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Abstract

Recently, several researchers have demonstrated do-
mains where partially-ordered planners outperform
totally-ordered planners. In (Barrett & Weld 1994),
Barrett and Weld build a series of artificial domains
exploring the concepts of trivial and laborious seri-
alizability, in which a partially-ordered planner, sNLP,
consistently outperforms two totally-ordered planners.
In this paper, we demonstrate that totally-ordered
planners sometimes have an advantage over partially-
ordered planners. We describe a series of domains
in which PRODIGY4.0 consistently outperforms SNLP,
and introduce the concept of linkability to characterize
the class of domains for which this happens. Linkabil-
ity highlights the fact that partially-ordered planners
commit to causal links in much the same way that
totally-ordered planners commit to step ordering.

Introduction

Recently, several researchers have advocated the view
that partially-ordered planners are generally more ef-
ficient than totally-ordered planners (Barrett & Weld
1994; Kambhampati & Chen 1993; Minton, Bresina,
& Drummond 1991). Barrett and Weld in particu-
lar (Barrett & Weld 1994) built a series of artificial
domains on which a partially-ordered planner, sNLP,
consistently outperforms two totally-ordered planners.
The domains are built to examine some refinements to
the concept of serializability introduced by Korf (Korf
1987), and to highlight their role in predicting the per-
formance of planners.

We examine this view by comparing PRODIGY4.0,
a totally-ordered planner, with sNLP. PRODIGY4.0
(Carbonell & the PRODIGY Research Group 1992)
is based on PRODIGY2.0 (Minton et al. 1989) and

*This research is sponsored by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330. The views
and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of Wright Laboratory or the U. S.
Government.

NoLimIT (Veloso 1989). Like the two totally-ordered
planners used in (Barrett & Weld 1994), it is com-
plete, solving the same class of problems as sSNLP.
PRODIGY4.0 commits to a total order of operators at
each stage in its search, and backtracks when interac-
tions are detected. PRODIGY4.0 uses a suite of machine
learning modules to learn from experience in planning
in a particular domain.

We based our investigations of the claims of (Barrett
& Weld 1994) on two observations. First, PRODIGY4.0
commits to a total order of plan steps in order to
make use of a uniquely specified world state while plan-
ning. Second, any system that treats planning as a
search process will make a series of commitments dur-
ing search. The pattern of commitments made will
produce greater efficiency in some kinds of domains,
and less in others.

So far, there has not been a clear demonstration of
the kinds of domains where totally-ordered planners
may perform better than partially-ordered planners.
In order to address this, we designed a set of artifi-
cial planning problems in which we carefully exploit
the use of a world state in the planning process. In
these domains PRODIGY4.0 consistently outperforms
SNLP. The domains show how reasoning about the
state guides the planner to select efficient planning or-
derings of goals and correct operators. The domains
also highlight the fact that although partially-ordered
planners like SNLP use a “least-commitment” approach
to step ordering, they commit eagerly to causal links,
which can be inefficient. Based on the characteristics
of these domains, we introduce the concept of “linka-
bility”, which we compare with serializability.

Although the domains we describe here show
PRODIGY4.0 consistently outperforming SNLP, it is not
our aim to prove that one or another planning strategy
is the best in all domains. Rather, we are highlight-
ing the fact that different strategies may have anal-
ogous problems with different domains. We believe
that there is no universally superior strategy of search
commitments for planning, and this leads us to con-
clude that one of the most important research issues
in domain-independent planning is to learn a mapping



from measurable characteristics of problems into the
most appropriate planning strategy.

The layout of the paper is as follows. In the next sec-
tion we briefly present the planning algorithms used by
PRODIGY4.0 and sNLP. Then we introduce the concept
of “linkability,” and present the domains we created
that display different levels of linkability. We show the
empirical results we obtained illustrating that all these
domains are trivially linkable for PRODIGY, while not
for sNLP. In the final section we draw conclusions from
this work. The reader familiar with the PRODIGY and
SNLP planners may skip the next section without loss
of content.

Brief discussion of PRODIGY and SNLP

PRODIGY is an integrated architecture for problem
solving and learning. It consists of a core planning
algorithm whose knowledge base and planning behav-
ior are available for several machine learning modules
to interpret and compile planning expertise.

PRODIGY’s planning algorithm interleaves backward-
chaining planning with the simulation of plan execu-
tion, by applying operators found relevant to the goal
to an internal world state. Although there are some
recognized situations where plain state-space search is
not efficient, the advantage of considering the simu-
lated state of the world while planning has not been
clearly shown. Table 1 shows an abstract view of
PRODIGY’s planning algorithm.

1. Compute the set G of goal literals left to be
achieved: if § is the set of literals in the current
state, and P is the set of all the preconditions of
the set O of operators that have been selected,
then G =P - S.

2. Terminate if G is empty. Return the sequence of

operators that were applied as the plan.

. Choose a goal from G to plan for.

4. Choose an operator and bindings to achieve the
selected goal. If all of the preconditions of this
operator are true in the current state, apply it to
the current state and get a new state. Otherwise
add the operator to O and go to step 1.

5. Recursively apply any operator in O that be-
comes applicable in the new state and remove it
from O.

6. Go to step 1.

Table 1: Abstract view of PRODIGY ’s planning algorithm

wo

This is a simple version of PRODIGY’s planning strat-
egy. PRODIGY uses several domain-independent and
domain-dependent search heuristics that extend this
basic search procedure, and choices are then based
on more sophisticated analysis of the planning state
(Stone, Veloso, & Blythe 1994). For the purpose of this
paper, however, the simple version with its eager appli-
cation strategy is adequate to show the effect of plan-
ning using the simulated execution state. PRODIGY

considers different operator orderings if needed, by
backtracking over the simulated plan execution.

SNLP is an example of a planner that searches in
the plan space. It is viewed as following a “least-
commitment” planning strategy. It does not commit
to a particular ordering of operators nor does it keep
a current state of the world.

Table 2 shows an abstract view of SNLP’s planning
algorithm (McAllester & Rosenblitt 1991).

1. Terminate if the goal set is empty.

2. Select a goal ¢ from the goal set and identify the
plan step that needs it, Spceq.

3. Let Syqq be a step that adds g, either a new step
or a step that is already in the plan. Add the

causal link S,44 ER Sheed, constrain Sggq to come
before Sy ceq, and enforce bindings that make 5,44
add g¢.

4. Update the goal set with all the preconditions of
the step Syqq, and delete g.

5. Identify threats and resolve the conflicts by adding
ordering or bindings constraints.

6. Go to step 1.

Table 2: Abstract view of SNLP’s planning algorithm

SNLP does indeed commit less than PRODIGY in
terms of its operator orderings, since it does not need
to commit to change the state as PRODIGY does. This
means it is unaffected by problems created by choosing
a poor goal ordering which affect PRODIGY. However
we show in this paper that its commitment to a causal
link for each goal can be as problematic as the operator
ordering commitments in PRODIGY.

Linkability
Our definition of “linkability” is somewhat analo-

gous to the definition of “serializability”, introduced
by Korf (Korf 1987):

A set of subgoals is serializable if there exists some
ordering whereby they can be solved sequentially
without ever violating a previously solved subgoal.

Here, a “subgoal” is a property of states, formally
defined as a set of states. In (Barrett & Weld 1994),
Barrett and Weld identify subgoals with sets of “plan
states.” A plan state specifies a set of steps and order-
ing and bindings constraints on them, and is an inter-
mediate state for a plan-space planner such as SNLP.
Notice, however, that a plan state ignores the set of
causal links. Barrett and Weld go on to make two re-
finements to the concept of serializability, trivial and
laborious serializability, which refer to the proportion
of orderings which can be solved sequentially. The in-
tuition behind these refinements is that the planner
must backtrack when it picks an ordering that cannot
be solved sequentially, and the combinatorial effect of
this will dominate the time taken by the planner on
average as long as some small proportion of orderings



Goal: polished and has-hole
Initial state: empty
PRODIGY

Goal: polished and has-hole
Initial state: polished
SNLP

plan for goal polished

select operator Polish

e order Polish as first operator in plan
plan for goal has-hole

select operator Drill-Hole

e order Drill-Hole after Polish

e polished is deleted, backtrack

order Drill-Hole as first operator
order Polish after Drill-Hole

plan for goal polished

select operator initial state

e link initial state to polished
plan for goal has-hole

select operator Drill-Hole

o link operator Drill-Hole to has-hole

o threat - polished needs to be relinked
select operator Polish

link operator Polish to polished
order Drill-Hole before Polish

Figure 1: An example of the parallel between linking and ordering commitments. Notice the difference of initial state in the

two situations.

require backtracking. Thus, they provide better indi-
cators of planner performance.

While serializability captures problem complexity
due to interactions between subgoals, it does not ac-
count for all the choice points where planners have to
make commitments. The choice in SNLP’s algorithm of
which step to use to achieve an open goal is sometimes
independent of goal ordering, as is the related choice
of operator in PRODIGY.

Consider the following example to motivate the con-
cept of linkability. Let a domain consist of the following
two operators:

Operator Polish
preconds: ()

adds: polished
deletes: ()

Operator Drill-Hole
preconds: ()

adds: has-hole
deletes: polished

Suppose that the two goals polished, and has-hole
are given to a planner and that neither goal is satis-
fied in the initial state. PRODIGY may commit to the
wrong operator ordering, first trying the plan Polish -
Drill-Hole and then backtracking to the correct plan
Drill-Hole - Polish. On the other hand, snLp di-
rectly finds the solution independently of the order in
which it addresses the two goals.

Now consider the situation in which the literal
polished is satisfied in the initial state. PRODIGY
takes the state into account when deciding which goals
it needs to plan for. Therefore, it starts correctly plan-
ning for the goal has-hole. On the other hand, if
SNLP starts planning for the goal polished, it will link
it incorrectly to the initial state and later it will have
to resolve a threat by backtracking over a previously
established causal link.

Figure 1 illustrates this parallel between the two
commitment strategies. It can be seen that they lead
to surprisingly similar problems.

Leading from this example, linkability in partial or-
der planners focuses on the need to backtrack from
commitments made to causal links to achieve goals.
Linkability therefore applied to causal link commit-
ments would be stated as:

A set of subgoals is easily linkable if, independent
of the order by which the planner assigns causal
links to the subgoals, it never has to backtrack
to undo those links. Otherwise it is laboriously

linkable.

Given a particular planning algorithm, the degree of
linkability of a planning problem corresponds to the
expected proportion of commitments that the planner
will have to backtrack over.

A series of domains to explore

linkability

We created a series of artificial domains to explore
the linking commitments of SNLP. We believe link-
ing commitments are common to all least-commitment
or partial-order planners. Notice that these domains
highlight the general problem that plan-space planners
may face in choosing particular goal orderings and par-
ticular operators for a goal because they cannot reason
about a precise world state while planning. We show
three such domains and the results of running SNLP and
PRODIGY4.0 in a series of problems in these domains.?
We also briefly discuss some characteristics of these do-
mains that we believe are representative of real world
planning problems.

In our presentation in this section, the domains are
ordered in an increasing level of difficulty of linkability.

!We thank Tony Barrett and Dan Weld for providing us
with the code for sNLP.



Easily linkable goals

Consider a domain with n operators A; each with an
empty set of preconditions and deletes. A; adds goal
gi. The domain has also an operator, A, that has
an empty set of preconditions, adds the goal g. and
deletes all of the goals ¢g;. We name this domain link-
simple. Figure 2 shows the general operator A; and
the operator A, in the domain.

operator A,
preconds ()
adds G
deletes g¢;, V¢

operator A;
preconds ()
adds qi
deletes ()

Figure 2: The operators in the domain link-simple

For our experiments we used link-simple with n =
15. We generated a series of 15 classes of problems,
each with 10 problems, giving a total of 150 problems.
A problem in class k has goals g, and goals g; through
gr randomly permuted. All the literals g; through g
are present in the initial state. The 10 problems in
each class correspond to different random permuta-
tions both of the initial conditions and goal literals.
Figure 3 shows a problem from the 5th class, with g,
and five more goals in the goal statement and initial
state. We also show a solution plan.

Initial state: g1,92,93,95,94
Goal statement: g2,¢s, g4, 9x, 93,91
Plan: A*,AQ,A5,A4,A3,A1

Figure 3: A problem and sample solution for the domain
link-0d-star

Figure 4 shows the results obtained running
PRODIGY and SNLP, plotting average running time
against the number of goals, showing error bars for the
90% confidence interval. For the sake of clarity, only
3 intervals are shown, as all the others are of identical
size.

PRODIGY uses its current state to determine which
goal literals need to be achieved following a means-ends
analysis procedure. Therefore PRODIGY starts imme-
diately planning for goal g, which in this case is the
only goal that is not satisfied in the initial state. The
operator A, is selected and applied to the initial state
deleting all the g; goals. As these goals are all indepen-
dent, PRODIGY solves the problems in linear time in the
number of g; goals. In contrast, SNLP starts working
on the goals in the order given in the goal statement.
Each goal g; encountered before g, is mistakenly linked
to the initial state. When sNLP plans for g, it finds the
threats between A, and the goals g; that A, deletes. It
needs to solve these threats by undoing the causal links
that it has introduced. sNLP also solves the problems

Timein msecs
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Figure 4: Average running time of PRODIGY4.0 and SNLP in
the domain link-simple. Errors bars for the 90% confidence
interval are shown for 3 representative points.

in linear time, but has to backtrack over all the links
created before it encounters g..

The domain link-simple is our simplest example of
the effects of linking commitments in planning perfor-
mance. We introduce two additional domains where
uninformed linking commitments create more severe
problems.

Laboriously linkable

In this domain we explore the effect of having to repeat
actions in a plan. We name this domain link-repeat.
Figure 5 shows that each operator A; needs as precon-
ditions both literals g, and ¢;_1, adds the literal g¢;,
and deletes g.. The additional operator A, is always
available to add g, with no other effects.

operator A,
preconds ()
adds G
deletes ()

operator A;
preconds ¢«,¢g;—1
adds qi
deletes g.

Figure 5: The operators in the domain link-repeat

We again used up to 15 goals g; in our experi-
ments. Each problem in this domain only has two
goals, namely goal g, and goal g, where k ranges from
1 to 15. Thus there are 15 problems in our test set.
The initial state consists simply of the literal g.. Fig-
ure 6 shows a problem and the corresponding plan.

The goal g, needs to be reachieved each time one
of the g; goals is achieved, as all the operators A;s
delete g.. In addition, each goal g; needs to be achieved
before the goal g;41, as each g; is a precondition to the
operator A;41.

In problems in this domain, PRODIGY only encoun-
ters one goal at a time to plan for, when computing
the difference between the needed preconditions and



Initial state: ¢.

Goal statement: g.,gs
Plan: Al:A*aAZJA*aA3aA*aA4aA*aA5

Figure 6: A problem and corresponding solution for the
domain link-repeat

the world state. Its use of the state focuses PRODIGY
on the correct goal to plan for and PRODIGY proceeds
smoothly by adding planning steps to the state as they
become needed. In this situation, sNLP suffers again
from its linking eagerness biased towards linking new
literals to existing operators in the plan, leading to
costly backtracking.

Figure 7 shows the results obtained running
PRODIGY and SNLP on the set of problems with 90%
confidence intervals. In this graph we plot the average
running time against the number k of the goal given
in the problem, which also corresponds to the length
of the solution.

14000 T T T T T T T
12000 prod — —
slp ——- ;
prod error bars KO— J/
10000 |- snip error bars H— /o
g 8000 E —
/
/
1= 4
£ 6000 [ ¥ |
2 /
= 4000 | EE N
2000
O —
2000 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Highest goal

Figure 7: Average running time of PRODIGY4.0 and SNLP
in the domain link-repeat. Errors bars show the 90% confi-
dence intervals.

This domain is a simple instance of a real world class
of domains where there is a limited number of resources
that are consumed and can be reachieved while plan-
ning. The goal g, in this domain characterizes as a
resource such as fuel in a transportation domain, that
may be used up and replenished. Similarly, in this do-
main, g, needs to be reachieved every other step. In
the general case, there may be any number of goals
that need to be reachieved after any number of steps.

Multiple linking alternatives

Figure 8 shows a domain where each operator A; needs
as preconditions all the literals g;,V¥j < ¢, and adds all
the literals g; except g;—1, which is deleted. Figure 9
illustrates three operators of this domain.

operator A;
preconds g;,Vj < i
adds 9i, 95,5 <i—1
deletes g¢;_1
Figure 8: The operators in the domain link-chain
operator As

operator As operator As

pPre g«,94,93,92,91 pre g«,9z,92,91 pre g«, 92,491
add gs, g3, 92, 91 add g4, 92,91 add gz, g1
del g4 del g3 del g2

Figure 9: Example of three operators in the domain link-
chain

This domain is interesting as it illustrates a situa-
tion where there are several operators that can achieve
the same goal. For example, the operators Az and
Aj,j > 5 achieve the goal g3. Az is the only cor-
rect choice, as the other operators need g3 at the same
time that they add it. This domain may seem rather
artificial in the sense that the operators add their own
preconditions. However one might get the same behav-
ior from a combination of several operators in realistic
domains.

We again used n = 15 in our experiments and gener-
ated 150 problems in a similar way to the link-simple
domain. A problem in class k& has k goals, g; through
gr, randomly permuted. The literals g; through gp_1
are present in the initial state. Figure 10 shows an
example problem and the corresponding solution plan.

Initial state: g1,94,93,9>
Goal statement: ¢s,9s, 94,93, 91
Plan: Az, Ay, Az, Ao, Ay

Figure 10: A problem and the corresponding solution for
the domain link-chain

Figure 11 shows the results obtained running
PRODIGY and SNLP.

SNLP finds a large number of possible ways of link-
ing each goal. The results show again that its linking
strategy is inappropriate for this domain. Note that
this domain is designed so that PRODIGY encounters
only one goal at each time to plan for. Although there
are multiple operators that add the same goal, once
again PRODIGY uses the state and chooses the one that
is immediately applicable and therefore PRODIGY finds
the solution without backtracking.

It has been noticed before that partial-order plan-
ners, including SNLP may be inefficient when multiple
operator choices are present (e.g. (Knoblock & Yang
1993)). The argument has been that state-space plan-
ners would necessarily find equivalent problems. How-
ever this is not the case in many situations in which the
state may provide information which can be used by
the total-order planners and not by the partial-order
planners. This domain illustrates one such situation.
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Figure 11: Average running time of PRODIGY4.0 and SNLP
in the domain link-chain. Errors bars show the 90% confi-
dence intervals.

Conclusion

In this paper we introduce the notion of linkability
which highlights the fact that partially-ordered plan-
ners commit to causal links in much the same way
that totally-ordered planners commit to step order-
ing. We created a series of artificial domains, where
PRODIGY, a totally-ordered planner, consistently out-
performs SNLP.

Taken with the results reported in (Barrett & Weld
1994), these results begin to delimit the types of do-
main for which the different commitment strategies
are suitable. We conclude that there is no strategy
of commitment that outperforms all others in all plan-
ning problems; and that a more fruitful line of research
is to seek a structural model of planning problems
that can predict the appropriate planning strategy.
In particular, the description of a planning strategy
as “least-commitment” without further qualification is
somewhat misleading, since search itself is an iterative
process of making a commitment and evaluating the
commitment. Levels of commitment must therefore be
viewed as a tradeoff across the different dimensions of
a search problem. We have illustrated this tradeoff in
the two planners considered in this paper.

We believe that the ideal planning algorithm would
use a more flexible commitment strategy than is evi-
dent in the planners of today, accumulating informa-
tion on which to base its next commitment before fix-
ing the form of the commitment. Under different cir-
cumstances this algorithm might resemble a partially
ordered planner that maintains least commitment to
operator orderings, or a totally ordered planner that
can make use of an internal world state. We are cur-
rently designing a planning algorithm based on this
view.
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