting solutions remain executable, even if they are
delivered after a several second delay of planning time. However, there are many other
domains where this type of timing unpredictability of single-shot planning is simply not
acceptable.

7.2.2 Anytime Planning

Robot soccer is an example of a domain where single-shot planning does not suffice. Be-
cause the environment in robot soccer changes constantly and in not fully predictable
ways, it is extremely important that planning time is reduced to a minimum, so that a
solution delivered by the planner is still applicable to the state of the world at the time
of execution. Single-shot planning, however, cannot guarantee that a solution is found
within such a short and finite amount of time, and would report planning failure if aborted
prematurely. In a domain like robot soccer, such planning failures could have disastrous
consequences, letting the controlled robot be “dead in the water” without any actions to
execute. Instead of risking the occurrence of such complete planning failures, it would be
much preferable that the robot would always have some plan to execute, even if this plan
is only partial and does not reach a goal state from the set Xgoal.

Anytime planning has the ability to always provide a plan, even when interrupted before
an ultimate goal state from the set Xgoal is reached [27, 37]. Instead of returning a failure,
anytime planning returns the sequence of actions leading to the best state encountered
during the search so far. The notion of best is defined through the evaluation function
EvalState(x) that acts as a heuristic to quantify how “good” a particular state x is.
We define the output of EvalState to be a single continuous value, with smaller values
indicating “better” states. Thus, in an anytime planning scenario, the planner’s objective
should be to find actions that lead to states which minimize the output of EvalState.
The internal definition of EvalState has to be provided by the user and depends on the
domain and the particular goals.

Although the presented BK-RRT and BK-BGT algorithms in Chapter 5 were formulated in
a single-shot manner, we can easily transform either algorithm to their respective anytime
versions. Algorithm 10 shows BK-BGT-Anytime, the anytime version of standard BK-
BGT. This algorithm adds two new key variables to the outer planning loop:

• xbest : the best state found so far,

• bestEval : the evaluation value of xbest, i.e. the value returned by EvalState(xbest).

89

Algorithm 10: BK-BGT-Anytime
Input: Domain: d, Initial state: xinit, set of goal states: Xgoal, timestep: ∆t,

validation function: Validate, state evaluation function: EvalState, BGT
ratio: µ, max iterations: z.

tree ← NewEmptyTree();
tree.AddNode(xinit);
bestEval ←EvalState(xinit);
xbest ← xinit;
busy ← false;
y ← ∅;
iter ← 1;
while (PlanningInterrupted() = false) and (iter ≤ z) do

iter ← iter + 1;
if busy = true then

x ← x�;
else

x ← SelectNodeBGT(tree, µ); // See Sec. 5.4
end
�x�, L� ← TacticsDrivenPropagate(x, y, ∆t, d); // See Sec. 5.3
busy ← x�.b∧;
if Validate(x�, L) then

tmpEval ←EvalState(x�);
if tmpEval < bestEval then

bestEval ← tmpEval;
xbest ← x�;

end
tree.AddNode(x�);
tree.AddEdge(x, x�, a);
if x� ∈ Xgoal then

return TraceBack(x�, tree);
end

else
busy ← false;

end
end
return TraceBack(xbest, tree);

90

The core of the algorithm is relatively similar to BK-BGT. One key modification, however,
is the exit condition of the planning loop. Now, instead of only aborting after a prede-
termined number of iterations z, the planner will abort at any iteration if the boolean
interrupt function PlanningInterrupted returns true. If aborted, the planner will return
the sequence of actions that led to the state xbest. Typically, the current output value of
the interrupt function should be controlled by the software framework that is external to
the actual planning algorithm and that can therefore request when the planner should stop
planning and deliver its current best solution. During planning, the algorithm ensures that
xbest always reflects the state with the lowest output of the evaluation function EvalState
found so far, by comparing the evaluation of any newly validated and added state x� to
the current value of bestEval, and updating xbest with x� if necessary.

Note that, for simplicity, we have left out the RollBack function (see Section 5.3.2) from
the anytime BK-BGT algorithm, because a state rollback could include a deletion of the
current state xbest, and therefore would also require a rollback of the xbest value to its
original state at the point before the greedy state expansion caused by the busy flag took
place (see 5.3.1). Also note, that BK-RRT can be adapted to its anytime version using
exactly the same modifications as shown for BK-BGT.

The beauty of the anytime algorithm is that with increasing planning times, the quality
of xbest is likely to increase, as better nodes are found. The trade-off however, is that the
anytime algorithm requires the definition of a well-suited evaluation function that is able to
accurately express the notion of a state’s quality, given the goals of the domain. Defining
such a continuous evaluation can be more difficult than only defining a set of ultimate goal
states as is the case in single-shot planning.

7.2.3 Planning and Execution in a Closed-Loop System

Like many real-world robot systems, the CMDragons system uses a fixed-interval, closed-
loop control approach consisting of sensing, thinking, and execution. The term thinking in
this case may describe any type of autonomous decision making, including its traditional
reactive behaviors as well as its fully featured physics-based planning behaviors with Skills
and Tactics. We refer to each iteration of this control loop as a frame. The CMDragons
system loop runs in sync with the SSL-Vision system at a 60Hz frame-rate, providing
approximately 16.7 milliseconds of computational thinking time per frame.

91

Planner Invocation Strategies

An important question is when exactly to invoke the planner in such a closed-loop system.
Figure 7.5 shows an example of possible periods for planning and plan execution, using an
anytime planning strategy. Here, the actual planning task is always performed within a
single frame period, allowing the start of plan execution already within the same frame that
the planning was performed, thus minimizing planning latency. Note, that in this particular
example, the produced plans are executed for 4 frames, before replanning. This replanning
interval can be adjusted depending on the uncertainty of the domain. Generally, choosing a
shorter replanning interval will yield more robustness against uncertainty. However, shorter
replanning intervals can also introduce a certain amount of oscillations in the controlled
robot’s motion, because the randomized nature of the planner might deliver rapidly varying
plans between replan iterations. Also, note that, due to the nature of anytime planning,
it is not guaranteed that the resulting plans are always sufficiently long to enforce a fixed
replanning interval. Under certain conditions, the solution delivered by the planner might
only contain a few frames, thus requiring replanning as soon as the previous plan is fully
executed.

Figure 7.5: Sequential anytime replanning, using a single-frame planning duration and a
4-frame replanning interval (t indicates the frame number).

Execution Strategies

When implementing a physics-based planner within a closed-loop system (such as the CM-
Dragons platform), a remaining question is how to actually execute the solutions delivered
by the planner. Recall, that the planner delivers a sequence of states interleaved with
actions of the form �xinit, a1, x2, a2, x3, . . . , xgoal�. Generally, there are two fundamental
alternatives:

• Action-Driven (Open-Loop) Plan Execution
Action-driven plan execution uses the individual actions (a1, a2, . . .) of the solution

92

sequence directly for execution on the robot. The states that were returned as part
of the solution sequence (xinit, x2, . . . , xgoal) are ignored for execution purposes.

Recall, that an individual body’s sub-action â ∈ a consists of a �force, torque� pair.
When being executed on a physical robot, the actions are typically first converted
into accelerations (e.g., acceleration = force/mass) and then directly applied on the
robot’s hardware.

A problem with this action-driven execution scheme is that it represents an open-loop
control, where the sequence of actions is executed without monitoring whether the
resulting sequence of real-world robot states corresponds with the sequence of states
that the planner predicted. Such a control scheme can be acceptable if replanning
occurs very frequently and if the physical planning model of the robot’s actuations
matches its real-world actions very closely. However, in most real-world scenarios, a
solely action-driven execution scheme can lead to a quickly accumulating execution
error and, ultimately, to unsuccessful executions.

• State-Driven (Closed-Loop) Plan Execution
State-driven plan execution attempts to prevent the problem of execution error ac-
cumulation that can occur with action-driven plan execution. Instead of blindly
executing the actions of the solution sequence, state-driven execution attempts to
re-create the same sequence of states that were provided by the planner’s solution
sequence (i.e., xinit, x2, . . . , xgoal). To do so, the actual actions to be executed by the
robot are generated on the fly during execution, by repeatedly invoking a controller
that takes as an input the robot’s current observed real-world state and the desired
state from the solution sequence, i.e.:

ârobot ← Controller(ObserveRealRobotState(), (xi.r̂robot)).

The above controller function is called during each frame i of the solution sequence.
The internal mechanism of the controller depends on the particular types of actua-
tors of the robot, but typical examples include PD-controllers, or in the case of the
CMDragons system, a trapezoidal motion controller (also see Section 5.3.4). The key
however is, that such motion controllers typically require only a minimum amount
of computation and do not need to perform any higher level planning, because the
difference between the desired solution state (as delivered by the actual planner) and
the observed real-world states are never allowed to significantly deviate and therefore
can be resolved with simple motion control techniques.

The great advantage of such closed-loop control is that it allows execution of very long
sequences without an increasing accumulation of execution error by the controlled
body. Nevertheless, it is important to point out that even a closed-loop controller
cannot directly influence the real-world execution of passive or foreign-controlled

93

bodies. Therefore, the likelihood of execution success in environments with unpre-
dictable non-controlled bodies is still greatly determined by the plan length, often
leaving frequent replanning as the only solution.

7.3 Robot Soccer

We test our planning approaches in the Small Size League robot soccer domain. The robot
soccer domain has many interesting challenges, but one particularly difficult problem from
a motion planning perspective, is ball dribbling. Dribbling is the task of purposefully
manipulating the ball over sustained periods of time, without loosing control over it. Pur-
poseful means that the dribbling task should make some progress toward the overall goals
of the game. In robot soccer, this generally means several things:

• maintain control of the ball,

• prevent opponent robots from gaining possession of the ball,

• reach a state where the robot has a clear shot towards the opponent’s goal box (or
towards a teammate).

Performing this dribbling task is very difficult for several reasons. As discussed elaborately
in Section 2.4, solving manipulation tasks involving passive bodies is a challenging planning
problem to begin with. Additionally, in robot soccer, the controlled robot body has to deal
with opponent bodies that are actively trying to stop it from succeeding and that are
never fully predictable in their actions. Finally, the Small Size League is extremely fast
paced. Actions have to be computed with a minimum amount of latency in order to still
be applicable at the time of execution.

Traditional control techniques used in robot soccer, such as deterministic reactive con-
trollers without physical modeling or planning capabilities, fail to solve the dribbling task.
The core reason for this is that it is not clear how to manually define a programmatic con-
trol policy that produces useful actions under all of the possible continuous input states in
the dribbling problem. The best action for the robot to take may depend not only on the
precise combination of the robot, ball, and opponent positions and orientations, but also
on each of their current velocities, and furthermore on the intricate physical interactions
between the robot and ball. The de facto result is that none of the current teams in the
RoboCup Small Size League are able to purposefully and robustly dribble the ball in the
presence of opponents.

94

In order to solve the dribbling problem, we take a fundamentally different approach from
traditional reactive techniques, and instead use physics-based, Tactics-driven anytime plan-
ning to implement the dribbling behavior. We introduce a new single-robot behavior called
PhysicsDribble to the CMDragons system. This PhysicsDribble behavior is invoked by the
CMDragons system whenever one of our robots has obtained possession of the ball, but
does not yet have a clear shot to the opponent’s goal box. In the following subsections
we explain the detailed implementation of the PhysicsDribble behavior, in particular its
Tactics model, and its anytime state evaluation function. Finally, we present results where
we compare the new PhysicsDribble behavior with the traditional reactive behavior used
previously in the CMDragons system.

7.3.1 Tactics Model

In order to efficiently find solutions to the dribbling problem, our planning approach re-
quires the definition of effective sampling-based Skills and Tactics that are able to constrain
the size of the searchable action space in a task-oriented manner. Figure 7.6 shows the the
non-deterministic Tactics model for the controlled robot in the PhysicsDribble behavior.
The model consists of three Skills, each implementing a dribbling control strategy, but
each differing in the particular sampling distribution from which they choose the direction
of dribbling. Transition probabilities between these Skills are defined by the values of p

and q, where p is the probability of dribbling towards some random point, (1 − p) is the
probability of dribbling away from the nearest opponent body, and q is the probability of
dribbling toward the goal box, but only if there currently exists a clear shot from the ball to
the goal box. Note, that all applicable transition probabilities are always auto-normalized
by the transition function g (see Section 4.3), and therefore do not need to sum to one.

After selecting its dribble target point using its unique sampling distribution, each of the
three dribbling Skills uses the same ComputeDribbleAction function (see Algorithm 11)
to compute the action for the controlled robot. Note, that � denotes the angle of a 3D
vector if down-projected to 2D global frame field coordinates, and AngDiff computes the
shortest difference between two angles. We use subscript shorthand notations to refer to
the controlled robot (r̂robot), the ball (r̂ball) and the opponent robot that is currently nearest
to the ball (r̂opp). The ComputeDribbleAction function furthermore requires the definition
of multiple constants: the robot and ball radii (radiusrobot, radiusball), and the minimum
and maximum desired forward velocities during dribbling (minForwardVel, maxForwardVel).
Finally, the ramp function linearly maps an input range to some bounded output range:

95

Figure 7.6: The Tactic used for the controlled robot in the PhysicsDribble behavior.

ramp(in, inmin, outmin, inmax, outmax) =

outmin if in < inmin

outmax if in > inmax

outmin + (outmax − outmin)(in− inmin)/(inmax − inmin) otherwise.

The ComputeDribbleAction function takes as input the current state of the world (x)
and the dribble target point (targetPoint) that was sampled by the current Skill. It then
computes the relative angle towards its dribbling target (deltaAngle), and uses linear ramp-
ing to compute the desired forward velocity component of the robot (targetVel.x), slowing
down to minForwardVel when moving directly away from the target, and speeding up to
maxForwardVel when directly approaching it. Next, the algorithm computes a sideways
velocity component (targetVel.z) based on the current angular velocity of the robot. This
sideways velocity component effectively transforms the center point of rotation from the
center of the robot to the ball itself, thus allowing the robot to “turn around the ball”,
while pushing it. Finally, the ComputeForceFromVelocity function converts the desired
target velocity into a force-vector by comparing the current velocity to the target velocity
and applying a trapezoidal motion controller (also see Section 5.3.4) to generate the result-
ing force. Similarly, the torque is computed by applying a trapezoidal motion controller on
the current angular distance, to reach the target angle as quickly as possible within some
pre-defined rotational acceleration, deceleration, and velocity limits.

96

Algorithm 11: ComputeDribbleAction(x, targetPoint)

// This algorithm assumes a right-handed 3D coordinate system, i.e.
seen form the robot’s local reference frame, the x-axis points
forward, the y-axis points upwards, and the z-axis points right.

targetAngle ← � (targetPoint− x.r̂ball.α);
currentAngle ← � ((x.r̂robot.β) [1, 0, 0]);
deltaAngle ← AngDiff(targetAngle, currentAngle);
targetVel ← [0, 0, 0];
// Compute forward target velocity:
targetVel.x ← ramp(|deltaAngle|, 0, maxForwardVel, π, minForwardVel);
// Compute sideways target velocity:
targetVel.z ← ((radiusrobot + radiusball)(x.r̂robot.ω.y));
ârobot.force ← ComputeForceFromVelocity((x.r̂robot.γ), targetVel);
ârobot.torque ← ComputeTorqueFromAngle((x.r̂robot.ω), deltaAngle);
return ârobot;

7.3.2 Opponent Prediction Model

We have defined the Tactic and its Skills to generate the actions for the controlled robot
body. Note however, that some of the controlled body’s decision making depends on the
extrapolation of the foreign-controlled opponent body’s position (i.e., the “dribble away
from opponent” Skill in Figure 7.6). Therefore, in order to predict the opponent body’s
motions, we model its likely actions via its own deterministic Tactic. Because we are
unaware of the true internal strategies of the opponent robot, we employ a relatively
generic opponent Tactic, consisting of only a single deterministic Skill that implements a
“drive toward ball” control strategy for the opponent robot.

Of course, such a simplistic opponent model is not likely to perfectly predict the exact
opponent’s behavior. However, recall that for the robot soccer domain we use an anytime
planning approach that is able to replan at frequent intervals (60Hz). Therefore, with
replanning enabled, any incorrect predictions about the world (including the opponent
model, or other physical predictions such as ball/robot interactions) are not given the
chance to accumulate to longer term prediction errors, because before each replanning step
the true state of the world is re-observed thanks to the CMDragons vision system.

97

7.3.3 State Evaluation Function

To implement an anytime planning approach in the robot soccer domain, we need to
define how the EvalState function (see Section 7.2.2) computes its output value. For
the PhysicsDribble behavior, we define the EvalState function to compute the negated
product of multiple individual evaluation functions that are specific to the goals of the
dribbling task:

EvalState(x) = 1− (EvOpp(x) EvHandling(x) EvBoundary(x) EvAim(x) EvTime(x)) .

Each of these individual evaluation functions returns a result normalized to the range
[0, 1], where a zero output indicates the “worst” possible evaluation of a state and a one
indicates the “best” possible evaluation. Note, that the following definitions use shorthand
notations to refer to the controlled robot (r̂robot), the ball (r̂ball) and the opponent robot
that is currently nearest to the ball (r̂opp).

• Opponent Distance to Ball (EvOpp)
EvOpp evaluates the distance between the ball and the closest opponent body. It
returns zero if the opponent is in direct contact with the ball, and linearly ramps up
the value with increasing distance (using the ramp function defined in Section 7.3.1),
until some user-defined maximum distance threshold (maxDistBallOpp):

EvOpp(x) = ramp (distBallOpp(x), 0.0, 0.0, maxDistBallOpp, 1.0) ,

where distBallOpp is a function computing the physical distance between the ball
body and the opponent body, assuming predefined constants for the radii of the
opponent robot and ball:

distBallOpp(x) = max (0.0, |(x.r̂ball.α)− (x.r̂opp.α)|− (radiusopp + radiusball)) .

• Ball Handling (EvHandling)
EvHandling evaluates the quality of ball handling by computing the distance of the
ball towards the controlled robot’s dribbler bar. Algorithm 12 shows the implementa-
tion of the EvHandling function. The algorithm first computes the relative ball posi-
tion toward the robot’s dribbler in the robot’s local coordinate frame (robotBallLocal).
The algorithm relies on predefined constants for the dribbler’s width (dribblerWidth)
and frontal offset to the robot’s center (dribblerFront). An additional user-defined
threshold (distControlled) defines how close the ball needs to be to the dribbler bar
to be considered “in control”. In that case, the algorithm returns 1 immediately,
otherwise, it will compute its output value based on the distance of the ball towards
the dribbler bar which is scaled by a penalty scalar constant in the range from [0,1]
(badHandlingPenalty) to further emphasize that such a state is undesirable.

98

Algorithm 12: EvHandling(x)

// This algorithm assumes a right-handed 3D coordinate system, i.e.
seen form the robot’s local reference frame, the x-axis points
forward, the y-axis points upwards, and the z-axis points right.

robotBall ← (x.r̂ball.α)− (x.r̂robot.α);
robotBallLocal ← ((x.r̂robot.β)T robotBall)− [dribblerFront, 0, 0];
if (robotBallLocal.x > 0) and (robotBallLocal.x < distControlled) and
(|robotBallLocal.z| < dribblerWidth/2) then

return 1;
else

robotBallLocal.z ← max(0, |robotBallLocal.z|− (dribblerWidth/2));
robotBallLocal.y ← 0;
return badHandlingPenalty (1/(1 + |robotBallLocal|));

• Ball Distance to Field Boundary (EvBoundary)
EvBoundary evaluates the distance between the ball and the field boundary. First,
the distanceToBoundary function computes the actual shortest distance to the field
boundary. Then, in order to penalize states that will lead the robot to dribble the
ball off the field, a linear ramping function is used which reduces its output value to
close to zero when getting within a 10cm to the field boundary:

EvBoundary(x) = ramp(distanceToBoundary(x.r̂ball), 0.1m, 0.001, 0.6m, 1).

• Robot Heading (EvAim)
EvAim evaluates the aim of the robot. It invokes the angleToGoal function to com-
pute the difference in angle between the controlled robot’s current heading and the
desired heading towards the opponent’s goal box. This angular difference (measured
in radians) is then used as the input to the ramping function:

EvAim(x) = ramp(|angleToGoal(x)|, 0, 1, π, 0),

where:

angleToGoal(x) = AngDiff(� (goalLocation− (x.r̂ball.α)), � ((x.r̂robot.β) [1, 0, 0])).

Note, that � denotes the angle of the vector if down-projected to 2D global frame
field coordinates, and AngDiff computes the shortest difference between two angles.

• Short-Term Penalty (EvTime)
EvTime has the purpose to penalize short-term states. Recall that, in anytime plan-
ning, the state with the best evaluation is returned by the planner. However, this

99

could imply a scenario where the initial state xinit happens to also be evaluated as the
best state. Although xinit might in fact be the “best” state from the perspective of the
other evaluation functions, it would be much more desirable that the planner returns
a solution of some minimum required length, so that the robot will actually have
some actions to execute. The EvTime function attempts to achieve this by penalizing
the evaluation of states that are too short term to be considered a useful result. It
relies on two user defined thresholds: a strict minimum plan length (tMinStrict) and
a desired minimum plan length (tMinDesired), where tMinStrict < tMinDesired. The
EvTime function then uses linear ramping to evaluate the quality of a state, based on
its time index t:

EvTime(x) = ramp(x.t, tMinStrict, 0, tMinDesired, 1).

7.3.4 Results

We tested the PhysicsDribble behavior using the BK-BGT-Anytime algorithm with state-
driven execution in the CMDragons system, both under lab conditions, and during the
actual RoboCup 2009 competition.

To objectively evaluate the PhysicsDribble behavior, we compared it against the state-of-
the-art CMDragons “attacker” behavior that uses a traditional reactive tactic to obtain the
ball and score a goal. The experiment was setup as a 1-vs-1 robot soccer scenario. Each
trial was started at the center of the field, with each robot on their own side of the field, in
a symmetric configuration. A trial was aborted and restarted from its initial configuration
if the ball went out of bounds. A score was counted and a trial concluded if the ball entered
the goal.

The experiment consisted of two parts. First, as a baseline, we let both robots run the
traditional attacker behavior. We performed 20 trials (switching sides after the first 10)
and recorded the numbers of goals scored by each robot.

For the second part of the experiment, we assigned robot A to use the new PhysicsDribble
behavior with BK-BGT-Anytime planning, while leaving robot B with the traditional
“attacker” tactic. Again, we ran 20 trials, switching sides after the first 10.

Table 7.1 shows the result of the experiment, presenting the percentage of how many of
the 20 goals were scored by robot A. As expected, both robots performed similarly in
the baseline configuration, with robot A scoring 55%, and robot B scoring 45%. The 5%
difference from a perfect balance lies within the margin of error of a 20 trial setup and is not
considered statistically significant (t-test p-value of 0.76). When using the PhysicsDribble
behavior, however, robot A scored 85% of the goals, whereas robot B scored 15%. Given

100

Robot A Behavior Robot A Success Rate
Baseline (Reactive) 55%
PhysicsDribble 85%
Improvement 30 pp

Table 7.1: Success rate of reactive behavior (baseline) vs. physics-based planner. Robot B
always used the reactive behavior.

the 20 trial experiment, this difference is considered statistically significant (t-test p-value
of 0.039).

These quantitative results are furthermore underscored by the visual performance of the
robot. Figure 7.7 shows an example sequence taken during the experiment where robot A
runs the PhysicsDribble behavior. After obtaining the ball, the PhysicsDribble behavior
quickly leads robot A to dribble the ball away from the opponent, temporarily even away
from the opponent’s goal box (images 2-4). Shortly thereafter, however, the behavior leads
robot A to perform a rapid turn, while maintaining full control of the ball (images 5-6),
bringing it quickly into position for an open shot, at which point the CMDragon’s reactive
“Kick” Tactic takes control and delivers the ball into robot B’s goal box (images 7-8).

Mean StdDev Median Min Max
Tree Size (nodes) 87.9 4.59 87 64 101
Solution Size (nodes) 10.7 3.13 13 6 13

Table 7.2: Planning statistics collected from the PhysicsDribble behavior. Sample size:
N = 861 (≈ 14s). Planning parameters: ∆t = 1/60s, µ = 0.1, anytime planning time
limit: 10ms, replan interval: 60Hz.

Table 7.2 shows planning statistics collected while running the PhysicsDribble behavior.
Note, that the maximum planning time for the BK-BGT-Anytime planner was set 10ms
(60% of a frame period), after which the planner is interrupted, and the best result is exe-
cuted. A µ-value of 0.1 was chosen to allow sufficient breadth coverage, even in extremely
small trees. As expected, both tree size and solution length are fairly small in terms of node
count, due to the short planning time available. However, as we have shown in Table 7.1,
this coverage still seems sufficient to perform the dribbling task well. The reason for this
is that it does not take many simulation steps to predict significant implications of the
robot’s actions on the outcome of ball manipulation, mostly because the robot is already
closely interacting with the ball during the initial state of each planner invocation.

Besides testing the PhysicsDribble behavior in a controlled lab environment, we also field-

101

Figure 7.7: Frames from an example video sequence demonstrating the PhysicsDribble
behavior. The controlled robot body (A) uses physics-based planning with the Physics-
Dribble behavior to out-dribble and score a goal against the opponent body (B) that runs
a traditional reactive behavior. The ball location is indicated with an arrow.

102

tested it in a real-world robot soccer competition environment at RoboCup 2009 in Graz,
Austria. During the competition, there were several instances where the PhysicsDribble
behavior was able to successfully control the robot and keep ball control in situations where
the traditional Tactics would likely have struggled and possibly given up ball possession
to the opposing team.

Figure 7.8 shows one particularly good example from RoboCup 2009 where the application
of the PhysicsDribble behavior directly led to a goal against the opponent team. After
obtaining possession of the ball, the physics dribble behavior leads the robot away from the
opponents (images 1-2). Then, due to the field boundary evaluation metric EvBoundary,
the planner changes the direction of the robot back toward the center of the field (images
3-4), consistently maintaining perfect ball control. Finally, as an open shot opportunity
emerges, the PhysicsDribble behavior biases the robot’s motion towards the goal, leading
to a successful goal-shot against the other team (images 5-6).

Figure 7.8: A sequence of frames from a Small Size League game at RoboCup 2009.
A robot from the CMDragons team uses the PhysicsDribble behavior to out-dribble the
opponent team and eventually scores a goal. The ball location is indicated with an arrow.

The above experimental results strongly emphasize the new advantages that physics-based
planning provides when compared to traditional reactive control techniques in the robot
soccer domain. So far, in the RoboCup Small Size League, teams have strongly depended
on the presence of direct shot lines toward the goal or toward a teammate. In the case
of shot-blockage by an opponent, most current teams resort to a waiting strategy, with

103

a small number of teams at least attempting to turn in place with the ball. As can be
observed in various game recordings from the past several years, these types of reactive
behaviors often lead to situations where both teams get “stuck” attempting to steal the
ball back and forth from each other in place, without neither team taking the initiative to
dribble the ball and actually make progress in the game. Our novel physics-based planning
approaches apply well in such challenging dribbling situations, because the planner is able
to autonomously generate control solutions that are tactically sound and that maintain
dynamic control of the ball, thus providing the robot with new options in situations that
were considered too difficult to be solved via reactive control.

Although it is difficult to isolate and precisely measure the positive effects of physics-based
dribbling in real-world RoboCup matches, our first application in RoboCup 2009 has been
positive, allowing our robots to more persistently remain in control of the ball in dribbling
situations than in previous years. The lab-based experimental results (Table 7.1) clearly
support this claim.

7.4 Planning in Predictable Dynamic Domains

The robot soccer domain presents an ideal application for anytime planning, due to its fast
paced nature and due to the presence of unpredictable foreign-controlled bodies, requiring
frequent replanning. However, there exist some dynamic domains where a single-shot
planning approach with longer term planning and execution is more viable, even in the
presence of foreign-controlled bodies. In this section, we present a particular example of
such a problem, namely robot minigolf. We show how a single-shot planning approach
in combination with accurate sensing and prediction can lead to successful executions in
robot minigolf problems containing moving obstacles.

7.4.1 A Robot Minigolf Problem

We implement robot minigolf using the CMDragons robot system. In our implementation,
arbitrary minigolf courses can be constructed on the CMDragons robot soccer field by freely
choosing the position of the hole, the ball, and multiple obstacles. The shapes and other
non-mutable parameters of all bodies in the domain (including the hole and obstacles) are
manually modeled. The mutable states of all bodies are detected by the CMDragons vision
system: each body is supplied with a unique color pattern that is used for identification
and localization. Changes to the course’s layout are observed in real time.

The robot minigolf domain allows the creation of several different types of planning prob-

104

lems. In the following chapter we focus extensively on solving minigolf problems requiring
collisions, whereas in this section we focus on the problem of planning and execution in
the presence of moving obstacles.

In particular, we introduce a rotating bar obstacle as an example for a foreign-controlled,
but predictable body. Similar to a rotating “windmill” found in some of the fancier real-
world minigolf courses, the rotating bar obstacle in robot minigolf is actuated at a constant
angular velocity and placed somewhere in the direct path between the ball’s initial position
and the hole, thus requiring accurate timing by the robot to putt the ball into the hole
without hitting the obstacle.

7.4.2 Challenges and Approach

The dynamic minigolf course with rotating obstacle poses a challenging problem, both
from a planning and execution perspective. First of all, the planner must be able to
correctly observe and predict the motion of the foreign-controlled rotating bar body. To
obtain an accurate measurement of the bar’s angular velocity, our approach employs a
mean window filter that accumulates measurements from the most recent 60 frames (1
second) and that then provides its filtered measurement to a deterministic Tactic that will
extrapolate the foreign-controlled rotating bar body’s motions during planning, using this
measured velocity.

Another challenge is that the planner will need to plan far enough into the future in order
to determine whether its selected actions will result in a valid goal state or not. Such
a single-shot search will require significantly more time than our single-frame anytime
planning approach in the robot soccer domain. During planning, the rotating obstacle will
continue to move, therefore raising the question how the planner’s solution will still be
applicable to the state of the world at execution time.

Luckily, with a rotating obstacle, the state of the world changes in a repeated infinite
sequence. Within such a repeated environment, the single-shot planner can continue to
plan for an arbitrarily long amount of time until it delivers its solution. Execution of
this solution can then be postponed until the initial state of the solution sequence xinit

matches the current observed state of the world as closely as possible (i.e., the rotating
bar reaches the same position again that it had in the state xinit). Because we employ a
single-shot approach, and because there is no replanning, the execution must be performed
in a state-driven closed-loop fashion (see Section 7.2.3).

105

Figure 7.9: Images from the robot minigolf domain showing real world footage (images
1, 6-8) and the planner’s internal representation (images 2-5). The controlled robot (A)
has the objective to putt the ball (arrow) into the hole (C) without touching the rotating
obstacle (B). Images 1 and 2 show the initial state, image 3 shows the planner’s search
tree, with pink nodes representing the ball’s predicted position. Images 4-8 show a valid
solution.

106

7.4.3 Results

We used the BK-BGT planner with the same controlled body Tactics model as used in the
simulated minigolf domain (see Section 6.1.2). Image 1 in Figure 7.9 shows the general
experimental setup. We performed 4 different experimental configurations, varying the
distance between the ball and the hole between 1.4m and 2.4m, and varying the angular
velocity of the rotating bar between a 5s and a 3s full rotation period. We ran 10 trials in
each configuration, resulting in 40 trials total. Figure 7.9 shows an example result sequence
in the 2.4m, 3s setup. Table 7.3 shows the execution success rate of our planner (trials
resulting with the ball in the hole). Solely for comparison purposes, we have also provided
the mean success rate of 3 human minigolf players in the same experimental setup.

Configuration Success Rate
Period Distance Human Planner

5s 1.4m 70% 90%
5s 2.4m 30% 80%
3s 1.4m 67% 70%
3s 2.4m 30% 50%

Mean 49% 73%

Table 7.3: Hole-in-one success rate with rotating obstacles (BK-BGT, µ = 10).

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

S
u
cc

es
s

R
at

e
(%

)

Noise (± %)

t=5s, d=1.4m
t=5s, d=2.4m
t=3s, d=1.4m
t=3s, d=2.4m

Figure 7.10: Impact of observation noise on execution success rate in the robot minigolf
domain.

107

Finally, to investigate how important timing and prediction quality are in the robot minigolf
domain, we have performed additional trials that analyze the impact of observation accu-
racy on execution performance. Figure 7.10 shows the execution success rate for the same 4
individual experimental setups as previously shown, but under varying levels of artificially
generated noise applied to the observed velocity of the rotating obstacle that was used by
the planner to make its predictions. Across all setups, increasing the observation noise,
even only by a 10% margin, has a significantly adverse effects on overall execution success
rate. These results further underline how important accurate planner predictions are in
dynamic environments, and also serve as additional evidence to the great accuracy of the
CMDragons observation and execution systems.

7.5 Chapter Summary

In this chapter, we have shown how to apply our Skills and Tactics-driven, physics-based
planning approaches to real-world dynamic robot domains. We have integrated our planner
into the CMDragons multi-robot system and have discussed the trade-offs between single-
shot and anytime planning, and between state-driven and action-driven execution. We
have introduced the BK-BGT-Anytime algorithm, a concrete anytime extension to BK-
BGT. Furthermore, we have presented the concrete application of anytime planning in
robot soccer with the PhysicsDribble behavior, and have shown (under lab-conditions
and at a real RoboCup competition) that such a physics-based planning approach is able
to outperform traditional reactive approaches. Finally, we have presented a particular
problem in the robot minigolf domain as an example application for single-shot planning
in predictable dynamic environments.

In the following chapter, we focus on the problem of maximizing the planner’s prediction
accuracy by optimizing the parameters of its physical model. We focus especially on the
robot minigolf domain, introducing problems that require purposeful collisions between
passive objects, making a particularly interesting challenge for our planning approaches.

108

Chapter 8

Parameter Optimization of
Physics-Based Models

In the previous chapters, we have shown how our physics-based motion planning algo-
rithms rely on a rich domain model to predict the physical interactions of the real world.
As we have introduced in Chapter 2, the model’s behavior depends on the values of its
various parameters, describing the physical properties for each of the domain’s bodies,
including their shape, mass, coefficients of friction, restitution, and damping. Achieving
good planning accuracy requires that the relevant parameters of all bodies in the domain
are accurately chosen.

Finding the actual values for all the model parameters, however, is difficult. Although
a few special parameters can typically be measured accurately (i.e., a body’s shape and
mass), the remaining model parameters cannot be determined so directly. A significant
challenge is the fact that most of the model parameters are not fully independent with
regards to the resulting behavior of the model. For example, the deceleration behavior
of a rolling ball is determined by a combination of the friction, restitution, and damping
parameters of both the ball and the surface that it is rolling on. Tweaking each of the
parameters individually is therefore likely to lead to globally non-optimal configurations.
Consequently, manual approaches to parameter configuration typically consist of many
iterations of labor-intensive trial-and-error, relying on a lot of guess-work to determine a
good set of parameter values. To no surprise, the resulting models tend to be non-optimal
and ultimately lead to reduced success rates during real-world execution.

To alleviate the problem of model parameter configuration, we present an automated pa-
rameter optimization approach that aims to find a globally optimal set of model parameters
for a physics-based planner. More specifically, our algorithm searches for the set of pa-

109

rameter values that minimizes the error between the simulated model and the real-world.
To compute the model error, we introduce an evaluation function that compares a set of
recorded ground-truth executions with the outcome of physics-based simulations that are
generated on-the-fly during the model parameter optimization process.

To test our approach, we introduce a new set of problems in the robot minigolf domain that
require the controlled robot to putt a golf ball into a hole by purposefully bouncing it from
wooden bars. The initial positions of the hole, bars, and golf ball can be freely configured to
build novel and challenging course configurations. We show that our physics-based planner
is able to successfully find solutions in this domain and that its execution success rate can
be improved significantly by employing our parameter optimization approach.

8.1 Approach Description

The goal of our approach is that the planner’s transition function e is able to simulate the
dynamics of the real physical world as closely as possible. To do so, we need to find the
set of optimal values for all of the rigid body parameters in r̄ for all rigid bodies in the
domain.

We denote the set of parameters to be optimized as Φ = {φ1, φ2, . . . }. For some of the
parameters in r̄, accurate values can be determined by simply measuring the real body that
is being modeled (e.g., φMass, φShape, and even φMassC). These parameters can therefore be
excluded from Φ.

In order to run a parameter optimization algorithm, we first need to define an error func-
tion that can quantitatively evaluate the model accuracy of the parameters in Φ. To
evaluate model accuracy, the algorithm requires a fixed set of ground truth observations
{ObsReal1, . . . , ObsRealm}. Each ground truth observation consists of a sequence of states
pre-recorded from a real-world execution, interleaved with the actions that the robot exe-
cuted between these states, that is: ObsReali = �x1, a1, x2, a2, . . . , aqi−1, xqi� where qi is the
number of states in the solution sequence ObsReali.

Given a set of ground truth observations, we can now define the error function Eval(Φ)
that computes the overall error between simulated executions (using the current model
parameters in Φ) and the recorded ground-truth execution sequences. Algorithm 13
shows how Eval(Φ) computes its result. First, the current parameter values in Φ are
applied to the physics engine’s current domain model d. Then, for each ground truth
observation, the algorithm simulates an execution, starting from the same initial state
and using the same sequence of actions as the ground truth observation. The result is a

110

Algorithm 13: Eval(Φ)

d ← UpdateDomainModel(d,Φ);
foreach ObsRealj in {ObsReal1,. . . ,ObsRealm} do

�x1, a1, x2, a2, . . . , aq−1, xq� ← ObsRealj;
x�

1
← x1;

for i ← 1 to q − 1 do
x�i+1

← x�i;
x�i+1

.�r̂1, . . . , r̂n� ← e(x�i.�r̂1, . . . , r̂n�, ai, d, ∆t);
x�i+1

.t ← x�i.t + ∆t;

ObsSim ← �x�
1
, . . . , x�q�;

errj ← ComputeError(ObsRealj, ObsSim);

return
��m

j=1
errj

�
/m;

simulated sequence of states (x�
1
, . . . , x�q). This sequence (ObsSim) is then quantitatively

compared with its corresponding ground truth (ObsReal) using the individual error function
ComputeError. Finally, Eval(Φ) returns the mean over all the individual errors. We show
concrete examples of ground truth data and the corresponding individual error functions
in the following section.

Using the set of parameters Φ and the evaluation function Eval(Φ), we then employ a
function minimization algorithm that attempts to find values for Φ that minimize the
output of Eval(Φ). We choose the Nelder-Mead Simplex nonlinear optimization method
[49, 71] because it has the advantage of not requiring explicit knowledge of the error
function’s gradient, while at the same time being faster than evolutionary approaches [3].

8.2 Application in Robot Minigolf

We use robot minigolf as a concrete testbed for our parameter optimization approach. The
details on the general robot minigolf domain and the implementation on the CMDragons
multi-robot system are explained in Chapter 7. In this chapter we focus our tests on
problems in the robot minigolf domain that are particularly affected by the accuracy of
the physics parameters. Figure 8.1 shows a typical example of a robot minigolf problem
that requires an accurate predictive model of multi-body interactions. The robot (A) has
the objective to putt the ball from some starting location into the U-shaped hole (B), with
a single shot. To do so, it must bounce the ball off one or more wooden blocks (C).

111

Figure 8.1: The robot minigolf domain.

8.2.1 Parameters

We choose to optimize all parameters that actively influence how the ball moves in the robot
minigolf domain. The mass and dimensions of all the bodies were manually determined.
For the ball body itself, the parameters to be optimized are φFricS, φFricD, φRest, φDampL, and
φDampA. For the wooden bars and the carpet, we can leave out the damping parameters
(because the objects do not move), leaving φFricS, φFricD, φRest. Note, however, that φFricS

and φFricD are extremely similar for many materials. Furthermore, as the ball is constantly
in motion, the static friction parameters become mostly irrelevant for accurate execution.
To exploit this fact, we let φFricD = φFricS in this domain by treating it as a single parameter,
leaving us with a total number of 8 distinct parameters in the set Φ.

8.2.2 Ground Truth Data

It is important to carefully select ground truth data that can be used to best evaluate the
accuracy of the model parameters that are being optimized. For the minigolf domain, we
devised two different sets of ground truth data that, when combined, fully reflect effects of
all the parameters in Φ .

The first set of ground truth data involves interactions between the ball and the carpet.
The set consists of the robot putting the ball across the carpet at varying speeds, without
any wooden bars being present. To cover the full action space, the robot putted the ball at

112

12 different initial velocities, ranging from 2m/s to 7.5m/s at 0.5m/s increments. To reduce
observation noise, we repeated this sequence 3 times, resulting in 36 sequences total.

The second set of ground truth data involves interactions between the ball, the carpet, and
the wooden bars. The set consists of the robot putting the ball against a bar at varying
incoming angles and speeds. The angle was varied in 11.25◦ increments (ranging from
11.25◦ to 78.75◦). At each angle, the putt was repeated at 10 different velocities ranging
from 3m/s to 7.5m/s with 0.5m/s increments, thus generating 70 sequences in total.

8.2.3 Error Functions

We can now define the error functions that compare a simulated sequence to a ground
truth sequence. Concretely, we provide two specific implementations of the ComputeError
function as needed by the Eval(Φ) function that we showed in Algorithm 13.

Algorithm 14: ComputeVelError(ObsReal,ObsSim)

�x1, a1, x2, a2, . . . , aq−1, xq� ← ObsReal;
�x�

1
, . . . , x�q� ← ObsSim;

for i ← 1 to q do
�α, β, γ, ω� ← xi.r̂ball;
�α�, β�, γ�, ω�� ← x�i.r̂ball;
erri ← ||γ|− |γ�||2

return Normalize
��

(
�q

i=1
erri) /q

�
;

The error function ComputeVelError (see Algorithm 14) is used in conjunction with the
first set of ground truth data (the ball rolling on a carpet). The algorithm effectively
compares the ball’s velocity profile between the simulated and ground truth observation
and then returns a normalized root mean square error. The idea is that a perfect physics
model would also perfectly predict the ball’s deceleration as it rolls on the carpet, for any
given initial velocity.

The error function ComputeAngleError (see Algorithm 15) is used in conjunction with the
second set of ground truth data (the ball bouncing against the bar). This function ob-
serves the ball’s post-collision behavior and computes the ratio between the ball’s outgoing
angle toward its incoming angle (each in respect to the wooden block’s surface normal).
This computation is performed on each post-collision frame, for both the simulation and
ground truth, and each time the square difference between simulation and ground truth is
computed. AngDiff denotes the shortest difference between two angles, and � denotes the
angle of a vector as it is down-projected to the 2D carpet surface using a global coordinate

113

Algorithm 15: ComputeAngleError(ObsReal,ObsSim)

�x1, a1, x2, a2, . . . , aq−1, xq� ← ObsReal;
�x�

1
, . . . , x�q� ← ObsSim;

c ← FindIndexOfCollision(ObsReal);
k ← FindIndexOfCollision(ObsSim);
i ← c; j ← k; h ← 1;
repeat

�α, β, γ, ω� ← xi.r̂ball;
�α�, β�, γ�, ω�� ← x�j.r̂ball;
if i = c then

// Compute surface normal angle of obstacle at collision point:
normAngle ← � ((xc.r̂wood.β) [1, 0, 0]);
normAngle� ← � ((x�k.r̂wood.β) [1, 0, 0]);
// Compute incoming angle toward surface normal angle:
inAngle ← AngDiff(� ((x1.r̂ball.α)− α), normAngle);
inAngle� ← AngDiff(� ((x�

1
.r̂ball.α)− α�), normAngle�);

// Store positions where collision occurred:
αc ← α;
α�

k ← α�;
else

errh ←
�

|AngDiff(� (α−αc),normAngle)|
|inAngle| − |AngDiff(� (α�−α�

k),normAngle�
)|

|inAngle�|

�2

;

h ← h + 1;
i ← i + 1; j ← j + 1;

until ((i ≥ q) or (j ≥ q) or (|γ| < MinVel) or(|γ�| < MinVel)) ;

return Normalize

����h
i=1

erri
�

/h

�
;

frame for the angle computation. normAngle is the angle of the wooden block’s surface
normal that is used for the collision, and inAngle is the ball’s incoming angle relative to
the surface normal’s angle. Note, that because there is no guarantee that the simulated
ball reached the bar at exactly the same point in time as in the ground truth version, the
algorithm first needs to search for the state where the collision with the bar occurred. The
function FindIndexOfCollision does so by parsing the sequence of states and detecting
the first significant change in angle that happened at a sufficiently large velocity. The com-
parison stops once the ball (either simulated or ground) has fallen below a certain minimum
velocity MinVel (0.1m/s for our purposes). Again, the function returns a normalization of
the root mean square error computed from the individual errors of all post-collision frames.

An ideal physics model configuration should reduce the error of both ComputeVelError

114

and ComputeAngleError. Thus, we want to combine the two separate evaluators into a
single one. We do so by redefining our main model evaluation function Eval to consist of
the weighted root mean square error of two individual evaluator functions:

Eval(Φ) =
�

w1 (Eval1(Φ))2 + w2 (Eval2(Φ))2.

Here, Eval1 is exactly as shown in Algorithm 13, but using ComputeVelError (Algo-
rithm 14) in conjunction with the first set of ground truth data. Similarly, Eval2 is exactly
as shown in Algorithm 13, but using ComputeAngleError (Algorithm 15) in conjunction
with the second set of ground truth data. Note, that because both error functions normal-
ize their results, we are able to use equal weights of 0.5 for our experiments, however other
weights could be selected if one were to prefer one evaluator’s quality over the other.

8.2.4 Experimental Evaluation

We applied the parameter optimization algorithm in the robot minigolf domain. Initial
values for all parameters in Φ were determined using publicly available information about
typical material coefficients where applicable and best-guessed otherwise. The parameter
optimization algorithm ran for 50 iterations, taking approximately 27 minutes. However,
a clear convergence was already visible after 30 iterations. Figure 8.2 shows the individual
parameters over the course of optimization and Figure 8.3 shows the root mean square
error as returned by Eval(Φ). Table 8.1 shows the values of the initial and final optimized
parameters.

Object Parameter Initial Optimized

Ball

φFricS, φFricD 0.3 0.103
φRest 0.78 0.835
φDampL 0.1 0.145
φDampA 0.1 0.191

Wood
φFricS, φFricD 0.3 0.336
φRest 0.5 0.570

Carpet
φFricS, φFricD 0.8 0.759
φRest 0.2 0.196

Table 8.1: Values of initial and optimized parameters.

To evaluate whether this parameter optimization led to a significant improvement in real-
world execution accuracy, we devised five standardized test configurations in the minigolf
domain. The first four configurations require the robot to perform a single bounce off
a wooden bar into the hole, using different starting locations (1-4 in Figure 8.1). The

115

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
a
ra

m
et

er
V

a
lu

e

Learning Iteration

B F
B R
B L
B A
C F
C R
W F
W R

Figure 8.2: Parameter values over optimization iterations (B: Ball, C: Carpet, W: Wood,
F: Friction, R: Restitution, L: Linear Damping, A: Angular Damping).

0.3

0.32

0.34

0.36

0.38

0.4

0 10 20 30 40 50

R
M

S
E

Learning Iteration

Figure 8.3: Root mean square error over optimization iterations.

116

Figure 8.4: A “double bounce” example from the robot minigolf domain. Image 1 shows
the initial state of the robot and ball (A), the hole (B), and the wooden obstacles (C).
Image 2 shows the planner’s internal search tree, with green nodes representing predicted
ball positions. Image 3 shows the solution found by the planner. Images 4-11 show the
execution of the solution: the robot putts the ball (yellow oval) against both wooden bars
using a double bounce, delivering it into the hole.

fifth configuration (see Image 1 in Figure 8.4) requires the robot to perform a double
bounce off two wooden bars to putt the ball into the hole with a single shot. We ran each
configuration 10 times for both initial and optimized parameter values, thus performing 100
real-world trials in total. A success was counted when the robot achieved a hole-in-one, a
failure otherwise. In either configuration, the physics-based planner found valid simulated
solutions, typically within a minute. Images 4-11 in Figure 8.4 show a successful execution
of the planner’s solution in the double bounce problem configuration.

117

Success Rate Improvement
Config. Human Initial Optimized (Optimized-Initial)

1 43% 60% 80% 20 pp
2 13% 40% 60% 20 pp
3 47% 80% 100% 20 pp
4 33% 50% 90% 40 pp
5 40% 10% 50% 40 pp

Mean 35% 48% 76% 28 pp

Table 8.2: Success rates of initial vs. optimized parameters. The mean execution success
rate of 3 untrained human subjects is also shown, for comparison purposes only.

Figure 8.5: A robot minigolf example combining a dynamically rotating obstacle with a
single bounce. Image 1 shows the initial state of the robot and ball (A), the hole (B),
the wooden bars (C) and the rotating obstacle (D). Images 2-6 show the plan execution:
the robot accurately times its approach to the ball with the motion of the rotating bar,
allowing a successful shot of the ball against the wooden bar, and into the hole.

118

Table 8.2 shows the real world execution accuracy from all five minigolf test configurations
obtained using both initial and optimized parameters. Furthermore, solely for the purpose
of obtaining a rough subjective idea of the difficulty of the domain, the table also shows the
mean accuracy values obtained from three untrained human test subjects who performed
the same series of experiments (each taking 10 shot per configuration). The parameter
optimization results clearly show an increase in the average execution success rate by
28 percentage points (from 48% to 76%) when comparing non-optimized and optimized
parameter models. These improvements are statistically significant (p-value of 0.004 in
t-test).

Given the optimized domain model, and given the planning techniques for predictable
foreign-controlled bodies that were introduced in Chapter 7, our approach is able to solve
many new and interesting robot minigolf courses. Figure 8.5 shows a successful execution
of one particularly challenging problem, combining a dynamically rotating bar obstacle
with a bounce-shot. We would like to emphasize that we believe this to be the world’s first
minigolf playing robot system that is able to autonomously solve never-before-seen course
configurations involving collisions and moving obstacles by using physics-based planning
techniques.

8.3 Chapter Summary

In this chapter we have presented an approach to optimize the model parameters of a
physics-based planner. We have introduced a method to evaluate model accuracy by
comparing generated simulations with pre-recorded ground truth data. We have grounded
our approach in the robot minigolf domain. We have shown that our approach works
successfully by significantly improving the robot’s real-world execution accuracy.

119

120

Chapter 9

Variable Level-Of-Detail (VLOD)
Planning

Motion planning in dynamic environments is particularly challenging when the domain
contains uncertainty, and especially when there are foreign-controlled bodies that are not
fully predictable. Accurate single-shot motion planning in such uncertain domains is a
futile task: as soon as the robot starts executing its plan, the real world’s state is likely
to quickly diverge from the predictions that were made during planning. A well-known
sensible solution to this problem is continuous replanning. When using replanning, the
robot only executes a portion of a generated plan. It then re-observes the world’s true
state and plans a new solution, using the latest observations. This process is repeated as
a replanning loop until the robot reaches its goal state.

A major problem of replanning is its computational cost. At each replanning iteration,
the planner performs an intensive search for a complete solution that will bring the robot
from its current state all the way to the final goal state. During this search, the motion
planner will ensure that the resulting plan is dynamically sound and collision-free by em-
ploying sophisticated, computationally expensive physical models (i.e., the physics engine,
as described in Chapter 2) to predict the robot’s motions and its interactions with the
predicted environment. Such an elaborate search might seem unnecessary, given the fact
that the robot will only execute a small portion of the resulting plan, before discarding it
and re-invoking the planner to start from scratch in the next replanning iteration. How-
ever, simply limiting the planner’s search depth, an approach also known as finite-horizon
planning, is dangerous because it can lead to a robot becoming stuck in a local search
minimum as there are no guarantees that a partial plan will actually lead to the final goal
state.

121

In this chapter, we introduce Variable Level-Of-Detail (VLOD) planning, a novel approach
to reduce the computational overhead of replanning in physical robot environments. Unlike
finite-horizon planning, VLOD planning maintains a full search to the goal state, and is
therefore unaffected by local minima.

VLOD planning is based on the idea that a planner in a replanning environment should be
able to speed up its search by relaxing the treatment of computationally intensive domain
details that occur too far in the future to be relevant during near term execution and that
are unlikely to be accurately predicted due to uncertainty anyhow. We present a binary
LOD model that allows the planner to selectively ignore future interactions with bodies
that are considered to be difficult to predict and that can be safely ignored in a replanning
scenario. The time threshold that defines what is to be considered “far enough in the future
to be ignored”, is a controllable parameter, and can be adjusted based on the replanning
interval, which in turn is typically chosen based on the amount of unpredictability in the
domain (thus the term Variable LOD planning).

In the following sections we present our VLOD approach, and we show how to integrate it
into our existing planning algorithm. We test our approach on two domains and present a
detailed analysis of the results.

9.1 Algorithm Description

To be useful for execution in real-world domains containing uncertainty, a motion planning
algorithm can be wrapped into a continuous, fixed-timestep replanning loop (see Algo-
rithm 16). After observing the initial state of the world, the robot generates a plan using
some motion planning algorithm (Plan). The robot then executes a fixed, pre-determined
amount of this plan, before repeating the loop of re-observing the environment, updating
the initial state, and generating a new plan. The replanning interval treplan is set by the
user, and generally depends on the expected domain uncertainty. Uncertain domains and
robots with unreliable executions tend to require more frequent replanning as the true
world state will more quickly diverge from the predicted planning solution while the robot
is executing.

In this type of replanning environment, a planner will perform many computationally
intensive searches for detailed solutions, only to have them be partially executed and then
scrapped for the next replanning iteration. To alleviate this situation, we now introduce
Variable Level-Of-Detail (VLOD) planning, that is able to find global planning solutions
while ignoring execution-irrelevant domain details that lie far in the future. We introduce
the LOD-horizon tLOD. This horizon acts as a threshold in the time component t of our

122

Algorithm 16: ExecuteAndReplan

while true do
xinit ← ObserveWorldState();
solution ← Plan(xinit, . . .);
if solution �= Failed then

i ← 1;
repeat

�x, a� ← solution[i];
Execute(a);
i ← i + 1;

until x.t > treplan or i > length(solution) ;

planning space X (see Chapter 2). The purpose of tLOD is to control at what point the
planner should begin to ignore certain domain details during its simulated state transitions.
The value of tLOD is a global parameter, to be set by the user. A reasonable guideline is that
tLOD should be greater than the replanning interval treplan because there is the inevitable
assumption that the plan will be executed up to length treplan and as such should be planned
with maximum detail for at least that length.

9.1.1 Definition of Detail and Collision Matrix

To apply Variable Level-Of-Detail planning, we need to clearly define what we mean by
details. There are multiple possible approaches that come to mind to “relax” the planner’s
search beyond the LOD-horizon tLOD. In this work, we use a binary notion of detail,
allowing the planner to selectively ignore particular pairwise multi-body interactions.

A general core requirement for details is that their absence beyond the LOD-horizon should
not make the planner deliver solutions that lead the controlled body into a local minima
during the course of execution. In other words, we can regard interactions as details if
they are solvable through a local finite horizon search (within the LOD-horizon) without
requiring a global change of plans beyond the LOD-horizon. In our particular planning
model, we rely on the body classification hierarchy that was introduced in Section 2.3.
Using this model of body types, we define detail as follows:

Definition 9.1.1 (Detail). Interactions between controlled bodies and other manipulatable
bodies are details, whereas any other interactions are essential.

The idea behind this particular definition of detail is that the avoidance and/or manip-
ulation of moving or manipulatable bodies can normally be considered a locally solvable

123

problem, whereas global navigation, such as finding the path through a maze of static wall
bodies, requires full-depth planning to successfully reach the goal state without ending up
in local minima. Another line of reasoning is that foreign-controlled bodies are not accu-
rately predictable in the long term and as such qualify as details that are only relevant
for short term planning. Because foreign-controlled bodies can interact (e.g., push) any
other manipulatable (i.e., passive) body, we consider all manipulatable bodies to fall into
the unpredictable detail category.

Limitations

Of course one could imagine special cases of domains where even interactions with ma-
nipulatable bodies have implications on the global topology of the plan that go beyond
the LOD search horizon tLOD. For example, one could imagine a long corridor that, at
some point, contains a very dense accumulation of manipulatable bodies that effectively
prevents passage for the controlled body. If these obstacle bodies are located beyond the
LOD horizon, then the planner will happily ignore their existence and lead the robot down
the corridor until the obstacle bodies fall within its LOD horizon. However, as the problem
is not locally solvable, the planner will essentially “get stuck”. For such domains, it might
make sense to either increase the value of tLOD, or – in extreme cases – manually reduce
the selection of pairwise interactions that should be considered “details”.

Collision Matrix

In order to perform VLOD planning, a planning algorithm needs to be able to selectively
ignore details during its search. In particular, given our previous definition of detail, the
planner should ignore interactions between the controlled body and any other manipulat-
able bodies, if such interactions occur beyond the replanning interval tLOD. To do so, we
introduce an extended version of the state transition function e (see Chapter 2), called
eLOD:

eLOD : �r̂1, . . . , r̂n, a,M, G, r̄1, . . . , r̄n, ∆t� → �r̂�
1
, . . . , r̂

�
n, L�.

The difference between the two functions is that eLOD takes an additional parameter, the
collision matrix M that allows the configuration of the physics engine’s collision simulation
behavior. More specifically, M is a symmetric matrix of size n×n (where n is the number
of rigid bodies in the domain, as presented in Chapter 2) and defines whether pairwise
collisions between any two rigid bodies ri and rj should be resolved or ignored. A value
of 1 for a matrix entry mij (and therefore also mji) implies that a collision should be
resolved as if the two bodies were rigid, i.e., the bodies should not penetrate one another.
A value of 0 implies that collisions should be ignored by treating the two bodies as non-rigid

124

with respect to each other, i.e., the bodies should pass through one another. Ignoring a
collision also means that it will not be reported as part of the simulation function’s output
collision list L. By default, M is filled with ones, except for its main-diagonal that is always
zero-filled, because a body is unable to collide with itself.

9.1.2 VLOD Planning Algorithm

Algorithm 17: BK-RRT-VLOD
Input: Domain: d, Initial state: xinit, set of goal states: Xgoal, default collision

matrix: M , RRT sampling space: Y , timestep: ∆t, validation function:
Validate, max iterations: z.

tree ← NewEmptyTree();
tree.AddNode(xinit);
busy ← false;
for iter ← 1 to z do

if busy = true then
x ← x�;

else
�x, y� ← SelectNodeRRT(tree, Y); // See Section 5.3

M ← SetupCollisionMatrix(x, M);
�x�, L� ← TacticsDrivenPropagateVLOD(x, y, ∆t, d,M);
busy ← x�.b∧;
if Validate(x�, L) then

tree.AddNode(x�);
tree.AddEdge(x, x�, a);
if x� ∈ Xgoal then

return TraceBack(x�, tree);

else
if busy = true then

RollBack(x, tree); // See Section 5.3

busy ← false;

return Failed;

Algorithm 17 shows BK-RRT-VLOD, an extended version of the BK-RRT planning algo-
rithm (see Section 5.3), adding support for Variable Level-Of-Detail planning. The core
modification to the standard BK-RRT algorithm is that BK-RRT-VLOD reconfigures the
collision matrix M to set the currently appropriate Level-Of-Detail, before every state
transition. This reconfiguration is performed by the SetupCollisionMatrix function call,

125

taking as input the current collision matrix and the source state x, and producing as out-
put the new updated collision matrix. The resulting collision matrix is then passed to
the TacticsDrivenPropagateVLOD which is exactly identical to BK-RRT’s Tactics-based
state propagation function TacticsDrivenPropagate (see Section 5.3), except that the
VLOD version uses the state transition function eLOD that makes use of the collision ma-
trix M , instead of just using the plain simulation function e that always performs the
default collision behavior.

The SetupCollisionMatrix function is shown in Algorithm 18. The configuration per-
formed by the function depends on the time index of the current source state x. If the
current source state x has a time index less than tLOD, then all collisions are fully simulated
and resolved. However, if x.t lies beyond tLOD, then the collision is set to be ignored if it
involves a pair of bodies, with one body being a member in the set of controlled bodies
BControlled and the other being a member in the set of manipulatable bodies BManip (see Sec-
tion 2.3 for the definitions of these sets). All other pairwise collisions are treated normally.

Algorithm 18: SetupCollisionMatrix
Input: State: x, Collision Matrix: M .
// Let mij denote the element at the i-th row and j-th column of M.
for i ← 1 to n do

for j ← i to n do
if i = j then

mij = 0;
else

if (x.t > tLOD and
((ri ∈ BControlled and rj ∈ BManip) or (rj ∈ BControlled and ri ∈ BManip)))
then

mij ← 0;
mji ← 0;

else
mij ← 1;
mji ← 1;

return M ;

Figure 9.1 shows an illustrative example of VLOD planning. The controlled robot body
(R) has to navigate from its current state to the goal. The domain contains four poorly
predictable foreign-controlled moving bodies (labeled 1-4) and a static obstacle. Assuming
a LOD horizon tLOD = 2 seconds, the first body is treated with full detail during a predicted
collision that occurred before t = 2, thus requiring planning a path around the body. The

126

Figure 9.1: An illustration of VLOD planning.

static obstacle is fully predictable and relevant to the global path topology, thus it is always
treated as an obstacle (even when t > tLOD). The other moving bodies (2-4) only make
contact with the search tree beyond the horizon tLOD, thus they are ignored in this planning
iteration.

It should be noted, that all of the modifications that were performed to transform the BK-
RRT algorithm into its BK-RRT-VLOD version can also be seamlessly applied to transform
BK-BGT intro its equivalent BK-BGT-VLOD version. In fact, the VLOD approach itself
is agnostic to the planner’s node and action selection methods, since VLOD only affects
the state transition component of the planning algorithm.

9.2 Experimental Evaluation

We tested Variable Level-Of-Detail planning with the BK-RRT-VLOD algorithm using a
simulation framework that is able to model robot execution and domain uncertainty. For
the scope of these experiments, the planner’s Tactics model was configured to the tradi-
tional dynamic RRT navigation (as described in Section 6.1.1). The simulation timestep
∆t in all experiments was 1/60 second.

We devised two challenging dynamic robot navigation domains to test the effects of VLOD
planning. In each domain, the controlled robot body has to navigate from a starting state
to a goal area while avoiding multiple oscillating obstacles. The planner in this case uses a
simple deterministic Tactics model of where it expects the obstacles to move. We actively
model the domain’s execution uncertainty by controlling the amount of random divergence
of the obstacle’s actual motion paths from the planner’s prediction model. Additionally,
a small fixed amount of execution uncertainty is always present, due to the internal non-

127

determinism of the physics engine (see Section 2.2.2).

The controlled variables of our experiments are the LOD time horizon tLOD, the replanning
interval treplan, and the domain uncertainty. Note that, although we are using a fixed
replanning interval, the replanning loop is configured to prematurely abort an execution
and trigger an immediate replan if a physical collision occurs between the controlled body
and another manipulatable body during execution.

Figure 9.2: A search tree in the Hallway domain.

Figure 9.3: A solution trajectory in the Hallway domain, showing executions of obstacles
under high uncertainty.

In the “Hallway” domain, the main challenge is to execute a safe trajectory through a
dense field of 12 rapidly moving and not fully predictable obstacle robots. Figure 9.2
shows the search tree (black) as generated by the BK-RRT planner with full level of detail
(tLOD = ∞) during its first replan iteration. The planner’s linearly predicted trajectories
of the moving obstacles are indicated by the vertical paths. Figure 9.3 shows what indi-
vidual obstacle trajectories actually look like during execution under maximum domain
uncertainty (uncertainty value of 1.0).

The “Maze” domain (see Figure 9.4) is even more challenging from a navigation standpoint.
In its layout, the domain contains several “horseshoe”-shaped walls, consequently requiring
a deep search all the way to the goal state because a finite-horizon search would get the
robot stuck in a local search minimum. Similar to the Hallway domain, the Maze domain
contains several fast-moving foreign-controlled obstacles along the way, further increasing

128

Figure 9.4: A search tree in the Maze domain.

Figure 9.5: A solution trajectory in the Maze domain, showing the execution paths of
obstacles under high uncertainty.

129

the difficulty of the planner’s search. Again, the planner will use a linear prediction of the
obstacles, as shown in Figure 9.4, whereas their actual motions during execution can be
significantly different thanks to our uncertainty model (see Figure 9.5).

9.2.1 Performance Metric

When planning in robot navigation environments, the most relevant performance metrics
are the rate of physical collisions occurring during execution (i.e., the number of replan-
ning intervals that result in a collision during execution, divided by the total number of
replanning intervals required), as well as the amount of total accumulated planning time
required to get the robot from its initial state to the goal state. Combining these two vari-
ables, we can express the planner’s overall performance using a single relative performance
comparison metric, defined as

performance = (1− NormCollisions) (1− NormTime),

where NormCollisions and NormTime are both values ranging from 0-1, normalized over an
entire experiment. An ideal planning strategy would use a minimum amount of cumulative
planning time and generate a minimum number of collisions, thus generating a maximum
performance value.

9.2.2 The Merit of Replanning in Uncertain Domains

Because VLOD planning only makes sense in a replanning environment, we first investi-
gate the general relationship between domain uncertainty and replanning interval in our
navigation planning experimental setup. The graphs in Figure 9.6 show the effects of
varying replanning intervals and domain uncertainties on overall planning performance
(Figure 9.6(a)), and on its two defining components, namely collision rate (Figure 9.6(b))
and total accumulated planning time (Figure 9.6(c)). These particular results were com-
puted in the Hallway domain, with full detail (tLOD = ∞). Each data-point represents a
mean of 120 simulated trials, thus totaling 5400 simulated trials for the generation of the
graphs (with most trials consisting of many replanning iterations). Each trial begins with
the controlled body in the start location with randomly initialized opponent robots (posi-
tioned somewhere within their pre-constrained areas), and consists of repeated replanning
and execution until the robot reaches the goal area.

The performance graph in Figure 9.6(a) clearly shows that the optimal replanning interval
(i.e., the replanning interval leading to a maximum performance value), depends strongly
on the amount of uncertainty present in the domain. For domains with an uncertainty

130

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5 3 3.5

P
er

fo
rm

an
ce

Replanning Interval (s)

Uncertainty=0
Uncertainty=0.25
Uncertainty=0.5

Uncertainty=0.75
Uncertainty=1

(a) Impact of replanning interval and domain uncertainty on planning performance.
Hallway domain, VLOD planning disabled (tLOD = ∞).

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2 2.5 3 3.5

C
ol

li
si

on
R

at
e

Replanning Interval (s)

Uncertainty=0
Uncertainty=0.25
Uncertainty=0.5

Uncertainty=0.75
Uncertainty=1

(b) Impact of replanning interval and domain un-
certainty on collision rate. Hallway domain, VLOD
planning disabled (tLOD = ∞).

5

10

15

20

25

0.5 1 1.5 2 2.5 3 3.5

T
ot

al
P

la
n
n
in

g
T

im
e

T
o

G
oa

l
(s

)

Replanning Interval (s)

Uncertainty=0
Uncertainty=0.25
Uncertainty=0.5

Uncertainty=0.75
Uncertainty=1

(c) Impact of replanning interval and domain un-
certainty on total planning time (accumulated over
all replanning steps until goal was reached in exe-
cution). Hallway domain, VLOD planning disabled
(tLOD = ∞).

Figure 9.6: Analysis of the dependence between domain uncertainty and the optimal re-
planning interval in the Hallway domain.

131

value of zero, the collision rate (see Figure 9.6(b)) remains unaffected, even for extremely
long replanning intervals. This is to be expected, as the simulated execution will behave
nearly identical to the predicted solution by the planner (where the only remaining dif-
ference is caused by the engine’s natural non-determinism, as described in Section 2.2.2).
Because shorter replanning intervals will lead to a rapid increase in overall planning time
(see Figure 9.6(c)), maximum planning performance for domains without uncertainty is
achieved by using longer replanning intervals. However, for domains with increased uncer-
tainty, choosing a longer replanning interval clearly leads to higher collision rates. In fact,
looking solely at collision rates, one would definitely want to choose the smallest replanning
interval possible in order to minimize the rate of collisions during execution. The overall
performance metric (Figure 9.6(a)) clearly shows this trade-off between collision rate and
planning time. For domains with non-zero uncertainty, peak performance is achieved by
selecting a replanning interval that is able to significantly reduce the rate of collisions while
at the same time keeping planning times reasonable.

9.2.3 VLOD Performance Analysis

Having shown the general merit of replanning in uncertain physical navigation environ-
ments, we now investigate whether our VLOD planning approach is able to further improve
planning performance.

We analyzed VLOD planning performance for varying tLOD and replan intervals, both in
the Hallway and the Maze domains under simulated execution uncertainty. Figure 9.7
shows the results. Each data-point in the graphs represents the mean over 120 trials, this
time resulting in a total number of 6480 trials per domain. Note, that traditional planning
methods effectively assume a tLOD value of infinity, planning at maximum detail all the
time. As the average solution length in our domains was typically in the range from 3 to 5
seconds, the maximum tLOD in the graph (5.7 seconds) effectively mirrors the performance
of traditional methods and acts as our performance baseline.

Figures 9.7(a) and 9.7(b) show the performance values for the Hallway and Maze domains
respectively. In both cases, it is clear to see that VLOD planning has a positive impact
on performance for all tested replanning intervals. Generally, we find the pattern that the
VLOD planner achieves its highest performance with tLOD values that are slightly greater
than the corresponding replanning interval. This result makes sense, as using a tLOD value
lower than the replanning interval would mean that the robot will execute partial solutions
that have not been planned with the maximum level of detail, thus likely to collide with
obstacles. This reasoning is verified if we look at the corresponding collision rates shown in
Figures 9.7(c) and 9.7(d). Here, selecting a tLOD value lower than the replanning interval
results in an agressive growth of collision rates.

132

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
er

fo
rm

an
ce

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(a) Impact of tLOD and replanning on performance.
Hallway domain, Uncertainty=0.75.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
er

fo
rm

an
ce

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(b) Impact of tLOD and replanning on perfor-
mance. Maze domain, Uncertainty=0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6

C
ol

li
si

on
R

at
e

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(c) Impact of tLOD and replanning on collisions.
Hallway domain, Uncertainty=0.75.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

C
ol

li
si

on
R

at
e

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(d) Impact of tLOD and replanning on collisions.
Maze domain, Uncertainty=0.5.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

T
ot

al
P

la
n
n
in

g
T

im
e

T
o

G
oa

l
(s

)

LOD Time-Horizon (s)

Replan Int.=0.5s
Replan Int.=0.75s
Replan Int.=1.1s
Replan Int.=1.7s
Replan Int.=2.5s
Replan Int.=3.8s

(e) Impact of tLOD and replanning on total plan-
ning time. Hallway domain, Uncertainty=0.75.

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6

T
ot

al
P

la
n
n
in

g
T

im
e

T
o

G
oa

l
(s

)

LOD Time-Horizon (s)

Replan Int.=0.5s
Replan Int.=0.75s
Replan Int.=1.1s
Replan Int.=1.7s
Replan Int.=2.5s
Replan Int.=3.8s

(f) Impact of tLOD and replanning on total plan-
ning time. Maze domain, Uncertainty=0.5.

Figure 9.7: VLOD performance analysis for the Hallway (a,c,e) and Maze (b,d,f) domains.

133

The true benefit of VLOD planning, however, becomes clear when looking at the total
accumulated planning time in Figures 9.7(e) and 9.7(f). For example, in the Hallway
domain using a replanning interval of 0.5, we see an approximately 70% decrease in planning
time, when reducing tLOD from its maximum of 5.7s down to 0.5s. The reason for why the
VLOD approach is able to perform so much faster, lies within the fact that a lower value of
tLOD allows the planner’s search to find simpler solutions that ignore obstacle interactions
in the future. In the Maze domains, we see a similar trend of shorter planning times with
smaller values of tLOD, but the effect is less pronounced. The reasoning for this behavior
lies in the fact that the Maze domain remains significantly difficult to solve even when
foreign-controlled bodies are ignored due to a low value of tLOD. Although ignoring these
dynamic interactions makes the search evidently easier, the planner still needs to find a
trajectory that leads around the maze of static wall bodies without getting stuck in local
minima.

Conclusively, achieving optimal planning performance depends on multiple factors. First,
as we discussed already in Section 9.2.2, a replanning interval appropriate for the domain’s
level of uncertainty must be chosen. Given the replanning interval, maximum performance
is then achieved by selecting a value for tLOD that minimizes planning time and collision
rate. Our overall performance metric tries to capture this trade-off, proposing a tLOD value
that not only reduces collisions, but that’s also low on computational expense. Depending
on one’s particular needs and computational power available, one could weigh this metric
differently to put special emphasis on either safety or computational time.

9.3 Chapter Summary

In this chapter, we have introduced VLOD planning for physics-based domains with poorly
predictable bodies. We have tested its performance on two domains, using a rich simulated
model. We have analyzed the impact of the LOD horizon on planning performance over
different replanning intervals. Our overall results clearly show that VLOD planning is able
to significantly cut down computational cost at little to no expense to collision safety.

134

Chapter 10

Related Work

In this chapter we discuss related work to this thesis. We cover existing techniques in
motion planning, including approaches to the problems of robot navigation, behavioral
computer animation, body manipulation, and replanning. We furthermore cover existing
techniques for tactical robot control, especially in the robot soccer environment, and we
look at existing approaches to the robot minigolf problem.

10.1 Discrete Motion Planning

A traditional approach for robot navigation planning in continuous domains is to discretize
the underlying continuous state space into a finite set of searchable states. In 2D navigation
planning, the state space can be discretized into a grid of equally-sized square cells, and the
action space into transitions between grid cells. Given such a discretization, it is possible
to apply traditional graph search algorithms to find a solution by traversing the grid [58].
Grid cells in this case are treated as vertices and transitions are treated as edges. Edge
weights represent the cost to transition from one cell to another. Classical examples of
graph search algorithms used for grid-based path planning are Dijkstra’s algorithm [29]
and A* [28]. Dijkstra’s algorithm is both complete and optimal, because it is guaranteed
to find the shortest existing path in the grid. A* improves upon Dijkstra’s algorithm by
utilizing the cost of the path from the initial state to a node plus an estimate of the cost
from a node to the goal, as a heuristic for determining the order of node traversal during
the search. Depending on the domain, this technique can yield significant improvements in
computational cost over Dijkstra’s algorithm. A* is guaranteed to be complete and optimal
if its heuristic is admissible (i.e., the heuristic function never underestimates the distance
to the goal). One extension to A* is the D* algorithm [82] which allows for more efficient

135

replanning in the case that edge costs have changed from the ones used in a previous
planning query. It does so by re-using dependency information of the previous search and
updating only the weights of affected edges. D* is complete and optimal assuming an
admissible heuristic similar to A* [82].

Although these graph search algorithms carry the feature of completeness, they are only
complete within the particular resolution of the grid. Since the grid is a discretization
of a continuous state space, such grid-based algorithms are called resolution-complete [58]
when being used in inherently continuous domains. Furthermore, due to their graph-based
nature, grid-based approaches are not very scalable to higher dimensional state or action
spaces, as each additional dimension would result in an exponential increase of numbers
of grid-cells and edges respectively. Finally, due to their discretization requirements, grid-
based models are not well suited to model continuous robot kinematics and dynamics.

10.2 Sampling-Based Motion Planning

Sampling-based planning approaches intend to overcome the need for discretization and
the scalability problems encountered by grid-based planners under high grid resolutions
and dimensionality. Rather than attempting to discretize the continuous space and then
completely explore a potentially intractable large set of states, sampling-based approaches
rely on randomization to pick samples directly from the underlying continuous space [62].
While such algorithms are not complete, many of them are considered to be probabilistically
complete [58], implying that given an infinite amount of time, they would be complete,
as their sampling-mechanism would cover all of the search space. However, for finite time
applications this means that there is no guarantee that the algorithm will find a solution if it
exists, nor will it be able to determine that no solution exists. Nevertheless, sampling-based
planning algorithms are very popular and have been used in many robotics applications.

A pioneering sampling-based planning algorithm is Probabilistic Roadmaps (PRM) [44].
Here, random states and collision-free connections between these states are sampled from
the state space. States and their connections are added to a graph structure, also known
as a roadmap, which can then be searched using traditional graph-based search algo-
rithms [59]. Lazy-PRM [10] is an enhancement to the PRM algorithm which postpones
the collision checking component of the algorithm until the query stage. Depending on
the domain, it has been shown that Lazy-PRM can result in significant speed-ups over
standard PRM [10]. However, collision checks are not the only possible bottleneck in a
PRM-based planner. In challenging domains, and especially when kinematics and dynam-
ics are involved, establishing and executing the connection between two vertices of the
roadmap can become a non-trivial task and may require using a local planner [38, 91].

136

Rapidly-Exploring Random Trees (RRT) are another sampling-based planning technique
for continuous spaces [57]. RRT uses repeated random sampling to grow a search tree
through the state space with the objective that one of the tree’s leaves will eventually
reach the goal-state (see Section 5.3.3 for a visual example). Similarly to PRM, the tree’s
nodes are generated by randomly sampling from the continuous underlying state space
whereas the edges represent state transitions from a parent to a child node. The advantage
of the RRT algorithm is that the resulting trees tend to rapidly cover the reachable space.
Furthermore, basic RRT has been shown to be probabilistically complete [57], meaning
that given an infinite amount of time, it will find a solution if it exists. Several variants of
RRT exist to meet the specific challenges of different robot navigation tasks [15, 47, 67, 86],
including navigation under kinodynamic constraints [60].

One significant limitation of RRT-based approaches however, is the requirement of a dis-
tance metric which is able to express the distance between two states. Depending on the
particular kinematics and dynamics of the domain, obtaining a reliable distance metric can
in fact become a computationally intensive and non-trivial process [46]. Furthermore, much
of RRT’s performance depends on the selection of its underlying sampling distribution, a
process that is also highly domain-dependent [97].

Other types of randomized tree-based planners attempt to work around the requirement
of a distance metric by employing different node selection schemes. PDST [48] attempts
to maintain well-balanced coverage through the configuration space by using a subdivision
scheme on its distribution of samples.

In this thesis, we introduce two novel sampling-based planning algorithms, BK-RRT and
BK-BGT, that both rely on Skills and Tactics to purposefully constrain the set of searchable
actions, allowing a more informed search than traditional Tactics-free approaches. BK-
RRT is an extension of basic RRT and requires a distance metric, whereas BK-BGT uses
a novel node selection method that does not require a distance metric.

10.3 Efficient Replanning and VLOD Planning

Uncertain environments require the use of replanning to handle the divergence of the
world’s true state from the planner’s predictions. This thesis introduces Variable Level-
Of-Detail (VLOD) planning to plan more efficiently in domains that require frequent re-
planning due to uncertainty.

There exist several approaches that aim to increase the replanning performance of sampling-
based planning algorithms. ERRT [14] is an extension to RRT which allows for fast and

137

stable replanning through the introduction of a waypoint cache. In ERRT, samples of a
previously found path are stored and used as a goal-bias during following iterations, thus
probabilistically biasing the search towards previous results. In most instances, this ERRT
approach results in faster planning times and less oscillations between planning iterations.
ERRT does not explicitly model dynamics, but can be combined with lower level trajectory
control [15, 43] and a dynamic window method [12, 15, 33] to prevent the robot from enter-
ing a state of inevitable collision [34], allowing safe and collision-free navigation planning
in a fast-paced dynamic environment. Other related approaches to increase RRT’s replan-
ning abilities are DRRT [32] and Multipartite RRT [96]. Instead of biasing the search
towards previous samples, these algorithms store entire portions of previous search trees
to be re-used during search. In dynamic environments, replanning performance can be
further enhanced by retaining past planning information and combining it with a greedy
exploration strategy [9].

Instead of caching previous planning results, another approach for increasing replanning
performance is to reduce the computational complexity of each planning iteration directly
by relaxing the planning problem itself. A common method used in robot motion planning
is to introduce a layered planning architecture, where a global plan is computed by a
planner that uses a higher-level abstraction of the world (e.g., graph-based), which is
computationally efficient, but less accurate and typically unaware of lower-level dynamics.
The global plan produced by this planner is then handed to a lower-level, local planner
(or other control system) that performs a near-term finite-horizon search with the goal of
reaching the next waypoint of the global planner’s solution. Several variations of such dual-
layer planning approaches exist, differing mostly in the concrete planning methods used for
each layer. Existing combinations of global and local planning include grid-based distance-
transforms on top of potential fields [88], PRM on top of potential fields [91], MDPs on
top of RRT [21], D* on top of a state-lattice [75], and D* on top of a custom random
sampling-based dynamics planner [45]. One fundamental weakness shared by all of these
dual-layer approaches is the fact that the global planner ignores certain details, such as
dynamics, to perform its search more quickly. Hence, the global planner cannot guarantee
that the local planner will be able to find a valid solution to reach the next waypoint of
the global plan. For example, when controlling a vehicle with dynamic constraints, such
as an airplane, a grid-based global planner might produce a sequence of waypoints that
lead to the goal state, but that are not actually performable by the aircraft (e.g., because
of overly tight turns), thus preventing the local planner from finding a valid solution.

In this thesis, we introduce Variable Level-Of-Detail (VLOD) planning as a method for in-
creasing replanning efficiency in uncertain multi-body environments. VLOD does not focus
on caching previous planning results, but instead attempts to reduce planning complexity
directly by ignoring certain types of multi-body collisions that occur far in the planning
future and will therefore only be relevant at a later replanning iteration. VLOD planning

138

circumvents the global planning inaccuracy problems of layered planning approaches by re-
lying on a single fully dynamic planner that generates global plans leading all the way to
the goal state, only ignoring a certain subset of multi-body interactions that are assumed
to be locally solvable.

10.4 Animation Planning

All of the related planning work mentioned so far aims primarily at solving the collision-
free navigation problem of finding a sequence of actions that leads from an initial state to
some target state. We are, however, interested in planning problems beyond navigation; in
particular problems with additional constraints on the intermediate states of the solution
sequence (see Section 2.4). Such problems are common in the field of computer graphics,
where the goal is to create an animation involving one or more simulated bodies, that will
not only result in a particular outcome (i.e., the goal state), but also achieve a particular
desired visual behavior during its intermediate states.

Several animation approaches relax the constraints of the problem by relying on the concept
of physical plausibility [7] rather than physical correctness. This relaxation is achieved
by introducing additional control parameters such as the slight perturbation of collision
normals [7]. Markov Chain Monte Carlo (MCMC) can be used to enhance this technique in
order to compute solutions to pre-specified constraint problems [22]. However, the approach
suffers from long computational times, even for relatively low-dimensional problems [22].
Furthermore, relaxing the problem through physical plausibility is not helpful for robotics
planning applications which require physical accuracy.

Other approaches focus on user-interaction as a means for solving difficult constraint prob-
lems. For example, one approach uses an interactive interface which allows the user to
manipulate objects at any point during the simulation [76]. This system uses random
sampling and gradient descent to support the user in the search for constraint-satisfying
solutions. Such interactive systems can be enhanced significantly by allowing the user to
perform spatial queries to rapidly cut down the number of possible solutions, being able to
generate desired animations for scenes involving complex multi-body dynamics [85]. An-
other recent work demonstrates how sampling-based planning techniques can be combined
with user-provided constraints to solve animation and navigation planning of deformable
bodies [69]. The inherent downside of these semi-interactive techniques is clearly that
problem-specific user-involvement is required in order to find valid solutions. Although re-
lying on human knowledge might be acceptable for certain computer animation tasks (such
as the creation of animated movies), it becomes unacceptable for real-time autonomous
applications, such as robotics.

139

There also exists a body of work which employs motion planning and control techniques
to solve constrained computer animation problems. One approach uses a Finite State
Machine (FSM) as a behavioral modeling tool to describe the possible motion sequences
of humanoid characters [53]. The authors use an A*-based algorithm to compute mo-
tion paths for 100 animated humanoids navigating an environment with moving obstacles.
Unlike our sampling-based Skills however, the behaviors in the FSM are fully determin-
istic, thus leaving the choice of behavior as the only search parameter. Furthermore, the
behaviors consist of pre-determined action sequences, unlike our Skills that can perform
state-dependent, intelligent action generation during the search. A recent performance
improvement to this approach uses precomputed search trees to speed-up the planning to
real-time performance [54].

Another approach on animating humanoid characters introduces task-specific controllers
and a framework for switching between them by learning the appropriate state transition
preconditions via a SVM [31]. The result is a stable reactive controller that is applicable
under a variety of conditions. However, the approach itself does not perform any planning,
but instead relies solely on learning a strong reactive control strategy.

Other work covers the problem of animating human character motions when interacting
in complex environments [79, 90], including the physically plausible animation of object
manipulation. In terms of planning, however, these approaches focus solely on navigation
planning to, with, and around objects, ignoring the actual physics required for body ma-
nipulation (such as grasping, or the purposeful exertion of collisions), effectively preventing
these approaches to be applicable for physical robot manipulation tasks without further
enhancements.

Several modern approaches rely on the search of prerecorded motion databases or mo-
tion graphs to animate human characters in problems with goal and intermediate con-
straints [20, 78, 84]. These databases contain pre-recorded action sequences, but use novel
techniques to allow the generation of intermediate sequences, either through the means of
learning a statistical model [20], controllers [84], or interpolation [78]. However, all of these
approaches focus on the task of computer animation, and it is not clear whether they are
applicable on physical robots without specifically addressing the problems of prediction
uncertainty caused by model inaccuracy. Furthermore, all of these approaches focus solely
on navigation planning, and do not address manipulation planning.

In this thesis, we introduce sampling-based Skills and Tactics as a method for efficiently
constraining the set of searchable actions during planning. Although the core focus of this
thesis is robot motion planning, we also show that our planning methods can be efficiently
applied in challenging computer animation domains involving multiple interacting rigid
bodies with intermediate constraints on their animation sequence (i.e., the many-dice do-
main and the pool domain). Furthermore, thanks to the state-dependent decision making

140

capabilities of our non-deterministic Skills and Tactics, our planner is able to quickly gen-
erate novel and interesting animation sequences in the simulated robot soccer domain which
requires the goal-driven manipulation of non-actuated bodies in an adversarial environment.

10.5 Manipulation Planning

The previously mentioned approaches focus on solving problems with goals or intermediate
constraints on the controllable body. The planning approaches contributed in this thesis
also solve problems that require the purposeful manipulation of passive bodies, e.g., a ball
in robot soccer and in robot minigolf.

Much existing work in the area of manipulation planning focuses on the problem of control-
ling a robotic arm with an end-effector to move a passive body from one configuration to
another. Positioning the end-effector around the body and transporting the body through
an obstacle-ridden environment is in essence a special case of navigation planning. Hence,
experimental domains of sampling-based planners frequently include simulated examples of
end-effector positioning and navigation [47]. However, such pure navigation planning ap-
proaches oversimplify the manipulation problem by ignoring the task of actually grasping
the body. To become more applicable on real-world manipulators, much work focuses on
specifically modeling grasping [68] and explicitly integrating it as a necessary component
of the manipulation planning sequence [80, 83].

However, the problem of collision-free end-effector positioning and grasping only describes
a subset of possible manipulation problems. A different type of manipulation problems
are so-called dexterous manipulation tasks [73], where the body to be manipulated cannot
be temporarily “fused” with the end-effector through the means of grasping, but instead
can only be manipulated through the means of targetted collisions. As we have discussed
in Section 2.4, such dexterous manipulation can become a difficult problem, because it
is not possible to directly apply navigation controls to the manipulatable body, but in-
stead requires higher level knowledge about how to best exert forces through the means of
collisions.

To perform dexterous manipulation, some work focuses on analytically modeling specific
types of possible collisions in order to optimally compute the required actions to purpose-
fully manipulate the body [63, 65, 73]. A general limitation of such analytic solutions is
that their mathematical definition depends strongly on the specific types and shapes of
the bodies involved, therefore making them task-dependent, and not trivially applicable to
unencountered or larger scale problems.

141

Nevertheless, task-specific analytic approaches to dexterous manipulation have been suc-
cessfully applied in several real-world robot manipulation domains. For example, it has
been demonstrated that task-specific models can be used to solve challenging control prob-
lems, such as juggling a ball [1, 2]. A more recent example is the development of task-
specific analytic simulation and control models to implement a pool-playing robot manip-
ulator, focusing particularly on the collision model between two spheres [41, 61].

In this thesis, we introduce algorithms that rely on general physics-based simulation tech-
niques to model rigid body interactions. Instead of devising complex task-specific mathe-
matical models to generate analytic manipulation solutions, we rely on a combination of
forward planning and intelligent action-sampling via Skills and Tactics. This thesis further-
more shows that our Tactics-based algorithms are general enough to be applicable to a vast
variety of domains, and are able to find solutions quickly, even in challenging multi-body
manipulation problems (e.g., robot soccer and robot minigolf).

10.6 Robot Tactics and Control Architectures

In addition to addressing planning problems with additional constraints (Section 10.4) and
manipulation challenges (Section 10.5), this thesis also addresses the problem of efficiently
planning in domains that contain foreign-controlled adversaries (e.g., robot soccer). Plan-
ning goals for such domains go beyond the objective of safely navigating, and instead focus
on out-playing the opponent, typically requiring higher level tactical decision making.

Because we are interested in solving tasks with higher level goals, it is important to also
consider existing work which is not solely focused on motion planning. Cognitive architec-
tures such as SOAR [52] are frameworks which aim to model various facets of intelligent
reasoning. Traditionally, they rely on symbolic representations and have put little focus on
representing the low-level continuous physics or rigid body dynamics of a domain. Never-
theless, higher level symbolic reasoning approaches can be applied to control characters in
continuous real-time environments [51]. One particularly interesting insight for our work is
that the ability to model and anticipate an opponent’s movement can be a helpful addition
for planning in adversarial domains [50].

Besides such symbolic cognitive architectures, there also exists a vast body of layered
control architectures directly aimed at multi-robot behavioral control problems [8, 13, 25,
26, 35, 56, 74]. One such approach, that our work is partially based on, is called Skills,
Tactics, and Plays (STP) [13]. In STP, a robot’s behavior is modeled as a Tactic, a
finite state machine of several Skills. The Tactic and each of its Skills can perform state-
dependent decision making. For example, the Tactic determines when to perform state

142

transitions between Skills based on external events. Similarly, a Skill acts as an informed
real-time controller for a robot.

The STP model allows the design of elaborate reactive behaviors to tackle complex tactical
domains, such as real-time multi-robot soccer [13]. However, in the traditional STP model,
motion planning is treated as a lower level function that is invoked by individual Skills and
that solely focuses on the safe navigation problem, without modeling ball interactions,
and without being aware of the actual strategic goals of the Skill and higher level Tactic
that invoked the planner [14]. Therefore, higher level tactical decisions are performed
independently of lower level motion planning, making it challenging to implement behaviors
that are able to perform simultaneous ball dribbling and navigation, that is both tactically
sound and physically stable. Other robot soccer teams use similar control paradigms,
implementing motion planning only as a means for safe navigation, but not for tactical
decision making or ball manipulation [25, 56].

Instead of relying on deterministic and reactive Tactics that invoke a separate and tactically
uninformed navigation planner, the work in this thesis uses Skills and Tactics as an action
sampling model within a physics-based planner. In order to allow the planner to search
over different possible perturbations of tactical executions, we extend the traditional Skills
and Tactics model to become non-deterministic. Using sampling-based Skills and Tactics,
in combination with a rich physical multi-body model of the domain, our planner is able
to effectively find novel and stable control solutions for challenging and adversarial robot
soccer ball dribbling scenarios.

10.7 Robot Minigolf

This thesis contributes an autonomous minigolf-playing robot. So far, there exist only
few attempts in creating golf-playing robots. One approach uses an overhead-mounted
robot arm that is able to putt a golf ball around a table and into one of multiple holes
with hardcoded positions [42]. Putting is also used as an evaluation metric for improved
teleoperation of a robotic arm [70]. Another approach aims to play a small-scale version of
traditional golf by autonomously putting a ball into a hole using a small differential-drive
robot with a fuzzy reactive controller [39]. However, none of these existing experiments in
robot golf feature any kind of physics-based prediction model and, consequently, none of
them are able to plan and perform sequences of purposeful collisions, e.g., bouncing the
ball off a wall, and avoiding moving obstacles, which are typical challenges in a game of
minigolf.

In this thesis, we introduce a minigolf-playing robot that is able to autonomously solve

143

complex novel minigolf course configurations using physics-based planning. The physics-
based planning model allows the robot to solve courses that require purposeful collisions
involving multiple types of rigid bodies.

10.8 Model Parameter Optimization

Planning is a process that requires estimation of the future states of the world before
execution takes place. Such estimation can be viewed as the result of a simulation of the
real execution, using models of the real world. Simulation accuracy depends strongly on
the model’s parameters.

Traditionally, much work in model parameter optimization focuses on the purposes of
reactively acting well, and not for planning. For example, a variety of previous work
employs parameter optimization to improve locomotion control accuracy in robot tasks.
One example is the use of a genetic algorithm to fine-tune the gait parameters of legged
robots [23]. Note, however, that this approach does not aim to improve the accuracy of
a simulated model, but of the walking algorithm’s parameters itself, thus requiring use of
the physical robot during optimization.

Another approach also attempts to improve the overall walking performance of legged
robots, but does so by optimizing simulation model parameters [55]. However, the ap-
proach requires massive computations on a 60 node computer cluster to deliver results in a
reasonable amount of time. Furthermore, due to the nature of the physics parameters in-
volved, our approach is able to use the more deterministic and faster Nelder-Mead Simplex
optimization method [49, 71], instead of an evolutionary approach [3].

In this thesis, we present a method for optimizing the parameters of physics-based plan-
ning models, focusing specifically on achieving accurate simulations of physical multi-body
interactions, such as collisions. Our approach relies on complete episodes of real world
executions as ground-truth and automatically attempts to find a set of parameters which
lead to simulations that best match the pre-recorded ground-truth sequences. We test our
approach in the robot minigolf environment.

144

Chapter 11

Conclusion and Future Work

This chapter summarizes the contributions of this thesis and discusses promising directions
for future work.

11.1 Contributions

This thesis makes the following contributions:

• A Formalization of Physics-Based Motion Planning in Dynamic Multi-
Body Environments
To successfully plan in physically complex environments, a planner requires a model
that is sufficiently detailed to accurately predict the dynamics of the real world.
This thesis introduces physics-based motion planning, contributing a formal domain-
independent planning model based on rigid body dynamics, defining the state space
(i.e., the bodies’ mutable states at a point in time) and the domain (i.e., the bodies’
immutable parameters and the action space). State transitions are performed by
invoking a black-box physics engine which applies the action’s forces and torques to a
particular state and forward simulates the rigid body system by some timestep. Using
the physics-based planning model, this thesis shows that it is possible to represent a
rich variety of interesting and novel motion planning problems.

This thesis furthermore contributes an analysis of the different planning characteris-
tics and challenges that can be encountered when using the physics-based planning
model. In particular, this thesis introduces a formal classification hierachy of differ-
ent body types, and discusses how planning problem difficulty depends strongly on

145

the properties of body controllability and predictability.

• Non-Deterministic Skills and Tactics as Action Sampling Model
To make search in the physics-based control space more computationally feasible,
this thesis introduces non-deterministic Skills and Tactics as a method to reduce the
size of the searchable action space. These sampling-based Skills and Tactics make
it possible to encode a variable amount of domain-dependent knowledge (e.g. state-
dependent action selection) into the planning stage, making search feasible even for
challenging problems, such as the purposeful manipulation of passive bodies.

• Two Efficient Tactics-Driven Planning Algorithms: BK-RRT and BK-
BGT
This thesis contributes two physics-based planning algorithms that both rely on non-
deterministic Skills and Tactics as action sampling model, namely Behavioral Kino-
dynamic Rapidly-Exploring Random Trees (BK-RRT) and Behavioral Kinodynamic
Balanced Growth Trees (BK-BGT). BK-RRT’s node selection methodology is based
on traditional RRT and therefore requires the definition of a global sampling space
and a distance metric. BK-BGT uses our newly introduced Balanced Growth Trees
node selection method, not requiring a global sampling space or distance metric, and
yielding a less informed, but significantly faster and more scalable tree growth than
BK-RRT.

To further increase planning efficiency, this thesis contributes the busy flag as a
method for preventing unnecessary state duplications that can be caused by tem-
porary deterministic action generation of Skills. Additionally, the thesis contributes
the RollBack function to remove stale branches from the search tree, reducing the
memory requirements during search.

Finally, this thesis also introduces variations of the core BK-RRT and BK-BGT
algorithms, namely a hybrid planning scheme that probabilistically switches between
RRT and BGT node selection methods during planning, and an anytime planning
version that is able to provide partial solutions if interrupted at any point during
planning.

• Evaluation and Comparison of Planning Algorithms
This thesis contributes an extensive performance evaluation of the BK-RRT, BK-
BGT, and hybrid algorithms in five different simulated domains, namely navigation,
pool table, robot soccer, robot minigolf, and many-dice. The results suggest that
algorithm dominance is dependent on the domain and on the particular Skills and
Tactics, with BK-BGT exceeding in domains that are strongly Tactically constrained,
and BK-RRT performing better in traditional navigation settings.

• Variable Level-Of-Detail Planning
This thesis introduces Variable Level-Of-Detail (VLOD) planning as a method for

146

reducing overall planning time in uncertain multi-body execution environments that
require replanning. We introduce the VLOD time horizon tLOD and analyze its de-
pendence on the replanning interval, which in turn is chosen depending on a domain’s
uncertainty. We use two example domains to demonstrate that VLOD planning is
able to significantly reduce cumulative planning time with little to no expense to
collision safety.

• A Minigolf-Playing Robot
This thesis contributes a minigolf-playing robot that uses physics-based planning
to autonomously solve complex course configurations. We integrate our planning
algorithms into the CMDragons robot system and use a global vision system to allow
the free configuration of novel minigolf courses. Although some previous attempts
in robot golf exist [39, 42, 70], we believe that our approach is the world’s first
minigolf-playing robot to solve courses that require purposefully bouncing the ball
off obstacles, as it is frequently required in real-world minigolf courses. Furthermore,
we also show that our approach can successfully solve courses that contain moving
obstacles.

• Automated Parameter Optimization Based on Real Episodes for Physics-
Based Models
A physics-based planner’s prediction accuracy depends strongly on the various model
parameter values that describe the physical properties of the domain’s rigid bodies.
This thesis introduces methods for increasing the model’s accuracy by automatically
optimizing parameter values and comparing the simulated execution to a previously
collected set of ground-truth sequences. We test our approach in the robot minigolf
domain and show that the optimized set of parameters ultimately leads to signifi-
cantly better execution success rates.

• A Ball-Dribbling Robot Soccer Behavior, using Physics-Based Planning
This thesis contributes the PhysicsDribble behavior which relies on our physics-based
anytime BK-BGT planning algorithm with sampling-based Skills and Tactics to com-
pute its actions. We integrate the behavior into the CMDragons robot soccer system
and we show that it is able to significantly out-perform a traditional state-of-the-art
reactive robot soccer control behavior. We furthermore present visual results from
RoboCup 2009, where we tested the PhysicsDribble behavior under real competition
conditions, allowing our robot to effectively out-dribble the opponent robots, and
leading to a successful goal-shot for our team.

147

11.2 Future Work

Following are several possible directions for future work:

• Learning of Skills and Tactics
The planning algorithms presented in this thesis rely on the definition of Skills and
Tactics for efficient action sampling. Assembling a Tactic, defining its transition
probabilities, and selecting the Skills’ internal constants and sampling distributions
requires a certain degree of domain knowledge and human expertise. A next logical
step for future work would be to develop techniques which can automatically learn a
Tactics model that is optimized for a particular domain.

One possible approach would be to employ a parameter optimization algorithm sim-
ilar to the one used for the physics model optimization approach in this thesis. To
learn Skills and Tactics, however, the algorithm’s evaluation function would need
to evaluate the overall performance of the planner, while adjusting the parameters
of the Skills and Tactics itself (i.e. the sampling distributions, transition probabil-
ities, and possibly even the actual set of Skills itself). In order to prevent such an
approach from over-fitting to a particular problem instance, one would need to en-
sure that the planner performance is measured over a broad enough random set of
problem instances that are likely to be encountered within the domain. Such an ap-
proach should automatically yield a Skills and Tactics configuration that is strongly
optimized to perform well in its particular target domain.

A succeeding step would be to adjust Skills and Tactics parameters online, using
continuous monitoring of planning and execution success, while the robot is operating
in its environment. Such an online-optimization approach would allow a robot to
become a truly adaptive problem solver, autonomously adjusting and improving its
planning strategy to perform best, even in changing real-world environments.

• Multi-Robot Coordination
The work in this thesis focuses primarily on single-robot motion planning. An in-
teresting question is how to perform physics-based motion planning with multiple
robots. Our current approach extends and embeds the Skills and Tactics compo-
nents of the traditional STP model into the planning stage, leaving the question
open as to whether and how the Plays component of STP could be integrated into
the planner in order to allow search over different possible multi-robot role assign-
ments. Another question is how to plan in domains that require multiple robots to
coordinate their actions (e.g., two robots that collaboratively need to manipulate
a passive body). Presumably, one could introduce methods to allow information
sharing and action synchronization between multiple Tactics, possibly similar to the

148

approaches that are used in the reactive STP model. Such coordination issues would
be particularly challenging if each robot would run their own planner instance, thus
requiring inter-planner communication.

• Application on High-Dimensional Action Spaces
In this thesis, we integrate and evaluate our physics-based planning methods on the
CMDragons robot platform to successfully plan in the robot soccer and robot minigolf
domains. For future work, it would be interesting to apply our approaches to a larger
variety of robots, focusing particularly on robots with many degrees of freedom, such
as humanoids. How to best apply Skills and Tactics to control the high-dimensional
action space of a humanoid robot is still an open research question. One possible
approach might be to encode lower-level control and planning approaches, such as
walking and footstep planning, as shared lower-level building blocks (i.e. sub-Skills)
that can be configured and invoked by sampling-based Skills.

• Faster Planning
The only true remaining restriction from applying Tactics-driven, physics-based plan-
ning in arbitrarily complex real-world robot domains are its computational require-
ments. Although the emerging visual results and behaviors in the simulated domains
(i.e. the 1-vs-3 robot soccer) are impressive, they also took several seconds to com-
pute. In order to implement the PhysicsDribble robot soccer behavior in the real-time
CMDragons system, the Tactics model had to be significantly reduced in complexity
to still work effectively even with very small search tree sizes.

Therefore, an important direction for future work should be to further increase plan-
ning speed. Algorithmically, it should be possible to parallelize the planning algo-
rithm, for example by handing off different sub-branches of the search tree to different
threads. Especially with the current rise of multi-core architectures and massively
parallel general purpose GPU processing, the potential for overall planning speed
increase through parallelization is vast. Assuming these computational trends will
continue, the future should allow deeper planning with increasingly elaborate Tactics
models, ultimately enabling more and more intelligent and creative decision making
by robots.

149

150

Appendix A

The CMDragons Multi-Robot
System

The robot soccer and robot minigolf experiments in this thesis are implemented using the
CMDragons multi-robot system. CMDragons is Carnegie Mellon’s RoboCup Small Size
League (SSL) robot soccer team. The CMDragons system is the result of a collaborative
effort and builds upon the research and development contributions of its current and past
team members, dating back as far as 1997 [18, 87]. Special acknowledgment goes to James
Bruce, for developing most of the current CMDragons software framework, and Mike Licitra
for developing the current CMDragons robots.

In this appendix, we briefly describe the RoboCup Small Size robot soccer league. We
then introduce the CMDragons robot hardware and its capabilities. Finally, we describe
the overall architecture and individual components of its control software.

A.1 The RoboCup Small Size League (SSL)

RoboCup is an international initiative with the primary goal to foster research in robotics
and AI through the means of friendly robot soccer competitions. RoboCup features mul-
tiple robot soccer leagues, each with their own unique challenges.

In the Small Size League (SSL), teams play fully autonomous 5 vs. 5 robot soccer matches
with an orange golf ball on a field of approximately 6m×4m (see Figure A.1). Each team
is allowed to freely develop their own robot hardware, with the only constraints being
the robot’s size (maximum diameter of 18cm and maximum height of 15cm) and its ball

151

manipulation capabilities (maximum enclosure of the ball is limited to 20%, only 1 degree
of freedom can be removed from the ball during dribbling, and kick speed is limited to
10m/s). Robots can be radio-controlled through off-board computation, as long as the
entire system is fully autonomous. For robot and ball localization, the RoboCup Small
Size League allows the use of an off-board global vision system with cameras mounted
above the soccer field.

Figure A.1: A game in the RoboCup Small Size League.

The Small Size League is the fastest-paced league at RoboCup, with the stronger teams
driving around 2.5 m/s and kicking at the maximum allowed 10 m/s, requiring extremely
fast decision making and high accuracy. Challenges in the league include multi-agent
team strategy, safe navigation at high velocities, and purposeful ball manipulation. To be
competitive in the SSL, teams must excel at hardware engineering, algorithmic design, and
software development.

152

A.2 Robot Hardware

The CMDragons system consists of seven custom-made homogeneous robots (with a max-
imum of five used in a game). Figure A.2 shows multiple CMDragons robots, one without
its protective cover. The core of the current robot hardware has been developed in 2006,
with minor upgrades and maintenance modifications in recent years. The CMDragons
robot hardware is still highly competitive and allows the robot team to perform close to
optimal within the tolerances of the league’s rules.

A.2.1 Robots

Figure A.2: Five CMDragons robots, one shown without its protective cover (robots de-
veloped and constructed by Mike Licitra).

Each robot features a 4-wheel omni-directional drive system, propelled by four 30 Watt
brushless motors, each equipped with an optical encoder, enabling accurate odometry
measurements. Each wheel is custom-made and is composed of 15 outer miniature wheels,
all freely rolling orthogonally to the main wheel’s axis of rotation.

Each CMDragons robot carries two kicking mechanisms, for flat kicks and upwards “chip”

153

kicks respectively. Both kicking mechanisms consist of custom-built solenoids driven by a
shared bank of capacitors, charged to approximately 200 Volts. The flat kicker is able to
kick the ball with up to 15m/s, but its strength is fully controllable to allow kicking at
slower velocities. The chip-kicker accelerates the ball indirectly by hitting a metal “paddle”
mounted at the front-bottom of the robot, which in turn is able to strike the ball at an
approximately 45◦ upwards angle. The chip kicker is capable of propelling the ball up to
4.5m before hitting the ground, but can also be controlled to kick shorter distances. In
order to assure that the kicker is only triggered if a ball is truly within kicking range, each
robot features an infrared sensor and emitter mounted to the edges of the kicker opening,
letting kicks only occur if the infrared beam is interrupted by the ball.

For ball manipulation, the robot features a so-called “dribbler”: a rubber-coated, mo-
torized bar that is able to exert backspin on the ball. This dribbler-bar is mounted on
a servo-retractable hinged damper, allowing improved pass-reception and non-obstructed
chip-kicking. One significant hardware improvement introduced in 2010 (thanks to CM-
Dragons team-member Joydeep Biswas) is a novel dribbler assembly that encloses the
robot’s infrared sensor and the dribbler’s motor, thus “shielding” all valuable and fragile
exterior components from collisions with opponent robots.

The robot features two electronics boards. The “kicker-board” is mounted directly on
the robot’s base-plate and solely handles the high-voltage charge and discharge of the
kickers’ capacitors. The robot’s main-board is mounted above the core robot assembly
and performs motor control, local sensing, and communication. On-board processing is
performed by an ARM7 processor and a Xilinx Spartan FPGA. For communication, the
robot features a Linx HP3 transmitter and receiver that operate in the 902-927 MHz
frequency range. Although technically able to perform bi-directional communication, the
system relies mostly on one-way communication from the off-board computer for control
only.

A.3 Software

CMDragons features a modular software infrastructure (see Figure 7.2) consisting of the
four components Vision, Server, Soccer, and GUI, that are interconnected via UDP net-
working. The entire system has been implemented in C++ and currently runs on a Linux
platform. The Server module receives the raw positions and orientations of all robots and
the ball from the Vision module at 60Hz intervals. The server’s Tracker then post-processes
this raw data using a Kalman filter [89], providing a relatively accurate estimate of the
positions and velocities of the robots and ball. These state estimates are then integrated
into the Soccer module’s world model. The Soccer module implements all the intelligent

154

robot soccer decision making, including multi-robot strategy, and single-robot control. The
output of the Soccer module is a set of low level motion and actuation commands that are
sent back to the Server, which in turn communicates them to the robots via the wireless
radio.

The modularity of the CMDragons software architecture is beneficial for multiple reasons.
First, it allows running each of the individual components on separate computers, which
can be extremely valuable during development and testing, as multiple team-members can
work on separate work-stations and can remotely connect their Soccer or GUI programs
to the server computer. Another advantage is that it allows transparent swapping of
individual modules without affecting the rest of the system. For example, it is possible to
replace the Server module with a Simulator module (further explained in Section A.3.4)
that provides a semantically identical network interface to the Soccer and GUI programs.

Figure A.3: The CMDragons system infrastructure, including the integration of physics-
based planning.

A.3.1 Vision

In past years, each team in the RoboCup Small Size League was allowed to mount their
own set of cameras above the field and run their own vision system to perform robot and
ball localization. This, however, lead to many logistic and organizational problems during
competition, and furthermore required new-coming teams to spend significant effort on “re-
inventing” approaches to the already adequately solved vision problem. As a solution, the

155

Small Size League committees decided to pursue the concept of a shared vision system, i.e.,
a single set of cameras per field, connected to a single vision server computer, running an
official vision software. This lead to the development of SSL-Vision, the shared open-source
vision system for the RoboCup Small Size League [94]. I was SSL-Vision’s lead designer and
continue to be one of the project’s lead developers and project administrators. Beginning
with RoboCup 2010, the use of the shared vision system will be mandatory for all teams,
and teams are no longer allowed to mount their own cameras.

The SSL-Vision software architecture and image processing stack is described in Ap-
pendix B. Within the CMDragons lab environment, SSL-Vision runs on a desktop computer
that contains two separate 1394b host controllers, each connected to a respective AVT
Stingray F46 color camera. Each camera is configured to capture at 780x580 resolution in
YUV422 at 60Hz. The vision system’s output consists of the location and orientation for
each robot, as well as the location of the ball, all in real-world field coordinates.

A.3.2 Soccer

The Soccer component relies on the Skills, Tactics, and Plays (STP) [13] model to perform
its intelligent decision making. Within the STP architecture, plays are responsible for
coordinating multi-robot team strategy, whereas Skills and Tactics compute the actions
for individual robots (although Tactics can also coordinate their actions with each other,
as we will elaborate on further below).

Plays

The multi-robot strategy layer uses a Playbook, consisting of multiple Plays, each describing
a set of individual “roles” to be distributed among the available robots. The play-system
works in a singleton centralized fashion: exactly one play is active at any point in time,
assigning the roles for all robots. The playbook itself is stored in a configuration file,
allowing modifications at run-time without system recompilation [11].

Plays are selected based on a set of pre-conditions. For example, a “defensive” play will only
be assigned if its precondition is met that the opponent currently has ball possession. If
multiple plays are simultaneously applicable, then one of them is chosen randomly. To bias
this random play selection process, the playbook allows the definition of custom weights
for each play.

Once selected, a play will assign the individual single-robot roles to the actual robots.
The assignment occurs dynamically: each robot role has a cost function that is able to

156

heuristically estimate the cost of assignment to a particular robot, given the robot’s current
physical state in the world. For example, an “attacker” role should preferably be assigned
to the robot that is currently closest to the ball. Thus, its cost metric simply returns
the distance between the potential robot’s current location and the ball’s location. The
role assignment process seeks global optimality, that is, it selects a mapping from roles to
individual robots that will minimize the sum of all role’s individual cost functions. Because
the team is limited to only 5 robots in a game, the play system can exhaustively compute
the cost values for all possible mappings and is therefore guaranteed to find and assign the
optimal assignment mapping.

Skills and Tactics

Besides the novel physics-based planning behaviors, such as the PhysicsDribble behavior
(see Chapter 7), all other single-robot behaviors in the CMDragons system are implemented
as traditional Skills and Tactics, as defined by the STP model [13]. Within the STP model,
both Skills and Tactics act as single-robot controllers, taking as input the world’s state, and
producing as output a control for the robot to execute. The difference between Skills and
Tactics is that Skills implement low-level control tasks that are invoked by Tactics, which
perform higher level single-robot behaviors. Furthermore, only Tactics implement the role
assignment cost function described in Section A.3.2 and therefore only Tactics can be
directly assigned to robots using the Play system. Examples of Tactics in the CMDragons
system are “attacker”, “defender”, “goalie”, and “supporter”. Internally, Tactics may
contain any kind of control code, but within the CMDragons system, Tactics typically
employ a finite state machine to transition between Skills. For example, the “Attacker”
Tactic transitions between the Skills “get close to ball”, “steal ball”, and “kick” (amongst
others), where the particular transitions depend on the current world state. Skills are
typically treated as fundamental control building-blocks in the CMDragons system, and it
is common that a single Skill is used by multiple different Tactics, thus reducing the need
for re-implementation of frequent tasks. Furthermore, all Skills and Tactics can rely on a
shared library of “helper functions” that are able to perform frequent control and math
computations. One particular such shared helper function is the navigation planner of the
CMDragons system.

Navigation Planning

The navigation planner in the CMDragons system is based on ERRT [14, 15, 19], and is
able to compute paths from a current location to a target location. Unlike our physics-
based planning approaches presented in this thesis, the CMDragons ERRT planner does

157

not simulate dynamics and therefore produces velocity-free paths that can be potentially
dangerous to execute directly. To achieve safety, the CMDragons planner uses a post-
processing step based on the dynamic window method [12, 33] to ensure that the velocities
which are sent to the robot will not result in a collision. While such a strategy will not yield
time-optimal control, it does guarantee safety and furthermore allows planning at much
faster rates than fully dynamic planning. This ERRT planner solves only the problem of
navigation, and is completely unaware of multi-body interactions, or of the higher level
tactical goals of its calling Skill or Tactic. These properties make it difficult to construct
behaviors that need to rely on purposeful ball-manipulation and on navigation planning
simultaneously. This limitation was a major source of motivation for the development of
the physics-based Tactics-aware planning approaches presented in this thesis. Now, the
CMDragons system includes the physics-based planner and the PhysicsDribble behavior
(see Chapter 7) which is actively used during games.

State Evaluation

Many of the CMDragons Tactics need to constantly make difficult strategic choices from
a vast array of possible options. One particularly challenging example is the problem of
where to best position a robot, when running a “supporter” behavior. A supporter’s role
is to assist the robot that currently handles the ball (the “attacker”), by being available
for passes, but also by not interfering with the attacker’s actions. To make such strategic
decisions, many CMDragons Tactics rely on heuristics that are able to evaluate the quality
of potential states. The Tactic then computes the heuristic quality for many such potential
states and chooses the best one. The actual heuristics typically consist of a weighted set
of individual evaluators, that each represent one particular quality metric. In the case of
the supporter-Tactic, the evaluation consists of the following factors:

• Angle Toward Opponent’s Goal-Box
The supporter robot prefers positions that allow a direct shot onto the opponent’s
goal, allowing direct deflections from a pass-reception to a goal-shot.

• Clear Path for Ball Reception
The supporter robot prefers positions that create an un-obstructed corridor for the
ball to travel from its current position to the supporter’s dribbler.

• Distance From Opponents
The supporter robot prefers positions that maximize the distance from opponent
robots. This metric is particularly useful to outrun opponent’s that attempt to
“mark” the supportive robot.

158

• Distance Toward Attacker Robot
The supporter robot prefers positions that are within good pass reception distance.
Being too far from the opponent requires long passes that are less likely to succeed,
whereas being too close can interfere with the attacker’s actions.

• Distance From Robot’s Current Physical Location
The supporter robot prefers positions that are close to the robot’s current position,
thus minimizing travel time and preventing unneccesary oscillations.

The actual weights for each of these evaluators are currently determined manually via ex-
perimental optimization. Optimizing these parameters automatically by using supervised
learning techniques is a major future goal for the CMDragons team.

Multi-Robot Coordination

In the CMDragons system, there is a clear distinction between multi-robot role assignment
(i.e., Plays), and single-robot control (i.e., Skills and Tactics). However, throughout the
course of a robot soccer game, there are many instances where a subset of robots need to
jointly coordinate their controls. One example are passes, where the receiving robot needs
to be aware of the intended target location of the passing robot’s kick, preferably before the
kick occurs. To coordinate such multi-robot events, the CMDragons system provides the
ability for Tactics to share important information about their internal state in a shared state
data structure that is accessible to all robots. This shared state data structure essentially
implements a publish/subscribe communication model between robots. Because each robot
has a shared state, all shared states are updated in lock-step. For example, at a particular
frame number n, each robot is allowed to read the shared states of all other robots which
were set at frame n − 1. Similarly, each robot is only allowed to modify their shared
state information for frame n, while frame n is occurring, and this state will not be made
available to the other robots until the next frame n + 1. Using this lock-step scheme
successfully prevents potentially dangerous race-conditions during communication, while
only incurring a single frame latency.

A.3.3 GUI

Using the Skills, Tactics, and Plays infrastructure, it is possible to model complex multi-
robot behaviors. However, such complexity can also make it challenging to analyze and
debug the many components and parameters of the system. To overcome such challenges,
CMDragons features a logging infrastructure that is able to record complete sequences

159

of world states during games. Besides containing the world state (which consists of the
ball’s and all the robots’ state parameters), the system also records the internal state of
the Play-selection system and the current hierarchy of selected Tactics. Additionally, each
Tactic is able to write further debugging information into the log, thus providing detailed
information about the Tactics’ internal reasoning at any given point in time.

To make use of such rich data, CMDragons features a Viewer program that allows easy
browsing through logs. Figure A.4 shows a screenshot of this viewer. The internal state of
the Play system and Tactics is shown as a browsable hierarchy of text (on the right). The
world state is drawn onto the virtual soccer field, and allows toggling of several visualization
options. Furthermore, the viewer can display the current velocity of the robots or balls as
a graph (bottom).

Figure A.4: A screenshot of the CMDragons Viewer.

A.3.4 Simulator

Being able to accurately simulate robot behaviors is an integral part of CMDragon’s de-
velopment cycle. Simulation allows rapid testing of new code without the need to impose
drain on the robotic hardware. Additionally, it allows testing of scenarios that cannot be
tested with the limited number of physical robots, such as full five-on-five RoboCup games.

160

For this purpose, CMDragons features a Simulator module that can be used instead of the
Server module. To the remaining infrastructure (i.e. Soccer and GUI), the Simulator be-
haves identically to the Server module: it produces state observations that are integrated
into the Soccer module’s world model, and it receives robot motion commands from the
Soccer module that are then executed on the simulated robots. In order to accurately
simulate real-world robot interactions, the Simulator module uses the same physics engine
and model that we introduced for our physics-based planner. In particular, the robot shape
and dribbling model is identical to the one presented in Chapter 7. Figure A.5 shows an
example of the simulator’s 3D rigid body representation of the soccer domain.

Figure A.5: A visualization of the Simulator’s internal state.

A.4 Appendix Summary

In this appendix, we have briefly presented the CMDragons architecture, including the
robot hardware, and off-board control software. Members of the past and current CM-
Dragons teams, who we acknowledge, are Joydeep Biswas, James Bruce, Mike Licitra,
Gabriel Levi, Philip Wasserman, Michael Bowling, Brett Browning, Sorin Achim, Kwun
Han, and Peter Stone. In the following appendix, we further explain the SSL-Vision soft-

161

ware that CMDragons and other Small Size League Teams rely upon for robot and ball
localization.

162

Appendix B

The SSL-Vision Shared Vision
System

In Appendix A, we have outlined the CMDragons RoboCup Small Size League (SSL)
robot soccer system. A significant component contributing to CMDragons’ performance is
its global vision system, delivering accurate localization of the robots and the ball in real-
time. This appendix explains the details of “SSL-Vision”, the open source vision system
for the RoboCup Small Size League that is used by CMDragons and that I significantly
contributed to design and develop.

In previous years, the RoboCup Small Size League rules allowed every team to mount their
own cameras above or next to the soccer field. To adequately cover the entire soccer field,
teams typically use two cameras, one above each half. With up to six teams sharing a soccer
field, this configuration results in several organizational problems. Each team requires a
significant amount of time to mount and calibrate their cameras. During this calibration
time, the field is unusable for actual robot soccer matches or robot testing (see Figure B.1).
Furthermore, due to the setup overhead, teams are tied to their fields, and are unable to
play testing matches against teams from other fields (a typical RoboCup competition has
4 fields). Finally, letting each team provide their own cameras also prevents scalability of
the league, to e.g., a larger field that would require 4 cameras for full coverage.

The requirement that each team provides their own vision system also makes it difficult for
new teams to enter the league. Many beginner teams spend significant time and resources
on re-implementing and re-inventing solutions to the vision and localization problem which
has already been solved with sufficient accuracy and performance by many other teams. In
fact, among the strong teams in the Small Size League and even other RoboCup leagues,
the state-of-the-art vision approaches seem to have converged to very similar color-based

163

segmentation methods [4, 16, 40, 64].

Figure B.1: Teams mounting their vision equipment before a RoboCup competition.

To overcome these limitations, the SSL committees decided to migrate to a shared vision
system, i.e., to a single set of cameras per field that are connected to an image processing
server which is broadcasting localization output to the participating teams. The software
for this server needs to be flexible, i.e., scalable for future changes and open to new ap-
proaches, as well as competitive, i.e., performant and precise, to not constrain the current
performance of the top teams. This system, named SSL-Vision, is developed by a group of
volunteers from the SSL, with my role being the project’s lead designer, and lead developer.
After having been successfully tested on a voluntary basis at RoboCup 2009, SSL-Vision
will be the only global sensing platform allowed in the Small Size League at RoboCup
2010.

The remainder of this appendix is organized as follows: Section B.1 describes the overall
architecture of the system. We then present the system’s approaches for image process-
ing and camera calibration in Section B.2. Finally, we conclude with a summary, and a
short discussion of the system’s implications for RoboCup and other robotics research in
Section B.3.

B.1 Framework

SSL-Vision is intended to be used by all Small Size League teams, with a variety of camera
configurations and processing hardware. As such, configurability and robustness are key

164

Figure B.2: The extendible, multi-threaded processing architecture of SSL-Vision.

design goals for its framework architecture. Additionally, the project’s collaborative open-
ness and its emphasis on research all need to be reflected in its framework architecture
through an extendable, manageable, and scalable design.

One major design goal for the framework is to support concurrent image processing of
multiple cameras in a single seamless application. Furthermore, the application should
integrate all necessary vision functionality, such as configuration, visualization, and actual
processing. To achieve better scalability on modern multi-core and hyper-threaded archi-
tectures, the application uses a multi-threaded approach. The application’s main thread is
responsible for the Graphical User Interface (GUI), including all visualizations, and config-
uration dialogs. Additionally, each individual camera’s vision processing is implemented in
a separate thread, thus allowing truly parallel multi-camera capture and processing. The
application is implemented in C++ and makes heavy use of the Qt toolkit [72], to allow
for efficient, platform-independent development.

165

Fig. B.2 shows an overview of the framework architecture. The entire system’s desired
processing flow is encoded in a multi-camera stack which fully defines how many cameras
are used for capturing, and what particular processing should be performed. The system
has been designed so that developers can create different stacks for different robotics appli-
cation scenarios. By default, the system will load a particular multi-camera stack, labeled
the “RoboCup Small Size Dual Camera Stack” which we will elaborate on in the following
section. However, the key point is that the SSL-Vision framework provides support for
choosing any arbitrarily complex, user-defined stack at start-up, and as such becomes very
extendible and even attractive for applications that go beyond robot soccer.

Internally, a multi-camera stack consists of several threads, each representing the process-
ing flow of a corresponding capture device. Each thread’s capturing and processing flow
is modeled as a single-camera stack, consisting of multiple plugins which are executed
in order. The first plugin in any single-camera stack implements the image capturing
task. All capture plugins implement the same C++ capture interface, thus allowing true
interchangeability and extendibility of capture methods. The framework furthermore sup-
ports unique, independent configuration of each single-camera stack, therefore enabling
capture in heterogeneous multi-camera setups. Currently, the system features a capture
plugin supporting IEEE 1394 / DCAM cameras, including higher bandwidth Firewire 800
/ 1394B ones. Configuration and visualization of all standard DCAM parameters (such as
white balance, exposure, or shutter speed) is provided through the GUI at run-time, thus
eliminating the need for third-party DCAM parameter configuration tools. The system
furthermore features another capture plugin supporting capturing from still image and
video files, allowing development on machines which do not have actual capture hardware.
Additional capture plugins for Gigabit Ethernet (GigE) Vision as well as Video4Linux are
under construction as well.

B.1.1 The Capture Loop

A capture plugin produces an output image at some resolution, in some color-space. For
further processing, this image data is stored in a ring-buffer which is internally organized
as a cyclical linked-list where each item represents a bin, as is depicted in Fig. B.2. On
each capture iteration, the single-camera stack is assigned a bin where it will store the
captured image and any additional data resulting from processing this image. As the stack
is being executed, each of its plugins is sequentially called, and each of them is able to
have full read and write access to the data available in the current bin. Each bin contains
a data map, which is a hash-map that is able to store arbitrary data under a meaningful
label. This data map allows a plugin to “publish” its processing results, thus making them
available to be read by any of the succeeding plugins in the stack.

166

The purpose of the ring-buffer is to allow the application’s visualization thread to access
the finished processing results while the capture thread is allowed to already move on to
the next bin, in order to work on the latest video frame. This architecture has the great
advantage of not artificially delaying any image processing for the purpose of visualization.
Furthermore, this ring-buffered, multi-threaded approach makes it possible to prioritize
the execution schedule of the capture threads over the GUI thread, thus minimizing the
impact of visualization on processing latency. Of course it is also possible to completely
disable all visualizations in the GUI for maximum processing performance.

In some processing scenarios it is necessary to synchronize the processing results of multi-
ple camera threads after all the single-stack plugins have finished executing. This is done
through optional multi-camera plugins. A typical example would be a plugin which per-
forms the data fusion of all the threads’ object detection results and then sends the fused
data out to a network.

B.1.2 Parameter Configuration

Configurability and ease of use are both important goals of the SSL-Vision framework. To
achieve this, all configuration parameters of the system are represented in a unified way
through a variable management system called VarTypes [92]. The VarTypes system allows
the organization of parameters of arbitrarily complex types while providing thread-safe
read/write access, hierarchical organization, real-time introspection/editing, and XML-
based data storage.

Fig. B.2 shows the hierarchical nature of the system’s configuration. Each plugin in the
SSL-Vision framework is able to carry its own set of configuration parameters. Each single-
camera stack unifies these local configurations and may additionally contain some stack-
wide configuration parameters. Finally, the multi-camera stack unifies all single-camera
stack configurations and furthermore contains all global configuration settings. This entire
configuration tree can then be seamlessly stored as XML. More importantly, it is displayed
as a data-tree during runtime and allows real-time editing of the data. Fig. B.3 shows a
snapshot of the data-tree’s visualization.

B.2 RoboCup SSL Image Processing Stack

The system’s default multi-camera stack implements a processing flow for solving the
vision task encountered in the RoboCup Small Size League. In the Small Size League,
teams typically choose a dual-camera overhead vision setup. The robots on the playing

167

Figure B.3: Screenshot of SSL-Vision, showing the parameter configuration tree (left), live-
visualizations of the two cameras (center), and views of their respective color thresholding
YUV LUTs (right).

field are uniquely identifiable and locatable based on colored markers. Each robot carries a
team-identifying marker in the center as well as a unique arrangement of additional colored
markers in order to provide the robot’s unique ID and orientation. In the past, each team
was able to determine their own arrangement and selection of these additional markers.
However, with the introduction of the SSL-Vision system, it is planned to unify the marker
layout among all teams for simplification purposes.

The processing stack for this Small Size League domain follows a typical multi-stage ap-
proach as it has been proven successful by several teams in the past. The particular
single-camera stack consists of the following plugins which we explain in detail in the
forthcoming sections: image capture, color thresholding, runlength encoding, region ex-
traction and sorting, conversion from pixel coordinates to real-world coordinates, pattern

168

detection and filtering, and delivery of detection results via network.

B.2.1 CMVision-Based Color Segmentation

The color segmentation plugins of this stack, namely color thresholding, runlength encod-
ing, region extraction and region sorting, have all been implemented by porting the core
algorithms of the existing CMVision library to the new SSL-Vision plugin architecture
[17]. To perform the color thresholding, CMVision assumes the existence of a lookup table
(LUT) which maps from the input image’s 3D color space (by default YUV), to a unique
color label which is able to represent any of the marker colors, the ball color, as well as any
other desired colors. The color thresholding algorithm then sequentially iterates through
all the pixels of the image and uses this LUT to convert each pixel from its original color
space to its corresponding color label. To ease the calibration of this LUT, the SSL-Vision
system features a fully integrated GUI which is able to not only visualize the 3D LUT
through various views, but which also allows to directly pick calibration measurements
and histograms from the incoming video stream. Fig. B.3 shows two example renderings
of this LUT. After thresholding the image, the next plugin performs a line-by-line runlength
encoding on the thresholded image which is used to speed up the region extraction pro-
cess. The region extraction plugin then uses CMVision’s tree-based union find algorithm
to traverse the runlength-encoded version of the image and efficiently merge neighboring
runs of similar colors. The plugin then computes the bounding boxes and centroids of all
merged regions and finally sorts them by color and size.

B.2.2 Camera Calibration

In order to extract meaningful information about the location of objects on the field, SSL-
Vision requires a calibration for defining the relationship between the pixel coordinates
of the image plane and the actual real-world coordinates on the soccer field. In past
years, teams have employed a variety of calibration techniques, often requiring the use of
calibration patterns, adding additional logistic constraints to the competition.

SSL-Vision introduces a calibration procedure that does not require any calibration pat-
terns. Instead, the procedure relies solely on the image delivered by the cameras and on
the field’s known dimensions. Because SSL-Vision uses two independent vision stacks, each
camera uses an independent calibration configuration. The SSL-Vision calibration model
was developed and implemented by members of the B-Smart SSL team, and the mathe-
matical details of the calibration model are described in [94]. Generally, the calibration
method consists of two steps:

169

1. Using SSL-Vision’s real-time GUI, the user selects the four corner points of the half
soccer-field in the camera image. These manually selected points act as constraints
to construct a rough initial calibration.

2. Using the initial calibration estimate obtained from the manual point selection, the
system automatically detects the position of the field lines in the image by using
edge detection. The system then uses these extracted locations to further refine
its geometric calibration by performing a least-squares fit of the calibration model’s
parameters, finding the best set of parameters that will consistently map the detected
edge locations to their known reference world-coordinates.

Once calibrated, the model is able to convert image coordinates to field coordinates, and
vice versa (by using the model’s inverse function).

B.2.3 Pattern Detection

After all regions have been extracted from the input image and all their real-world coordi-
nates have been computed, the processing flow continues with the execution of the pattern
recognition plugin. The purpose of this plugin is to extract the identities, locations, and
orientations of all the robots, as well as the location of the ball. The internal pattern
detection algorithm was adopted from the CMDragons vision system and is described in
detail in a previous paper [16].

Although this pattern detection algorithm can be configured to detect patterns with ar-
bitrary arrangements of 2D colored markers, the Small Size committees are intending to
mandate a standard league-wide pattern layout with the transition to SSL-Vision, for
simplification purposes.

B.2.4 System Integration and Performance

After the pattern detection plugin has finished executing, its results are delivered to par-
ticipating teams via UDP Multicast. Data packets are encoded using Google Protocol
Buffers [36], and contain positions, orientations, and confidences of all detected objects,
as well as additional meta-data, such as a timestamp and frame-number. Furthermore,
SSL-Vision is able to send geometry data (such as camera pose) to clients, if required. To
simplify these data delivery tasks, SSL-Vision provides a minimalistic C++ sample client
which teams can use to automatically receive and deserialize all the extracted positions
and orientations of the robots and the ball. Currently, SSL-Vision does not perform any

170

Plugin Time
Image capture 1.1 ms
Color thresholding (CPU) 3.6 ms
Runlength encoding 0.7 ms
Region extraction and sorting 0.2 ms
Coordinate conversion < 0.1 ms
Pattern detection < 0.1 ms
Other processing overhead 0.4 ms
Total frame processing < 6.2 ms

Table B.1: Single frame processing times for the plugins of the default RoboCup stack.

“sensor fusion”, and instead will deliver the results from both cameras independently, leav-
ing the fusion task to the individual teams. Similarly, SSL-Vision does not perform any
motion tracking or smoothing. This is due to the fact that robot tracking typically assumes
knowledge about the actual motion commands sent to the robots, and is therefore best left
to the teams.

Table B.1 shows a break-down of processing times required for a single frame of a progres-
sive YUV422 video stream of 780×580 pixel resolution. These numbers represent rounded
averages over 12 consecutive frames taken in a randomly configured RoboCup environment,
and were obtained on an Athlon 64 X2 4800+ processor.

B.3 Appendix Summary

In this appendix, we have introduced SSL-Vision, the shared vision system for the RoboCup
Small Size League and for the CMDragons multi-robot system. We have presented the sys-
tem’s open software architecture and have described its approaches for image processing,
camera calibration, and pattern detection. We strongly believe that the system will pos-
itively affect the Small Size League by reducing organizational problems and by allowing
teams to re-focus their research efforts towards elaborate multi-agent systems and control
issues. Because SSL-Vision is a community project, everybody is invited to contribute.
Therefore, SSL-Vision’s entire codebase is released as open-source [95].

Finally, it should be strongly emphasized that SSL-Vision’s architecture is not at all limited
to only solving the task of robot soccer vision. Instead, the system should be recognized
as a framework which is flexible and versatile enough to be employed for almost any
imaginable real-time image processing task. While, by default, the system provides the

171

stacks and plugins aimed at the RoboCup domain, we are also eagerly anticipating the use
and extension of this system for applications which go beyond robot soccer.

172

Appendix C

Example Skills

This appendix presents the internal control structures and algorithms for several selected
Skills that are used as part of the Tactics from the experiments in Chapter 6.

C.1 Sampling-Based Wait Skill

Sampling Distributions D:
• Range of wait time (min wait, max wait)

Function f(C, D, V, x, a) :
if texit /∈ V then

V.texit ← x.t + SampleFromRange(min wait, max wait);

if x.t ≥ V.texit then
busy ← false;

else
busy ← true;

return �a, V, busy�;

Algorithm 19: “Wait Sampled Time” Skill

The “Sampling-Based Wait Skill” (see Algorithm 19) is used in the minigolf domain where
the controlled body is required to wait for a sampling-based amount of time before starting
to move. This Skill is relatively simple: during its first call, it samples a waiting period
from some predefined sampling range and stores the time when it should stop waiting texit

to V . On each call it then returns busy = true as long as texit has not been reached yet in

173

the world state’s time x.t. Remember, that setting busy = true will prevent any outgoing
state-transition from occurring in its parent Tactic. Once texit has been reached, it will
return busy = false, thus allowing a state-transition to another Skill to occur.

C.2 Sampling-Based Kick Skill

The “Sampling-Based Kick Skill” is used throughout the robot soccer domain and also for
“putting” in the robot minigolf domain. Its purpose is to sample a kick-target and a kick-
strength from predefined distributions, and produce a control action that performs such
a kick. Algorithm 20 shows how these actions are computed. Essentially, the algorithm
drives the controlled body towards the ball, keeping it ball dist away from it (in our case,
ball dist is the sum of the robot’s radius and the ball’s radius). The Skill marks itself as
busy until the ball has actually been kicked.

C.3 Biased Fall Down Skill

The “Biased Fall Down Skill” is used in the many-dice domain. Its purpose is to bias
the motion of a freely falling body towards a particular predefined target location. Algo-
rithm 21 shows how the Skill achieves this. On first execution, it samples the strength of
bias toward its target location. It then generates the appropriate forces to be applied to
the body. The Skill marks itself as busy until a collision with another rigid body occurs.

174

Constants C:
• Index of controlled rigid body: i

• Index of ball rigid body: j

• Distance of player to ball for kicking: ball dist
Sampling Distributions D:
• Kick force range: min kickforce, max kickforce
• Bounding box of kick target: goal bbox

Function f(C, D, V, x, a) :
if kickforce, kicktarget /∈ V then

V.kickforce ← SampleFromRange(min kickforce, max kickforce);
V.kicktarget ← SampleFromBBox(goal bbox);

aim heading ← V.kicktarget− x.r̂j.α;
aim heading ← aim heading

�aim heading� ;

aim location ← x.r̂j.α− (ball dist aim heading);

// Trapezoidal motion control functions [15] compute the necessary
forces/torques to turn/drive towards the aim heading/location:

a.âi.torque ← TurnToHeading(x.r̂i, aim heading);
a.âi.force ← DriveToLocation(x.r̂i, aim location);
if BallIsInFront(x.r̂i, x.r̂j,ball dist) and ReachedHeading(x.r̂i, aim heading)
and ReachedLocation(x.r̂i, aim location) then

// Apply kick to ball:
a.âj.force ← V.kickforce aim heading;
busy ← false;

else
busy ← true;

return �a, V, busy�;

Algorithm 20: “Sampled Kick” Skill

175

Constants C:
• Index of controlled rigid body: i

• Body Parameters: �r̄1, . . . , r̄n�
• Target location: target
Sampling Distributions D:
• Acceleration bias range: min bias, max bias

Function f(C, D, V, x, a) :
if bias /∈ V then

V.bias ← RndValFromRange(min bias, max bias);

// The following assumes that the y-axis is the axis of gravity.
Furthermore, gravity is implicitly added by the physics engine
after all Skills have returned their actions.

∆target ← target− x.r̂i.α;
a.âi.force ← r̄i.φMass V.bias [∆target.x, 0, ∆target.z];
a.âi.torque ← [0, 0, 0];
// Check if a collision is occurring between ri and any other

bodies:
if CollisionOccurring(i, x, �r̄1, . . . , r̄n, �) then

busy ← false;
else

busy ← true;
return �a, V, busy�;

Algorithm 21: “Biased Fall Down” Skill

176

Appendix D

List of Notation

α Position . 12
β Orientation . 12
γ Linear velocity . 12
λ Collision body index . 15
µ BGT growth control parameter .58
Π Tactic transition probability function . 40
σ Index of currently active Skill . 40
σ� Index of successor Skill . 40
σinit Index of initial Skill . 40
τ Tactic .40
Φ Set of parameters . 110
φ Body parameter .13
ω Angular velocity . 12
A Action space . 14
a Action . 14
â Sub-action . 14
B Body classification set .19
b Busy flag . 36
b∧ Global busy flag . 45
C Set of constants . 36
D Set of sampling distributions . 36
d Domain . 14
e Physics engine’s simulation function . 15
f Skill operator function . 36
G Gravity force vector . 14
g Tactic transition function . 40

177

h Number of Tactics . 45
k Number of Skills . 40
L List of collisions . 15
l Collision . 15
M Collision matrix .124
m Collision matrix entry . 124
n Number of rigid bodies . 13
p Probability .40
r Rigid body . 12
r̂ Mutable body state . 12
r̄ Immutable body parameters .13
S Set of Skills . 40
s Skill . 40
t Time .13
∆t State transition time-step . 15
t̄ Internal simulation time-step . 16
tLOD LOD horizon .122
treplan Replanning interval . 123
V Set of variables .36
X State space .13
Xgoal Set of goal states . 16
x State .13
x� Successor state . 15
xinit Initial state . 16
xgoal Goal state . 11
Y RRT sampling space . 49
y RRT random sample . 49
z Number of planning iterations . 49

178

Appendix E

List of Videos

This appendix provides a list of supplemental videos that demonstrate the application of
our physics-based planning algorithms. The videos are available to download and view at:
http://szickler.net/thesis/.

• Examples of Tactics-Driven Physics-Based Planning in Multiple Challeng-
ing Domains
This video contains planning examples from the simulated robot minigolf, robot soc-
cer, pool table, and many-dice domains (see Chapter 6).

• Comparison of Physics-Based Planning and Traditional Reactive Control
in a One-vs-One Robot Soccer Domain
This video contains example dribbling sequences from the one-vs-one robot soccer
experiment described in Chapter 7.

• Dribbling via Physics-Based Planning at RoboCup 2009
This video shows a goal scored by our team CMDragons at RoboCup 2009 using the
PhysicsDribble behavior described in Chapter 7.

• Autonomous Physics-Based Planning in a Freely Configurable Robot Mini-
golf Domain
This video demonstrates the application of physics-based planning in the robot
minigolf domain (see Chapters 7 and 8).

• Physics-Based Planning Examples in the Robot Minigolf Domain
This video shows additional challenging planning examples from the robot minigolf
domain (see Chapters 7 and 8).

179

http://szickler.net/thesis/

180

Bibliography

[1] E.W. Aboaf, S.M. Drucker, and C.G. Atkeson. Task-level robot learning: Juggling
a tennis ball more accurately. In Proceedings of IEEE Interational Conference on
Robotics and Automation, pages 14–19, 1989. 10.5

[2] C.H. An, C.G. Atkeson, and J.M. Hollerbach. Model-based control of a robot manip-
ulator. MIT press Cambridge, MA, 1988. 10.5

[3] T. Bäck and H.P. Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993. 8.1, 10.8

[4] T. Bandlow, M. Klupsch, R. Hanek, and T. Schmitt. Fast image segmentation, object
recognition and localization in a RoboCup scenario. RoboCup-99: Robot Soccer World
Cup III, pages 111–128, 2000. B

[5] D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid bodies.
ACM SIGGRAPH Computer Graphics, 23(3):223–232, 1989. 2.1

[6] D. Baraff. Physically Based Modeling: Rigid Body Simulation. SIGGRAPH Course
Notes, ACM SIGGRAPH, 2001. 2.1, 2.1.3

[7] R. Barzel, J.F. Hughes, and D.N. Wood. Plausible motion simulation for computer
graphics animation. Computer Animation and Simulation, pages 184–197, 1996. 10.4

[8] S. Behnke and R. Rojas. A Hierarchy of Reactive Behaviors Handles Complexity.
Balancing Reactivity and Social Deliberation in Multi-Agent Systems: From Robocup
to Real-World Applications, 2001. 4.1, 10.6

[9] K.E. Bekris and L.E. Kavraki. Greedy but safe replanning under kinodynamic con-
straints. In IEEE Int. Conference on Robotics and Automation (ICRA), pages 704–
710, 2007. 10.3

[10] R. Bohlin and L. Kavraki. Path planning using lazy PRM. Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, 1, 2000. 10.2

181

[11] M. Bowling, B. Browning, and M. Veloso. Plays as effective multiagent plans en-
abling opponent-adaptive play selection. In Proceedings of International Conference
on Automated Planning and Scheduling (ICAPS04), volume 1, 2004. A.3.2

[12] O. Brock and O. Khatib. High-speed navigation using the global dynamic window
approach. In 1999 IEEE International Conference on Robotics and Automation, 1999.
Proceedings, volume 1, 1999. 10.3, A.3.2

[13] B. Browning, J. Bruce, M. Bowling, and M. Veloso. Stp: Skills, tactics and plays
for multi-robot control in adversarial environments. IEEE Journal of Control and
Systems Engineering, 219:33–52, 2005. 4.1, 7.1.1, 10.6, A.3.2, A.3.2

[14] J. Bruce and M. Veloso. Real-time randomized path planning for robot navigation.
In Proceedings of IROS-2002, Switzerland, October 2002. 10.3, 10.6, A.3.2

[15] J. Bruce and M. Veloso. Safe Multi-Robot Navigation within Dynamics Constraints.
Proceedings of the IEEE, Special Issue on Multi-Robot Systems, 2006. 2, 10.2, 10.3,
A.3.2, 20

[16] J. Bruce and M. Veloso. Fast and accurate vision-based pattern detection and identi-
fication. In Proceedings of the 2003 IEEE International Conference on Robotics and
Automation (ICRA ’03), 2003. B, B.2.3

[17] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image segmentation for
interactive robots. In Proceedings of the 2000 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’00), volume 3, pages 2061–2066, 2000. B.2.1

[18] J. Bruce, S. Zickler, M. Licitra, and M. Veloso. CMDragons 2007 Team Description.
Technical report, Tech Report CMU-CS-07-173, Carnegie Mellon University, School
of Computer Science, 2007. 4.1, 7.1, A

[19] J.R. Bruce. Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot
Environments. PhD thesis, Carnegie Mellon, Computer Science Department, 2006.
A.3.2

[20] J. Chai and J.K. Hodgins. Constraint-based motion optimization using a statistical
dynamic model. In ACM SIGGRAPH 2007, page 8. ACM, 2007. 10.4

[21] S. Chakravorty and R. Saha. Hierarchical motion planning under uncertainty. In
Decision and Control, 2007 46th IEEE Conference on, pages 3667–3672, 2007. 10.3

[22] S. Chenney and D. Forsyth. Sampling plausible solutions to multi-body constraint
problems. Proceedings of the 27th annual conference on Computer graphics and inter-
active techniques, pages 219–228, 2000. 10.4

182

[23] S. Chernova and M. Veloso. An evolutionary approach to gait learning for four-legged
robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2004. (IROS 2004), volume 3, pages 2562–2567, 2004. 10.8

[24] NVIDIA Corporation. NVIDIA PhysX. Computer Software. Available at http://
developer.nvidia.com/object/physx.html, 2010. 2.1.3, 2.2.1, 6.1

[25] R. D’Andrea. The Cornell RoboCup Robot Soccer Team: 1999-2003. New York, NY:
Birkhauser Boston, Inc, 2005., pages 793–804, 2005. 4.1, 10.6

[26] A. D’Angelo, E. Menegatti, and E. Pagello. How a cooperative behavior can emerge
from a robot team. Distributed Autonomous Robotic Systems 6, pages 75–84, 2007.
10.6

[27] T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings of
the seventh national conference on artificial intelligence, pages 49–54, 1988. 7.2.2

[28] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality af
A*. Journal of the ACM (JACM), 32(3):505–536, 1985. 10.1

[29] E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959. 10.1

[30] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal
of the ACM (JACM), 40(5):1048–1066, 1993. 2.1

[31] P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable controllers for
physics-based character animation. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 251–260. ACM New York, NY,
USA, 2001. 10.4

[32] D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs. Robotics and Automa-
tion, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages
1243–1248, 2006. 10.3

[33] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997. 10.3, A.3.2

[34] T. Fraichard and H. Asama. Inevitable collision states. A step towards safer robots?
In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, volume 1, 2003. 10.3

[35] B.P. Gerkey and M.J. Mataric. A formal analysis and taxonomy of task allocation
in multi-robot systems. The International Journal of Robotics Research, 23(9):939,
2004. 10.6

183

http://developer.nvidia.com/object/physx.html
http://developer.nvidia.com/object/physx.html

[36] Google Inc. Protocol Buffers. Computer Software. Available at http://code.google.
com/p/protobuf/, 2009. B.2.4

[37] E. Horvitz. Reasoning about beliefs and actions under computational resource con-
straints. Int. J. Approx. Reasoning, 2(3):337–338, 1988. 7.2.2

[38] P. Isto. Constructing probabilistic roadmaps with powerful local planning and path
optimization. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2323–
2328, 2002. 10.2

[39] N. Jabson, K. Leong, S. Licarte, G. Oblepias, E. Palomado, and E. Dadios. The
autonomous golf playing micro robot: With global vision and fuzzy logic controller.
International Journal on Smart Sensing and Intelligent Systems, 1(4):824–841, 12
2008. 10.7, 11.1

[40] M. Jamzad, BS Sadjad, VS Mirrokni, M. Kazemi, H. Chitsaz, A. Heydarnoori, MT Ha-
jiaghai, and E. Chiniforooshan. A fast vision system for middle size robots in robocup.
Robocup 2001: Robot soccer world cup V, pages 159–203, 2002. B

[41] Y.B. Jia, M. Mason, and M. Erdmann. A State Transition Diagram for Simultaneous
Collisions with Application in Billiard Shooting. Algorithmic Foundation of Robotics
VIII, pages 135–150, 2008. 10.5

[42] M. Jouaneh and P. Carnevale. Watch out, Tiger Woods! [golf playing robot]. IEEE
Robotics & Automation Magazine, 10(2):56–60, 2003. 10.7, 11.1

[43] T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly. Near-optimal dynamic trajectory gen-
eration and control of an omnidirectional vehicle. Robotics and Autonomous Systems,
46(1):47–64, 2004. 10.3

[44] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. Robotics and Automation,
IEEE Transactions on, 12(4):566–580, 1996. 10.2

[45] R. Knepper, S. Srinivasa, and M. Mason. Hierarchical planning architectures for
mobile manipulation tasks in indoor environments. In Proceedings of ICRA 2010,
May 2010. 10.3

[46] J. Kuffner. Effective sampling and distance metrics for 3D rigid body path planning.
In IEEE International Conference on Robotics and Automation, volume 4, pages 3993–
3998, 2004. 10.2

[47] J. Kuffner and S. LaValle. RRT-connect: An efficient approach to single-query path
planning. Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International
Conference on, 2, 2000. 5.5.1, 10.2, 10.5

184

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/

[48] A.M. Ladd and L.E. Kavraki. Motion planning in the presence of drift, underactuation
and discrete system changes. Proceedings of Robotics: Science and Systems, 2005. 10.2

[49] J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright. Convergence properties of
the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization,
9(1):112–147, 1999. 8.1, 10.8

[50] J.E. Laird. It knows what you’re going to do: adding anticipation to a Quakebot. In
Proceedings of the fifth international conference on Autonomous agents, pages 385–
392. ACM New York, NY, USA, 2001. 10.6

[51] J.E. Laird. Using a Computer Game to Develop Advanced AI. COMPUTER, pages
70–75, 2001. 10.6

[52] J.E. Laird, A. Newell, and P.S. Rosenbloom. SOAR: an architecture for general intel-
ligence. Artificial Intelligence, 33(1):1–64, 1987. 10.6

[53] M. Lau and J.J. Kuffner. Behavior planning for character animation. Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
271–280, 2005. 10.4

[54] M. Lau and J.J. Kuffner. Precomputed search trees: planning for interactive goal-
driven animation. Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 299–308, 2006. 10.4

[55] T. Laue and M. Hebbel. Automatic Parameter Optimization for a Dynamic Robot
Simulation. In RoboCup 2008: Robot Soccer World Cup XII, volume 5399, pages
121–132. Springer, 2009. 10.8

[56] T. Laue and T. Rofer. A Behavior Architecture for Autonomous Mobile Robots Based
on Potential Fields. 8th International Workshop on RoboCup, 2004. 4.1, 10.6

[57] S.M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Com-
puter Science Dept, Iowa State University, Tech. Rep. TR, pages 98–11, 1998. 5.3,
5.3.3, 5.4, 6.1.1, 10.2

[58] S.M. LaValle. Planning algorithms. Cambridge Univ Pr, 2006. 5.5.1, 10.1, 10.2

[59] S.M. LaValle and M.S. Branicky. On the relationship between classical grid search and
probabilistic roadmaps. Algorithmic Foundations of Robotics V, pages 59–76, 2003.
10.2

[60] S.M. LaValle and J.J. Kuffner Jr. Randomized Kinodynamic Planning. The Interna-
tional Journal of Robotics Research, 20(5):378, 2001. 5.3.3, 10.2

185

[61] W. Leckie and M. Greenspan. An event-based pool physics simulator. Advances in
Computer Games, pages 247–262, 2005. 10.5

[62] S.R. Lindemann and S.M. LaValle. Current issues in sampling-based motion planning.
Robotics Research, pages 36–54, 2005. 10.2

[63] K.M. Lynch and M.T. Mason. Stable pushing: Mechanics, controllability, and plan-
ning. The International Journal of Robotics Research, 15(6):533, 1996. 10.5

[64] L.A. Martinez-Gomez and A. Weitzenfeld. Real Time Vision System for a Small Size
League Team. In Proc. 1st IEEE-RAS Latin American Robotics Symposium, ITAM,
Mexico City, October, pages 28–29, 2004. B

[65] M.T. Mason. Mechanics of robotic manipulation. The MIT Press, 2001. 10.5

[66] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 8(1):3–30, 1998. 6.1

[67] N.A. Melchior, J. Kwak, and R. Simmons. Particle RRT for Path Planning in very
rough terrain. In NASA Science Technology Conference 2007 (NSTC 2007), 2007.
10.2

[68] D.J. Montana. The kinematics of contact and grasp. The International Journal of
Robotics Research, 7(3):17, 1988. 10.5

[69] W. Moss, M. Lin, and D. Manocha. Constraint-based Motion Synthesis for Deformable
Models. Computer Animation and Virtual Worlds, 19:421–431, July 2008. 10.4

[70] S.R. Munasinghe, Ju-Jang Lee, T. Usui, M. Nakamura, and N. Egashira. Telerobotic
mini-golf: system design for enhanced teleoperator performance. In Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
volume 2, pages 1688–1693, 5 2004. 10.7, 11.1

[71] J. Nelder and R. Mead. A simplex method for function minimization. The computer
journal, 7(4):308, 1965. 8.1, 10.8

[72] Nokia Corporation. The Qt Toolkit. Computer Software. Available at http://www.
qtsoftware.com/, 2009. B.1

[73] A.M. Okamura, N. Smaby, and M.R. Cutkosky. An overview of dexterous manipula-
tion. In IEEE International Conference on Robotics and Automation, volume 1, pages
255–262. IEEE; 1999, 2000. 10.5

[74] LE Parker. ALLIANCE: an architecture for fault tolerant multirobot cooperation.
Robotics and Automation, IEEE Transactions on, 14(2):220–240, 1998. 10.6

186

http://www.qtsoftware.com/
http://www.qtsoftware.com/

[75] M. Pivtoraiko and A. Kelly. Differentially constrained motion replanning using state
lattices with graduated fidelity. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008. IROS 2008, pages 2611–2616, 2008. 10.3

[76] J. Popović, S.M. Seitz, M. Erdmann, Z. Popović, and A. Witkin. Interactive ma-
nipulation of rigid body simulations. Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 209–217, 2000. 10.4

[77] RoboCup Small Size League. Official Web Site.
http://small-size.informatik.uni-bremen.de, 2009. 3.1.2

[78] A. Safonova and J.K. Hodgins. Construction and optimal search of interpolated motion
graphs. In ACM SIGGRAPH 2007, page 106. ACM, 2007. 10.4

[79] A. Shapiro, Ma. Kallmann, and P. Faloutsos. Interactive motion correction and object
manipulation. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D
graphics and games, pages 137–144, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-628-8. doi: http://doi.acm.org/10.1145/1230100.1230124. 10.4

[80] T. Simeon, J.P. Laumond, J. Cortes, and A. Sahbani. Manipulation planning with
probabilistic roadmaps. The International Journal of Robotics Research, 23(7-8):729,
2004. 10.5

[81] R. Smith et al. Open Dynamics Engine. Computer Software. Available at http:
//www.ode.org, 2008. 2.1.3

[82] A. Stentz. Optimal and efficient path planning for unknown and dynamic environ-
ments. Technical Report CMU-RI-TR-93-20, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, August 1993. 10.1

[83] M. Stilman, J.U. Schamburek, J. Kuffner, and T. Asfour. Manipulation planning
among movable obstacles. In Proc. IEEE Int. Conf. on Robotics and Automation,
pages 3327–3332. Citeseer, 2007. 10.5

[84] A. Treuille, Y. Lee, and Z. Popović. Near-optimal character animation with continuous
control. In ACM SIGGRAPH 2007, page 7. ACM, 2007. 10.4

[85] C.D. Twigg and D.L. James. Many-worlds browsing for control of multibody dynamics.
ACM Transactions on Graphics (TOG), 26(3), 2007. 5.5.2, 10.4

[86] N. Vahrenkamp, C. Scheurer, T. Asfour, J. Kuffner, and R. Dillmann. Adaptive
motion planning for humanoid robots. In Intelligent Robots and Systems, 2008. IROS
2008. IEEE/RSJ International Conference on, pages 2127–2132, 2008. 10.2

187

http://small-size.informatik.uni-bremen.de
http://www.ode.org
http://www.ode.org

[87] M. Veloso, P. Stone, and K. Han. The CMUnited-97 robotic soccer team: Percep-
tion and multiagent control. In Proceedings of the second international conference on
Autonomous agents, pages 78–85, 1998. 7.1, A

[88] L.C. Wang, L.S. Yong, and M.H. Ang Jr. Hybrid of global path planning and local
navigation implemented on a mobile robot in indoor environment. In Proceedings of
the IEEE International Symposium on Intelligent Control, pages 821–826, 2002. 10.3

[89] G. Welch and G. Bishop. An introduction to the Kalman filter. University of North
Carolina at Chapel Hill, Chapel Hill, NC, 1995. 7.1.1, A.3

[90] K. Yamane, J.J. Kuffner, and J.K. Hodgins. Synthesizing animations of human ma-
nipulation tasks. ACM Transactions on Graphics (TOG), 23(3):532–539, 2004. 10.4

[91] Y. Yang and O. Brock. Elastic roadmaps: Globally task-consistent motion for au-
tonomous mobile manipulation in dynamic environments. Proceedings of Robotics:
Science and Systems II, 2006. 10.2, 10.3

[92] S. Zickler. The VarTypes System. Computer Software. Available at http://code.
google.com/p/vartypes/, 2009. B.1.2

[93] S. Zickler and M. Veloso. Efficient physics-based planning: sampling search via non-
deterministic tactics and skills. In Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 27–33, 2009. 2.1

[94] S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso. SSL-Vision: The
Shared Vision System for the RoboCup Small Size League. RoboCup 2009: Robot
Soccer World Cup XIII, pages 425–436, 2009. A.3.1, B.2.2

[95] S. Zickler, T. Laue, et al. SSL-Vision. Computer Software. Available at http://code.
google.com/p/ssl-vision/, 2009. B.3

[96] M. Zucker, J. Kuffner, and M. Branicky. Multipartite rrts for rapid replanning in
dynamic environments. Proc. IEEE Int. Conf. on Robotics and Automation, pages
1603–1609, 2007. 10.3

[97] M. Zucker, J. Kuffner, and J.A. Bagnell. Adaptive workspace biasing for sampling-
based planners. In IEEE International Conference on Robotics and Automation. New
York: IEEE Press, pages 3757–3762, 2008. 10.2

188

http://code.google.com/p/vartypes/
http://code.google.com/p/vartypes/
http://code.google.com/p/ssl-vision/
http://code.google.com/p/ssl-vision/

	1 Introduction
	1.1 Approach
	1.1.1 Efficient Planning in Physically Complex Domains
	1.1.2 Physics-Based Planning under Uncertainty
	1.1.3 Evaluation

	1.2 Contributions
	1.3 Document Outline

	2 Physics-Based Planning Model and Basic Algorithm
	2.1 Definitions
	2.1.1 Rigid Bodies and Parameters
	2.1.2 States, Actions, and Domain Model
	2.1.3 State Transitions
	2.1.4 Intermediate Constraints and Planning Problem Definition

	2.2 Rigid Body Simulations
	2.2.1 Level of Time Discretization
	2.2.2 Determinism

	2.3 Body Types
	2.4 Problem Classes and Challenges
	2.5 A Basic Physics-Based Planning Algorithm
	2.6 Chapter Summary

	3 Applications and Domains
	3.1 Application in Robot Motion Planning
	3.1.1 Navigation Domain
	3.1.2 Robot Soccer Domain
	3.1.3 Robot Minigolf Domain

	3.2 Application in Computer Animation
	3.2.1 Many-Dice Domain
	3.2.2 Pool Table Domain

	3.3 Chapter Summary

	4 Non-Deterministic Skills and Tactics
	4.1 Skills and Tactics
	4.2 Sampling-Based Skills
	4.3 Non-Deterministic Tactics
	4.4 Chapter Summary

	5 Efficient Planning via Skills and Tactics
	5.1 Skills and Tactics in the State Space and Domain
	5.2 A Tactics-Based Planning Example
	5.3 BK-RRT Algorithm
	5.3.1 Preventing State Duplications: the Busy Flag
	5.3.2 Removing Stale Branches: the RollBack Function
	5.3.3 RRT as a Subset of BK-RRT
	5.3.4 RRT Parameters and Distance Functions

	5.4 BK-BGT Algorithm
	5.4.1 Computational Complexity of BK-BGT vs. BK-RRT
	5.4.2 Lack of RRT's Random Sample

	5.5 Algorithm Properties and Variations
	5.5.1 Completeness
	5.5.2 Optimality and Multi-Solution Planning
	5.5.3 Hybrid Approaches

	5.6 Chapter Summary

	6 Empirical Evaluation in Simulated Domains
	6.1 Implementation and Visual Results
	6.1.1 Navigation Domain
	6.1.2 Simulated Robot Minigolf Domain
	6.1.3 Simulated Robot Soccer Domain
	6.1.4 Pool Table Domain
	6.1.5 Many-Dice Domain

	6.2 Performance Analysis
	6.2.1 Analysis of BK-BGT's Parameter
	6.2.2 Analysis of Hybrid Approaches
	6.2.3 Analysis of the RollBack Function
	6.2.4 Tactically Unconstrained Multi-Skill Planning
	6.2.5 Comparison to Traditional Skills and Tactics

	6.3 Chapter Summary

	7 Planning in Real-World Dynamic Environments
	7.1 Physics-Based Planning in the CMDragons Multi-Robot System
	7.1.1 Physics-Based Planning as a Single-Robot Behavior
	7.1.2 Modeling a CMDragons Robot

	7.2 Single-Shot vs. Anytime Planning
	7.2.1 Single-Shot Planning
	7.2.2 Anytime Planning
	7.2.3 Planning and Execution in a Closed-Loop System

	7.3 Robot Soccer
	7.3.1 Tactics Model
	7.3.2 Opponent Prediction Model
	7.3.3 State Evaluation Function
	7.3.4 Results

	7.4 Planning in Predictable Dynamic Domains
	7.4.1 A Robot Minigolf Problem
	7.4.2 Challenges and Approach
	7.4.3 Results

	7.5 Chapter Summary

	8 Parameter Optimization of Physics-Based Models
	8.1 Approach Description
	8.2 Application in Robot Minigolf
	8.2.1 Parameters
	8.2.2 Ground Truth Data
	8.2.3 Error Functions
	8.2.4 Experimental Evaluation

	8.3 Chapter Summary

	9 Variable Level-Of-Detail (VLOD) Planning
	9.1 Algorithm Description
	9.1.1 Definition of Detail and Collision Matrix
	9.1.2 VLOD Planning Algorithm

	9.2 Experimental Evaluation
	9.2.1 Performance Metric
	9.2.2 The Merit of Replanning in Uncertain Domains
	9.2.3 VLOD Performance Analysis

	9.3 Chapter Summary

	10 Related Work
	10.1 Discrete Motion Planning
	10.2 Sampling-Based Motion Planning
	10.3 Efficient Replanning and VLOD Planning
	10.4 Animation Planning
	10.5 Manipulation Planning
	10.6 Robot Tactics and Control Architectures
	10.7 Robot Minigolf
	10.8 Model Parameter Optimization

	11 Conclusion and Future Work
	11.1 Contributions
	11.2 Future Work

	A The CMDragons Multi-Robot System
	A.1 The RoboCup Small Size League (SSL)
	A.2 Robot Hardware
	A.2.1 Robots

	A.3 Software
	A.3.1 Vision
	A.3.2 Soccer
	A.3.3 GUI
	A.3.4 Simulator

	A.4 Appendix Summary

	B The SSL-Vision Shared Vision System
	B.1 Framework
	B.1.1 The Capture Loop
	B.1.2 Parameter Configuration

	B.2 RoboCup SSL Image Processing Stack
	B.2.1 CMVision-Based Color Segmentation
	B.2.2 Camera Calibration
	B.2.3 Pattern Detection
	B.2.4 System Integration and Performance

	B.3 Appendix Summary

	C Example Skills
	C.1 Sampling-Based Wait Skill
	C.2 Sampling-Based Kick Skill
	C.3 Biased Fall Down Skill

	D List of Notation
	E List of Videos
	Bibliography

