
Carnegie Mellon University 
CARNEGIE INSTITUTE OF TECHNOLOGY   THESIS 

  Submitted in Partial Fulfillment of the Requirements   For the Degree of Doctor of Philosophy  
          TITLE 

 AUTONOMOUS ANIMATION OF HUMANOID ROBOTS 
  

PRESENTED BY  
 

JUNYUN TAY    
ACCEPTED BY THE DEPARTMENT OF 

 
 
 

MECHANICAL ENGINEERING  
   

____________________________________________  ________________________ ADVISOR, MAJOR PROFESSOR   DATE   
____________________________________________  ________________________ DEPARTMENT HEAD  DATE    

APPROVED BY THE COLLEGE COUNCIL   
____________________________________________  ________________________                          DEAN  DATE 

 



 



Autonomous Animation of Humanoid Robots

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Mechanical Engineering
(NTU-CMU Dual Ph.D. Degree Programme)

Junyun Tay

B.Comp., Information Systems, National University of Singapore
M.S., Mechanical Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May, 2016





Copyright c© 2016 Junyun Tay.
All rights reserved.





To my loving husband, Somchaya Liemhetcharat,

for his unwavering support and encouragement.





Acknowledgments

First and foremost, I would like to express my utmost gratitude to my advisers, Manuela
Veloso (co-chair) and I-Ming Chen (co-chair) for their invaluable guidance and advice. The two
of them were vital to the process for gaining entry to the NTU-CMU Dual Ph.D. Programme in
Engineering (Robotics). Manuela provided many opportunities for me to participate in RoboCup
competitions and outreach programmes like Creative Technology Nights, which led to my grow-
ing interest in AI and robotics. These opportunities laid the foundation for my Ph.D. by equipping
me with the knowledge about the NAO humanoid robots and prompted me to discover the excit-
ing worlds of AI and robotics. Manuela’s passion for AI and robotics has also been infectious
and I will never forget her reminding me of Allen Newell’s “The science is in the details!”. I was
also extremely fortunate to meet and talk to I-Ming during RoboCup 2010 held in Singapore and
found out about the NTU-CMU Dual Ph.D. Programme. The conversation with I-Ming was key
to gaining entry to the two Ph.D. programmes at NTU and CMU. I-Ming had also generously
provided me with resources to support my Ph.D. work.

I would also like to thank Jonathan Cagan and Song Huat Yeo for graciously agreeing to be
on my thesis committee, and providing valuable feedback for the thesis.

I am forever indebted to my husband, Somchaya Liemhetcharat, who supported me in all
possible ways during my Ph.D. The countless hours of research discussions and sharing of expe-
riences throughout this challenging and exhilarating journey have been cathartic. No amount of
words can describe my gratitude to him as a companion in life and research and I hope we have
many years to go. My daughter, Dhanaphon Liemhetcharat, has also been extremely supportive
with her mantra, “You can do it!” that she learned from her dad. Her cheeky antics have pro-
vided much joy and relief. It is my regret that I cannot spend enough hours with her through her
early childhood, but hope that she will eventually benefit from the contributions I made with this
thesis.

i



I am also grateful to my parents and family for putting up with my decision to follow Som-
chaya to CMU with no idea of what I would be doing in Pittsburgh and giving up on a job
that provided financial support. I thank them for their continuous love, encouragement, under-
standing and support in my crazy decision to do a Ph.D., particularly in the field of Mechanical
Engineering, given that I had little background in it.

I am also thankful for the help and support of many friends and colleagues in the CORAL
group at CMU and the Robotics Research Centre at NTU over the years. They are in no par-
ticular order: Mike Phillips, Brian Coltin, Susana Brandão, Çetin Meriçli, Stephanie Rosenthal,
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Abstract

Gestures and other body movements of humanoid robots can be used to convey meanings
which are extracted from an input signal, such as speech or music. For example, the humanoid
robot waves its arm to say goodbye or nods its head to dance to the beats of the music. This the-
sis investigates how to autonomously animate a real humanoid robot given an input signal. This
thesis addresses five core challenges, namely: Representation of motions, Mappings between
meanings and motions, Selection of relevant motions, Synchronization of motion sequences to
the input signal, and Stability of the motion sequences (R-M-S3). We define parameterized mo-
tions that allow a large variation of whole body motions to be generated from a small core motion
library and synchronization of the motions to different input signals. To assign meanings to mo-
tions, we represent meanings using labels and map motions to labels autonomously using motion
features. We also examine different metrics to determine similar motions so that a new motion is
mapped to existing labels of the most similar motion. We explain how we select relevant motions
using labels, synchronize the motion sequence to the input signal, and consider the audience’s
preferences. We contribute an algorithm that determines the stability of a motion sequence. We
also define the term relative stability, where the stability of one motion sequence is compared
to other motion sequences. We contribute an algorithm to determine the most stable motion se-
quence so that the humanoid robot animates continuously without interruptions. We demonstrate
our work with two input signals – music and speech, where a humanoid robot autonomously
dances to any piece of music using the beats and emotions of the music and also autonomously
gestures according to its speech. We describe how we use our solutions to R-M-S3, and present a
complete algorithm that captures the meanings of the input signal and weighs the selection of the
best sequence using two criteria: audience feedback and stability. Our approach and algorithms
are general to autonomously animate humanoid robots, and we use a real NAO humanoid robot
and in simulation as an example.
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Chapter 1

Introduction

A humanoid robot is designed to resemble a human, with a head, torso, two arms and two
legs. As such, a humanoid has multiple degrees of freedom (DOFs) that can be actuated to form
whole body motions. Since humanoid robots share a similar appearance as humans, the whole
body motions of humanoid robots can serve as non-verbal behavior in social interactions with
humans. For example, an ASIMO interacts with a live host in the show, “Say ‘Hello’ to Honda’s
ASIMO”, at a Disneyland park [Honda, 2005], and a NAO humanoid robot acts as a concierge to
guests at the Hilton McLean hotel and uses its motions as gestures to complement its speech that
is powered by IBM’s Watson program [Statt, 2016]. Since the articulated AIBO robots, followed
by QRIO humanoids, we have many demonstrations of a variety of artistic expressions. For
example, a QRIO humanoid conducts the Tokyo Philharmonic Orchestra that played Beethoven’s
Fifth Symphony [Geppert, 2004] and 540 humanoid robots perform a synchronized dance routine
during the 2016 Chinese New Year-themed variety show [Reich, 2016].

When a humanoid robot is animated using whole body motions, the goal is to convey the
meanings of an input signal, such as speech or music. A good animation requires that the motions
are synchronized to the input signal. Whole body motions of humanoid robots are complex and
are carefully configured so that the humanoid robots remain stable throughout the animation
given the multiple DOFs. Thus, the motions of humanoid robots are mostly pre-programmed by
motion choreographers or programmed to mimic human motions through motion capture data,
e.g., [Nakaoka et al., 2005]. Moreover, when the input signal changes, e.g., a new speech or
piece of music, the motion choreographers manually create new stable whole body motions that

1



2 1. INTRODUCTION

express the new input signal and synchronize the motions to the input signal. Such manual
animation does not easily enable the general use of robots. Similarly, new motion capture data
are collected for a new input signal, modified so that the motions are stable, and also satisfy
the physical constraints of the humanoid robot (i.e., its joint angle and velocity limits). This

thesis investigates how to autonomously animate a humanoid robot given an input signal while

ensuring that the robot remains stable throughout the animation.

The input signal is used as a guide to plan the humanoid robot’s whole body motions. In this
thesis, the input signal is pre-processed offline to identify the meanings to express. We represent
meanings using labels and extract labels and their timings by pre-processing the input signal.
The pre-processing of the input signal is synonymous to how humans study the script of a play
to understand what a character needs to portray, before acting in synchrony with the character’s
speech; similarly, dancers analyze the dance music before dancing to the beats and mood of the
music. This thesis explains how an input signal is pre-processed and used to select and plan the

whole body motions of a humanoid robot.

Whole body motions are smooth and continuous and are represented in different ways. For
example, whole body motions are represented as continuous joint trajectories using Kochanek-
Bartels (TCB) cubic splines [Ng et al., 2010] or as a set of key poses that are interpolated with
fixed times [Zheng and Meng, 2012]. The choice of the representation of whole body motions
affects how motions are modified to be synchronized with the input signal, and whether the same
motion is used in different input signals to convey the same meaning. Also, the representation
of motions affects the number of motions defined in a motion library. For example, suppose
there are two similar head nod motions – one motion where the head of the robot nods from 5◦

to −5◦ to 5◦, and another motion where the head nods from 10◦ to −10◦ to 10◦. Should similar
motions be represented as separate motions or as a single parameterized motion? This thesis uses

parameterized motions, to reduce the size of the motion library and to synchronize the motions

to the input signal.

In this thesis, motions are mapped to labels in order for relevant motions to be autonomously
selected to animate the input signal. Motions and labels have a many-to-many relationship,
i.e., a motion is mapped to multiple labels and a label is mapped to multiple motions. Manually
labeling the motions becomes laborious as the number of motions and labels increases. This

thesis investigates how to automatically map motions to labels, by extracting the features of the

motion, and by measuring the similarity between a new motion and existing motions.
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For every label in the input signal, there are multiple motions mapped to the same label.
When there is no exact match between the label of the motions and the label in the input signal,
we identify labels with similar meanings to the label in the input signal. Hence, there are multiple
choices of motions to convey the same or similar meaning(s) represented by each label in the
input signal. This thesis describes how we select relevant motions autonomously based on the

labels of the motions and the labels identified in the pre-processed input signal to form a motion

sequence, and contributes an algorithm to autonomously synchronize the motion sequence to the

input signal.

Actors in a play adapt their acting to the preferences of the audience using the audience’s
feedback such as loud cheers or applause. This thesis uses the audience feedback to learn the
preferences of motions so as to execute the most preferred animation on the humanoid robot.
This thesis investigates how the audience preferences are modeled, uses the learned model to

improve the selection of preferred sequences, and also models the effects of boredom where the

audience gets bored when they are shown the same motions repeatedly.

Continuous animation of the humanoid robot requires the humanoid robot to remain stable.
When the humanoid robot falls, the animation is disrupted. Moreover, falling may result in dis-
astrous consequences where the humanoid robot breaks or damages its joint(s) and the humanoid
robot is no longer capable of performing the motions using its whole body. Even if the robot is
able to recover from a fall without any damage, a disruption to the animation of the input signal
is still undesirable. This thesis describes how we identify unstable sequences that should not

be executed, and also selects the most stable sequence to execute, so that the robot is able to

continue to execute other sequences continuously without interruption.

When there are multiple motions with the same label, and multiple labels in the input signal,
multiple sequences of motions are feasible to animate the input signal. The multiple sequences of
motions are analogous to the different animations created by different motion choreographers for
the same input signal. Similarly, actors act differently given the same script as there are multiple
motions that convey the same meaning. The humanoid robot is only capable of executing a single
sequence of motions to animate the input signal at a particular instance. This thesis contributes a

complete algorithm that considers how to select the best motion sequence by taking into account

the meaning of the input signal, the synchronization of the motion sequence to the input signal,

the audience preferences, and the stability of the motion sequence.

Our approach is general for any pre-processed input signal that comprises labels and the
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timings of the labels, and we select two input signals to demonstrate how autonomous animation
of humanoid robots is achieved. Specifically, we use stories that are converted from text to
speech, and various pieces of music. The approach of this thesis is applicable to humanoid robots
that have a torso, two arms and two legs, and we choose a commercially-available humanoid
robot – the NAO humanoid robot – to demonstrate our work.

1.1 Thesis Question and Approach

After introducing the challenges involved in autonomously animating a humanoid robot given
an input signal, we present the thesis question, provide an overview of our approach and briefly
describe our solutions to the five core challenges, namely Representation, Mappings, Selection
and Synchronization, and Stability (R-M-S3).

The thesis question is:

In order to autonomously animate a humanoid robot given an input signal, how do we
represent motions, automate mappings between motions and meanings, select the relevant
motions and consider the audience’s preferences, synchronize motions to the input signal,
and determine a stable sequence of motions?

Overview of our approach

The autonomous animation of humanoid robots involves solving five core challenges we term
as Representation-Mappings-Selection-Synchronization-Stability (R-M-S3). We present our ap-
proach to the thesis question and summarize our approach in Figure 1.1. We describe our solu-
tions to R-M-S3 and also contribute a complete algorithm that utilizes these solutions – AAMPS
– Autonomous Animation that conveys the Meaning of the input signal and considers audience
Preferences and Stability of the motion sequences.
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Figure 1.1: Overview of our approach.

Representation

We formally define robot motions in a motion library, where the motions are parameterized
such that motions are varied and synchronized to different input signals. Motions are also cat-
egorized based on the features of the motions and we demonstrate how these categories reduce
redundancies in the motion library but yet, still be able to create many variations of motions. We
also introduce the concept of a spatially targeted motion, i.e., a motion that is directed at a target
of interest. For example, a storytelling robot waves hello to a friend when meeting a friend in the
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story by using a spatially targeted motion.
We also formally define a pre-processed input signal where labels and the timings of the

labels are extracted. We discuss the relationship between labels of the motions and the labels of
the input signal.

Mappings

We contribute an approach to autonomously assign labels to motions based on the features
of the motions. This approach is useful as it becomes more tedious to manually create mappings
between motions and labels whenever there is a new label or motion in a large motion library.

When features of the new motion to be added to the library are not available, we examine
different metrics to determine similar motions. We find an existing motion in the library that is
the most similar to the new motion and propose possible mappings between the new motion and
the labels of the existing motion.

Selection and Synchronization

We present an approach to select motions based on the similarity between the labels of the
motions and the labels of the input signal, and synchronize the motions to the input signal.
We demonstrate how motions are selected probabilistically, or by selecting the highest ranked
sequence.

Many motion sequences are feasible to animate the same input signal since there are multiple
motions with the same label and there are many labels in the input signal. The humanoid robot
executes one motion sequence and we aim to select the most preferred sequence according to the
audience’s preferences of the motions. We contribute an approach to model the audience’s pref-
erences of the motions and determine the most preferred motion sequence based on the feedback
of the audience at the end of the motion sequence. Given that the audience may get bored of
watching different sequences of motions for the same input signal, we do not execute all possible
sequences to determine the most preferred sequence. In our approach, the robot learns from the
feedback of executed sequences and determines the next sequence to execute, balancing explo-
ration (collecting feedback on a new sequence) and exploitation (selecting the best sequence in
its model). We also show that we do not execute all possible motion sequences to find the most
preferred sequence of motions for the input signal.
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Stability

We aim to determine the stability of motion sequences so that the humanoid robot animates
the input signal continuously without interruption. We contribute an algorithm that predicts if a
motion sequence is stable without executing the motion sequence, nor modeling the dynamics
of the humanoid robot. Although each motion in the motion library is assumed to be stable,
a sequence of various motions may be unstable. Hence, the stability of a sequence of motions
before executing the sequence on the robot must be known. The stability of a sequence of motions
is important for two reasons:

1. The meanings of the input signal are successfully conveyed by the robot when the robot
remains stable after executing the sequence of motions.

2. If the sequence of motions executed by the robot causes the robot to fall, severe wear and
tear of the robot may occur. If the robot repeatedly falls, the robot may not be able to
execute whole body motions and is only capable of actuating some joints.

We contribute an algorithm to determine the most stable sequence of motions by comparing
the relative stability of a sequence among other possible sequences of motions generated for the
same input signal. We choose the most stable sequence so that the robot continues to execute
more sequences of motions without interruption.

Complete algorithm – AAMPS

We contribute a complete algorithm – AAMPS – Autonomous Animation that conveys the
Meaning of the input signal and considers audience Preferences and Stability of motion se-
quences. AAMPS plans the best sequence of motions for a labeled input signal, that fulfills these
conditions:

1. Motions are relevant given that the labels of the motions are similar to the labels of the
input signal.

2. Motions are synchronized to the timings of the input signal’s labels.

3. Motions are stable and do not cause the robot to fall.

4. Motions that are preferred by the audience are rated higher and selected.

AAMPS selects relevant motions, generates multiple sequences of motions that are synchro-
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nized to the input signal, ranks the sequences based on a weighted criteria consisting audience
preferences and stability so as to select the best sequence of motions.

We assume that the autonomous generation of whole body motions for a humanoid robot is
possible when the following conditions are met:
• The physical constraints of the robot are known, e.g., joint angular limits and joint velocity

limits.

• The motions in the motion library are defined for the humanoid robot.

• The motions in the motion library are labeled.

• The input signal is pre-processed to determine labels that represent the meaning of the
input signal and timings of the labels.

• There exists a list of criteria to determine the best sequence of motions.

• Each motion in the motion library is stable.

• The body angle trajectories for each motion and interpolations between pairs of motions
are collected using the inertial measurement unit of the robot.

Throughout the thesis, the Aldebaran NAO humanoid robot is used to demonstrate our algo-
rithms and approaches. The Aldebaran NAO humanoid robot is a fully autonomous robot with
an internal CPU and sensors. Though we use the NAO robot in this thesis, our algorithms and ap-
proaches are general for humanoid robots that are similar to the NAO robots. Besides collecting
data on the NAO humanoid robot, we also use Webots 7 [Webots, 2014], a real-time simulator
that simulates the dynamics of the NAO robot in physically realistic worlds.

To evaluate this thesis, two input signals are considered: stories that are converted to speech
using a text-to-speech program, and various pieces of music. We demonstrate that we generate
stable relevant motions synchronized to speech for a story-telling robot, and stable relevant mo-
tions synchronized to music for a dancing robot. Our approach and algorithms are general to be
used for humanoid robots that are similar to the NAO humanoid robots, and input signals that are
pre-processed to determine the labels and the timings of the labels.
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1.2 Contributions

The main contributions of this thesis are:

• A formal definition of robot motions which allows many variations of motions that are
used in different input signals and the motions are synchronized to the input signals;

• A formal definition of pre-processed input signals;

• An algorithm to automatically map labels to motions;

• A metric to determine similar motions to map existing labels to new motions;

• An approach to generate variations of sequences of motions probabilistically and synchro-
nize the motions to the input signal;

• An approach to select the best sequence by ranking different sequences of motions based
on different criteria;

• An algorithm to select the best sequence based on audience preferences;

• An algorithm to predict the stability of a sequence of motions (i.e., whether the robot is
stable after executing the sequence) without a model of the robot or prior executions of the
sequence;

• A formal definition of relative stability where the stability of a sequence is compared to
the stability of other sequences;

• An algorithm to predict the most stable sequence by comparing the relative stability of a
sequence among other sequences using executions of other sequences of motions;

• A complete algorithm of autonomous robot animation that captures signal meaning and
weighs the criteria of audience preferences and stability.

1.3 Thesis Document Outline

Figure 1.2 presents an overview of the chapters in this thesis. The outline below presents a
summary of the following chapters:

• Chapter 2 presents an overview of the five core challenges to autonomous animation
of humanoid robots, namely Representation, Mappings, Selection, Synchronization and
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Stability (R-M-S3). We also explain how we utilize our solutions to R-M-S3 in the com-
plete algorithm for autonomous robot animation to capture signal meaning and weigh the
criteria of audience preference and stability – AAMPS.

• Chapter 3 describes how we formalize robot motions and pre-processed input signals. This
chapter illustrates the relationship between the labels of the robot motions and the labels of
the input signals. This chapter also describes how we create the motion library and input
signals we use to demonstrate our work.

• Chapter 4 explains how we autonomously map labels to motions and reduce the work to
manually label motions. This chapter also discusses the metrics used to determine similar
motions so as to map existing labels to new motions.

• Chapter 5 explains how we select relevant motions based on labels that capture the mean-
ings of the input signal and audience preferences and synchronize motions to the input
signal.

• Chapter 6 presents an approach to predict the stability of a sequence of motions (whether
the robot is stable or falls after the execution of the sequence) with no prior execution
data and no model of the dynamics of the humanoid robot. This chapter also presents an
approach to predict the relative stability among a set of sequences and determine the most
stable sequence.

• Chapter 7 discusses related research with respect to the different aspects of R-M-S3 and
how they relate to this thesis.

• Chapter 8 concludes with a summary of the thesis’ contributions and a discussion of future
work.
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Figure 1.2: Overview of the thesis chapters.
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Chapter 2

AAMPS – The Complete Algorithm

This chapter formally defines the five core challenges – “Representation”, “Mapping”, “Se-
lection”, “Synchronization” and “Stability” (R-M-S3) and how we use our proposed solutions in
the complete algorithm for autonomous robot animation that captures signal meaning, audience
preference and stability. We also list the assumptions made for each core challenge. We explain
our complete algorithm – Autonomous robot Animation that captures signal Meaning, audience
Preference and Stability of motion sequences (AAMPS). The following chapters will describe
how we address each core challenge in detail.

2.1 Problem Statement

We formally define the core challenges in R-M-S3 to lay the foundation of how AAMPS
provides a complete solution and addresses these challenges.

2.1.1 Representation of Robot Motions and Input Signals

We have a motion library that contains parameterized motion primitives and an input signal
to animate. A motion is an instantiated motion primitive where all the parameters of the motion
primitive are defined. The representations of parameterized motion primitives and input signals
are illustrated in Chapter 3.

Definition 2.1.1. Let a parameterized motion primitive be m. Let lm be a label assigned to the

motion primitive m. Let the set of parameterized motion primitives in the motion library be M ,

13
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and let the set of labels be L. Let the set of labeled parameterized motion primitives in the motion

library be ML.

An input signal is pre-processed to determine the labels and the timings of the labels.

Definition 2.1.2. Let a pre-processed input signal be s, and the set of all signals be S.

Assumptions

We assume that the motion primitives in the motion library are defined for the humanoid
robot used to animate the input signal. The labels of the motion primitives are either manu-
ally defined or mapped using our autonomous mapping algorithms, which require examples of
labeled motions to map existing labels to the new motions.

2.1.2 Mapping between Motions and Labels

If the mappings between motions and labels are manually defined, it becomes increasingly
challenging when the library of motions and the labels increase. This thesis investigates how
to autonomously map motion primitives to labels with a function X. With the function X, we
generate mappings between the parameterized motion primitives in the motion library and labels.
We explain the function X in detail in Chapter 4.

Definition 2.1.3. Let the function to map motion primitives to labels be X : M × L → [0, 1],

where X(m, l) determines if the motion m is mapped to the label l.

Assumptions

We assume that there exists examples of labeled motions that our autonomous mapping al-
gorithms can use to map existing labels to the new motions. These examples of labeled motions
are defined using our representation of motion primitives.

2.1.3 Selection of Motions based on Labels and Audience Preferences

Selection of relevant motions requires a match between the label of the motion primitive to
the label of the input signal. We also consider audience preferences of the motions. We explain
in detail how we select the motions based on labels and audience preferences in Chapter 5.
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There may not be a perfect match in the meanings between the labels of motion primitives
and the labels of the input signal. To determine how well the labels match, we define a function
S that determines the similarity of the labels in meaning.

Definition 2.1.4. The function S : L× L→ [0, 1] determines the similarity in meaning between

two labels. S returns a value of 1 when there is a perfect match in the meaning between two

labels or when the two labels are the same. S returns a value of 0 when there is no similarity in

the meaning of the label.

Besides selecting motion primitives based on the similarity between labels, we also consider
the audience preferences of motions. We consider that feedback of the audience is given at the
end of a performance. We are not able to get feedback for every motion primitive in the sequence,
but at the end of a sequence, we observe the audience feedback, i.e., a preference value.

Definition 2.1.5. A sequence of motion primitives us = (m1, . . . ,md) is an ordered set of d

motion primitives for a pre-processed input signal s, where d ≥ 2. Let U be the set of all

possible sequences of motion primitives.

We define a function A that returns the audience feedback of a sequence.

Definition 2.1.6. The audience preference value of a sequence of motion primitives is determined

by the function A : U × S → R+.

Assumptions

We assume that for all the labels in the input signal to be animated, there are motions in the
motion library with the same label or similar labels depending on the similarity function defined.
We provided examples of the similarity functions for emotion labels and text labels in Section 5.1
and Section 5.2.

We created a model of the audience preferences of motion sequences and assume that the
audience provides feedback using the model. The model is described in Section 5.3.

2.1.4 Synchronization of Motions to Input Signal

A sequence of motion primitives is synchronized to the input signal to animate the input
signal, otherwise it is awkward to see a robot animate out of sync with the input signal. The
function H synchronizes a sequence of motion primitives to the input signal. We describe the
function H in detail in Chapter 5.
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Definition 2.1.7. The function H : U × S → U synchronizes a sequence of motion primitives to

the input signal. If the sequence of motion primitives is not synchronized due to the constraints

on the duration of the motions and labels, H returns ∅.

Assumptions

We assume that the interpolation time is manually defined or determined using the fastest ve-
locity of the motors involved. We also assume that the function H is defined, e.g., to synchronize
the start of a motion to the start of the corresponding label or to start within a certain time at the
start of the label.

2.1.5 Stability of a Sequence of Motion Primitives

In Chapter 6, we investigate how to determine if a sequence of motions is stable to execute
using a humanoid robot and also find the most stable sequence from the list of possible sequences.

Definition 2.1.8. The function F : U → {0, 1} computes the stability of a sequence of motion

primitives, where F(us) = 1 if and only if us is feasible. A sequence of motion primitives is

feasible if and only if the robot is able to execute the keyframes whilst being stable.

Being stable means that the humanoid robot remains on its two feet, where only the base of
the robot’s feet remains in contact with the ground.

We also investigate the problem of determining the relative stability of a sequence given the
set of possible sequences. Relative stability of a sequence refers to how stable a sequence is
as compared to other sequences in the set of possible sequences. We determine the most stable
sequence from the relative stability of the sequences. By choosing the most stable sequence to
execute, the robot maximizes the chance that the robot continues to animate other input signals
without interruption.

Definition 2.1.9. The function U(us, U s)→ [0, 1] determines the relative stability of a sequence

us as compared to other sequences in U s, where U s is the set of possible sequences for the pre-

processed input signal s. The function U returns a value of 0 when us is the least stable sequence

in U s and returns a value of 1 when us is the most stable sequence in U s.
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Assumptions

We assume the following:

• The robot starts each motion sequence with the same keyframe.

• Individual motions in the motion library are stable. We also assume that the body angles X
(roll) and Y (pitch) sensor readings are available via the inertial measurement unit of the
humanoid robot.

• Data are collected on the same humanoid robot that is animating the motion sequences and
that the prediction of the stability of the motion sequence is made for the same humanoid
robot.

• There is no wear and tear.

2.2 AAMPS – The Complete Algorithm

After formalizing R-M-S3, we introduce the complete algorithm – AAMPS shown in Fig-
ure 2.1. We describe how AAMPS utilizes the solutions to the following aspects for autonomous
robot animation:

1. Meanings of signal are captured by determining relevant motion primitives based on the
labels of these motion primitives and the labels in the input signal;

2. Preferences of the motion primitives from the audience feedback;

3. Stability of sequences of motion primitives.

Meanings of signal

To determine relevant motion primitives, we use the function S : L × L → [0, 1] defined
previously. There may not be a perfect match between the label of a motion primitive to the
label of the pre-processed input signal, meaning that S returns a value less than 1 for all motion
primitives in the library for a particular label in the signal, ls. Hence, we select motion primitives
where the function S returns a value larger or equals to µ, where µ ∈ [0, 1]. For example, if we
set µ = 0.8, only motions with labels that have a similarity value of at least 0.8 with the signal’s
label are selected.
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Figure 2.1: Overview of AAMPS.

By identifying relevant motion primitives for each label in the pre-processed input signal, we
generate combinations of possible sequences for all labels in the pre-processed input signal s.
After generating these combinations, we synchronize each sequence of motion primitives to the
input signal using the function H. If a sequence of motion primitives is not synchronized to the
input signal, we discard that sequence of motion primitives.

Definition 2.2.1. The function SS(ML, s, µ) = U s selects the relevant motion primitives from

a library of labeled motion primitives, ML using µ, generates all possible combinations of se-

quences, synchronizes each sequence to the input signal s using H and returns a set of synchro-

nized sequences of motion primitives, U s.

Preferences of the motion primitives

We use A : U × S → R+ to determine the audience preference (ratings) of stable sequences
U ss. We use the terms audience preference and audience rating interchangeably from here on.
We normalize the ratings of these sequences using the highest and lowest rating in U ss.

Definition 2.2.2. Let Âmax = maxuss∈U ss A(uss) be the maximum rating in U ss for a sequence uss.

Let Âmin = minuss∈U ss A(uss) be the minimum rating in U s.
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Definition 2.2.3. Let Âu
ss

= A(uss)−Âmin

Âmax−Âmin be the normalized rating of sequence uss ∈ U ss. The func-

tion P returns the normalized rating, i.e., P(uss, U ss) = Âu
ss
. If all the ratings of the sequences

are the same, Âu
ss

is set to 1.

Stability of sequences

We use F : U → {0, 1} to determine if a sequence is feasible (stable). We discard sequences
in U s that are unstable.

Definition 2.2.4. Let uss be a synchronized sequence of motion primitives that is stable, i.e.,

F(uss) = 1. Let U ss be the set of stable and synchronized sequences of instantiated motion

primitives.

Next, we determine the relative stability of each sequence uss among the sequences in U ss

using the function U. The relative stability of the least stable sequence is 0 whereas the relative
stability of the most stable sequence is 1. If all sequences are just as stable, the relative stability
of each sequence is 1.

AAMPS

The inputs to the complete algorithm, AAMPS (Algorithm 1), are a labeled motion library,
ML, and a pre-processed input signal, s. AAMPS considers all three aspects – Signal Meaning,
Stability and Audience Preference – by using the following parameters:

• µ changes the number of relevant motion primitives.

• γ is the weight assigned to the relative stability of a sequence, uss, and 1− γ is the weight
assigned to the normalized rating, Âuss , where γ ∈ [0, 1].

First, AAMPS determines U s, a set of synchronized sequences of relevant motion primitives,
using the function SS. AAMPS goes through each sequence in U s to determine if the sequence
is stable. Next, AAMPS calculates the score for each sequence using the weights assigned to the
normalized audience rating and the normalized relative stability. Lastly, AAMPS finds the best
sequence with the highest score.
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Algorithm 1 Autonomous robot Animation that captures signal Meaning, audience Preference
and Stability (AAMPS).
AAMPS(ML, s, µ, γ)
U s ← SS(ML, s, µ)
U ss ← ∅
for i = 1 to |U s| do

if F(usi ) = 1 then
U ss ← U ss ∪ {usi} // Determine stable sequences

end if
end for
scores← ∅
for i = 1 to |U ss| do

scorei ← γ · U(usi , U
ss) + (1− γ) · P(usi , U

ss) // usi is the ith stable sequence in U ss

scores← scores ∪ {scorei}
end for
best← argmaxi∈{1,...,|U ss|} scorei
return uss

best

Assumptions

We assume that γ is defined and that we only consider relative stability and audience prefer-
ences to select a motion sequence for the humanoid robot to animate. We assume that there is
only one label to be animated at any instance, i.e., we do not animate multiple labels at once.

Discussion

In this section, we discuss how AAMPS is used. If we only want the most stable sequence,
we set γ = 1. If we only want the most preferred sequence, we set γ = 0. If we want to achieve a
balance between the two criteria – relative stability and the audience preference, we set γ = 0.5.
We note that the lower the value of µ, the higher the number of sequences generated.

We do not include the evaluation of how relevant each motion primitive is as part of the
criteria. Even though we select motion primitives based on the similarity between the labels of
the motion primitives and the labels of the input signal, there is no guarantee that the motion
primitives truly express the meaning of the labels. There may be nuances in the input signal that
are not determined just by using the labels in the input signal. For example, when the input signal
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is the sentence – “He pretends to be happy, but he is really sad”. We will generate sequences
that will animate the words “happy” and “sad” when these words are associated to motions in the
library. However, the true preference may be only on sequences that animate the word “sad”. In
such cases, we rely on the criterion of the audience preference to determine the best sequence.

Using Algorithm 1, we select the best sequence using the highest score. If there are multiple
sequences with the highest score, we select a sequence randomly. We can also use the scores
to select a sequence probabilistically by converting the scores into probabilities. The higher the
score of a sequence, the higher the probability that the sequence is selected. Using a probabilistic
approach, we select different sequences for the same input signal at different instances. This
probabilistic approach is useful when we present variations in the animations, e.g., to generate a
dance for a piece of music. However, as the values for relative stability and audience preference
are normalized, there will be a sequence with a score of 0 for the relative stability and another
sequence with a score of 0 for the audience rating. If we set γ = 1 or γ = 0, there will always
be a sequence that is not selected using the probabilistic approach.

The reader may think that γ should be set to 0 since that all sequences in U ss are stable.
However, we highlight that no algorithms are foolproof. The function F may not be able to
accurately determine whether all the sequences are stable, i.e., there may be some sequences
that are misclassified. By using the function U to determine relative stability of sequences,
we minimize the probability that a sequence that is unstable and deemed stable by F will be
executed. When γ is not set to 0, we consider the relative stability of sequences and maximize
the probability that the robot will continue to execute more stable sequences without interruption.

2.3 Chapter Summary

This chapter presents an overview of the five core challenges and formalizes each challenge
– Representation of motions, Mappings of motions to meanings where meanings are represented
as labels, Selection of relevant motions that considers the similarity between labels and audi-
ence preferences, Synchronization of motions to the input signal to form motion sequences, and
Stability of the motion sequences (RMS3). We contribute an algorithm – AAMPS, that is the
complete algorithm for autonomous robot animation to capture signal meaning, the audience
preferences and stability. We explain how AAMPS makes use of the proposed solution for the
five core challenges and discuss how AAMPS is used.
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Chapter 3

Representation of Robot Motions and
Input Signals

This chapter formally defines robot motions and input signals, the inputs to the complete
algorithm – AAMPS. We provide an overview of the instantiated robot motions and input signals
we use throughout the thesis to illustrate the algorithms and approaches we propose to solve the
problem. This chapter does not explain any algorithms or approaches to solve the problem;
algorithms and approaches are detailed in the rest of the thesis. The symbols used in this chapter
are also used in the rest of the thesis. Appendix A contains a summary of the list of symbols
used.

3.1 Representation of Robot Motions

In this section, we formally define motions for robots, starting from the definition of a
keyframe, which is a building block to form a robot motion. Next, we explain how a series
of keyframes forms a motion primitive, and how the parameter to a motion primitive adjusts its
duration.

Following that, we formalize the labels of motion primitives and describe motion primitive
categories, which are useful in the selection of relevant motions based on the input signal. Cate-
gories also consist features of the motion primitives. These features are introduced as part of the
model of the preferences of the audience.

23
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Lastly, we explain how our representation of robot motions reduces the number of expressive
motion primitives defined and yet creates many interesting variations of robot motions.

We first formally define a robot that is used to animate the input signal.

Definition 3.1.1. A robot R has a series of D actuated joints or degrees of freedom with corre-

sponding joint limits and velocities {(θmin1 , θmax1 , θ̇max1 ), . . . , (θminD , θmaxD , θ̇maxD }. The joint index

is d ∈ {1, . . . , D}, the minimum and maximum angle of the joint is θmind , θmaxd and the maximum

velocity is θ̇maxd . Let ζ be the D-dimensional configuration space of R.

3.1.1 Keyframes

A keyframe (static pose) stores the joints and corresponding angles at a particular time step.
For a robot to perform a motion, several keyframes are stored at different time steps and interpo-
lated to form a continuous motion.

Definition 3.1.2. A keyframe k ∈ ζ is a vector of D real numbers for each joint angle of of R. A

keyframe k ∈ ζ is valid if it is collision-free (the robot has no self-collisions) and the joint angles

stay within joint angular limits.

While having keyframes with clearly defined joint angles enables motion designers or users
to know the exact pose of a motion, it does not allow flexibility in defining motions that have
different starting positions. For example, Fig. 3.1 shows a motion of nodding the head at different
yaw angles with the same pitch angle changes. If keyframes with clearly defined joint angles are
used, all combinations of different yaw angles have to be defined. This problem is solved by
defining relative changes for certain joints to the previous keyframe. We define keyframes with
clearly defined joint angles as fixed keyframes and keyframes with relative changes for certain
joints as variable keyframes.

Definition 3.1.3. A keyframe with fixed joint angles is kf = {(J1, θ1), . . . , (Jn, θn)}, Ji 6= Jj and

n ≤ D. The joint index is Jd and θd is the corresponding joint angle. Let the set of keyframes

with fixed joint angles be Kf =
⋃
kf .

We formally define a variable keyframe with the parameter, α, that changes the amplitude of
the relative changes for certain joints of R. A relative change in joint index Jd is denoted as θ̃d.

Definition 3.1.4. A variable keyframe, kv(α) = {(J1, θ̃
min
1 , θ̃max1 ), . . . , (Jn, θ̃

min
n , θ̃maxn )} where

θ̃mind and θ̃maxd contains the minimum and maximum relative change for the joint with index Jd,

Ji 6= Jj and n ≤ D. Let Kv =
⋃
kv be the set of all variable keyframes.
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Figure 3.1: Head nods - different yaw angles, same pitch angle changes [Tay and Veloso, 2012].

To determine the joint angle in kv for joint index Jd, the parameter α ∈ [0, 1] is used to
determine the amplitude of the relative change of Jd, i.e., θ̃d = α · (θ̃maxd − θ̃mind ) + θ̃mind . Hence,
with α, a variable keyframe kv becomes a clearly defined keyframe kf , so kv is a parameterized
form of a keyframe.

Therefore, we have 2 different types of keyframes:

Definition 3.1.5. Let K = Kf ∪Kv be the entire set of keyframes (fixed and variable).

3.1.2 Motion Primitives (MPs)

Motions are movements that convey meanings when synchronized to an input signal. To
execute motions on a humanoid robot, the joints of the robot are actuated. A robot is only
capable of actuating its joints within the angular joint limits and speeds. A motion is made up of
several instantiated motion primitives, which we define below. A motion primitive m is a general
motion primitive mg or a spatially targeted motion primitive mst.



26 3. REPRESENTATION OF ROBOT MOTIONS AND INPUT SIGNALS

General Motion Primitive

A general motion primitive uses only fixed keyframes and does not use any variable keyframes.
A general motion primitive is parameterized to allow the motion to be synchronized with the task.

Definition 3.1.6. A general motion primitive mg is a tuple of G primitives –Mg, and parame-

terized with β and N , i.e., mg(β,N) = (Mg
1, . . . ,M

g
G)
N and G ∈ Z+ and N ∈ Z+.

The primitiveMg
n is a tuple of 2 keyframes, kn−1 and kn, and the time to interpolate between

these two keyframes, tn−1,n, whereMg
n = (kn−1, βtn−1,n, kn). k0, the first keyframe inMg

1, is

the initial pose of the robot R, which contains the joint angles for the D joints. Let M g =
⋃
mg

be the set of all general motion primitives.

The motion primitive is parameterized with β, where β ∈ R and β ≥ 1. β is determined
by the duration required to complete the motion primitive based on factors such as the duration
of the word, and is used as a multiplying factor. As some motions are repeated, such as waving
from side to side for a few times, the parameter N indicates the number of times the general
motion primitive is repeated. When N > 1, to repeat the motion primitive, the last keyframe kn
interpolates to the first keyframe k0. When the last iteration of the motion primitive is executed,
the final pose of the robot will be kn.

The interpolation method to interpolate between pairs of keyframe is defined. In this thesis,
we use the linear interpolation method. There are other interpolation methods such as bezier
interpolation. We assume the motions generated by a motion planner fulfill the following condi-
tions:

1. are collision-free;

2. are within physical limits, e.g., joint angular and velocity limits.

The time to interpolate between two keyframes, kn and kn+1, is determined by the interpo-
lation time computation function T : ζ × ζ → R+, i.e., tn,n+1 = T(kn, kn+1). tn,n+1 specifies
the minimum duration required to interpolate from the joint angles in kn to the respective joint
angles defined in kn+1. The minimum duration depends on the interpolation method defined and
is calculated using the maximum joint angular velocities. tn,n+1 can also be pre-defined by the
motion choreographer. However, if tn,n+1 is shorter than the minimum duration required to in-
terpolate from one keyframe to another (i.e., the duration specified by the choreographer is too
short for the robot to feasibly execute), then the minimum duration is used for tn,n+1.
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Spatially Targeted Motion primitive (STM)

Many motions are directed at a point of interest or target. To our knowledge, existing formal-
izations of motions do not automatically direct the motions at a target based on the parameters
of the motion. Therefore, we formally define another type of motion primitive, spatially targeted
motion primitive (STM), mst, which uses more parameters to define the direction. A STM is
directed at a point or a vector in a particular direction, e.g., to look at the clouds in the sky, thus
the robot turns its head to look up at a point in space. In the case of facing someone, the target
is defined as a vector and not a point, and the robot is orientated towards the person as the robot
looks at the face of the person.

Definition 3.1.7. A spatially targeted motion primitive (STM) mst is a tuple of S primitives and

parameterized with β, N and V , i.e., mst(β,N,V) = (Mst
1 , . . . ,Mst

S )N where S ∈ Z+ and

N ∈ Z+. V is a vector defining the direction of the STM’s first keyframe.

V determines the direction of the body part that is directed at a point of interest or target and

is found in the first pose of the robot. V consists of two ego-centric coordinates, P s and P e.

The primitiveMst
u is a tuple of 2 keyframes, kvu−1 and kvu, and the time to interpolate between

these two keyframes, tu−1,u, whereMst
u = (kvu−1, βtu−1,u, k

v
u). The parameter N indicates the

number of times the spatially targeted motion primitive is repeated. Let M st =
⋃
mst be the set

of spatially targeted motion primitives.

Similar to the repeats of the general motion primitive, when N > 1, to repeat the motion
primitive, the last keyframe kvn interpolates to the first keyframe kv0 using the time computation
function T.

To instantiate a spatially targeted motion, we need the target’s pose and the robot’s current
pose. Figure. 3.2 illustrates examples of adjusting the robot’s pose based on the target.

With V , the pose of the robot is calculated so as to execute the STM and the STM is directed
at its desired target. We define two parameters – Dmin and Dmax, the minimum and maximum
distance. These two distances define the range that the STM is able to execute. Proximity studies
are useful as a guide to define these 2 parameters, Dmin and Dmax. If the robot’s position is out
of the range, the robot moves within the range so that the STM is executed. The range is also
useful for motions that require a certain distance to the target, e.g., shaking hands with someone.

Algorithm 2 determines the robot’s global pose using its original global position, PRo , and
original global orientation, OR

o , given a known STM, mst, and a target, T , so as to direct the
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Figure 3.2: Examples of robot’s adjusted poses to face a point or vector target [Tay and Veloso,
2012].

robot to face the target. A target is a point, ts, or a vector,
−−→
tste, defined in global coordinates.

ωa in Fig. 3.2 provides an angular tolerance, where |Ost −OT | ≤ ωa, where Ost and OT are the
current and desired STM orientations respectively.

The function convertRelativeToGlobal(P ) converts any point relative to the robot to global
coordinates. The function canUpdateSTM(mst, OT ) performs several checks and updates to
determine the final robot position PRf and orientation OR

f : (a) It checks if mst is updated to face
the target at a global orientation angle of OT and the function canUpdateSTM returns True if
it is possible and updates mst, otherwise it returns False and the robot’s orientation is updated.
(b) Since mst includes variable keyframes, canUpdateSTM(mst, OT ) determines if the motion
is able to execute with the parameters specified. (c) canUpdateSTM(mst, Ost) checks if the joint
angular changes are within the joints’ angular limits. For example, if the head pitch joint only
actuates from −25◦ to 25◦, and the current head pitch angle is −20◦ and the variable keyframe
contains a relative change of −10◦, the head pitch joint cannot actuate to −30◦. Therefore, we
update the robot’s orientation when we cannot execute the STM.

After determining the global orientation, we check if the position of the robot needs to be
changed given the range of the minimum and maximum distance of the motion primitive mst

can be executed. If the robot’s position has to be updated, the robot will be placed at a distance
of Dmean = Dmin+Dmax

2
. Algorithm 2 is written for a 2-dimensional space scenario, but the

algorithm can be extended to a 3-dimensional space.
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Algorithm 2 Determines the final position and orientation of the robot [Tay and Veloso, 2012].
DeterminePoseForSTM(mst, T ,PRo , OR

o , ωa)
1: P gs ← convertRelativeToGlobal(P s) // P s is from mst.
2: P ge ← convertRelativeToGlobal(P e) // P e is from mst.
3: Ost ← atan2(P ge.y − P gs.y, P ge.x− P gs.x)
4: if T is a point then
5: OT ← atan2(ts.y − P gs.y, ts.x− P gs.x)
6: else if T is a vector then
7: OT ← 2π − atan2(te.y − ts.y, te.x− ts.x)
8: end if
9: if |Ost −OT | ≤ ωa then

10: OR
f ← OR

o

11: else if canUpdateSTM(mst, OT ) then
12: OR

f ← OR
o

13: else
14: OR

f ← OR
o + (OT −Ost)

15: end if
16: dist←

√
(P gs.x− ts.x)2 + (P gs.y − ts.y)2

17: Dmean ← Dmax+Dmin

2

18: if T is a point then
19: if dist ≥ Dmin and dist ≤ Dmax then
20: PRf ← PRo
21: else
22: PRf .x← (ts.x−Dmean ∗ cos(OT ))− P gs.x+ PRo .x
23: PRf .y ← (ts.y −Dmean ∗ sin(OT ))− P gs.y + PRo .y
24: end if
25: else if T is a vector then
26: if dist ≥ Dmin and dist ≤ Dmax and

|atan2(ts.y − P gs.y, ts.x− P gs.x)−OT | ≤ ωa then
27: PRf ← PRo
28: else
29: γ ← te.y−ts.y

te.x−ts.x
30: PRf .x← (ts.x− Dmean∗Dmean

γ2+1
)− P gs.x+ PRo .x

31: PRf .y ← (ts.y − γDmean∗Dmean

γ2+1
)− P gs.y + PRo .y

32: end if
33: end if
34: return PRf , OR

f
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The formalization of variable keyframes in spatially targeted motion primitives reduces the
number of motion primitives in M that had to be defined for variations of similar motions, where
M = M g ∪M st and M is the set of all motion primitives.

3.1.3 Motion Primitives Categories

Previously, we explained how we formalize motion primitives. In this section, we illustrate
with examples how we reduce the number of motion primitives stored by categorizing motion
primitives. Motion primitives categories are useful for the following reasons:

• There are many motion primitives stored in the robot’s motion library. Organizing motion
primitives into categories allows indexing of motion primitives so as to enable a fast search
to relevant motion primitives.

• Characteristics of the motion primitives also act as categories and make selection of rele-
vant motion primitives easier. For example, audiences may prefer motion primitives that
are faster versus those that are slower.

• Motion primitive categories also reduce repetitive motions to be stored and will be illus-
trated in Section 3.3.

Definition 3.1.8. A motion primitive, m, is associated with a set of k motion primitives features

(f1, . . . , fk). A motion primitive is assigned to a category, c, due to a particular feature(s), fi
or a set of features, (f1, . . . , fj) of the motion primitive, where j ≤ k. Let C be the set of all

categories and F be the set of all features.

Definition 3.1.9. The function C : F × C → {0, 1} determines if the feature f is assigned to a

category, c, i.e., C(f, c) = 1 if the feature f is assigned to the category c.

We assume that all the motion primitives are categorized based on a particular feature(s). In
Section 3.3, we describe one of the motion primitive categories we use in this thesis. An example
of possible features is the speed of the motion etc.

After formalizing motion primitives and the motion primitive categories, we discuss the pre-
processed input signals, including labels in the pre-processed input signal and the labels of mo-
tion primitives.
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3.2 Representation of Input Signals

To autonomously animate the robot based on an input signal, the input signal is pre-processed
to identify the labels (meanings) and the timings of these labels. Motion primitives are selected
based on the labels and synchronized to the input signal based on the timings of these labels.

Definition 3.2.1. A pre-processed input signal s = (S1, . . . ,SI) is a tuple of I primitives, where

each primitive Si = (lsi , t
ss
i , t

se
i ) is a tuple consisting lsi , the label; tssi , the starting time of the

label lsi ; and tsei , the ending time, where tsei > tssi . Let dl
s
i = tsei − tssi be the duration of the label

lsi . Let the set of signals be S.

Labels

Definition 3.2.2. A label, l, is assigned to identify meaning. Let L be the set of all labels.

Labels are useful to identify relevant motion primitives for the input signal. Labels are as-
signed to motion primitives such that the labels embody the meaning of the motion primitive.
A label is mapped to many motion primitives and a motion primitive is mapped to many labels.
Labels are used to identify relevant motion primitives based on the similarity between the labels
assigned to motion primitives and the labels identified in the signal. We define the labels of the
pre-processed signal and labels of motion primitives to explain their relationship.

Labels of the Pre-processed Input Signal

An input signal is pre-processed to identify labels and the times of the occurrences of these
labels. The labels of the input signal are used to determine the relevant motions.

Definition 3.2.3. Let ls be a label assigned to the signal s. Let the set of labels assigned to the

signal s be Ls.

For example, to identify the semantic meaning of the pre-processed signal, s, of a story, text
labels are used.

Labels of Motion Primitives (MPs)

Definition 3.2.4. A label, lm, is assigned to a motion primitive, m ∈ M . Let the set of labels

assigned to motion primitives be LM .
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To determine if a mapping exists between a label and a motion primitive, the function X is
used.

Definition 3.2.5. The function X : M × LM → {0, 1} determines the mapping between the

motions and the labels, i.e., X(m, l) = 1 if the motion m ∈M is mapped to the label l ∈ LM .

3.3 Instantiations of Robot Motions and Input Signals

In this section, we present a discussion of the robot motions and the input signals we use to
demonstrate our work. First, we consider how motions are created for two domains — music and
text. Next, we explain how we use motion primitive categories, specifically using body parts, to
create interesting variations of motions. There are different possible categories that we come up
with using different features of the motion primitives.

Robot Motions

In this section, we explain how we generate robot motions for the domain of music and the
domain of text as input signals.

Music

For the domain of music, we wanted to create an interesting variation of motion primitives
from a small number of motion primitives defined in the motion library. To attain that goal, we
grouped the joints into four categories based on the body parts shown in Figure 3.3 as each body
part is actuated independently, assuming that the effects of dynamics caused by the actuation of
other body parts are ignored. Moreover, by categorizing the joints, we define motion primitives
for each category and create a large number of interesting variations for whole body motions.
We do not separate the legs into left leg and right leg categories as the robot loses its balance if
the left and right legs are actuated independently.

Joints of the robots are grouped according to the body part category, so the joints of the
robots are used as a feature f . A motion primitive is automatically categorized to be in a body
part category based on the categories of the joints and whether the joints are actuated in this
motion primitive.
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Definition 3.3.1. Let cb = (J c
b

1 , . . . , J
cb

k ) be a body part category, where J c
b

is the name or index

of the joint in the category cb, and k is the total number of joints in the category cb.

We also denote cb ∈ {Head,LArm,RArm,Legs}. For example, in the body part category
“Head”, we have Head = (HeadYaw,HeadPitch), where HeadYaw and HeadPitch are the cor-
responding joint indices of the robot. By categorizing the joints, each keyframe in a motion
primitive is associated with one or more categories. Hence, the motion primitive is associated
with the union of all the categories the keyframes of the motion primitive are associated with.

Figure 3.3: NAO humanoid robot’s body parts and joints [Tay and Veloso, 2012].
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For the NAO, we group the joints into these 4 categories: Head, LArm (left arm), RArm
(right arm) and Legs (Figure 3.3). With these categorizations, we select motion primitives to
execute simultaneously and emphasize what the robot is expressing. For example, with a left
arm motion primitive shaking the fist angrily and a right arm motion primitive shaking the fist
angrily, we combine both motion primitives to emphasize anger. A motion primitive (general
or spatially targeted) may be categorized into more than one body part category (Figure 3.4).
E.g., a single motion primitive that expresses anger by staring at someone is composed of a head
movement and each arm moving to the side of the hips.

Figure 3.4: Classification of motion primitives [Tay and Veloso, 2012].

To address the goals of automatically generating motions, we define motion primitives as
building blocks for a motion, since combinations of motion primitives enable a greater variety of
motions. For example, the motion of shaking one’s head and waving two hands, indicating no, is
made up of three motion primitives and these motion primitives are applicable in other situations
as shown in Fig. 3.5.

To generate interesting variations of dances for the domain of music, we manually generated
52 parametrized motion primitives — 8 (Head)× 9 (LArm)× 9 (RArm)× 26 (legs) = 16, 848

whole body motion combinations. The number of combinations is actually much larger because
motions primitives of different categories do not necessarily start and end synchronously.
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Figure 3.5: Motion composition and possible combinations for other situations [Tay and Veloso,
2012].

Text

For the domain of text, to create a motion library, we collected fifty two words that were
taken from a list of words that toddlers should know [Laura Mize, 2008], the Dolch word list,
“a list of frequently used English words compiled by Edward William Dolch” [Wikipedia, 2015]
and Paul Ekman’s six basic emotions as labels.

Following that, we trained a group of students to create motions using the NAO humanoid
robot and Choregraphe [Aldebaran Robotics, 2014c], a software to create keyframe motions.
The students were instructed to create at least one motion for each label, and were encouraged to
create more motions for each label.

Each motion in the motion library is an instantiated motion primitive, where the motion
primitive’s parameters, such as β and N , are defined. The motions for Paul Ekman’s six basic
motions were modified from the motions available at http://hcm-lab.de/projects/
shr [Haring et al., 2011a]. In total, there are 161 motions for the fifty-two words. The list of

http://hcm-lab.de/projects/shr
http://hcm-lab.de/projects/shr
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words and the number of motions for the list of words are listed in Appendix B.

Each motion primitive in the motion library is instantiated with the parameters β = 1.0 and
N = 1 and tested in the simulator, Webots 7 [Webots, 2014] to ensure that the NAO humanoid
robot is stable after executing the motion (instantiated motion primitive).

Webots 7 [Webots, 2014] is a real-time simulator that stimulates the dynamics of the NAO
humanoid robot. If the motion is unstable, we use Algorithm 3 to determine the shortest duration
such that the motion is stable.

We determine the function T to determine the shortest interpolation time between keyframes.
We use the function Simulate to determine the index of the last keyframe the robot is stable.

The robot is determined to be unstable when the robot’s body angle exceeds a threshold
(robot’s body is on the ground) three seconds after the robot has executed the motion. The
amount of time to wait to determine the body angle is attained empirically as the robot’s body
angle reaches an equilibrium after three seconds. The threshold of the body angle is also attained
empirically when the robot’s body is on the ground.

ε is the amount of time added to the interpolation time between the pair of keyframes to test
if the interpolation from one keyframe to the next keyframe will be stable. We use ε = 10 since
the shortest time the next keyframe is executed is 10 milliseconds. After determining the shortest
time that after executing the pair of keyframes and the robot is stable, we update the interpolation
time between the pair of keyframes using the function UpdateInterpolationTime.

After ensuring the stability of each motion, a video of the NAO humanoid robot executing
each motion was shown to students and they were asked to provide labels for each motion.
Hence, more labels were added, resulting in 161 motions and 319 labels.

We do not evaluate how well the motion(s) expresses the meaning of the label(s) collected.
We consider how well the motion expresses the label using the ratings collected from the audi-
ence since the audience ratings reflect how well the motion expresses the meaning of a label. We
show how we select motion primitives based on the audience preferences in Section 5.3.

Input Signals

In this section, we explain how the input signals are pre-processed to determine the labels
and the timings of the labels.
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Algorithm 3 Shortest Duration of a Stable Motion.
ShortestDuration(m)

1: i ← Simulate(m) // Execute motion primitive in simulator, returns the index of the last
keyframe that it is stable

2: minStableTime← 0
3: // |m| is the number of keyframes in m
4: while i 6= |m| do
5: if minStableTime = 0 then
6: minStableTime← T(ki, ki+1) + ε
7: else
8: minStableTime← minStableTime + ε
9: end if

10: m ← UpdateInterpolationTime(m, ki, ki+1,minStableTime) // Update the interpolation
time between ki and ki+1 to minStableTime

11: i← Simulate(m)
12: end while
13: return m

Music

A piece of music is pre-processed using SMERS [Han et al., 2009], a music emotion recog-
nition system that maps seven features extracted from the music to eleven emotion categories.
Each of the eleven emotion categories was assigned a 2-dimensional value using Thayer’s 2-
dimensional Activation-Valence model [Thayer, 1989]. These activation-valence values act as
labels of the signal. As emotions change over time within a piece, we use a 30-second sliding
window with a 15-second overlap. Therefore, the ith label represents the emotion of the music
from time 15i to 15i+ 30 seconds, where i ≥ 0.

Besides the emotion of the music, we are also interested in having the robot motions follow
the beats of the music. We extract the beats of the music using the approach of [Ellis, 2006].

Text

Using the fifty two labels used to create motions for the motion library, we asked a group
of students to create stories using at least two labels per sentence and five sentences per story.
Twenty stories were written and listed in Appendix C.

To determine the timings of the labels in the stories, we used an open source text-to-speech
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engine, Festival [The Centre for Speech Technology Research, The University of Edinburgh,
2010] that provides the start time and end time of each label in the text-to-speech output.

3.4 Chapter Summary

This chapter presented the representation of robot motions, specifically keyframes which
are the building blocks of a motion primitive. A motion primitive is parameterized so as to be
able to synchronize the motion primitive to the input signal. A motion primitive is a general
motion primitive or a spatially targeted motion primitive. We also explained how we reduce
the number of motion primitives stored with motion primitives categories using features of the
motion primitives.

This chapter explained how the input signal is pre-processed to determine the labels of the
input signal. We also discussed the relationship between the labels of the pre-processed input
signal and labels of the motion primitives.

After formalizing robot motions and the input signals, we explained how we instantiate these
motions and describe the input signals, such as music and speech used in the thesis.



Chapter 4

Mappings between Motions and Labels

This chapter presents two approaches to automatically map motions to labels, since manually
labeling new motions in the library becomes tedious when we expand the motion library. The
first approach automatically maps new labels to motions based on the features of the motions.
The second approach automatically maps existing labels to motions, based on the similarity of
the new motion to existing motions in the motion library.

First, we consider how to automatically map motion to labels based on the features of the
motions. We use music as the input signal, and describe how we collect emotional poses that
are labeled. We contribute an algorithm that automatically labels a motion primitive with an
emotional label, given that the motion has similar features to the labeled emotional pose. We use
Thayer’s 2-dimensional Activation-Valence (AV) model [Thayer, 1989] as the emotional label.

Second, we consider the scenario that features of the motions are unavailable, so we use the
existing library of motion primitives which are already mapped to labels. There are three cases:

1. When a new motion primitive is added, mappings to existing labels are to be established.

2. When a new label is added, mappings from existing motion primitives to the new label are
to be added.

3. When a new motion primitive and a new label are added, where the new motion primitive is
mapped to the new label, mappings between existing motion primitives and the new label,
and mappings between the new motion primitive and existing labels are to be generated.

For this thesis, we specifically look at the first case, i.e., when a new motion primitive is
added. We explore different metrics to determine the similarity of the motions. We use the

39
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library of pre-defined motions primitives where the motion primitives are already labeled and
instantiated. We vary the motions in the motion library by changing the angles and/or duration.

4.1 Mapping Motions to Labels

For the domain of music, we pre-process the input signal, a piece of music, using SMERS
[Han et al., 2009], a music recognition system that maps seven features of the music to eleven
emotion categories, namely: Anger, Excited, Happy, Nervous, Pleased, Bored, Calm, Relaxed,
Sad, Sleepy, Peaceful.

Thayer proposed a two-dimensional Activation-Valence (AV) model that is used to describe
emotions on the dimension of activation (also known as arousal, which represents the level of
energy) and the dimension of valence (the dimension of stress) [Thayer, 1989]. We assigned
activation-valence values to the eleven emotion categories based on the eleven emotion categories
plotted on Thayer’s two-dimensional emotion model [Han et al., 2009]. Figure 4.1 shows the
eleven emotions marked with crosses and their corresponding AV values. For each emotion,
there is an activation-valence value (a, v) assigned to the label, where a ∈ [−1, 1], v ∈ [−1, 1].

4.1.1 Approach – LeDAV

To assign emotional labels using Thayer’s two-dimensional emotion model, we collect static
emotional poses in order to create a reference to how emotional labels are mapped to motions.
We assume that when the characteristics of these static poses are shown in motions, they express
the same emotion as the static pose.

Paul Ekman concluded from his research that there are six basic emotions, namely happy,
sad, anger, fear, surprise and disgust [Paul Ekman and Wallace V Friesen, 1975] and claimed
that other emotions can be classified into these six emotions [Ekman, 1992]. We label Ekman’s
six basic emotions with circles and their corresponding AV values which are shown in a grey
background in Figure 4.1. SMERS outputs one of eleven emotions, and we show these eleven
emotions in Figure 4.1 with crosses. Three of the eleven emotions (Happy, Sad, and Angry)
overlap with Paul Ekman’s six basic emotions.

Paul Ekman’s six basic emotions are clearly separate, discrete emotional states, and we want
to determine their characteristics via static poses on a robot. The emotional static poses were
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Figure 4.1: Emotions labeled with Thayer’s 2-dimensional AV model. [Thayer, 1989]

obtained from 24 girls, aged between 11 to 16, each using the NAO humanoid robot indepen-
dently. Each girl is asked to express one emotion out of Ekman’s six basic emotions using a NAO
humanoid robot. They are allowed to freely position the head and arms. As the legs of the robot
are difficult to be freely adjusted without the NAO falling over, we do not allow the legs of the
robot to be freely adjusted. Instead, we allow the participants to vary the heights and tilts of the
robots. Figure 4.2 shows how each participant can vary the legs with five different heights and
five different tilts.

In total, we collected a total of 24 static poses, i.e., four static body poses for each of Ekman’s
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Figure 4.2: 5 heights and 5 tilts of the NAO robot [Xia et al., 2012].

six basic emotions. These 24 static poses are listed with a summary of the height and tilt in
Appendix D. Figure 4.3 shows a subset of the static poses data for each emotion. Table 4.1
summarizes our observations of the characteristics of the static poses in terms of height, tilt and
arms.

Definition 4.1.1. Let EM = {Happy, Sad, Angry, Disgusted, Fear, Surprised} be the set of Ek-

man’s six emotions, and let em ∈ EM be the one of Paul Ekman’s six basic emotions.

Table 4.1: Summary of the characteristics of the static emotional poses collected.

Emotions Height Tilt Head Arms
Happy High Neutral Neutral Raised up above shoulders

Sad Low Forward Forward Side / In front of eyes
Anger High Forward Neutral Arms out to the front / At the hip

Surprise High Back Neutral / Back Arms out to the front / In front of the face
Fear Low Forward Forward Arms raised and in front of the face

Disgust - - - -

Using these 24 emotional static postures, we contribute an approach – LeDAV, made up of
three algorithms, Algorithms 4 - 6 autonomously assign an AV label to the motion primitive m.
Algorithm 4 uses the 3-dimensional positions of the points of interest (POIs) shown as red circles
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Figure 4.3: Examples of emotional static poses collected and selected keyframes from motion
primitives that convey the emotion. Red circles indicate the points of interest (POI) [Xia et al.,
2012].

in Figure 4.3. The POIs are used to calculate the least sum of Cartesian distances between each
of the four emotional static poses and the keyframes of the motion primitive m. The POIs are
placed in the middle of each rigid body link, so a static pose of the robot is reproduced using
POIs. Thus, we determine the similarity of each emotional static pose and the motion primitive
using the Cartesian positions of the POIs.

Algorithm 5 computes the weights for each of Ekman’s six emotions based on the exponential
weighting of the rankings and values of the least sum of Cartesian distances from each emotion.
Using the least sum of distances returned by Algorithm 4 for each emotion, Algorithm 6 estimates
the AV value of the motion primitivemwith the weights calculated from Algorithm 5 and the AV
values of Ekman’s six basic emotions. Figure 4.3 shows examples of keyframes selected from
the motion primitives that are assigned the AV value closest to the AV value of the corresponding
emotion. The keyframes from the motion primitives labeled with similar emotions look similar
to the static poses. Figure 4.4 shows the estimated AV values of the motion primitives in the
motion library we created and Ekman’s six emotions.
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Algorithm 4 Calculate the least sum of Cartesian distances of points of interest of a motion
primitive m and the emotional static pose in SPem, the set of four emotional static postures for
the emotion em [Xia et al., 2012].
LeastDiff(m, em)

for sp ∈ SPem do
// Sum the distances between the keyframes in m and the emotional static pose sp
DISTsp ←

∑
kf∈m GetDist(kf, sp)

end for
return minsp∈SPem(DISTsp)

Algorithm 5 Calculate the vector of weights based on the ranking of the Euclidean distances
[Xia et al., 2012].
GetWeights(distances)

1: for i = 1 to |distances| do
2: flippedDistancesi ← (

∑
j distancesj)− distancesi

3: end for
4: sorted← sortAscending(flippedDistances)
5: meanValue← mean(flippedDistances)
6: for i = 1 to |flippedDistances| do
7: weightsi ← ek + flippedDistancesi

meanValue where sortedk = flippedDistancesi
8: end for
9: for i = 1 to |weights| do

10: weights’i ←
weightsi∑
j weightsj

11: end for
12: return weights’

4.2 Mapping Existing Labels to New Motions

In this section, we consider adding new motions into an existing labeled motion library,
where each motion in the motion library has one or more labels. Without an autonomous way
to map labels to new motions, all existing labels have to be examined manually to determine the
mappings between labels and the new motion. We contribute an algorithm that autonomously
determines mappings between a new motion and existing labels, by finding similar motions and
using the labels of the similar motions as the labels for the new motion. We investigate how to
associate labels with a new motion by determining effective metrics to compute the similarity
between two motions so as to use the labels of the most similar motion.
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Algorithm 6 Estimate activation-valence value of m [Xia et al., 2012].
AV(m)

for em ∈ EM do
emDiffem ← LeastDiff(m, em)

end for
weights← GetWeights(emDiff)
act←

∑
em∈EM(weightsem · ema)

val←
∑

em∈EM(weightsem · emv)

A similar motion has generally been defined as having similar joint angles or postures. We
explore using joint angles and postures as measures to determine similarity. We also investigate
two general distance metrics – Euclidean and Hausdorff distances. We introduce the concept
of a mirrored motion, where a motion is symmetrical to another motion, e.g., where a motion
involving the left hand or the right hand is mapped to the same label. We incorporate all these
approaches into eight distance metrics and compare the efficacy of each metric using precision
and recall.

We conduct experiments in Webots, a real-time simulator to determine the efficacy of the
eight distance metrics. We explain how we create two motion libraries to compare a motion
library with mirrored motions versus a library without. We also generate variants of the motions
in each motion library to evaluate the distance metrics. We determine the mappings of existing
labels to new motions using the eight distance metrics and the nearest neighbor algorithm. We
determine the best distance metric based on the precision, recall and computational complexity.

4.2.1 Motion Library

We have a total of 161 motions in the motion library and we term these as the Initial set. The
Initial set contains motions with no modifications and are labeled. 35 out of these 161 motions
in Initial are mirrored motions. Since our motion library consists of 161 motions, we expand
Initial to 1610 motions by varying the joint angles and/or interpolation times. We assume that by
varying the joint angles and/or interpolation times, the same labels are still applicable to these
variations.
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Figure 4.4: Activation-valence values of labeled motion primitives

Varying Interpolation Time and Joint Angles

To create similar motions, we vary the following features of the motions in Initial, and assume
each variant of a motion, mn, shares the same labels assigned to mn in Initial:

• ModJoints: We only modify the joint angles of each motion where each joint angle for each
keyframe in the motion primitive is modified with a 50% probability. If the joint angle is
modified, the joint angle will be changed within a range of −5◦ to 5◦, so θd = θd + θ̃ and
θ̃ ∈ {−5◦,−4◦,−3◦, . . . , 5◦}.

• ModTime: We only vary the interpolation times by changing β, β ∈ {1.25, 1.5, 1.75, 2}.

• ModJointsAndTime: We change both joint angles and interpolation time of each motion
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by combining the first and second features. We use the motions that were modified in
ModJoints and modify the interpolation time by β ∈ {1.25, 1.5, 1.75, 2}.

Creating Mirrored Motions

Figure 4.5: Joints, POIs and coordinate frame of the NAO robot. Edited image from [Aldebaran
Robotics, 2014b].

The NAO H25 humanoid robot has 25 actuated joints. Figure 4.5 shows the positions of all
the joints in the NAO humanoid robot. Although Fig. 4.5 shows a total of 26 joints, only 25
joints are actuated as the LHipYawPitch and RHipYawPitch “share the same motor so they move
simultaneously and symmetrically” and in the case of “conflicting orders, LHipYawPitch always
takes the priority” [Aldebaran Robotics, 2014a].

Some motions are a mirror image of another motion in the library; we termed them mirrored

motions. The meanings of a motion are similar when a motion is a mirror image of another
motion. For example, the motions of waving with the left hand and waving with the right hand
are mapped to the same label – “wave”. Also, the motions of kicking with the left leg and kicking
with the right leg are also mapped to the label – “kick”. However, waving with the left hand is
labeled with the phrase “wave with left hand” and waving with the right hand is labeled with the
phrase “wave with right hand”. Therefore, though they share most of their labels (and meanings),
they are also mapped to different labels.

Definition 4.2.1. Let θoriginal
d be the joint angle of joint d in the motion m. Let θmirror

d be the joint

angle of joint d in the mirrored motion mn.
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Paired Joints Corresponding Mirrored Joints
HeadYaw HeadPitch -HeadYaw HeadPitch

LShoulderPitch RShoulderPitch RShoulderPitch LShoulderPitch
LShoulderRoll RShoulderRoll -RShoulderRoll -LShoulderRoll
LElbowYaw RElbowYaw -RElbowYaw -LElbowYaw
LElbowRoll RElbowRoll -RElbowRoll -LElbowRoll
LWristYaw RWristYaw -RWristYaw -LWristYaw

LHand RHand RHand LHand
LHipRoll RHipRoll -RHipRoll -LHipRoll
LHipPitch RHipPitch RHipPitch LHipPitch

LKneePitch RKneePitch RKneePitch LKneePitch
LAnklePitch RAnklePitch RAnklePitch LAnklePitch
LAnkleRoll RAnkleRoll -RAnkleRoll -LAnkleRoll

LHipYawPitch LHipYawPitch

Table 4.2: Paired joints and corresponding mirrored joints.

We compute a mirrored motion by looking at pairs of joints that are symmetrical to each other
by the Z axis in Fig. 4.5 using the function mirror, where mirror(θoriginal

d ) = θmirror
d . Table 4.2

shows the list of 25 joints and the corresponding mirrored joints. For example, for the joint angle
of joint HeadYaw in the original motion, θoriginal

HeadYaw, the joint angle for HeadYaw in the mirrored
motion will be negative. Therefore, in order to find θmirror

HeadYaw, we use the function mirror, i.e.,
θmirror

HeadYaw = mirror(θoriginal
HeadYaw) = −θoriginal

HeadYaw.

4.2.2 Metrics for Motion Similarities

Besides joint angles, we also consider the differences in the three-dimensional positions of
the joints with respect to the robot’s torso as the joint differences may not reflect the differences
in posture. Hence, we compute the three-dimensional (3D) position of each joint of the robot and
term each position as a point of interest (POI). Besides each joint, Fig. 4.5 shows the points of
interest (POIs) with seven red asterisks (*). We add these seven POIs because their 3D positions
vary with joint angles changes in the head, wrists and ankle joints, whereas the 3D positions of
the head, wrists and ankle joints are invariant to joint angle changes. E.g., the 3D position of the
HeadYaw joint remains unchanged when HeadYaw’s joint angle changes. Therefore, there are
|POI| = 25 + 7 = 32 POIs. Besides using Euclidean distance, Erdogan and Veloso also chose
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“the Hausdorff metric for its generality and efficiency” [Erdogan and Veloso, 2011a]. Eight
distance metrics are varied across three axes – Euclidean versus Hausdorff, mirrored versus non
mirrored and joint angles versus POIs:

1. EuclideanJoint: We compute the average absolute joint difference between the same joint
for two different motions for each time step. If a motion m1 is longer in duration than the
other motion m2, we use the joint angles at the last time step of m2 to compare with the
rest of the joint angles ofm1, and vice versa. Let the duration ofm1 be dt1 and the duration
of m2 be dt2. Since D is the number of the degrees of the freedom of the robot R and we
are using the NAO humanoid robot with 25 joints, D = 25. Let θ(mi,d)

s be the joint angle
of joint d at time step s of the motion i. We determine the average joint difference:

EuclideanJoint(m1,m2) =

∑D
d=1

∑max(dt1,dt2)
s=1 |θ(m1,d)

s − θ(m2,d)
s |

max(dt1, dt2)

2. EuclideanMirrorJoint: We compute the average absolute joint difference in joint angles for
motion m1 and a mirrored motion of another motion m2 using the function mirror which
calls mirror(θ(m1,d)

s ) on each joint angle θ(m1,d)
s of m1 in each timestep. We also compute

the average absolute joint difference for motionsm1 andm2 and use the smaller difference:

EuclideanMirrorJoint(m1,m2) = min(EuclideanJoint(m1,m2),

EuclideanJoint(m1,mirror(m2)))

3. EuclideanPOI: We compute the average absolute Euclidean distance of the 3D position of
the same POI for two different motions for each time step. We also repeat the computations
for each of the 32 POIs. If a motion m1 is longer in duration than the other motion m2, we
use the 3D position of the POI at the last time step of m2 to compare with the rest of the
3D position of the same POI of m1, and vice versa. Let the duration of m1 be dt1 and the
duration of m2 be dt2. Let POI(mi,p)

s be the pth POI in the ith motion at time step s. We
determine the average Euclidean POI difference:

EuclideanPOI(m1,m2) =

∑|POI|
p=1

∑max(dt1,dt2)
s=1 |POI(m1,p)

s − POI(m2,p)
s |

max(dt1, dt2)
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4. EuclideanMirrorPOI: We compute the average absolute Euclidean distance of the three
dimensional position of the same POI for two different motions for each time step. We
also compute the average absolute Euclidean distance of the first motionm1 to the mirrored
motion of the second motion m2 and take the minimum:

EuclideanMirrorPOI(m1,m2) = min(EuclideanPOI(m1,m2),

EuclideanPOI(m1,mirror(m2)))

5. HausdorffJoint: Instead of determining Euclidean distances between joints or POIs, we
use the Hausdorff metric where the function ED computes the Euclidean distance between
two joints using the joint angles, i.e., ED(θm1 , θm2):

HausdorffJoint(m1,m2) = max( max
θm1∈m1

min
θm2∈m2

ED(θm1 , θm2),

max
θm2∈m2

min
θm1∈m1

ED(θm1 , θm2))

6. HausdorffMirrorJoint: We use HausdorffJoint to find the minimum of the two Hausdorff
measures – joint angles for m1 and m2 and joint angles for m1 and mirror(m2):

HausdorffMirrorJoint(m1,m2) = min(HausdorffJoint(m1,m2),

HausdorffJoint(m1,mirror(m2)))

7. HausdorffPOI: Instead of joint angles, we look at Hausdorff measures for POIs and the
function EP(POIm1 ,POIm2) returns the Euclidean distance between the two POIs of m1

and m2:

HausdorffPOI(m1,m2) = max( max
POIm1∈m1

min
POIm2∈m2

EP(POIm1 ,POIm2),

max
POIm2∈m2

min
POIm1∈m1

EP(POIm1 ,POIm2))
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8. HausdorffMirrorPOI: We use HausdorffPOI to compute the minimum of the two Haus-
dorff measures – POIs for motion m1 and m2 and POIs for m1 and mirror(m2):

HausdorffMirrorPOI(m1,m2) = min(HausdorffPOI(m1,m2),

HausdorffPOI(m1,mirror(m2)))

Adding a new motion to the motion library

We use the nearest neighbor algorithm to select the closest motion to the new motion using
the output of a distance metric and map its labels to the new motion:

First, given a new motion m+, and the existing motion library M , using DM(m+,m), where
DM is one of the metrics described earlier. For example, using one of the distance metrics, i.e.,
DM = EuclideanJoint, we find:

m∗ = argminm∈MDM(m+,m)

Second, we create an updated motion library M+ = M ∪ {m+}. Third, a new motion m+ is
mapped to m∗’s labels and use the updated mapping function X+:

X+(m, l) =

X(m, l) if m+ 6= m

X(m∗, l) otherwise

Thus, the new motion and its corresponding labels are represented in the updated motion
library M+ and the updated mapping function X+.

4.2.3 Experiments

In this section, we describe our experiments to evaluate the eight distance metrics and the
nearest neighbor algorithm that autonomously maps motions to labels.

We compared the different distance metrics to determine similarities of motion trajectories.
We used the motions from an existing motion library used by a NAO humanoid robot to animate
stories – Original – and created another motion library – NoMirrored – by removing mirrored
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(a) Precision for Original Motions (b) Precision for NoMirrored Motions

Figure 4.6: Precision for 2 motion libraries.

motions from Original. These two motion libraries enable us to understand the efficacy of in-
cluding the function mirror in the distance metrics:

• Original: Original has a set of 161 motions and 319 associated labels.

• NoMirrored: NoMirrored has a set of 126 motions and 265 associated labels.

Next, for each of the 2 motion libraries: Original and NoMirrored, we create the variants de-
scribed in Section 4.2.1: Initial, ModJoints, ModTime and ModJointsAndTime.

To evaluate the eight distance metrics, we use Precision = true positives
(true positives+false positives) and Recall =

true positives
(true positives+false negatives) to measure the performance of assigning labels to motions. The term pos-
itive means the motion is assigned a label and negative means the motion is not assigned a label.
The term true means the label assigned is right and false means the label assigned is wrong. We
term true positives TP, false positives FP, false negatives FN and each term is indexed by v – the
index of the label. The equation to compute the precision is

∑|L|
v=1 TPv/(

∑|L|
v=1 TPv +

∑|L|
v=1 FPv)

and the equation for recall is
∑|L|

v=1 TPv/(
∑|L|

v=1 TPv +
∑|L|

v=1 FNv), where |L| is the number of
labels in the library.

We perform 10-fold cross validation, where the motions are randomly divided into 10 folds
and we iteratively use 1 fold as test data and the rest as training data. Next, we determine the
labels of each motion in the test data using a distance metric and the nearest neighbor algorithm.
We perform the cross validation 10 times for each distance metric, find the precision and recall
for each variant of motions in each motion library and summarize the results with a mean and
standard deviation in Figure 4.6 and Figure 4.7.

The precision and recall for the Initial motions are low as compared to other variants of
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motions, e.g., ModTime, which is expected as the motions in Initial do not have many simi-
lar motions and are mostly distinct except for mirrored motions. Hence, the nearest neighbor
algorithm is unable to find an exact match of the labels for a new motion.

The precision and recall for the Initial motions improve for the distance metrics that include
the function mirror. In contrast, when the library is expanded with ModTime for example, the
nearest neighbor algorithm returns a similar motion with the exact labels. Hence, the precision
and recall is much higher.

For the Original motion library, distance metrics that include the function mirror perform
worse than metrics that do not include the function, except for the Initial motions. Since distance
metrics that include the function mirror compute the similarity between a motion m1 and the
mirrored motion of m2, m1 is treated as the mirrored of m2 given that the distance metric returns
the lowest value. Therefore, mapping the wrong labels to the new motion often occurs, resulting
in a lower precision and recall. Also, though most labels of the mirrored motions are the same
as the labels of the Initial motions, some of them are different as they include the word, “right”
instead of “left” or vice versa. By removing mirrored motions in the NoMirrored motion library,
the precision and recall for the NoMirrored motion library are similar for metrics without the
function mirror. This finding supports our explanation of why distance metrics that include
the function mirror perform worse for the Original motion library than the NoMirrored motion
library.

The distance metrics that involve Euclidean distances perform as well as the distance metrics
that involve Hausdorff distances in terms of precision and recall. However, Hausdorff distances
are computationally more expensive and runs in O(t2), whereas Euclidean distances run in O(t),
where t is the number of time steps of the longer motion. The distance metrics that involve the
joints perform as well as distance metrics that involve the POIs. However, distance metrics that
involve the POIs use more computations (absolute difference between a pair of 3D points) than
the distance metrics that involve the joints as we take the absolute difference between each pair
of joint angles. Hence, EuclideanJoint is the best distance metric for motions such as ModJoints,
ModTime and ModJointsAndTime in terms of precision, recall and computational complexity.
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(a) Recall for Original Motions (b) Recall for NoMirrored Motions

Figure 4.7: Recall for 2 motion libraries.

Analysis of Results

We define eight distance metrics to determine the similarities of motions. We create two
motion libraries and explain how we created variants of the motions to conduct experiments. We
determine mappings of existing labels to new motions using the eight distance metrics and the
nearest neighbor algorithm. We present the efficacy of each distance metric using precision and
recall. We find that EuclideanJoint is the best distance metric in terms of precision, recall and
computational complexity.

We observe that distance metrics with the mirror function have a lower precision and recall.
Precision and recall can be increased by looking through the labels, and replacing the words
associated with the mirrored motion, e.g., changing “left” to “right”, but this approach requires
a dictionary of such pairs of words.

4.3 Chapter Summary

This chapter presents LeDAV, that uses the weighted similarity between the emotional static
poses collected and the motion to be labeled. LeDAV assigns an emotional label with an activation-
valence value based on the computed weights. LeDAV autonomously maps motions to labels
based on the features of the motions using music as an input signal.

This chapter also explains how there may be cases where the features of the motions are not
available to automatically map new motions to labels. This chapter explores different distance
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metrics to determine the similarity between motions so that labels of existing motions are used
for a new motion.
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Chapter 5

Selection and Synchronization of Motion
Primitives

In this chapter, we consider how to autonomously select relevant motion primitives and syn-
chronize the motion primitives to the input signal. Selection of relevant motion primitives is not
a simple task of just selecting the motion primitives based on a match between labels. There are
two approaches that we use to select relevant motion primitives. First, we investigate probabilis-
tically selecting relevant motion primitives as we step through each label of the input signal. The
second approach is to consider all possible combinations of the sequences of motion primitives,
use a set of weighted criteria, rank the sequences, and choose the best sequence.

For each approach, we explain how we synchronize the motion primitives to the input signal.
We use two domains to illustrate the two different approaches. First, in Section 5.1, we consider
the domain of music, where we probabilistically select relevant motion primitives based on the
emotions of the music and synchronize the motion primitives to the beats of the music. Next, in
Section 5.2, using the domain of text, we explain how we select relevant motions and generate
synchronized motion sequences that are valid. We rank the motion sequences based on a set of
weighted criteria and select the best sequence to execute.

Lstly, in Section 5.3, we explore how to use the audience feedback of previous motion se-
quences to improve the selection of motions and determine the most preferred sequence. The
audience provides feedback at the end of a performance, i.e., a numerical rating is given at the
end of a motion sequence. We explain how we model the ratings of the individual motions using

57



58 5. SELECTION AND SYNCHRONIZATION OF MOTION PRIMITIVES

the feedback of the audience. We also discuss how we model the effects of boredom when the
audience repeatedly views the same motion.

5.1 Probabilistic Selection and Synchronization

Dancing motions for robots are usually created by choreographers and designed for a par-
ticular piece of music. If the piece of music changes, the dance movements of the robot will
have to be recreated. We are interested in automating the task of robot dance choreography by
generating sequences of dance movements from a motion library. The automatically generated
choreography should satisfy several goals. First, the choreography should reflect the emotional
character of the music. Peaceful music should be choreographed differently from music that
sounds angry. Second, the dance should be synchronized to the music. Lastly, the dance should
not be deterministic. Even when the emotion and tempo of the music remain constant, the dance
should contain interesting variations.

We represent emotion using a two-dimensional activation-valence emotion space, which is
commonly used to describe emotional states. We generate many variations of motion primi-
tives, by dividing the joints of the NAO humanoid robot into 4 body part categories, where each
category of joints is actuated independently. We describe how we generate many variations of
motions in Section 3.3. Motion primitives from each body part category are selected to match
the emotional state of the music.

To synchronize a dance to the music, we adjust the duration of each motion primitive so that
the duration will be an integer multiple of beats. To create interesting variations in the dance, we
use a first-order Markov model to generate dances stochastically. States correspond to motion
primitives. The state transition probabilities are designed to produce smooth motion sequences
by favoring next states that begin with a keyframe near the final keyframe of the current state.
The state transition probabilities also depend upon the current emotion in the music, such that at
any given time, state transition probabilities will prefer states that reflect the current emotion in
the music. Figure 5.1 summarizes the process we described.
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Figure 5.1: Overview of probabilistic selection and synchronization.

5.1.1 Approach – CEN

Previously, in Section 3.3, we discussed body part categories. We group the joints into 4
categories:

1. Head (Head): HeadYaw, HeadPitch;

2. Left Arm (LArm): LShoulderPitch, LShoulderRoll, LElbowYaw, LElbowRoll;

3. Right Arm (RArm): RShoulderPitch, RShoulderRoll, RElbowYaw, RElbowRoll;

4. Legs (Legs): LHipYawPitch, LHipRoll, LHipPitch, LKneePitch, LAnklePitch, LAnkleRoll,
RHipRoll, RHipPitch, RKneePitch, RAnklePitch, RAnkleRoll

Each body part category is defined to be cb = (J c
b

1 , . . . , J
cb

k ), where J cb is the name or index
of the joint in the category cb and cb ∈ {Head,LArm,RArm,Legs}. k is the total number of
joints in the category cb. For example, Head = (1, 2) where 1 is the index of HeadYaw and 2
is the index of HeadPitch. We drop the superscript b for notation simplicity for the body part
category.

We have a labeled library of motion primitives that are categorized by body parts. We de-
scribe how we label these motion primitives in Section 4.1. We have 52 parametrized motion
primitives categorized by body parts, 8 for the head, 9 for the left arm, 9 for the right arm and
26 for the legs. Although the library of the motion primitive seems small, when we combine
the motion primitives into a full body motion, we generate 8 × 9 × 9 × 26 = 16, 848 whole
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body combinations. There are even more whole body combinations especially since the motion
primitive from each category does not have to start or end at the same time.

We aim to generate a sequence of motions that mimick a dancer who strives to reflect the
emotion, dance to the beats of the music and achieve continuity of motions. Continuity of mo-
tions means that there is no jerk in the motions and that the motions are fluid and continuous.
We model this problem as a Markov chain, which is a generative stochastic motion model. A
separate model (Figure 5.2) is used for each category, e.g., Head.

Figure 5.2: Markov model shown with 3 motion primitives [Xia et al., 2012].

We plan four sequences of motion primitives – uHead, uLArm, uRArm, uLegs – independently ac-
cording to the emotions and beats of the music. A Markov chain is used to select the motion prim-
itivesmc

i for each sequence uc. We want to generatemc
i with the probability P (mc

i |mc
i−1, emi−1),

where emi−1 is the emotion detected at the end of mc
i−1. emi−1 represents the activation-valence

label for the emotion. As a special case, when i = 1, we select mc
1 according to P (mc

i |emi).

The motion primitive sequence generated by this model should (i) be continuous, (ii) reflect
the musical emotion, and (iii) be interestingly non-deterministic. We set the probability function
according to Equation 5.1.

P (mc
i |mc

i−1, emi−1) = C · E · N (5.1)
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Here, we call C and E the continuity factor and emotion factor, respectively. They are based
on the transition between different motion primitives and the emotion-motion primitive relation-
ships. N is a constant normalizing factor. We term this approach CEN.

Continuity factor: The continuity factor is designed to encourage continuity from each mo-
tion primitive to the next. Specifically, we want a quick and smooth interpolation from the last
keyframe of the current motion primitive to the first keyframe of the next motion primitive. We
denote the minimum required time interval computed from Algorithm 7 of this interpolation
using T(kmi

|mi|, k
mi+1

1 ) in Equation 5.2.

C = exp

(
−

(T(kmi

|mi|, k
mi+1

1 ))2

2σ2
m

)
(5.2)

Here, σ2
m is a constant. The continuity factor is big when the minimum interpolation time is

short.

Algorithm 7 Calculate time t to interpolate from a keyframe kn to the next keyframe kn+1.
T(kn, kn+1)

for ji = 1 to |kn| do
time[ji] ← |θnji −θ

n+1
ji |

θ̇max
ji

// θnji is joint angle of the jith joint from keyframe kn, θ̇maxji is the

maximum joint velocity of the jith joint
end for
maxTime← max(time)
avgTime← average(time)
if maxTime = 0 then

return 0
end if
timeMultiplier← e

avgTime
maxTime ·λ · γ

return maxTime · timeMultiplier

Emotion factor: The emotion factor is designed to select motion primitives whose emotions
are similar to the musical emotion. This emotion factor is an example of how the function S
described in Chapter 2 is defined. The emotion factor is defined in Equation 5.3.

Definition 5.1.1. AV (mc
i) returns the activation-valence label of mc

i .
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Definition 5.1.2. DE(AV (mc
i), emi−1) =

√
(ami − aem

i−1)2 + (vmi − vem
i−1)2 is the Cartesian dis-

tance between AV (mc
i) and emi−1.

E = exp

(
−(DE(AV (mc

i), emi−1))2

2σ2
em

)
(5.3)

Here, σ2
em is a constant. The emotion factor is big when the emotional difference is small.

Again, emi−1 refers to the detected emotion at the end of mc
i−1.

After describing the process to select the sequence of motion primitives, we provide an algo-
rithm to synchronize the schedule of motion primitives with the detected beat times, where each
motion primitive in the schedule should end on a beat time. When a motion primitive ends, we
begin interpolating to the first keyframe of the next motion primitive.

Calculate Time to Interpolate Between Motion Primitives

Algorithm 7 calculates the time needed to interpolate from the last keyframe, kj of the pre-
vious motion primitive mc

i−1, to the first keyframe, k1, of the motion primitive mc
i , using the

joint angles of kj and joint angles of kl. Although we interpolate between two keyframes with
maximum joint angular speeds given the joint angles, we want the robot to dance stably. As
we do not implement the controller for the actuators of the robot to account for dynamics, we
weight the minimum duration for the interpolation with a multiplier in Algorithm 7. We define
λ as the maximum time multiplier, where λ = 0.4 (e0.4 ≈ 1.5) so that the maximum time mul-
tiplier ≤ 1.5η. We define η for each category (Table 5.1). For example, we assign a higher η
of 3 for the legs and 1.5 for the head, so that the robot’s legs move slower than the head and
the robot is more stable at the bottom. We weighted the time multiplier more heavily when the
avgTime ≈ maxTime which implies that all the joints move almost equally fast.

Table 5.1: η values for joint categories [Xia et al., 2012].

Category Head Arm Leg
η 1.5 2 3
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Calculate Timing Parameter β

After describing the process to select the sequence of motion primitives, we provide an algo-
rithm to synchronize the schedule of motion primitives with the detected beat times, where each
motion primitive in the schedule should end on a beat time. When a motion primitive ends, we
begin interpolating to the first keyframe of the next motion primitive.

The time required for each motion primitive includes the interpolation time between two
primitives computed from Algorithm 7 and the times between the keyframes in the motion prim-
itive. If only one beat-time interval is insufficient to execute the motion primitive, we add subse-
quent beat-time intervals until the total time offered is long enough for execution (Figure 5.3). To
make each motion primitive end at a beat time, we stretch the duration by increasing the parame-
ter, β, in each motion primitive to fill the time interval from its starting beat time to the next beat
time. In practice, the schedule of motion primitives for each body part is planned independently
and executed simultaneously.

Figure 5.3: Synchronizing motion primitive with beat times.

Emotion For Next Motion Primitive

Motion primitives are selected sequentially and stretched to fill a whole number of beat times.
To choose the next motion primitive, we use the emotion emi−1 at the end of the previous motion
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primitive. We estimate the emotion at each beat time by linearly interpolating the (a, v) values,
as the emotions are determined at 15-second intervals.

5.1.2 Experiments

A piece of music is preprocessed by SMERS [Han et al., 2009] to determine the emotions
of the music at fixed intervals as described in Section 4.1. Emotional labels of the input signal
enable us to select relevant motion primitives. To synchronize the motion primitives to the input
signal, we also require the beats of the music. Otherwise, changing motion primitives at fixed
intervals will not reflect the beats of the music, which is something that a dancer normally uses
as a guide to dance to.

Beat detection is based on audio features associated with changes in amplitude. Peaks in the
amplitude mark likely candidates for beat locations. Since beats mostly occur with an overall
stable frequency (tempo), these candidate locations are filtered by looking for the ones that are
regularly spaced. We use an approach that estimates the global tempo by analyzing the audio
features and find the best beat times by using dynamic programming [Ellis, 2006].

Figure 5.4 shows a planned schedule for the right arm motion primitives for a snippet of
Peaceful music and Angry music. The motion primitives are synchronized to the beat times.
Although there are no motion primitives associated with the emotion Peaceful, the motion primi-
tives m7 and m1 are chosen as their AV values are close to the AV value of the emotion Peaceful.
We show that we are able to generate dance movements as long as the emotion is assigned an AV
value and there are motion primitives labeled with AV values. m6 is the motion primitive that
best corresponds to the emotion Angry and is often selected for Angry music.

We perform an experiment to show how the continuity and emotion factors affect the plan for
a Pleased piece of music with right arm motion primitives. We ran 100 iterations for each trial
and the results are summarized in Table 5.2. Smaller numbers for the average time to interpolate
indicate greater continuity and smaller numbers for the emotion distance indicate greater corre-
spondence between the emotion of the motions and the music’s emotion. The results show that
both continuity and emotion factors are beneficial as compared to only having one factor or ran-
dom dancing. Using both continuity and emotion factors strikes a balance between continuity of
movements and correspondence between the motion emotion and the music emotion. Although
the results shown are for a Pleased piece of music with RArm motion primitives, we ran the same
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Figure 5.4: RArm motion primitives schedule for peaceful music (left) and angry music (right).

trials on music with different emotions and motion primitives of other categories and arrived at
the same conclusion.

Trial Average time to interpolate Average emotion distance
T(kmi

|mi|, k
mi+1

1 ) DE(AV (mc
i+1), emi+1)

Continuity and emotion factors 0.6134± 0.0930 0.8310± 0.0938
Continuity factor 0.6105± 0.0842 0.9956± 0.1042
Emotion factor 0.6750± 0.0875 0.8174± 0.0966

Random dancing 0.6581± 0.0773 0.9960± 0.0959

Table 5.2: A contrast experiment to show the effects of continuity and emotion factors.

We investigate the automatic generation of motions within the context of having a robot
dance to any music. We autonomously generate many dance motions combinations for the NAO
humanoid robot for any piece of music using a small set of motion primitives. We create smooth
movements that reflect the emotions using the continuity and emotion factors to probabilistically
select relevant motion primitives. We ensure that the motions are synchronized to the beat times
by adjusting the parameters of motion primitives. The stochastic process creates interesting
variations given the same piece of music. We successfully fulfilled all the goals to achieve for
the task of automating dance choreography for a humanoid robot.
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5.2 Selection and Synchronization using Weighted Criteria

Input text converted to speech during human-robot interaction provides a guide to determine
relevant gestures. Robots convey the meanings of the speech using relevant gestures (motions)
at the right moments. We are interested in automating the selection of relevant gestures and
synchronizing gestures based on the timings of the corresponding spoken text. The autonomously
generated gestures should satisfy the following goals: First, gestures should convey the meanings
represented by labels extracted from the input text. Second, gestures that are directed at a target
of interest should be automatically generated given the target’s pose (position and orientation).
We demonstrate how spatially targeted motion primitives (STM) defined in Chapter 3 are used.
Finally, the sequences of gestures generated should be synchronized to the speech generated from
the input text and ranked so that we are able to select the best sequence.

5.2.1 Approach – TAMARS

We describe a process to analyze the input signal – text, select relevant motion primitives,
generate synchronized sequences of motion primitives, and rank these synchronized sequences
of motion primitives based on a weighted list of criteria proposed. We divide the process into
three phases as shown in Fig. 5.5.

We term this approach using these three phases – “Text Analysis”, “Motion Analysis” and
“Ranking of Sequences”, TAMARS. We describe what each phase does in detail and then explain
how each phase works using a particular text input.

Phase 1: Text Analysis

A text-to-speech system is used to convert the input signal, text, into speech. The text-to-
speech system also produces the start and times of each word in the text.

Phase 2: Motion Analysis

After pre-processing the input signal – text, we find the the sequence of labels (words) –
l1 . . . ln. We compare each label in the input signal with the labels associated with the motion
primitives in the motion library. There are different motion primitives associated with each label.
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Figure 5.5: Process to rank sequences of motions and the process starts from the red box, “Input
signal - Text” and ends at the red box, “Rank sequences”.

We determine the similarity of labels using word2vec [Mikolov et al., 2013], which outputs a
value from 0 to 1, where a value of 0 means that the pair of labels has no meaning associated
with one another, whereas a value of 1 means that the pair of labels has a perfect match in
meaning. In this case, the function S described in Chapter 2 is defined using word2vec [Mikolov
et al., 2013]. We select relevant motion primitives where the function S returns a value larger or
equals to µ, where µ ∈ [0, 1].

Next, after selecting the relevant motion primitives, we determine the values for each motion
primitive’s parameters. The values are determined using the rules for motion primitives and the
duration of each label. The rules for motion primitives include the target’s information for each
spatially targeted motion and the number of times a motion primitive should be repeated. We
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generate the motion primitive and determine the robot’s pose using Algorithm 2 in Chapter 3.

Phase 3: Ranking of Sequences

There is a list of possible motion primitives for each label that is made up of word(s) from the
input text. These motion primitives are considered as choices for a particular label. We include
the choice to do nothing for each label in the input text. Once we determine the motion primi-
tives for each label, we generate all possible combinations of sequences. We note that multiple
motion primitives for each label can be executed simultaneously if they are from different motion
primitives categories, c ∈ {Head, LArm, RArm, Legs}.

For each motion sequence, motion primitives are synchronized to the labels when the starting
time of a motion primitive corresponds to the starting time of the label and the motion primitive
is mapped to the particular label.

Definition 5.2.1. The starting time of the ith motion primitive, mi, in the sequence us is defined

as tmsi = T(k0, k
m1
1 ) +

∑x=i
x=1

∑j=|mx|−1
j=1 T(kmx

j , kmx
j+1). where kmx

j is the jth keyframe in mx and

k0 is the initial pose of the robot. The interpolation time computation function T is defined in

Chapter 3.

Definition 5.2.2. A sequence of motion primitives, us, is synchronized to the pre-processed input

signal s when ∀mi ∈ us, tmsi = tssi , where tssi is the starting time of the ith label.

We discard the motion sequence if the sequence of motions is not synchronized to the input
signal. When the time between two labels in the input signal is longer than the time to interpolate
from one motion primitive to the next motion primitive, we have two choices. First, we inter-
polate from one motion primitive to the initial pose of the robot before interpolating to the next
motion primitive such that the next motion primitive starts at the start time of the corresponding
label in the input signal. Second, we hold the pose in the last keyframe of the motion primitive
so that the next motion primitive starts at the start time of the corresponding label in the input
signal. We attempt the first choice before trying the second choice. If both methods fail, the
motion sequence is discarded.

After that, we filter invalid motion sequences which cause the robot to fall. We explain how
we determine unstable sequences in Section 6.1. After finding the sequences that are valid and
executable, we propose the following criteria to rank them:

• Labels: We use the function S that outputs the similarity between the semantic meanings
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of the motion primitive’s label and the label in the input signal. We normalize the output
of S, where the value is from 0 to 1 and the ranking is fairly weighted.

• Stability: The more stable a sequence is, the higher the ranking of the sequence. We
explain how we determine the relative stability of sequences in Section 6.2. The values for
the relative stability of sequences are also normalized.

The ranking for each criterion is weighted based on the user’s requirements. To determine

the ranking of a sequence, Ri =
|χ|∑
j=1

wjRi,j , where i is the ith sequence, |χ| is the total number

of criteria, j is the index of the criterion, Ri,j is the normalized value for the sequence i under
criterion j and wj is the weight of the criterion j. The higher the weight assigned to a criterion,
the more important the criterion is to the user. The best sequence has a ranking of the leastRi.

5.2.2 Experiment

To demonstrate how the process works, we used the text input, “Little Red Riding Hood
looked at her grandmother and gasped out in surprise, ‘Oh! Grandmother, what a big mouth you
have!’ ” as an example. We describe each phase in the process:

Phase 1: Text Analysis

We use the text-to-speech system, Festival [The Centre for Speech Technology Research, The
University of Edinburgh, 2010], and show the starting time of each word in Table 5.3. We extract
labels that correspond to the labels of the motion primitives in the library.

Table 5.3: Timings of words in text input in seconds [Tay and Veloso, 2012].

Little Red Riding Hood looked at her grandmother
0.18 0.54 0.80 1.20 1.42 1.72 1.83 2.02
and gasped out in surprise, “Oh! Grandmother, what
2.97 3.14 3.65 3.84 3.96 4.77 4.93 5.92

a big mouth you have!”
6.092 6.15 6.39 6.76 6.92 7.12
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Phase 2: Motion Analysis

After extracting the labels and the timings of each label from the input text, we select motion
primitives from the database where µ ≥ 0.8. In Table 5.4, the motion primitives found are listed
with other relevant information such as the labels associated with the motion primitive. There are
two types of motion primitives – mg is a general motion primitive and mst is a spatially targeted
motion described in Chapter 3.

Table 5.4: Motion primitives selected [Tay and Veloso, 2012].

Word Motion Labels Total minimum Body part
primitive duration (s) categorization

looked mst
1 look 0.06 Head

stare
looked mst

2 peer 0.1 Head, left and right arms
surprise mg

1 surprise 1.5 Head, left and right arms
surprise mg

2 surprise 0.5 Head and Legs
big mst

3 big 0.3 Left and right arms
big mst

4 big 1 Legs

Each motion primitive is instantiated based on the rules defined. The rules are that the target
of interest is represented by a vector targeted towards the character, “Grandmother” and that each
motion primitive is only executed once. We instantiate spatially targeted motions with Algorithm
2.

Phase 3: Ranking of Sequences

After we generate each motion primitive, we determine the list of sequences. For this exam-
ple, we have a total of 3× 3× 4 = 36 sequences as we include the choice to do nothing for each
word, and for the word, “big”, we execute mst

3 and mst
4 simultaneously, hence adding another

choice. After generating all sequences, we filter for invalid sequences by checking for collisions.
We discard 4 sequences that involve mst

2 and mg
1 as the arms collide with the head. We also

discard 3 sequences that include mg
2 and mst

4 , and 3 sequences that contain mg
2 and mst

3 ,m
st
4 as

the robot is unstable after executing these sequences. There are 6 other sequences that are not
synchronized due to the constraints on the duration of the motions. Hence, we are left with only
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36 − 4 − 3 − 3 − 6 = 20 possible sequences. Lastly, we rank each motion sequence based on
the criteria listed in Section 5.2.1 and use a weighting of 1 for each criteria since all the crite-
ria are equally important in this case. Fig. 5.6 shows snapshots of NAO executing the highest
ranked motion sequence. The NAO looks in the direction where the character “Grandmother” is
at, expresses surprises and expresses how big her mouth is.

Figure 5.6: Snapshots of the NAO executing the highest ranked motion sequence [Tay and
Veloso, 2012].

We categorize motion primitives and show how various categorizations are used to form a
motion. We contribute a process to analyze the text input, select the relevant motion primitives
based on the analysis of the input, generate the motion primitives and combine them to form
motion sequences. We do not vary the parameter, β, and set it to 1 as the durations of the
motions are generally longer or equal to the time allowed for a motion to execute. The motion
sequences are synchronized to the text-to-speech and if they are not synchronized, the motion
sequence is discarded. The valid sequences of motion sequences are ranked based on the set of
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criteria proposed. Selection of relevant motions is highly dependent on the accuracy of the text
analysis performed, the richness of the motion primitives database and the associated labels.

5.3 Selection using Audience Preferences

A robot is tasked to animate an input signal with a sequence of motions autonomously. For
example, a robot dances to a piece of music [Xia et al., 2012] or animates a story [Tay and
Veloso, 2012]. Given a library of labeled motions where multiple motions are mapped to each
label, multiple sequences are feasible to animate the input signal. In this section, we aim to select
the sequence which is most preferred by the audience through the feedback of some sequences.

5.3.1 Problem Description and Assumptions

In this section, we describe the motivating scenarios, and present the formal problem defini-
tion and assumptions.

Motivating Scenario

Suppose that a humanoid robot is tasked with animating a story. The story comprises sen-
tences, where some words in each sentence are animated and are the labels from the pre-processed
input signal, e.g., in “John waved at the bird”, the words in italics are labels to be animated.

For each label in a sentence, there may be multiple motions that are applicable, e.g., to
animate “waved”, the robot can wave with its left/right arm, with its palm open/closed, and
move quickly/slowly. As such, for each sentence, with multiple labels and multiple motions per
label, there are multiple unique sequences of motion that are feasible.

Each label-motion pair (e.g., “waved”-Wave Slowly With Open Left Hand) has a unique au-
dience preference value, and as such, each sequence of motions for the sentence has an audience
preference value. Further, the audience preference value may degrade each time the audience
views a motion, as the audience may get increasingly bored with seeing the same motion mul-
tiple times. The goal is to select the sequence of motions for the sentence with the highest
audience preference value, while minimizing the number of times the audience is queried so that
the degradation is minimal.
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The audience preference value for each sequence of motions is observed at the end of the
motion sequence. The audience preference value is a numerical rating that is determined via a
device which measures the audience feedback. The audience preference value for each label-
motion pair is not observed and is unknown. Given that the audience preference value for a
motion sequence is dependent on the audience preference values of the label-motion pairs used,
if we are able to determine the audience preference values for the label-motion pairs, we can
determine the audience preference value for all motion sequences.

When there are multiple labels in an input signal, not all labels can be animated due to reasons
such as the duration of a motion is too long and the label is not animated, or stability issues
such as when a motion is used to animate the label, the motion sequence becomes unstable. To
determine the preference of which label is to be animated in such situations, the audience assigns
weights to indicate their preference of the labels to be animated.

Formal Problem Definition

Definition 5.3.1. Let lmk be the kth label-motion pair, and LM be the set of all label-motion

pairs.

There exists different sequences of motions for the robot to animate the signal s, where the
labels of the signal match the corresponding labels in the motions and the motions are synchro-
nized to the starting times of the labels in the signal.

Definition 5.3.2. Let us = (lm1, . . . , lmD) be an ordered set of D label-motion pairs for a pre-

processed input signal s, where D ≥ 2. Let U s be the set of all possible sequences of motion

primitives for s.

There exists a unique audience preference rating for every motion sequence. The audience
preference rating for a motion sequence is provided as feedback at the end of the motion se-
quence. For example, the audience claps or raises a colored paddle (a green paddle to indicate
yes or a red paddle to indicate no) to indicate their preferences [Knight et al., 2011]. The weights
assigned to the ratings of the label-motion pairs are the weights of the labels in the input signal
to indicate the audience preference of the labels to be animated.

Definition 5.3.3. Let amk be the audience preference rating of a label-motion pair lmk. The

audience rating of a sequence of motions is A : U s → R+, where A(us) =
∑

lmk∈us w
s
kam

k, for

some weights wsk. Let the set of weights assigned to the ratings of the individual label-motion
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pairs in all the possible sequences, U s, be WU .

The audience feedback is captured via a device, e.g., a sound detector that estimates the
number of people who clapped or a camera that determines the number of paddles of a particular
color. However, the numerical rating outputs of these devices are noisy. For example, the sound
detector may not capture all the claps or the camera may not see all the colored paddles raised.

Definition 5.3.4. Let asi be the noisy observation of the rating for sequence usi (the ith sequence

for signal s), i.e., asi ∼ N (A(usi ), Rk) for some noise variance Rk.

The goal is to find the best sequence of label-motion pairs, i.e., argmaxiA(usi ).

One approach would be to repeatedly try all possible sequences multiple times to determine
the best sequence and account for the noise in the observation. However, people get bored when
viewing the same animation multiple times.

As such, we define a model that simulates the effects of boredom, when viewing a label-
motion pair repeatedly. We term it the degradation model, where the rating for an individual
label-motion pair in the sequence degrades by a factor each time the individual label-motion
pair is viewed. This degradation to the rating means that the audience prefers the individual
label-motion pair a little less each time the label-motion pair is seen.

Definition 5.3.5. Let the degradation factor be DF ∈ [0, 1].

Assumptions

• The rating for each label-motion pair is independent.

• The observation noise Rk is known.

• The weights wsk ∈ WU are known.

• The degradation factor DF is known.

• The audience preference value of a motion sequence is a weighted sum of the audience
preference values of the label-motion pairs based on the weights and degradation factors.

5.3.2 Approach – MAK

We model the problem as a multi-armed bandit, where each arm represents a motion se-
quence. At each iteration, we pull an arm and observe a noisy rating of the sequence.
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Next, we use a Kalman filter to estimate the ratings of the individual label-motion pairs by
using the series of noisy observations for different sequences over time.

We model the estimated ratings of each label-motion pair as a distribution with a mean and
variance. The lower the variance of the estimated rating, the more confident we are about the
mean (“true value”) of the rating of the label-motion pair.

Using our model of the audience preferences, by determining the rating of each label-motion
pair, we can calculate the audience preference value of a motion sequence and do not need to
continuously ask the audience for feedback.

Definition 5.3.6. Let ãmi be the estimate of the rating of the label-motion pair lmi and the mean

of the rating in our model. Let ṽami be the variance of the estimated rating of the label-motion

pair lmi. Let ÃM t be the set of estimated ratings for all label-motion pairs, LM , at iteration t

and Ṽ AM t be the set of variances of the estimated rating for all label-motion pairs at iteration

t.

The ratings of the individual label-motion pairs are modeled as the state variables in the
Kalman filter, and the observation is the observed rating for the sequence.

At each iteration, we determine the arm to pull using Thompson Sampling, a multi-armed
bandit algorithm, which in turn uses the Kalman’s estimated state.

We repeat the process of choosing the arm to pull and using the Kalman filter to update our
estimates of the individual ratings of the label-motion pairs till we reach a stopping condition.
We term our approach “MAK” - Multi-Armed bandit and Kalman filter.

Definition 5.3.7. Let ãmi
t be the estimate of the rating of the label-motion pair lmi in our model

at iteration t, where ãmi
t ∈ ÃM t . Let λi = |ãmi

t − ãm
i
t−1| be the absolute difference between

the estimate of the rating of the label-motion pair lmi at iteration t and t − 1. Let λ̂i be the

maximum absolute difference.

Definition 5.3.8. Let ṽami
t be the variance of the label-motion pair lmi in our model at iteration

t, where ṽami
t ∈ Ṽ AM t . Let λvi = |ṽami

t − ṽami
t−1| be the absolute difference between the

estimate of the rating of the label-motion pair lmi at iteration t and t−1. Let λ̂vi be the maximum

absolute difference.

MAK will stop when either of the following two conditions is met: (1) the maximum iter-
ations MI has occurred, or (2) the maximum absolute change in the current estimated rating of
the label-motion pairs and the previous estimated rating of the label-motion pairs is less than or
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equals to ε, i.e., maxi(λi, λ
v
i ) ≤ ε, where i ∈ {1, 2, . . . , ‖ ÃM ‖}.

MAK Algorithm

We present the algorithm for MAK in Algorithm 8. We will discuss the initialization of
ÃM, Ṽ AM in the Experiments section. Algorithm 8 uses both Algorithm 9 and Algorithm 10.

Algorithm 8 Determine the best sequence u with the highest audience preference.

MAK(U s,WU , ÃM, Ṽ AM )
t← 0
∆← Infinity
while (t ≤ MI) and (∆ > ε) do
Pt ← diag(Ṽ AM) // Pt is a diagonal matrix where the diagonal values are the respective
variances of the individual label-motion pairs
usc ← MAB(U s,WU , ÃM, Ṽ AM) // Algo. 9
asc ∼ N(A(usc), Rk) // asc is the noisy observation of the rating of sequence usc
[ÃM t, Ṽ AM t]← Kalman(WU , ÃM, Ṽ AM, usc, as

c, Pt) // Algo. 10
λ̂i ← maxi∈{1,...,‖ÃMt‖} |ãm

i
t − ãm

i|
λ̂vi ← max

i∈{1,...,‖Ṽ AM‖} |ṽam
i
t − ṽam

i|
∆← maxi(λ̂i, λ̂vi )

ÃM ← ÃM t

Ṽ AM ← Ṽ AM t

t← t+ 1
end while

Algorithm 9 is a multi-armed bandit algorithm that determines the sequence to query based
on the means and variances of the label-motion pairs, ÃM, Ṽ AM . In Algorithm 9, we use
Thompson Sampling as an example. Other multi-armed bandit algorithms, e.g., Upper Confi-
dence Bound, are also applicable.

Algorithm 10 uses the Kalman filter to estimate the individual audience preference values for
each label-motion pair based on the noisy observation of the rating of the label-motion pairs in a
sequence usc.

We illustrate how Algorithm 8 works with an input signal s consisting of the following labels
(l1, l2). There are four possible sequences – us1, u

s
2, u

s
3, u

s
4 with a motion library of four label-

motion pairs – lm1 = (l1,m1), lm2 = (l1,m2), lm3 = (l2,m3), lm4 = (l2,m4). The sequences
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Algorithm 9 Determine the next sequence to query based on the means and variances of the
label-motion pairs using a multi-armed bandit algorithm – Thompson Sampling.

MAB(U s,WU , ÃM, Ṽ AM)

vmax ← 0
for i = 1 to | U s | do
vi ← 0
for j = 1 to | usi | do
vi ← vi + wij × Random(ãmj, ṽamj) // the function Random randomly samples from a
distribution with a mean, ãmj and variance, ṽamj

end for
if vmax < vi then
vi = vmax
usmax ← usi

end if
end for
return usmax

have the following label-motion pairs:

• us1 = (lm1, lm3);

• us2 = (lm1, lm4);

• us3 = (lm2, lm3);

• us4 = (lm2, lm4).

The estimated ratings of the label-motion pairs in our model are ÃM = (ãm1, ãm2, ãm3, ãm4)

and we initialize the estimated ratings to some value in the beginning. We also initialize Ṽ AM
with a large number since we are not confident about the initial estimated rating ÃM .

Using Algorithm 9 where Thompson Sampling is used as an example, we randomly sample
values using the function Random that uses the model of the estimated rating of the label-motion
pairs – ÃM and Ṽ AM . We compute the weighted sum of these values for each sequence and re-
turn the sequence with the highest sampled value. Next, we observe a noisy audience preference,
asc, of the sequence usc using the function A.

We use the observation asc in Algorithm 10, where the Kalman filter uses the observation to
update the estimates of the estimated ratings of the label-motion pairs in our model.

Different sequences are made up of different label-motion pairs.The function IndicateLMUsed
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Algorithm 10 Kalman filter where the the states are the estimates of the ratings of the individual
label-motion pairs, ÃM .

Kalman(WU , ÃM, Ṽ AM, usc, as
c, Pt)

Ft ← getStateTransition(IndicateLMUsed(usc),DF) // Ft is a diagonal matrix, where the diag-
onals consist of 1 for the label-motion pairs not used in usc and DF for the label-motion pairs
used in usc
x̂t|t−1 ← FtÃM // Predicted state estimates, there is no Btut term as there is no known control
input and no process noise wt
Ht ← getObservationModel(IndicateLMUsed(usc),W

U) // Ht is a vector that indicates the
label-motion pairs in the sequence usc and their respective weights
Pt−1|t−1 ← diag(Ṽ AM)
Pt|t−1 ← FtPt−1|t−1F

T
t // Predicted covariance estimates

ỹt ← asc −Htx̂t|t−1 // Innovation
st ← HtPt|t−1H

T
t +Rt // Innovation covariance

Kt ← Pt|t−1H
T
t S
−1
t // Optimal Kalman gain

x̂t|t ← x̂t|t−1 +Ktỹt // Updated state estimate
Pt|t ← (I −KtHt)Pt|t−1 // Updated estimate covariance and I is an identity matrix
ÃM t ← x̂t|t

Ṽ AM ← extractVariance(Pt|t)

return [ÃM, Ṽ AM ]

in Algorithm 10 takes in a sequence usc and returns a vector whose values indicate if the corre-
sponding unique label-motion pair lmi ∈ LM is used in the sequence usc. If the ith value in the
vector is 1, lmi is used in the sequence usc, otherwise the value is 0. For example, the function
IndicateLMUsed(us1) returns a vector with values

[
1 0 1 0

]
.

The state transition matrix Ft depends on the label-motion pairs used in the sequence and
the degradation factor DF. The function getStateTransition returns a matrix Ft. If us1 is being

observed and DF = 1, Ft is


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. If us2 is being observed and DF = 0.999, Ft is
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0.999 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.999

.

Ht is the observation model which maps the true state space into the observed space. There-
fore, Ht depends on the label-motion pairs used in the sequence and the weights assigned. If
the weights for the observed sequence us3 are equal, the function getObservationModel returns
Ht =

[
0 1 1 0

]
. If the weights are not equal and the weights for us4 are w1 for lm2 and w2

for lm4, the function getObservationModel returns Ht =
[
0 w1 0 w2

]
.

We form a covariance matrix using diag where the covariance matrix is a diagonal matrix,
and the diagonals are the respective ṽami ∈ Ṽ AM .

Algorithm 10 updates the estimates of the mean ÃM and variance Ṽ AM for the unique
label-motion pairs. We use the function extractVariance to extract the diagonals of the matrix
Pt|t to determine Ṽ AM .

We use the function maxi(λi, λ
v
i ) to determine ∆ and update our model of ÃM and Ṽ AM .

We repeat these steps till we reach the maximum number of iterations MI or ∆ ≤ ε.

5.3.3 Comparison – Least Squares Regression

Given that we know the label-motion pairs used in each sequence and the multiple noisy
observations that we make for each sequence, we consider least squares regression as the baseline
comparison to estimate the rating of the individual label-motion.

Least squares regression uses the equation Ax = B. x is a |LM | × 1 vector containing the
list of ratings for each label-motion pair. A is a n× |LM | matrix that indicates the label-motion
pairs used in n observed sequences and the weights assigned to the label-motion pairs used. B
is a n× 1 vector containing the noisy observations for n sequences.

Similarly, we illustrate least squares regression with the same example for MAK, where the
four possible sequences are us1, u

s
2, u

s
3, u

s
4 and we have a motion library of four label-motion pairs

– lm1, lm2, lm3, lm4.
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For this example, x =


ãm1

ãm2

ãm3

ãm4

.

When DF = 1 and we observe the four possible sequences in order,A =


w1

1 0 w1
3 0

w2
1 0 0 w2

4

0 w3
2 w3

3 0

0 w4
2 0 w4

4

.

If DF < 1, we keep track of the number of times the unique label-motion pair is used. We
define the number of times the unique label-motion pair, lmi is viewed as vi. Each row of A
will contain the values IndicateLMUsed(usc) · wci · DFmax(0,vi−1), where i is the index of the
label-motion pair in the sequence usc.

Least squares regression estimates the rating of the individual label-motion pair in the event
that there is no observation noise of the audience preference of a sequence. Given p unique mo-
tion labels, we need at least p sequences that include all unique label-motion pairs to determine
the individual audience preference values. However, since the observation is noisy, we will need
at least 30p sequences using the Central Limit Theorem in order to get a good estimate of the
ratings of the individual label-motion pairs.

Therefore, for least squares regression, we randomly pick p sequences at the start of each
trial. These p sequences include all unique label-motion pairs so that the equations formed are
not under-constrained. Following that, to determine the next sequence to query, we select the
sequence usmax with the highest cumulative linear sum using the least squares estimates of the
ratings of the label-motion pairs. We obtain a noisy observation of the rating asmax using the
function A.

We continue adding rows to the matrix A and the vector B till one of the two stopping
conditions is met. The first stopping condition is that the maximum iterations MI has occurred
and MI >‖ LM ‖, where ‖ LM ‖ is the number of unique label-motion pairs used in all
possible sequences U s. The second stopping condition is that the maximum absolute change in
the current estimated rating of the label-motion pairs and the previous estimated rating of the
label-motion pairs is less than or equals to ε. The second condition is checked using the equation
maxi(λi) ≤ ε, where i ∈ {1, 2, . . . , ‖ ÃM ‖}.
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5.3.4 Experiments

We consider two models of the audience – Constant and Degradation. Constant is the model
where the rating of a label-motion pair remains constant regardless of the number of times the
label-motion pair is viewed, so DF = 1. The model, Degradation, is the model where the rating
for a label-motion pair degrades by a constant known factor each time it is seen and we set
DF = 0.999.

To evaluate the performance of our approach, MAK, versus the baseline comparison of least
squares regression, we created four labels with ten unique label-motions per label, resulting in a
total of forty unique label-motion pairs. We also generated a black box where the ratings for the
unique label-motion pairs are uniformly randomly generated from 0 to 100 and are hidden from
our model of the ratings of the label-motion pairs. The number of possible sequences is based
on the number of labels in the signal. For example, if there are n labels, there are 10n possible
sequences.

We query the black box for the audience rating using the function A and A returns a noisy
value that is computed based on an equally weighted sum of the ratings of the label-motion
pairs in the sequence. The noise added to the observation is Rk = 100. We used the stopping
conditions of MI = 500 and ε = 0.1.

We compared MAK against Least Squares regression for each experiment and ran 30 trials
for each experiment since there are randomness in the sequences selected for queries. We varied
the following variables:

• Initialization: We initialized our model of the rating for each unique label-motion pair
in ÃM , with one of three different values: minimum value of 0, mean value of 50 or
maximum value of 100. We initialized each variance in Ṽ AM to be 1002 for each label-
motion pair.

• Number of label-motion pairs in a sequence: We varied the input signal by changing the
number of label-motion pairs in a sequence. We considered input signals with 2 label-
motion pairs, 3 label-motion pairs and 4 label-motion pairs.

• Audience model: We conducted experiments with the two models – Constant where DF =

1 and Degradation where DF = 0.999.

As there are too many combinations of the different variables, we choose to conduct the
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following experiments:

• Comparison of three initializations with 2 label-motion pairs for 2 audience models: We
initialized the model with three different initializations: Minimum [0] / Mean [50] / Maxi-
mum [100]. We also compared two audience models – Constant versus Degradation.

• Comparison of two / three / four label-motion pairs: We varied the number of labels in the
input signal; where there are either two, three, four label-motion pairs. We also compared
two audience models – Constant versus Degradation.

For numerical computations involving matrices, we used GNU Octave. For least squares re-
gression, we used Octave’s lsqnonneg function and used the inputsA andB and the initialized
model of the ratings for the unique label-motion pairs as the initial guess.

In our experiments, we assume that the weights for the ratings of the individual label-motion
pairs are equal. These weights should come from empirical evidence of how the label-motion
pairs are weighted for the audience’s evaluation of a sequence. Since we do not have a good
model for the weights, we use an equally weighted sum for our experiments. We believe that
changing the weights will have little effect on our results.

All the results shown are averaged across thirty trials. We show the results for the experiment
– Comparison of three initializations with two label-motion pairs with a Constant audience model
in three figures:

1. Figure 5.7: Our model’s rating for the individual label-motion pair is initialized to the
minimum value of 0.

2. Figure 5.8: Our model’s rating for the individual label-motion pair is initialized to the
mean value of 50.

3. Figure 5.9: Our model’s rating for the individual label-motion pair is initialized to the
maximum value of 100.

In these three figures, the highest rating for the best sequence in the black box is plotted
in black and labeled as “Best”. We define two terms for the results. “ModelBest” refers to the
rating of the best sequence based on our model of the ratings of the individual label-motion pairs.
“FindBestAndGetFromBlackBox” refers to finding the best sequence based on our model of the
ratings of the individual label-motion pairs and querying the noise-free rating of this sequence
from the blackbox.

With “ModelBest”, we show how well our model of the ratings of individual label-motion
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pairs fare in terms of estimating the rating of the best sequence.

With “FindBestAndGetFromBlackBox”, we show whether our model of the ratings of indi-
vidual label-motion pairs is accurate by finding the best sequence and getting a noise-free obser-
vation from the blackbox. We highlight that “FindBestAndGetFromBlackBox” is not available
to our model in MAK or least squares regression. “FindBestAndGetFromBlackBox” is used to
analyze the results so as to show that the approach is indeed able to determine the best sequence
given that the rating of the best sequence correspondings to “Best”.

The dashed lines in each figure represent the data from Least Squares regression whereas
the straight lines represent the data from MAK. The blue lines represent data from “ModelBest”
for the respective approaches whereas the orange lines represent data from “FindBestAndGet-
FromBlackBox” for the respective approaches.

Figures 5.7-5.9 show that our approach - MAK performs better than Least Squares in terms
of finding the best sequence as “MAKFindBestAndGetFromBlackBox” converges to “Best”,
whereas there is a gap between “LeastSquaresFindBestAndGetFromBlackBox” and “Best”. We
also show that MAK is able to model the rating for the best sequence accurately since “MAK-
ModelBest” converges to “MAKFindBestAndGetFromBlackBox” and “Best”. We plot only 100
iterations per figure so as to make a fair comparison between MAK and Least Squares regression
and to show convergence in values.

We compare Figures 5.7-5.9 to determine if different initializations make a difference in
the number of iterations for “ModelBest” to converge to “FindBestAndGetFromBlackBox” and
“Best”. Since the ratings in the model are real numbers, we define convergence when |ModelBest−
FindBestAndGetFromBlackBox| < 1 and |Best−FindBestAndGetFromBlackBox| < 1. We plot
two arrows:

• Green arrow: Number of iterations “MAKModelBest” converges to “MAKFindBestAnd-
GetFromBlackBox” and “Best”.

• Green dashed arrow: Number of iterations “LeastSquaresModelBest” converges to “Least-
SquaresFindBestAndGetFromBlackBox”. We highlight that LeastSquares does not con-
verge to “Best”.

MAK converges at 46 iterations using the initialization of the mean value of 50 and 46 is the least
number of iterations when compared to the other two initializations – minimum and maximum.
There are no significant differences in the number of iterations for the convergence in values for
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Figure 5.7: Comparison of MAK versus Least Squares For Constant audience model with mini-
mum value initialization.

Least Squares.

Next, we show the results for the experiment – Comparison of three initializations with two
label-motion pairs with the Degradation audience model in three figures:

1. Figure 5.10: Our model’s rating for the individual label-motion pair is initialized to the
minimum value of 0.

2. Figure 5.11: Our model’s rating for the individual label-motion pair is initialized to the
mean value of 50.

3. Figure 5.12: Our model’s rating for the individual label-motion pair is initialized to the
maximum value of 100.

In these three figures, the highest audience rating for the best sequence in the black box
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Figure 5.8: Comparison of MAK versus Least Squares For Constant audience model with mean
value initialization.

using the approach MAK is labeled as “MAKBest” and the highest audience rating for the best
sequence in the black box using the least squares approach is labeled as “LeastSquaresBest”. The
“Best” value is shown separately for MAK and Least Squares as the average number of times
the label-motion pairs in the best sequence is queried is different, hence, in the figures MAK
degrades less than Least Squares though they use the same degradation factor of 0.999.

For a degradation audience model, convergence in the approach MAK occurs with the least
number of 50 iterations with the maximum value initialization compared to the other two values
for initialization. We note that the difference in the number of 55 iterations with respect to the
convergence in values with the mean value initialization may not be significant. Convergence
in the approach Least Squares occurs with the least number of iterations with minimum value
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Figure 5.9: Comparison of MAK versus Least Squares For Constant audience model with maxi-
mum value initialization.

initialization, but we note that the difference in the least number of iterations with mean value
initialization may not be significant.

It is difficult to visually show the difference in performance of MAK versus Least Squares
as the difference in the “ModelBest” and “FindBestAndGetFromBlackBox”, and the difference
between “Best’ and “FindBestAndGetFromBlackBox” are indiscernible on the plots. Therefore,
we also present numerical results in Tables 5.5-5.7 for the experiment “Comparison of two / three
/ four label-motion pairs”.

We define these two differences below.

Definition 5.3.9. Let the absolute difference between ModelBest and FindBestAndGetFromBlackBox

be Υ and the absolute difference between Best and FindBestAndGetFromBlackBox be ρ.
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Figure 5.10: Comparison of MAK versus Least Squares For Degradation audience model with
minimum value initialization.

For the experiment “Comparison of two / three / four label-motion pairs”, we show in Ta-
bles 5.5-5.7 that regardless of the number of labels, MAK always finds the best sequence since
ρ is 0 for the constant audience model and ρ ≈ 0 for the degradation model, but Least Squares
is unable to find the best sequence given that ρ > 0. The model of the ratings of the individ-
ual label-motion pairs takes longer to converge for MAK compared to Least Squares, but Least
Squares is unable to find the best sequence.

Since the number of iterations also refers to the number of times sequences are queried and
the number is much less than the possible number of sequences for two/three/four labels, we
show that we do not have to query all sequences for either MAK or least squares regression.

We show that MAK selects the best sequence without querying all possible sequences. MAK
performs better than least squares regression in terms of selecting the best sequence and is capa-
ble of using noisy observations of the ratings for different sequences.

MAK appears to take more iterations than Least Squares to converge, but we note that we are
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Figure 5.11: Comparison of MAK versus Least Squares For Degradation audience model with
mean value initialization.

unable to find the best sequence using Least Squares. MAK stops when the stopping condition
is met, given that the first condition is that the maximum iterations MI = 500, MAK did not
stop because of the first condition, but due to the second condition that ε = 0.1. Table 5.5
shows that MAK stops approximately after 70-76 iterations for the Constant and Degradation
audience models, whereas Least Squares stops approximately after 33-39 iterations. We show in
Figures 5.7-5.12 that MAK has already converged approximately after 46-69 iterations and Least
Squares converged approximately after 24-39 iterations. The stopping conditions can be varied
so that MAK can stop earlier given that MAK has already converged approximately after 33-39
iterations, whereas with the current stopping conditions, MAK stops approximately after 70-76
iterations. We also observe that by changing the initialization of the model, convergence occurs
at different iterations. We cannot conclude that a particular initialization is the best way since
convergence occurs at different rates for different initializations in different audience models.
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Figure 5.12: Comparison of MAK versus Least Squares For Degradation audience model with
maximum value initialization.

5.4 Chapter Summary

This chapter presents our approach to probabilistically select relevant motions based on the
similarity between the emotional labels assigned to the motion and the emotional label of the
music (input signal). We also explain how we synchronize the motions to the beats of the music.

We also show how we select relevant motions based on the similarity between semantic
labels assigned to motions and the labels in the text-to-speech (a sentence from a story). We also
describe how we synchronize the motions to the starting times of the labels in the text-to-speech.
We illustrate how we discard invalid sequences and rank the sequences with an example.

Lastly, we show how we determine the sequences to get feedback from, learn the audience
preferences of the individual motions and determine the best sequence of motions with the high-
est audience rating. We also demonstrate how we consider the effect of ‘boredom’ when the
audience views the same motion repeatedly.



90 5. SELECTION AND SYNCHRONIZATION OF MOTION PRIMITIVES

Table 5.5: Performance of MAK versus Least Squares for two labels in the input signal.

Audience
Model

Initialization Approach Iterations Υ ρ

Constant

Minimum value - 0
MAK 70.3± 6.7 2.0± 1.4 0± 0
Least
Squares

33.2± 6.5 1.9± 1.2 3.8± 5.9

Mean value - 50
MAK 74.7± 8.6 2.4± 1.6 0± 0
Least
Squares

33.0± 6.5 3.4± 2.6 2.6± 5.3

Maximum value - 100
MAK 71.6± 7.3 1.8± 1.3 0± 0
Least
Squares

34.1± 6.0 3.1± 2.4 1.3± 5.5

Degradation

Minimum value - 0
MAK 70.0± 7.7 2.8± 1.9 0.2± 0.0
Least
Squares

38.4± 10.7 2.2± 2.0 2.8± 7.0

Mean value - 50
MAK 76.0± 6.3 2.0± 1.6 0.2± 0.0
Least
Squares

38.5± 9.1 2.8± 1.8 1.6± 4.5

Maximum value - 100
MAK 74.7± 7.4 1.7± 1.9 0.2± 0.0
Least
Squares

38.3± 8.8 2.2± 3.3 2.8± 6.1
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Table 5.6: Performance of MAK versus Least Squares for three labels in the input signal.

Audience
Model

Initialization Approach Iterations Υ ρ

Constant

Minimum value - 0
MAK 107.3± 9.2 2.0± 1.8 0± 0
Least
Squares

44.9± 6.4 2.8± 2.4 6.8±10.8

Mean value - 50
MAK 111.0± 6.9 2.7± 2.1 0± 0
Least
Squares

47.1± 9.7 2.8± 2.2 3.9± 7.2

Maximum value - 100
MAK 109.4± 7.8 2.3± 1.7 0± 0
Least
Squares

44.6± 7.8 2.9± 2.6 4.9± 8.4

Degradation

Minimum value - 0
MAK 115.0±11.7 1.8± 1.9 0.6± 2.1
Least
Squares

68.3± 32.1 1.6± 1.4 2.0± 5.4

Mean value - 50
MAK 115.7± 9.0 1.9± 1.2 0.3± 0.0
Least
Squares

65.9± 22.9 3.1± 4.4 6.0± 9.3

Maximum value - 100
MAK 115.9± 6.6 1.7± 1.5 0.3± 0.0
Least
Squares

70.7± 26.7 1.6± 2.3 3.7± 7.4
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Table 5.7: Performance of MAK versus Least Squares for four labels in the input signal.

Audience
Model

Initialization Approach Iterations Υ ρ

Constant

Minimum value - 0
MAK 162.3± 12.3 2.0± 1.6 0± 0
Least
Squares

56.5± 7.1 2.3± 2.0 3.9± 6.1

Mean value - 50
MAK 164.4± 10.1 2.1± 1.5 0± 0
Least
Squares

54.8± 7.9 2.0± 1.8 4.2± 8.3

Maximum value - 100
MAK 165.1± 10.4 2.2± 1.5 0± 0
Least
Squares

57.6± 6.8 2.1± 1.7 4.0± 8.6

Degradation

Minimum value - 0
MAK 172.4± 16.4 2.3± 1.8 1.1± 0.8
Least
Squares

81.1± 32.2 1.6± 0.9 4.0± 4.8

Mean value - 50
MAK 175.1± 16.6 2.4± 3.1 1.4± 2.3
Least
Squares

76.9± 33.1 2.4± 2.6 7.8±10.5

Maximum value - 100
MAK 169.6± 13.8 2.2± 2.2 1.0± 0.8
Least
Squares

82.6± 30.7 1.9± 1.3 4.9± 7.0



Chapter 6

Stability

Stability of the humanoid robot is vital for the robot to animate an input signal. Moreover,
if a humanoid robot falls, the humanoid robot may get damaged due to the fall, or even break.
Therefore, we are interested to determine the stability of a robot given the sequence of motion
primitives the robot is to execute. Although each motion in the motion library is stable, a se-
quence of motions may not be. We assume that there is no model of the dynamics of the robot,
so that our approach does not depend on the accuracy of the robot’s model. Also, there is no
prior execution of the sequence of motions and we do not execute the sequence of motions to
determine if the robot will fall. We discuss our approach – ProFeaSM – in Section 6.1.

Next, we aim to determine the most stable sequence from a list of possible motion sequences
for an input signal. By executing the most stable sequenc, we increase the probability that the
robot continues to remain stable and increase the tolerance for errors in the prediction of the
stability of sequences. Thus, we investigate the problem of determining the relative stability of
sequences of motion primitives. We also do not require a model of the robot, but we possess data
of prior executions of different sequences of motions. We describe our approach – RS-MDP – in
Section 6.2.

93
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6.1 Predicting the Stability of a Motion Sequence with No
Prior Execution

In this section, we present our approach to predict the stability of a sequence of motion prim-
itives. First, we list the assumptions. Next, we explain the data we collect and the algorithms we
use to predict the stability of a sequence of motion primitives. Lastly, we describe the experi-
ments and explain the results.

Assumptions

We assume the following:

• The model of the robot is not available.

• There is no prior execution of any sequence of motions primitives.

• Each motion in the motion library is stable.

• Data are collected using the executions of the single motions and interpolations between
pairs of motions on the humanoid robot that is used to animate the motion sequence. The
data collected are the body angles X (roll) and body angles Y (pitch) sensor readings via
the inertial measurement unit and these sensor readings are available.

• We predict the stability of a motion sequence that is executed on the same humanoid robot
used to collect the data.

• There is no wear and tear on the humanoid robot.

• Every motion in the motion library is stable.

• The humanoid robot starts each motion sequence with the same keyframe.

Description of Data Collected

We record the body angles of the robot via the inertial measurement unit of the NAO during
the execution of each motion primitive in the motion library and the interpolations between pairs
of motion primitives. We record the body angles at a regular frequency, f.

Definition 6.1.1. Let Ψ be the number of body angles collected when a motion primitive m is
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executed. The Ψ body angles comprise (ψ0, ba0), . . . , (ψΨ, baΨ), where ψi is the timestamp, bai
are the body angles at time ψi. ba0 are the body angles of the robot before executing m. bai is

made up of the body angle readings, X and Y, per time step.

We determine Ψ using the duration of the execution, dt, i.e., Ψ = (dt × f) + 1. We add one
more time step as we also collect the body angles of the robot’s initial pose for one time step
before m is executed.

We collect the body angles of three groups of motion executions and term each group as:

1. single: We execute each motion primitive from the motion library individually. The robot
always begins with the same initial pose shown in Figure 6.1 at the start of each execution.
For the body angles collected for the motion primitive mi in single, we denote the body
angles as singlemi

.

2. startSingle: We begin the execution of each motion primitive with the first keyframe of
the motion primitive as the robot’s pose, and not the initial pose shown in Figure 6.1. For
the body angles collected for the motion primitive mi in startSingle, we denote the body
angles as startSinglemi

.

3. interpolation: First, we determine all possible pairs of motion primitives, mi and mj in
the motion library. Then, we execute the interpolation between each pair and collect the
body angles of the interpolation. The interpolation between two motion primitives, mi

and mj , is executed from the last keyframe kn of the first motion primitive mi to the first
keyframe k1 of the second motion primitive mj . For the body angles collected during the
interpolation between the two motion primitives, mi and mj in interpolation, we denote
the body angles as interpolationmi,mj

.

Figure 6.1: NAO’s initial pose and coordinate frame of the inertial measurement unit.
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For each group of executions, we collect ς iterations. In the next section, we explain how our
approach, ProFeaSM, uses these three groups of body angles to predict if a particular sequence
of motion primitives, u, will cause the robot to fall.

6.1.1 Approach – ProFeaSM

Algorithm 11 – ProFeaSM – is made up of four algorithms, namely Process, Feasibility,
Stitch and Multiplier (Algorithms 12-15). Lines 5-7 of Algorithm 11 use Process (Algorithm 12)
to process the body angles of the three groups of executions when we collect more than one
iteration of the three groups of executions. Algorithm 12 determines the median of the body
angle trajectories collected. Algorithm 12 processes the ς iterations and determines the median
for body angle X trajectory, bax, and body angle Y trajectory, bay. Algorithm 12 returns the
median of body angles trajectories, given ba, a list of D body angle trajectories. Therefore,
bax = Process(bax), where bax is the median of body angle X trajectories and bax contains the
ς body angle X trajectories.

Algorithm 11 ProFeaSM: Process-Feasibility-Stitch-Multiplier [Tay et al., 2016].
ProFeaSM(u, inertialMultiplier)

1: (ς,Ψ)← size(single)
2: if ς == 1 then
3: hasFallen← F(u, inertialMultiplier)
4: else
5: single← Process(single)
6: startSingle← Process(startSingle)
7: interpolation← Process(interpolation)
8: hasFallen← F(u, inertialMultiplier)
9: end if

10: return hasFallen

Line 8 of Algorithm 11 uses Algorithm 13, F, which uses the median body angle trajec-
tories to predict if a sequence of motion primitives, u, will fall. F has two parameters, u and
inertialMultiplier.

Definition 6.1.2. The algorithm F : U × R → {0, 1} computes the feasibility of a sequence

of motion primitives, where a sequence of motion primitives is feasible if and only if the robot
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Algorithm 12 Process ς iterations of Ψ time steps [Tay et al., 2016].
Process(ba)

1: // ba is a ς ×Ψ matrix, containing ς iterations with Ψ time steps
2: for i = 1 to Ψ do
3: medianAtEachStep(i) = medianςj=1(ba(j, i)) // finds median at time step i
4: end for
5: medianBA = argminςj=1(

∑Ψ
i=1 |ba(j, i)−medianAtEachStep(i)|)

6: return medianBA

executes the keyframes and continues to remain stable. Hence, F(u, inertialMultiplier) = 1 when

u is feasible.

Algorithm 13 uses the fact that when the acceleration of the body angles increases, the ve-
locity increases and vice versa. The velocity of the body angles reaches a constant when the
acceleration of the body angles approaches zero. The body angle is the angle of the robot’s torso
with respect to the ground. Hence, the higher the body angle, the higher the probability that the
robot is going to fall. We calculate the velocity, vel by determining the change in body angles
at each time step. We calculate the acceleration, acc by determining the change in vel at each
time step. We model the velocity as an exponential curve in Algorithm 13 since the velocity
does not increase linearly due to the effects of gravity, inertia and momentum. The x-value of
the exponential curve is termed as stepMultiplier and is affected by the acceleration, acc.

Algorithm 14 is called in Line 2 of Algorithm 13 and stitches up the body angle values col-
lected. Algorithm 14 begins with the original body angle trajectory of the first motion primitive
in the sequence, singlem1

since the body angle trajectory is the same. Next, Algorithm 14 deter-
mines the change in body angles at each time step and adds each change to the last known body
angle. Algorithm 14 continues adding the changes in body angles for the rest of the sequence by
using the body angles collected for interpolation and startSingle.

Lines 3 and 4 in Algorithm 13 determine the velocity of the body angles, vel, and the accel-
eration, acc. We predict the body angle trajectory, predictTraj so as to determine the stability of
a motion sequence. We start with the body angles collected from singlem1

since the body angles
should be similar to executing the motion primitive singlem1

that starts from the initial pose.
We determine the stepMultiplier using Algorithm 15 since the inertial and momentum change in
Lines 7-9 of Algorithm 13. As we construct the predicted body angle trajectory, predictTraj, we
determine the velocity using the exponential velocity curve and stepMultiplier so as to determine
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Algorithm 13 Predict whether a sequence of motion primitives is feasible [Tay et al., 2016].
F(u, inertialMultiplier)

1: // Indices start from 1
2: data← Stitch(u)
3: vel← (0, data(2)− data(1), data(3)− data(2), . . .)
4: acc← (0, vel(2)− vel(1), vel(3)− vel(2), . . .)
5: predictTraj← singlem1

6: stepMultiplier← 0 // initialized as 0 as e0 = 1
7: for i = 1 to |singlem1

| do
8: stepMultiplier← Multiplier(acc(i), stepMultiplier, inertialMultiplier)
9: end for

10: hasFallen← false
11: for i = |singlem1

|+ 1 to |data| do
12: predictAngle = vel(i)× exp(stepMultiplier) + predictTraj(i− 1)
13: stepMultiplier← Multiplier(acc(i), stepMultiplier, inertialMultiplier)
14: predictTraj← append(predictTraj, predictAngle)
15: if |predictAngle| > fallenThresh then
16: hasFallen← true
17: end if
18: end for
19: return hasFallen

Algorithm 14 Stitch collected data into a trajectory [Tay et al., 2016].
Stitch(u)

1: data← singlem1

2: lastAngle← singlem1
(|singlem1

|)
3: for l = 2 to L do
4: for i = 2 to |interpolationml−1,ml

| do
5: lastAngle← lastAngle + (interpolationml−1,ml

(i)− interpolationml−1,ml
(i− 1))

6: data← append(data, lastAngle)
7: end for
8: for i = 2 to |startSingleml

| do
9: lastAngle← lastAngle + (startSingleml

(i)− startSingleml
(i− 1))

10: data← append(data, lastAngle)
11: end for
12: end for
13: return data



6.1 PREDICTING THE STABILITY OF A MOTION SEQUENCE WITH NO PRIOR EXECUTION 99

the change to the previous body angle in Line 12 of Algorithm 13. Next, stepMultiplier changes
in Line 13 of Algorithm 13 and appends the predicted body angle, predictAngle, to predictTraj.
If predictAngle exceeds the threshold, fallenThresh, the robot is deemed to have fallen in Lines
15-17 of Algorithm 13.

Algorithm 15 determines how stepMultiplier varies along the exponential velocity curve. As
the acceleration acc per time step is small, inertialMultiplier is used as a multiplier to acc, and
varies how stepMultiplier changes in Line 4 of Algorithm 15. accThres is used as a threshold
to determine if the acceleration approaches zero and if so, stepMultiplierDec is used to decrease
stepMultiplier in Lines 1-2 of Algorithm 15.

Algorithm 15 Determine the step multiplier based on the acceleration [Tay et al., 2016].
Multiplier(acc, stepMultiplier, inertialMultiplier)

1: if |acc| < accThres then
2: stepMultiplier← stepMultiplier− stepMultiplierDec
3: else
4: stepMultiplier← stepMultiplier + (acc× inertialMultiplier)
5: end if
6: if stepMultiplier < 0 then
7: stepMultiplier← 0 // stepMultiplier will not go below 0
8: end if
9: return stepMultiplier

To summarize, Algorithm 11 – ProFeaSM – is made up of Algorithms 12–15. With ς it-
erations of body angles recorded, we use Algorithm 12 to determine the median of the body
angle trajectories collected. Next, we use Algorithm 13 to predict the stability of a sequence of
motion primitives. Algorithm 13 uses Algorithm 14 to stitch up the body angles collected from
the three groups of executions using their respective velocities of the body angles of the motions
and interpolations. Algorithm 13 also uses Algorithm 15 to determine the stepMultiplier for the
exponential velocity curve and is used as a multiplier to the velocity.

6.1.2 Experiments

We conduct experiments in simulation using Webots 7 [Webots, 2014] and on a real NAO
humanoid robot. Webots 7 [Webots, 2014] is a real-time simulator that simulates the dynamics
of the NAO humanoid robot whilst executing a sequence of motion primitives.



100 6. STABILITY

We use a motivating example of an autonomous humanoid robot playing a game of charades
to guess different emotions. With ς iterations of each group of execution, we collect a total of
ς × (|M |+ |M |+ |M |(|M | − 1)) = ς × |M |(|M |+ 1) executions, where |M | is the number of
motion primitives in the motion primitive library. Since the game of charades is to guess different
emotions, pairs of motion primitives will not contain the same motion primitive, i.e., the pair of
motion primitives mi and mj , where i 6= j.

Experiments in Simulation

We simulate a NAO V4.0 H25 humanoid robot and collect body angle values for three groups
of executions for ς = 10 iterations: single, startSingle, interpolation. To check if our prediction
of the stability of the sequence of motion primitives is correct, we simulate the robot executing
the sequence of motion primitives and determine if the robot remains stable using its body angles.

We assume that every motion primitive in the library is stable and check that the assumption
is true by running 10 iterations of the NAO robot executing the same motion primitive in Webots
and that the NAO robot remains stable. Webots is restarted each time an iteration is ran to ensure
that the NAO robot starts with the same initial pose and position in the environment.

Experiments on the Real NAO

We ran our experiments on a real NAO V3.3 H21 humanoid robot, with a V4.0 head. By
using a different model from the NAO V4.0 H25 robot in the simulation, we test if ProFeaSM
is applicable to different models. The NAO H25 has 25 degrees of freedom and the NAO H21
has 21 degrees of freedom. The mass of the NAO H25 and the mass of the NAO H21 are also
different.

We ran ς = 1 iteration to collect the three groups of executions as it is impractical to collect
many iterations in reality. At the same time, we evaluate if ProFeaSM works well when ς = 1.
We also execute each motion primitive from the motion library on the real NAO and check that
the robot remains stable after executing a motion primitive. Though each motion primitive in
the motion library is stable, the interpolations between the pairs of motion primitives may be
unstable.

We also test the stability of every sequence on the real NAO so as to compare our predictions
to the actual results. During our experiments, we observe that a safety feature as part of the fall
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manager software [Aldebaran Robotics, 2013] of the NAO is often triggered prematurely even
though the motion primitive is stable. This safety feature detects a potential fall when we execute
whole body motions on the robot and triggers the NAO to put its arms in front of its face before
falling forward onto the ground. This safety feature is introduced to brace the NAO’s fall and
reduces impact to other parts of the body, e.g., the head of the NAO, where the central processing
unit is located. Hence, we disable the fall manager so that the robot only executes the intended
motions, without disrupting the data collection of body angles.

To avoid damaging the NAO robot when we execute unstable motions, we tie a string around
the robot’s torso to allow the robot to fall gently so as to prevent the robot from hitting the ground
too hard. There are instances when the real NAO falls and we have to stop the execution of the
rest of the sequence of motions so that the NAO’s joints do not actuate when the NAO is lying
flat on the ground. We do not stop the execution of motions during the collection of body angles
for the three groups of motion executions – single, startSingle and interpolation. The motions in
single and startSingle are stable and only some motions in interpolation fall but the motions are
short as compared to the entire sequence of motions.

Experimental Setup

We devise a scenario where the NAO humanoid robot is to play a game of charades to guess
emotions. There are three different emotions: angry, sad and surprised. There is no restriction on
the order of the emotions being acted out by the NAO huamnoid robot. For every emotion, there
are two motion primitives from the motion library that are labeled with the particular emotion.
We ensure that the robot is able to stably execute each individual motion primitive.

The number of possible sequences of motions for three different motions (angry, sad, sur-
prised in any order) is 2× 2 × 2 × 3! = 48. For the three groups of executions, we collect a
total of |single|+ |startSingle|+ |interpolation| = 6 + 6 + (6× 4) = 36 body angle trajectories.
Since we do not use the two motion primitives labeled with the same emotion consecutively, we
do not collect all the 6× 5 = 30 body angle trajectories for interpolation.

We use the interpolation time computation function T to compute the interpolation time
between keyframes. T uses the maximum joint angular velocity. To ensure that the robot remains
stable after executing each motion primitive in the library, the maximum joint angular velocity in
the simulation is limited to 70 percent of the real maximum joint angular velocity in simulation
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and 40 percent of the real maximum joint angular velocity on the real NAO.

fallenThresh in Algorithm 13 is set as 1.0 based on the empirical data collected when the
robot falls and is lying on the ground. accThres and stepMultiplierDec in Algo. 15 is set to 0.005
and 0.001 respectively as the 0.005 is close to 0, and a value of 0.001 only changes the multiplier
slightly.

To predict the fall of the sequences on the real NAO, we skip Algorithm 12 since we only col-
lect 1 iteration of body angles for the three groups of executions and use these body angles as the
median body angle trajectory. We vary different values of inertialAccMultiplier in Algorithm 15
from 10 to 100.

Each sequence of the motion primitives starts with the same initial pose in Figure 6.1. The
body angles are recorded at a frequency of 100 Hz (every 10 milliseconds) using a function pro-
vided by the NAO’s software [Aldebaran Robotics, 2013] and computed using the accelorometer
and gyrometer sensors readings from the inertial measurement unit (IMU) [Aldebaran Robotics,
2013]. The body angles recorded are body angle X (roll) and Y (pitch) as shown in Figure 6.1.

Experimental Results

Table 6.1 shows two sequences of motion primitives: (a) Sad2, Angry2, Surprised1 and (b)
Surprised1, Sad2, Angry2. The first row shows the intended sequence of the motion primitives
(shown in bold) and the interpolations between motion primitives. “Start-” indicates the interpo-
lation from the initial pose of the robot to the first motion primitive.

Using Table 6.1, we show that even though each motion primitive in the sequence of Sur-
prised1, Sad2 and Angry2 is stable, the sequence of individually stable motion primitives does
not guarantee the robot’s stability since the sequence results in a fall. We also demonstrate that
although the sequence of Surprised1, Sad2 and Angry2 is unstable, a different ordering of the
motion primitives, Sad2, Angry2 and Surprised1 is stable. In the sequence of Surprised1, Sad2
and Angry2, we may deduce that the instability of the sequence is attributed to the sub-sequence
of Sad2 and Angry2, but the sub-sequence from Sad2 to Angry2 in the sequence of Sad2, Angry2
and Surprised1 is stable. Hence, we do not predict the fall of the robot based solely on part of
the sequence, but we have to consider the entire sequence.

From the results of the experiments, we observed that body angle Y values is sufficient for
predicting the stability of the robot, since the robot only falls forward or backward and never
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Table 6.1: Intended and actual execution showing two motion sequences [Tay et al., 2016].

Intended Start-Sad2 Sad2 Sad2-Angry2 Angry2 Angry2-Surprised1 Surprised1
Actual Start-Sad2 Sad2 Sad2-Angry2 Angry2 Angry2-Surprised1 Surprised1

Intended Start-Surprised1 Surprised1 Surprised1-Sad2 Sad2 Sad2-Angry2 Angry2
Actual Start-Surprised1 Surprised1 Surprised1-Sad2 Fallen Fallen Fallen

sideways. Hence, we present results regarding body angle Y values since we only use body
angle Y values to predict if a sequence will fall.

Figure 6.2 shows the body angle Y values of the execution of the sequence, Sad2, Angry2
and Surprised1 over time, and Figure 6.3 shows the body angle Y values of the execution of the
sequence, Surprised1, Sad2 and Angry2 over time. Figure 6.2 shows that the sequence, Sad2,
Angry2 and Surprised1 is stable whereas Figure 6.3 shows that the sequence, Surprised1, Sad2
and Angry2 is unstable. Both sequences are executed in simulation and the prediction of the
body angle trajectories are made from the body angles collected in simulation.

Both figures in Figure 6.2 and Figure 6.3 show the plots of three body angle Y trajectories.
We use a value of 90 for inertialAccMultiplier. First, we plot the body angle Y trajectory in
black with a line style of − · − and term this plot Actual. The body angle Y trajectory, Actual,
was collected during the actual execution of the sequence. Next, we plot a stitched body angle Y
trajectory in blue with a line style of −− using only Algorithm 14 and term it Stitched. Lastly,
we plot the body angle Y trajectory that we predicted using Algorithm 12-15 in red with a line
style of — and term it Predicted.

In Figure 6.2, the actual, stitched, and predicted body angle Y trajectories are similar. How-
ever in Figure 6.3, we show that the predicted body angle Y trajectory is similar to the actual
body angle Y trajectory, while the stitched body angle Y trajectory is not. Thus, we do not sim-
ply stitch up body angles collected. We demonstrate that the algorithm works well in predicting
the body angle trajectory given that the curvature of the predicted body angle trajectory is similar
to the actual body angle trajectory.

We refer to the use of precision and recall for classification tasks to determine the accuracy
of the prediction on the stability of a sequence [Russell and Norvig, 2003]. Similar to the classi-
fication tasks, we want to classify sequences that are unstable as falls. Precision is the number of
true positives (sequences that we label as falls and will actually fall during the execution) divided
by the sum of true positives and false positives (sequences that we label as falls but will not fall
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Figure 6.2: Body angle Y values for Surprised1-Sad2-Angry2 [Tay et al., 2016].

during the execution). A perfect precision score of 1.0 means that every sequence that the algo-
rithm labeled as a fall actually did fall during the execution of the sequence. Recall is the number
of true positives divided by the total number of sequences that actually fall during the execution.
A perfect recall score of 1.0 means that every sequence that actually fell during the execution
is labeled as a fall by the algorithm, but does not consider sequences that are wrongly labeled
as falls. Precision and recall have an inverse relationship whereby increasing one decreases the
other. We aim to have as high a precision and recall as possible, but it is very difficult to achieve
both precision and recall at a perfect score.

Figure 6.4 shows two curves, one for simulation and one for the real robot. We vary the
parameter, inertialAccMultiplier, from 60 to 100, to determine if the accuracy represented by
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Figure 6.3: Body angle Y values for Sad2-Angry2-Surprised1 [Tay et al., 2016].

precision and recall is improved. The two curves use two sets of body angle Y values – the sim-
ulated data and the actual robot data. We do not plot values of 10 to 50 as there are no sequences
that are predicted as falls. Each curve is marked with the value for inertialAccMultiplier. The
blue line for Simulation shows the precision and recall rate of ProFeaSM which uses the body
angle Y values collected in simulation and by varying inertialAccMultiplier. The red line for
Robot shows the precision and recall rate of ProFeaSM which uses the body angle Y values
collected on the real robot and by varying inertialAccMultiplier.

From the Simulation results, 90 is a value to be used for the inertialAccMultiplier if we want
to ensure that all sequences that will fall will be predicted as falls (a perfect recall value of 1.0),
but we have a low precision of 0.72, which means that we have predicted some false positives
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Figure 6.4: Precision-Recall curve [Tay et al., 2016].

(sequences that we predict as falls did not fall). If we use the same value of 90 for the actual
robot prediction, we will also achieve a perfect recall value of 1.0, but the precision value is
lower at 0.54. This means that we have quite a high number of false positives, which may not be
desirable since we have less choices of sequences to execute. Hence, there is a trade-off between
precision and recall depending on the requirements. When we require a high precision, the false
positives are minimized and we have more sequences to choose from. When we require a high
recall instead of precision, the true positives are maximized and we avoid sequences that fall and
we have less sequences to choose from.

Discussion

ProFeaSM scales quadratically with the number of motion primitives in the motion primitive
library. We reduce the number of times the body angle Y values is recorded for ProFeaSM if the
interpolations between pairs of motion primitives are not unique, e.g., the last keyframe of the
motion primitive m1 and the first keyframe of the next motion primitive m2, are the same two
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keyframes for the last keyframe of the motion primitive m3 and the first keyframe of the next
motion primitive m4.

We contribute an algorithm, ProFeaSM, to predict the stability of the robot executing a se-
quence of motions. We use only the body angle Y values collected from the executions of
single motions and the interpolations between pairs of single motions as the robot only falls in
the pitch direction (forward or backwards). Body angles are computed using the IMU com-
prising accelerometer and gyroscope sensors. These sensors are commonly found in humanoid
robots. Compared to traditional fall prediction methods, we do not require training instances of
body angle Y values collected from sequences of motions to make predictions of the sequences.
Moreover, traditional fall prediction methods only predict possible falls whilst monitoring the
execution of the sequence. We make predictions before any sequence of motions is executed on
the robot. We also require no model to determine the dynamics of the robot and the environment
to make a prediction. We collect data in the real environment and use those data to predict the
stability of a sequence of motions.

ProFeaSM includes the parameter, inertialAccMultiplier, that is varied to achieve different
precision and recall values. ProFeaSM uses the body angles collected from the executions of
all the single motion primitives in the motion primitive library of 6 motion primitives and the
24 interpolations between pairs of the motion primitives in the experiments. We conduct ex-
periments in simulation and test the efficacy of ProFeaSM. We show that ProFeaSM achieves a
perfect recall value of 1 and a precision value of 0.72 at inertialAccMultiplier = 90 in simula-
tion. We also conduct experiments on the real robot. We show that by using the same value of
inertialAccMultiplier = 90, ProFeaSM achieves the same perfect recall score and predicts all
the sequences that fall, albeit at a poorer precision value of 0.54. By varying different values of
inertialAccMultiplier, we achieve different precision and recall values. We explain the trade-off
of having a higher recall value versus a higher precision value.

We show ProFeaSM working in simulation and on the real robot. The robot in simulation
is a NAO V4.0 H25 humanoid robot with 25 degrees of freedom, and for the real robot, we
use a NAO V3.3 H21 humanoid robot with a V4.0 head that has only 21 degrees of freedom.
Despite the differences between the simulated robot and the real robot in the number of degrees
of freedom, the weight of the robot and the interpolation time between keyframes, ProFeaSM
still achieves the same recall value and predicts all the unstable sequences without executing the
sequences.
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6.2 Predicting Relative Stability of Motion Sequences using
Prior Executions

Motions executed by robots are used to fulfill a particular task, for example, a sequence
of motions is used by humanoid robots as gestures to communicate during the human-robot
interaction such as for storytelling [Ng et al., 2010, Tay and Veloso, 2012] or to dance [Xia
et al., 2012]. The stability of the robot is vital for the successful completion of a task. Existing
approaches generally determine if a sequence is stable or unstable, and filter out the unstable
motions, before determining the best sequence from the remaining motions.

The best sequence of motions is selected from many possible sequences when a robot plans
the sequence to execute for a task. The metric to evaluate the best sequence is often related to
the completion of the task, for example in the case of a storytelling robot, the robot selects a
sequence based on how well the sequence of motions conveys the meanings of the story, or if the
robot completes the sequence of motions according to the time constraints of the task. Multiple
criteria are used to select the best sequence. In this section, we investigate a single criterion
of stability – how to predict the relative stability of sequences so as to select the most stable
sequence out of the possible sequences to execute, including new sequences that have not been
executed by the robot.

We commonly eliminate sequences that are unstable for a robot and choose any sequence that
is stable without determining the most stable sequence. However, it is important to determine
the relative stability of motion sequences for the following reasons:

• The more stable the robot is after executing a sequence, the higher the probability that the
robot remains stable after executing multiple sequences simultaneously.

• An algorithm that determines the stability of a robot with 100% accuracy has yet to exist
given that it is difficult to model environment variables such as ground friction accurately.
By selecting the most stable sequence, out of sequences that are deemed to be stable by
existing algorithms, increases the chance that the sequence selected is stable. In other
words, the margin of error in the algorithms to predict stability is increased.

Therefore, instead of simply determining whether sequences are stable (a binary yes/no de-
cision) and choosing a sequence out of these stable sequences based on other metrics, we in-
vestigate how to compute the relative stability of sequences so as to determine the most stable
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sequence.
To our knowledge, we are the first to define relative stability of a motion sequence and con-

tribute an approach that evaluates the relative stability of a sequence among a set of possible
motion sequences. We will explain how we define relative stability and how our approach pre-
dicts the relative stability of a sequence that has not been executed before.

6.2.1 Problem Description

In this section, we describe the motivating scenarios and present the formal problem defini-
tion and assumptions.

Motivating Scenario

A humanoid robot is tasked with animating an input signal using its labeled motion library.
Examples of input signals are a piece of music or a story. The input signal is labeled, such
that there are multiple motions that are applicable for each label in the signal. With multiple
applicable motions per label and multiple labels in the input signal, the humanoid robot has to
select a sequence from many possible sequences of motions that are synchronized to the input
signal. The goal is to select the most stable sequence to execute by comparing the stability
of each sequence to the other possible sequences, since we aim to keep the robot as stable as
possible. Therefore, relative stability of a sequence is important when we want to determine the
best sequence to animate a given input signal and that the robot remains as stable as possible.

Formal Problem Definition

Motions in the motion library are labeled. Each label-motion pair is unique.

Definition 6.2.1. Let lm be a label-motion pair, and LM be the set of all label-motion pairs in

the motion library.

There exists different sequences of motions for the robot to animate the signal s, where the
labels of the signal match the corresponding labels in the motions and the motions are synchro-
nized to the starting times of the labels in the signal.
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Definition 6.2.2. Let us = (lm1, . . . , lmD) be an ordered set, i.e., a sequence, of D label-

motion pairs for a pre-processed input signal s, where D ≥ 2 and these label-motion pairs are

synchronized to s. Let U s be the set of all possible sequences of motion for s.

The goal is to determine the relative stability of the motion sequences in U s, i.e., a function
U : U s → R such that U(usi ) > U(usj)⇒ usi is more stable than usj , for some notion of stability.

Assumptions

We assume the following:
• Sensor data such as accelorometer and gyrometer sensors readings from the inertial mea-

surement unit (IMU) that outputs the body angles of the robot are available.

• The robot starts each sequence with a known initial pose, such as the pose shown in Fig-
ure 6.1.

• Data from past executions of all the label-motion pairs in the motion library exist. How-
ever, we do not assume that there exists data on all the sequences to evaluate. For ex-
ample, suppose that we are to evaluate the relative stability of three possible sequences
for the input signal s – us1, u

s
2, u

s
3. We have the execution data of label-motion pairs in

the sequences us1 = (lm1, lm2, lm3) and us2 = (lm2, lm3, lm1), but have no data on the
sequence us3 = (lm3, lm1, lm2). However, every label-motion pair (i.e., lm1, lm2, lm3)
exists in some sequence in the available execution data.

• We are using the same humanoid robot to collect data and predict the relative stability of a
motion sequence executed on the humanoid robot.

• There is no wear and tear on the humanoid robot.

6.2.2 Approach – RS-MDP

To our knowledge, no one has defined relative stability of one sequence to another in a set of
sequences of motions. To define relative stability, we first consider the stability of a sequence,
which is easier to determine if we observe the robot’s state at the end of the sequence, for example
whether the robot has fallen after executing the sequence. However, since we are interested in
relative stability, the state of the robot should not be only a binary value of whether it is upright
or fallen, but expressed as the body angle of the robot so as to determine how stable it is at the
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end of a sequence. Figure 6.1 shows the coordinate frame of the IMU that outputs body angle X
(roll) and body angle Y (pitch).

Relative stability of a sequence to other sequences is not solely dependent on the final state
of the robot at the end of a sequence. Instead, we should also consider the state of the robot
throughout the sequence. For example, consider two sequences, us1 and us2. If the state of the
robot, e.g., the body angle Y (pitch) of the robot is 0, meaning that its body is perfectly upright
at the end of the two sequences us1 and us2, it does not necessarily imply that both sequences
are equally stable. Instead, if we consider that the body angle Y of the robot in the middle of
sequence us1 is 20◦ (the robot is leaning forward), whereas the body angle Y of the robot in the
middle of sequence us2 is 30◦ (the robot leans even more), we surmise that us2 is less stable than
us1 given that it is more likely to fall in us2 than us1 during execution.

With this example, one may think that one simply considers the maximum body angle Y of
each sequence. This approach is not feasible for the following reasons:

• To determine the maximum body angle Y throughout a sequence, we would need to collect
the body angles at every time step to determine the maximum body angle.

• Extracting only the maximum body angle ignores the aspect of time, where a longer se-
quence may have a higher or the same maximum body angle Y, but is treated as less or
equally stable.

We present an approach that takes into account the body angles (stability) at the end of each
motion in the sequence, so that we do not have to store sensor data at every time step, and using
the body angles at the end of each motion is a good approximation to the relative stability of the
sequence.

Using this approach, we also compare the relative stability for two sequences that are unstable
at the end of the sequence. For example, consider two sequences us3 and us4, where us3 has 3
motions and us4 has 2 motions. The body angles Y at the end of each motion in us3 are 20◦, 15◦, 90◦

respectively, and 20◦, 90◦ for us4. us3 is more stable than us4 as us3 remains stable for a longer period
of time.

We build upon the existing approach of modeling the stability of a humanoid robot as an
inverted pendulum and research done on using a MDP and reinforcement learning to keep the
inverted pendulum upright. We make use of the Markov property, where the next state of the
robot depends only upon its present state and not on the sequence of motions that precede it.
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With the Markov property, we predict the next state given that the current state of the robot and
the next motion to execute.

We form a Markov decision process (MDP) based on the previous executions of the se-
quences of motions.

Definition 6.2.3. Let the set of previous sequences of motions executed be UH and the ith se-

quence in UH be uHi .

UH is not necessarily a subset of U s as we construct our MDP using sequences for multiple
signals. We define a MDP and explain how we form the MDP in Algorithm 16.

Definition 6.2.4. A MDP consists of the following:

• A finite set of states, BAS, where the state is represented by the body angles of the robot.

• A finite set of actions, A, where an action is a motion. We will use motions and actions

interchangeably from here on.

• Transition probabilities, i.e., TP (bas, a, bas′) is the probability that state bas will lead to

the next state bas′ after taking action a, where a ∈ A.

• Reward function, RF(bas, a, bas′) is the reward received by transitioning from state bas

after action a to bas′. The reward function is based on the state of the robot, in this case,

the body angles of the robot.

Algorithm 16 Form the MDP using past sequences that were executed.
MDP(UH)
∀bas∈BAS∀a∈A∀bas′∈BASTC(bas, a, bas′) = 0 // Initializes all transition counts to 0
for i = 1 to | UH | do
−→
Vi ← Ω(uHi ) // retrieve state vectors for the sequence
bas← D(−→v0) // discretize state
for p = 1 to |

−→
Vi | do

a← getAction(uHi , p) // get the pth motion in uHi
bas′ ← D(−→vp)
TC(bas, a, bas′)← TC(bas, a, bas′) + 1
bas← bas′

end for
end for
T̃P ← determineTransitionProbabilities(T̃C)

return [BAS,A, T̃P ]
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The state of the robot at any time is characterized by two parameters, body angle X, bax, and
body angle Y, bay. We consider the absolute value of the body angles as we do not differentiate
between the robot leaning forward or backward, or the robot leaning towards the left versus the
right.

Definition 6.2.5. Let the state vector −→vt = (|baxt|, |bayt|) be the absolute body angles of the

robot after executing a label-motion pair lmt in the sequence us.

Definition 6.2.6. Let Ω(us) = (−→v1 , . . . ,
−−→v|us|) be the function that maps sequences into the re-

spective state vectors after each motion in the sequence, e.g., if Ω(us) =
−→
Vi , then

−→
V contains the

list of state vectors for sequence usi .

The initial state of the robot is known and is defined as−→v0 . As the body angles are continuous
from −π

2
to π

2
, we approximate the state space using a discretization function that maps the state

vector −→v into a number from 1 to the number of states in the MDP.

Definition 6.2.7. Let the function D(−→v ) → ZNS
1 be the mapping from the state vector into a

discrete state, where NS is the number of discrete states.

We introduce two additional actions - Hold and Observe. Hold is an action when the robot
does not execute any motions but holds its current pose till the next motion. Observe is an action
always taken at the end of the motion sequence for a fixed amount of time. Observe is added as
the robot may not immediately fall at the end of the sequence, but may take some time before the
robot falls. We use the function getAction(u, p) to determine the pth action in sequence u.

We determine the transition probabilities in the MDP by counting the number of times the
robot’s state starts from bas after taking action a to another state, bas′. The sum of transition
probabilities from state bas is

∑
bas′∈BAS

∑
a∈A TP (bas, a, bas′) = 1.

Definition 6.2.8. Let TC(bas, a, bas′) be the transition count – the number of times the robot’s

state transitions from bas to bas′ after taking action a. Let T̃C be the set of all the transition

counts. Let TP (bas, a, bas′) be the transition probability that the robot’s state transitions from

bas to bas′ after taking action a where:

TP (bas, a, bas′) =
TC(bas, a, bas′)∑

bas′′∈BAS TC(bas, a, bas′′)

Let T̃P be the set of all transition probabilities.
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We use the function determineTransitionProbabilities that uses the set of the transition counts
T̃C to calculate the transition probabilities T̃P using the equation for TP (bas, a, bas′).

With the formation of the MDP, we predict the relative stability of a sequence using the
reward function given that we know that the robot always starts a sequence from the same initial
state (determined using the body angles of the initial pose) and traverses the MDP using the
known sequence of motions. Our approach is useful in the event that we do not have data of
sequences that have not been executed, but possess data of previous executions of the motions in
the sequences, e.g., the order of the motions are different in the predicted sequences.

To predict the relative stability of each sequence inU s, we use Algorithm 17. We calculate the
expected reward of the sequence since we know that the robot always starts from the initial state;
we are given the reward function RF and the sequence of motions that the robot will execute, and
we have computed the transition probabilities in the MDP.

Definition 6.2.9. Let the expected reward of the sequence usi be eri. Let the set of expected

rewards for the sequences U s be ER.

The expected reward is summed up across possible states using the transition probabili-
ties in the MDP and the reward function. We determine the list of possible states BASj+1

after executing action a from the current state basj using the function getPossibleNextStates.
The expected reward for a sequence ui is calculated using eri =

∑|u|
j=1 TP (basj−1, aj, basj) ∗

RF(basj−1, aj, basj).

A longer sequence will accrue a higher expected reward than a shorter sequence. It is also
possible that different sequences have different number of motions due to the synchronization
of the motions to the input signal. Hence, to ensure a fair comparison, we average the expected
reward by dividing the expected reward by the number of actions in the sequence.

Definition 6.2.10. Let the average expected reward of the sequence usi be aeri, where aeri = eri
|usi |

and is the predicted relative stability for the sequence usi . Let the set of predicted relative stability

for all the sequences, U s, be AER for the input signal s.

Lastly, we normalize the predicted relative stability. Normalizing the expected reward is
useful when multiple criteria are used to select the best sequence. Normalizing the expected
reward (predicted relative stability) enables us to scale these values to a common scale with
other criteria. A value of 0 means that the sequence is the least stable whereas a value of 1
means that the sequence is the most stable. In this case, for our experiments, normalizing is not
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Algorithm 17 Evaluates the predicted relative stability in U s.
U(U s)

AER← ∅
for i = 1 to | U s | do

eri ← 0 // Init expected reward to 0
BASP← {(D(−→v0), 1)}
for j = 1 to | usi | do

for (bas, p) ∈ BASP do
a← getAction(usi , j)

BAS′ ← getPossibleNextStates(bas, a, T̃P )
BASP′ ← ∅
for bas′ ∈ BAS′ do

eri ← eri + p · TP (bas, a, bas′)RF(bas, a, bas′)
if stable(bas′) then

BASP′ ← BASP′ ∪ {bas′, p · TP (bas, a, bas′)}
end if

end for
end for
BASP← BASP′

end for
// Reward for last state(s)
for (bas, p) ∈ BASP do

eri ← eri + p · RF(bas,NULL,NULL)
end for
aeri ← eri

|usi |
AER← AER ∪ {aeri}

end for
return normalize(AER)

required as we do not compare the difference in value between the actual relative stability and
the predicted relative stability, but we determine if the sequence has a higher relative stability
than the other sequences using the rankings of the relative stability values.

We have thus presented our RS-MDP approach using Algorithms 16-17. Next, we explain
the two benchmarks we created to compare to the performance of RS-MDP.
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6.2.3 Comparisons

We create two benchmarks where we assume that the probabilities of an action causing the
robot to fall is independent across motions:

1. RightAfter: Using all sequences, we count the number of times the robot falls right after
an action a and term this RAfall

a . We also count the number of times the robot is stable
right after this action a and term this RAstable

a . To calculate the probability of the action
being stable for RightAfter, we use the equation RAPa = RAstable

a

RAstable
a +RAfall

a
. We highlight that

(RAstable
a + RAfall

a ) is not equivalent to the number of times the action appears in all the se-
quences. This is because we count the number of times the robot falls right after this action
a and we ignore the actions after this action a in the unstable sequence. This benchmark
assumes that the instability of the robot is credited to the action that was executed just prior
to the robot’s fall.

2. Anytime: We count the number of times the action a is found in an stable sequence and
term this ATstable

a . We count the number of times an action is used in sequences and term
this ATa. Similar to RightAfter, we do not count the actions after the action that causes
the robot to fall in ATa. For example, if we have a sequence of actions (a1, a2, a3, a4) and
the robot falls after a2, we do not include the counts of a3 and a4 in ATa. To calculate
the probability of being stable for Anytime, we use the equation ATPa = ATstable

a

ATa
. This

benchmark assumes that the stability of the robot is equally credited to actions from the
start of the sequence to the end, similarly the instability of the robot is equally credited
to actions from the start of the sequence to the action that causes the robot to fall for an
unstable sequence.

To determine the probability that a sequence of actions, usi , is stable, we use the equation
RAPSi =

∏
a∈usi

RAPa for the comparison – RightAfter and ATPSi =
∏

a∈usi
ATPa for the

comparison – Anytime. Since we compute the average the predicted relative stability predicted
by RS-MDP by the number of actions, we also do the same for the two benchmarks by averaging
the probabilities with the number of actions in the sequence. We use these probabilities calculated
for each sequence to be the predicted relative stability.

Definition 6.2.11. Let R̃AP i be the average probability for the sequence usi for the comparison

– RightAfter. Let ÃTP i be the average probability for the sequence usi for the comparison –

Anytime.
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We illustrate the two benchmarks with this example of two sequences to show how the two
benchmarks differ. The first sequence us1 = (a1, a4, a4) and the status of the robot after each
action is (stable, stable, stable). The second sequence us2 = (a2, a1, a4, a3, a1) and the status of
the robot after each action is (stable, stable, stable, unstable, unstable). We list the probabilities
for each action in Table 6.2 and show how we derive them.

Table 6.2: Probabilities for each action using RightAfter and Anytime.

Action Comparisons Probability

a1
RightAfter 2 / 2 = 1
Anytime 1 / 2 = 0.5

a2
RightAfter 1 / 1 = 1
Anytime 0 / 1 = 0

a3
RightAfter 0 / 1 = 0
Anytime 0 / 1 = 0

a4
RightAfter 3 / 3 = 1
Anytime 2 / 3 = 0.67

We calculate the probabilities for us1 and us2 for the two comparisons – RightAfter and Any-
time in Table 6.3. Using these probabilities, we multiply the probabilities for each action in these
two sequences and average the probabilities by the number of actions in each sequence. If we
compare the rankings, the two sequences’ ranks are the same for these two comparisons.

Table 6.3: Probabilities for two sequences us1 and us2.

Sequence Comparisons
RightAfter (R̃AP i) Anytime (ÃTP i)

us1 (1*1*1) / 3 = 0.67 (0.5*0.67*0.67) / 3 = 0.07

us2 (1*1*1*0*1) / 5 = 0 (0*0.5*0.67*0*0.5) / 5 = 0

6.2.4 Experiments

Our approach – Relative Stability using a Markov Decision Process (RS-MDP) – models
past executions of sequences of motions with a Markov Decision Process (MDP) and predicts
the relative stability of sequences using the constructed MDP. RS-MDP does not require a model
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of the robot, compared to existing algorithms that determine the stability of the robot. Since
no one has yet explored the concept of relative stability, we compare RS-MDP to two baseline
comparison methods that use the probabilities of motions in unstable sequences.

We generate many sequences of motions and simulate the execution of these sequences by a
NAO humanoid robot in a real-time simulator, Webots 7 [Webots, 2014]. We use two established
metrics, Kendall’s Tau [Kendall, 1948] and Spearman’s rank correlation coefficient [Spearman,
1904] to compare the rankings of the predicted relative stability values versus the actual rel-
ative stability values since comparing differences between relative values (such as the sum of
root-mean-squared error) does not reflect whether the sequences are ranked correctly and that
the most stable sequence is selected. Hence, showing that the ranking of the predicted relative
stability matches the ranking of the actual relative stability is more important than ensuring that
the absolute values are accurate.

We use Algorithm 18 to calculate the actual relative stability of each sequence in the set of
sequences. We use the states of the robot after executing each action in the sequence and the
reward function to determine the total reward.

Definition 6.2.12. Let rsi be the reward of sequence usi in U s. Let RS be the set of rewards of all

the possible sequences U s.

Similarly, a longer sequence will accrue a higher total reward than a shorter sequence, by
virtue of taking more actions. Different sequences may have different number of motions due to
the synchronization of the motions to the input signal. Hence, to ensure a fair comparison, we
determine the actual relative stability by dividing the total reward by the number of actions in the
sequence.

Definition 6.2.13. Let arsi = rsi
|usi |

be the actual relative stability of sequence usi in U s where |usi |
is the number of actions in the sequence. Let ARS be the set of the actual relative stability of all

the possible sequences U s.

For our experiments, we generated 101 input signals that were pre-processed. These 101
input signals are the 101 sentences from the 20 stories listed in Appendix C. For each input
signal, there is a list of possible sequences of motions. For these 101 input signals, there are
2445 possible sequences of motions that match the labels and are synchronized to the labels of
the sentence.

We simulate the 2445 sequences that are executed on the NAO humanoid robot using Webots
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Algorithm 18 Evaluates the actual relative stability in U s.
TRS(U s)

ARS← ∅
for i = 1 to | U s | do

rsi ← 0−→
Vi ← Ω(usi )
bas← D(−→v0)

for p = 1 to |
−→
Vi | do

a← getAction(usi , p)
bas′ ← D(−→vp)
rsi ← rsi + RF(bas, a, bas′)
bas← bas′

end for
arsi ← rsi+RF(bas,NULL,NULL)

|
−→
Vi|

// Reward for last state

ARS← ARS ∪ {arsi}
end for
return normalize(ARS)

7 [Webots, 2014], a real-time simulator that simulates the dynamics of the robot. There are 157
unique actions in total in the motion library, including Hold and Observe. We record the body
angles of the robot at each instant a motion in the sequence is executed.

For the function D(−→v ), we map the state vector of body angles into discrete states, where we
discretize the continuous body angles into bins and the index of the bin for the body angle ba is
determined by the equation bin = |ba|

$
+ 1, where $ ∈ R+. For example, if a robot’s body angle

X is 5◦ and $ = 5◦, the index of the X bin is 2; if the body angle Y is 24◦, the index of the Y
bin is 5. Hence, the state is represented by the vector (binX , binY ), where binX is the index of
the bin for body angle X and binY is the index of the bin for body angle Y.

Since the state consists of discretized bins for body angles, to calculate the reward based on
the state, we use the mean of the body angle in the bin.

Definition 6.2.14. The function Y : Z+
1 → R+ converts the index of the bin for the body angle

into the mean of the body angle in the bin: Y(bin) = (bin ∗$)− $
2

We define two reward functions that use the cosine function. We use cosine because the
body angle is 0 when the robot is completely upright, and hence the reward is at a maximum
of 1 whereas when the body angle of the robot increases towards π

2
, the reward decreases to a
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minimum of 0. The first reward function uses both body angles X and body angles Y whereas
the second reward function uses only body angle Y. If we use the first reward function, we look
at how far the robot’s body deviates in terms of pitch and roll, whereas for the second reward
function, we only care about the pitch of the robot’s body.

Definition 6.2.15. The first reward function is RF1(bas, a, bas′) = cos(Y(binXbas))+cos(Y(binYbas)),

where binXbas is the index of the bin of body angle X in bas and binYbas is the index of the bin of

body angle Y in bas. Let the second reward function be RF2(bas, a, bas′) = cos(Y(binYbas)).

Next, we describe the training data used to form the MDP and the test data to test our ap-
proach RS-MDP against the two comparisons, RightAfter and Anytime. We create two experi-
ments:

• LearnAll: We use all 2445 sequences to form the MDP. The tests consist of all the 2445
sequences for each sentence. Hence, there are 101 tests with the 101 input signals, where
we determine the relative stability of the sequences for each sentence.

• LeaveOneOut: We conduct a leave-one-out cross-validation, where we remove all the pos-
sible sequences for a particular input signal out of the training data to form the MDP. These
sequences for the particular signal are used for testing.

Definition 6.2.16. Let the sequences we use for the training data to form the MDP be UTrain. Let

the sequences we use for testing be UTest.

For LeaveOneOut, we iterate through sequences in the test data and discard any sequence
from the training data that is the same sequence of motions. Hence, ∀u∈UTestu /∈ UTrain. For
example, if UTrain contains u = (lm1, lm2, lm3), then any sequences u′ = (lm1, lm2, lm3) are
not included in the training set, even if u and u′ are applicable to different signals. After forming
the MDP from the remaining training sequences, we predict the relative stability of the sequences
for each input signal.

If we compare the difference between the predicted relative stability aeri and the actual rel-
ative stability arsi for the sequence usi , it is difficult to evaluate how well our approach does
with a summed difference. For example, for our experiment using all the data to form the MDP,
we determine the absolute difference between the expected rewards and the actual rewards to
be 0.068 ± 0.125. However, this absolute difference does not illustrate how well our approach
performs. Hence, we compare the ranking of the average actual rewards to the average expected
rewards.
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To evaluate how well our approach performs in terms of ranking, we use two metrics that
are commonly used to compare rankings. The two metrics are Kendall’s Tau [Apache Commons
Math, 2015a] and Spearman’s Rank correlation [Apache Commons Math, 2015b] and we use
these two functions available in Apache Commons Math package.

We compare the rankings of the rewards, RS, versus the rankings of the expected rewards
ER computed from RS-MDP. We also compare the rankings of the actual relative stability, ARS,
versus the rankings of the predicted relative stability AER from RS-MDP. We want to show that
averaging the actual reward and the expected reward by the number of actions in the sequence
to calculate the actual relative stability and the predicted relative stability results in better per-
formance. As we explained earlier, the longer the sequence is, the higher the reward attained,
we therefore average the reward by the number of actions to determine the relative stability of a
motion sequence.

To illustrate how Kendall’s Tau and Spearman’s Rank correlation work, we are comparing
two sets of values, where G = (g1, . . . , gn) and H = (h1, . . . , hn), where in our case G refers
to the true relative stability for the various sequences (regardless whether it is averaged or not)
and H refers to the predicted relative stability for the corresponding sequences in G (regardless
whether it is averaged or not). In our experiments, gi would be the true relative stability computed
for the ith sequence and hi would be the predicted relative stability computed for the ith sequence.
Both G and H need not be sorted in any order, but each ith value in G and H has to be the
respective value for the ith sequence.

Kendall’s Tau groups the rewards into pairs, i.e., (g1, h1), (g2, h2), . . . , (gn, hn). It computes
a τ value using this formula, τ = nc−nd√

(n0−n1)(n0−n2)
.

nc is the number of concordant pairs. Concordant pairs refer to pairs (gi, hi) and (gj, hj) that
fulfill the following conditions:

• i 6= j;

• gi > gj and hi > hj or gi < gj and hi < hj .

nd is the number of discordant pairs. Discordant pairs refers to pairs (gi, hi) and (gj, hj) that
fulfill the following conditions:

• i 6= j;

• gi > gj and hi < hj or gi < gj and hi > hj .

n1 and n2 refer to tied pairs for g and h respectively. n1 refers to pairs (gi, hi) and (gj, hj)
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Table 6.4: Comparisons with the reward function RF1.

Approach Ranking
(Actual vs
Predicted)

LearnAll LeaveOneOut

Kendall’s tau Spearman’s
rank

Kendall’s tau Spearman’s
rank

RS-MDP
RS vs ER 0.74± 0.18 0.85± 0.17 0.66± 0.30 0.76± 0.34

ARS vs AER 0.73± 0.16 0.85± 0.12 0.69± 0.18 0.81± 0.16

RightAfter
RS vs RAPSi −0.55± 0.28 −0.65± 0.32 −0.54± 0.28 −0.63± 0.32

ARS vs R̃AP i 0.57± 0.25 0.68± 0.28 0.56± 0.27 0.64± 0.31

Anytime
RS vs ATPSi −0.46± 0.33 −0.55± 0.38 −0.45± 0.32 −0.54± 0.37

ARS vs ÃTP i 0.54± 0.29 0.66± 0.32 0.49± 0.31 0.60± 0.36

where gi = gj and n2 refers to pairs (gi, hi) and (gj, hj) where hi = hj .

n0 is computed with the equation n0 = n(n−1)
2

, where n is the number of values in each set.
Kendall’s Tau returns a value between -1 to 1, where -1 means that there is perfect disagreement
between two pairs and 1 means there is perfect agreement between two pairs. If either G or H
contains a list of equal values, Kendall’s Tau is 0.

For Spearman’s rank correlation, we use the equation, ρ = 1− 6
∑
d2i

n(n2−1)
. The values in G are

ranked and the average of the ranks is assigned to tied values and we term the ranked values Gr.
For example, if G = (0.8, 2.3, 1.2, 1.2, 15), Gr = (1, 4, 2.5, 2.5, 5). Tied values share the same
ranking, where the ranking is the sum of applicable rankings averaged by the number of values
with the same rankings. Likewise, we term the ranked values for H , Hr. di refers to the absolute
difference between gri and hri . n refers to the number of values in G, where n = |G| = |H|.
Spearman’s rank correlation also returns a value between -1 to 1, where -1 means that there is
perfect disagreement between the two sets of rankings and 1 means there is perfect agreement
between two sets of rankings. If either G or H contains a list of equal values, Spearman’s rank
correlation is 0.

Table 6.4 shows the results for LearnAll and LeaveOneOut using the reward function RF1.
Our approach, RS-MDP, outperforms the baseline comparisons given that there is a higher level
of agreement for expected reward (with or without averaging) when compared to RightAfter and
Anytime. We reach the same conclusion whether we use all the sequences to learn for LearnAll
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or for LeaveOneOut, where we leave out all the sequences for a particular input signal.

For LearnAll, when we use RS-MDP, there is little difference in the level of agreement for
the rankings whether we average the relative stability value by the number of actions when we
compare RS vs ER to ARS vs AER. However, for LeaveOneOut, ARS vs AER has a higher level
of agreement than RS vs ER. Therefore, the performance of RS-MDP improves by averaging
the relative stability value by the number of actions to determine the actual or predicted relative
stability.

Using Kendall’s Tau and Spearman’s rank correlation, the results show that without averaging
for RightAfter and Anytime, the rankings are inversely correlated. After averaging, Kendall’s tau
and Spearman’s rank correlation show that the rankings are more correlated with a higher level
of agreement.

When we compare the Kendall’s Tau and Spearman’s rank correlation for the same compar-
isons in LearnAll versus LeaveOneOut, it is expected that the rankings have a higher level of
agreement in LearnAll than LeaveOneOut since we train the MDP with all the data in LearnAll.

For the two comparisons using RightAfter and Anytime, the order of the actions is ignored
since the probabilities remain the same regardless of the order of the actions. Moreover, once an
action has a stable probability of 0 and appears in a sequence, the sequence will always have a
probability of 0. For some input signals, RightAfter and Anytime produce probabilities that are
exactly the same, therefore Kendall’s Tau and Spearman’s rank correlation return a 0. However,
RightAfter and Anytime act as a baseline for comparison to RS-MDP, albeit that the comparisons
are naive and suffer from the problems we describe earlier.

We present the comparisons for the reward function RF2 in Table 6.5. We observe that the
level of agreement in rankings are similar. We believe that this is due to the robot only falling
forward or backwards and seldom falling to the right or left during the experiments, an observa-
tion that we made in Section 6.1.2. Hence, the performance is similar when using body angles X
(roll) and body angles Y (pitch) in RF1 to using only body angles Y (pitch) in RF2.

Discussion

Relative stability is a new concept and we present our approach – RS-MDP – to predict
the relative stability of a sequence compared to other possible sequences generated for an input
signal. RS-MDP forms a MDP using past executions of sequences and predicts the relative
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Table 6.5: Comparisons with the reward function RF2.

Approach Ranking
(Actual vs
Predicted)

LearnAll LeaveOneOut

Kendall’s tau Spearman’s
rank

Kendall’s tau Spearman’s
rank

RS-MDP
RS vs ER 0.74± 0.20 0.85± 0.18 0.66± 0.31 0.76± 0.35

ARS vs AER 0.73± 0.17 0.85± 0.13 0.70± 0.19 0.81± 0.17

RightAfter
RS vs RAPSi −0.56± 0.29 −0.65± 0.33 −0.55± 0.29 −0.63± 0.32

ARS vs R̃AP i 0.58± 0.25 0.68± 0.28 0.56± 0.26 0.65± 0.30

Anytime
RS vs ATPSi −0.46± 0.34 −0.55± 0.39 −0.44± 0.32 −0.54± 0.37

ARS vs ÃTP i 0.55± 0.27 0.67± 0.31 0.51± 0.28 0.61± 0.33

stability of a sequence using the expected rewards accrued given the initial state and the sequence
of actions. We show that RS-MDP outperforms the two benchmarks – RightAfter and Anytime.

Using RS-MDP, there will be instances where a particular action in the sequence of motion
primitives has not been performed at a particular state. In these instances, we take a “pessimistic”
view that the robot will fall and give it a minimum reward. For future work, we adopt an “opti-
mistic” view that the robot is stable and give it the maximum reward.

For sequences with new actions that do not exist in the sequences used to form the MDP, we
are unable to predict the relative stability. Instead, we use the execution of such sequences for
future predictions where we learn from the execution of these sequences by adding the data in
the MDP.

We only use the body angles for states to showcase our approach. Researchers have used
angles, angle velocities etc. in the inverted pendulum problem. There is no restriction on the
definition of the state in our approach and the definition of states can be varied for future work.

6.3 Chapter Summary

Motions are used to convey meanings of an input signal. Given that there are multiple motions
per label in the motion library and multiple labels in an input signal, different sequences of
relevant motions are generated. Each motion in the motion library is assumed to be stable, but a
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sequence may cause the robot to fall. We are interested in predicting if a motion sequence will
result in a fall, without executing the sequence on the robot. We contribute ProFeaSM that uses
only body angles collected during the execution of single motions and interpolations between
pairs of motions, to predict if a sequence will cause the robot to fall. We demonstrate the efficacy
of ProFeaSM and explore the trade-off between precision and recall on a real NAO V3.3 H21
humanoid robot and a simulated NAO V4.0 H25 in Webots.

A humanoid robot executes a sequence of motions to fulfill a particular task, such as telling
a story or for human-robot interaction. The robot selects a sequence of motions from a list of
possible sequences. Choosing the most stable sequence will ensure that the robot executes future
sequences without interruption, e.g., without having to recover from a fall. Relative stability
refers to the stability of a sequence as compared to other sequences. To our knowledge, we
are the first to contribute an approach – RS-MDP – to determine the relative stability of motion
sequences. RS-MDP does not require a model of the robot to determine the dynamics of the
robot’s stability, and uses past executions of sequences of motions to predict the relative stability
of a motion sequence. Moreover, RS-MDP predicts the relative stability of sequences that have
not been executed, as long as there exists data on the motions in the sequence. Since relative
stability is new and there are no existing methods to compute relative stability, we came up with
two benchmarks, and show that RS-MDP outperforms these benchmarks.
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Chapter 7

Related Work

This chapter presents a review of related work. We discuss the relevant past research about
the autonomous animation of humanoid robots for music and speech and highlight the differences
of this thesis.

We categorize the review of past research based on the five core challenges of the thesis –
R-M-S3, namely:

• Representation: We investigate how robot motions are defined and look at how the input
signals for different domains are represented in the current literature.

• Mappings: We explore how researchers assign meanings, e.g., mapping labels to motions
so as to select relevant motions. We investigate how researchers compare different motion
trajectories so as to propose mappings for similar motion trajectories.

• Selection and Synchronization: We consider existing work on selecting relevant motions
and synchronizing motions to the task using the two task domains: synchronization with
music and synchronization with text-to-speech. We evaluate the existing literature on how
feedback for motions is used to improve the selection of motions.

• Stability: We explore the current literature on how the fall of a sequence of motions is
predicted. We also review work done on comparing the stability of motion sequences.

127
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7.1 Representation

We explore the existing literature on how researchers define robot motions for the two tasks
that we investigate for this thesis and organize a review of the current literature into these two
subsections:
• Motions for music;

• Motions for speech.

Motions for music

Humanoid robot dances are generally preprogrammed by choreographers for a particular
piece of music so that the motions are smoothly executed, synchronized to the music and that the
robots remain stable [Ellenberg et al., 2008, Shanie, 2006], e.g., four QRIOs danced in a music
video where the dance was manually choreographed [Montgomery, 2005] and 540 humanoids
performed a synchronized dance that was also manually choreographed [Reich, 2016]. Some
other robots with multiple degrees of freedom, e.g., Keepon, a creature-like robot with four
degrees of freedom, was programmed to dance to the beats of the music with five parameters
for each of the four degrees of freedom randomly selected and changed at random intervals
[Michalowski et al., 2007]. Other robot dances were created by imitating the dance movements
of humans using motion capture data, e.g., [Nakaoka et al., 2010]. Others also randomized
motions using a few discrete options or paths for the robot to move to, e.g., [de Sousa Junior and
Campos, 2011].

To automate dance motions for music, we select motions based on the beats and emotions of
the music. Comparatively, the emotions of the music are usually not analyzed and reflected in
robot dances done by other researchers. Also, robots have been programmed to use their facial
features to express emotions for human-robot interactions [Breazeal, 2003, Kirby et al., 2006],
but not body postures or movements.

Computer animation for dancing virtual characters is often done by synthesizing motion clips
selected from a database of motion capture data and time-warping the clips to synchronize the
motion clips with the music beats [Kim et al., 2003b, Shiratori et al., 2006, Kim et al., 2007].
However, the number of combinations is limited to the number of motion clips. Computer ani-
mation researchers have also explored the use of emotions in music, but they only vary the speed
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of the body movements [Shiratori et al., 2006] and do not reflect the positive-negative aspect of
emotions (e.g., happy and sad). In our work on automating the dance motions for any piece of
music, we selected motions based on the emotion of the music and adjusted the motion to syn-
chronize with the beats of the music [Xia et al., 2012]. We have also generated a large number of
combinations of motions using a small motion library. For example, to automate dance motions,
we defined a small library of 52 motions and combined them to form 16,848 possible motions
combinations [Xia et al., 2012].

Motions for speech

Gestures for speech have generally been organized into several categories, though some re-
searchers use different names for similar categories, e.g., beat gestures are also termed as batonic

gestures. [Bennewitz et al., 2007, Nieuwenhuisen and Behnke, 2013]. We summarize each cat-
egory with a brief description from various sources [McNeill, 1996, Beattie, 2004, Ng et al.,
2010]. Iconics illustrate the characteristics of physical concrete entities and/or actions with the
motion of the hands. For example, showing how big an object is using the arms and hands.
Metaphorics are gestures whose pictorial content describe abstract concepts rather than concrete
objects. For example, referring to both sides of an argument using both hands. Deictics are
pointing gestures that point to items that are being described. Beats are small, short movements
moving along with the rhythm of the speech to convey emphasis, emotion and personality and do
not convey any semantic information. Emblems are commonly understood without speech and
are self-explanatory, but are culturally-specific. For example, waving the hand to say goodbye or
nodding in agreement with someone. Regulators are turn-taking gestures. For example, a person
wanting to speak raises an arm. Affect displays are gestures that show emotions. In our mo-
tion library, we have iconics, metaphorics, emblems, and deictics which are defined as spatially
targeted motions in this thesis. We do not use beat gestures as they convey no meanings, nor
regulators since we use a single humanoid robot and there is no turn-taking involved.

Though these are categories of gestures proposed by various researchers, McNeill claims
that “it is more appropriate to think in terms of combinable dimensions rather than categories
and there is no need of a hierarchy” [McNeill, 2005]. The breakdown of the types of gestures
is generally about 40% iconics, 40% beats, and the remaining 20% are divided between deic-
tic and metaphoric gestures [Cassell et al., 1994, McNeill, 1996]. The breakdown is useful in
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determining the type of gestures selected to be used to accompany speech. We built upon their
work and proposed a different category of gestures – body part categories. By defining body part
categories, we generated many whole body motions for a humanoid robot using a small motion
library [Tay and Veloso, 2012].

Researchers create guidelines for generating motions for human robot interaction and we
compare three trajectory design methods: keyframing methods, physical modeling techniques
and motion capture methods [Saerbeck and van Breemen, 2007]. We summarized the advantages
and disadvantages of these three trajectory design methods in Table 7.1. We formalized motions
as keyframes with parameters to generate motions that are adjusted to synchronize to the input
signal [Xia et al., 2012, Tay and Veloso, 2012].

Table 7.1: Comparison of three trajectory design methods.

Method Advantage Disadvantage
Keyframes It is a good representation for

creating expressive motions
for all kinds of embodiments.

It is difficult to model physi-
cally correct motions.

Physical Modeling Since physical modeling
techniques model a move-
ment as a force affecting
a physical system, natu-
ral motion trajectories are
created.

It is difficult to create specific
expressions.

Motion Capture Motion capture covers both
advantages of the Keyframes
and Physical Modeling meth-
ods.

Motion capture is restricted to
embodiments that have sim-
ilar dynamics to the human
body.

Salem et al. built upon the Articulated Communicator Engine (ACE) [Salem et al., 2009,
Salem et al., 2010, Salem et al., 2012] that was implemented on a virtual agent named Max,
and implemented it on the Honda humanoid robot, ASIMO [Salem et al., 2012]. ACE does not
store any definitions of motions but generates motion trajectories given the end-effector targets
defined in the task space for different motor planning modules, such as the arms, the wrists
and the hands [Salem et al., 2009]. To determine the joint angles for the whole body motion,
“inverse kinematics (IK) is solved on the velocity level using the ASIMO whole body motion
(WBM) controller framework” [Salem et al., 2009]. However, such an approach suffers from
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the drawback that the IK solution is not feasible and does not consider the robot’s phsyical
constraints, such as collision avoidance. In our approach, we assume that the gestures generated
for the robot do not have self-collision and each gesture is stable. Our formalization of the
robot motions is also applicable to humanoid robots given that the definitions of the motions are
specifically designed for the humanoid robot.

Ng et al. define gestures as a “set of key points for each parameter” and trajectories are
generated using Kochanek-Bartels tension-continuity-bias (TCB) cubic splines [Kochanek and
Bartels, 1984] where the parameters determine how closely the trajectories follow the key points
[Ng et al., 2010]. Though defining motions in trajectories with parameters to adjust the shape
of the trajectories allow for highly varied and expressive motions, the final motion trajectory
generated may not express the original intended meaning well. The choice of the values for the
parameters is derived either from empirical data or defined.

Xing and Chen implemented a set of predefined gestures on a robotic puppet made up of
nine moving parts with wires, consisting 30 degrees of freedom and eight motors for non-verbal
gesture generation accompanying speech [Xing and Chen, 2002]. Xing and Chen created a set of
predefined gestures using primitive templates that describe the desired trajectories of movements
and the dynamic properties of the motor actions controlling the wires, [Xing and Chen, 2002].
Luo et al. continued on the work using a hand glove to animate the actions of the puppet [Luo
et al., 2011]. The work on the robotic puppet was based on controlling the wires and did not
provide details on how the motions were modified to synchronize with the accompanying speech.

Other researchers have explored how humanoid robots imitate human motions but they do
not define motions that can be combined with output modalities such as speech. We review
the literature on imitating human motions using robots in Section 7.2 to determine how motion
trajectories are compared. The literature is useful for mapping associations between meanings
(labels) and motions since motion trajectories are clustered to avoid duplicate motions.

Many researchers have highlighted the importance of proxemics in the non-verbal commu-
nication expression for an autonomous humanoid robot and provided guidance on the distance
between humans and robots [Brooks and Arkin, 2007, Mumm and Mutlu, 2011, Walters et al.,
2011]. We introduced the Spatially Targeted Motion primitive (STM), whereby an acceptable
range of distance to a target is defined [Tay and Veloso, 2012]. Sisbot et al. presented an in-
tegrated motion synthesis framework that plans and generates robot motions from the human’s
perspective by taking into account the human’s safety, the human’s vision field and perspective



132 7. RELATED WORK

etc [Sisbot et al., 2010]. However, the STM focuses on the robot’s perspective, where the dis-
tance from the robot and the orientation to face any target is defined in a range that is bounded by
two values [Tay and Veloso, 2012]. The STM allows the robot to direct the motion at the target
without moving constantly to compensate for the motions of the human since it is determined
from the robot’s perspective and the position is bounded within a range of two values.

Previous research was done on automating the generation of speech-based motions of virtual
agents on screens [Kopp and Wachsmuth, 2000, Cassell et al., 2001]. Sergey uses the prosody of
speech to train a hidden Markov model using motion capture data and prosody cues in the speech
[Sergey, 2009]. No context of the speech is used to select the speech since only the tones of the
utterances and smooth transitions between gestures drive the selection of the gestures from the
motion capture sequences.

The aspect of physical embodiment is ignored by generating gestures for virtual agents given
that real physical humanoid robots share time and space with people. The perspective of the user
is not easily shifted from one scene to the next in the real world. Physics-based effects such as
the robot falling is not inherent in virtual reality and actuated robots also interact with objects
in the environment. We demonstrate our work using a NAO humanoid robot, use its physical
constraints such as joint velocities to compute the execution time of motions and parameterize
the motions to change the duration of the motion so that each motion is synchronized to the input
signal.

7.2 Mappings

Kim et al. recorded human gestures and modeled these gestures on a real robot and in simu-
lation by categorizing the gestures with 13 types of sentences and 3 emotions [Kim et al., 2010].
The robot gestures are selected based on the type of the sentence and the emotion and require
the sentence to be categorized. Researchers have also described methods to learn new robot’s
behaviors and motions based on nautral language descriptions [Kress-Gazit et al., 2007, Rybski
et al., 2008, Cantrell et al., 2011], but to automatically map the new behaviors and motions to the
descriptions, the natural language descriptions have to follow a specific structure or satisfy cer-
tain requirements so that they are parsed properly. Other researchers annotate existing gestures
with semantic tags [Cassell et al., 2001, Neff et al., 2008, Sergey et al., 2010]. To our knowledge,
we are the first to map emotional labels to motions based on the static poses autonomously.
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Researchers found that people were able to identify most of the emotions expressed by key
poses of a NAO humanoid robot [Beck et al., 2010, Haring et al., 2011b, Beck et al., 2013]. We
built upon their work by using the features of the static poses to determine the activation-valence
label [Xia et al., 2012]. To analyze the similarity of the motions with the labeled emotional
static postures collected, we considered the points of interest of the robot’s body. These points
of interest are similar to the points used in motion capture systems and point-light animation [Li
and Chignell, 2011].

Some researchers considered modifying motions based on the features of the motions. Ma-
suda and Kato introduced a motion rendering system that modifies motions based on the features
of the Laban movement analysis (LMA) [Masuda and Kato, 2010]. The features are: space,
time, weight, inclination, height and area. Space “represents the bias of whole-body movement”
and is related to the movement direction of the extremities and the direction of the face. Time
“represents the quickness of whole-body movement” and is related to the joint angle velocities.
Weight “represents the powerfulness of whole-body movement” and is related to the joint angle
accelerations. Inclination represents the forward inclination of the body posture and is related to
the center gravity of the body by modifying the joint angle of the waist. Height “represents the
straightness of posture”. Area represents the range of the body and is related to the quadrilateral
area made up of the four extremity points of the limbs on the horizontal plane.

We explore the use of emotional static postures to label motions using Thayer’s Activation-
Valence model [Thayer, 1989] instead of using the features of the LMA since the motions are
synchronized to the emotions and beats of the music. The time and weight aspects of LMA are
incorporated into the motions due to the beats of the music in this thesis. We also consider the
inclination and height of LMA since the heights and inclinations of the emotional static postures
are varied based on the emotions conveyed by the static postures.

Next, we investigate how mappings between motions and labels are autonomously proposed
when a new motion or label is added to the existing motion library. Researchers have pro-
posed how the trajectories of motions are compared and also researched on the similarities of the
meanings of labels, particularly semantic labels. We separate the comparisons into two groups:
Comparisons of Motion Trajectories and Comparisons of Labels.
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Comparisons of Motion Trajectories

Determining the similarity of motions is challenging due to the imprecision in spatio-temporal
data, particularly when one has to define when two trajectories are sufficiently similar. For exam-
ple, trajectories may be similar in the entire trajectory or in part, such as the start and end points,
but be internally different. Researchers use metrics such as Euclidean distance, Hausdorff metric
or dynamic time warping and tuning of multiple parameters to cluster trajectories [Meratnia and
de By, 2002, Erdogan and Veloso, 2011b, Sung et al., 2012].

Erdogan and Veloso analyzed the similarities between pairs of two-dimensional motion tra-
jectories using the Euclidean distance between points and the Hausdorff metric [Erdogan and
Veloso, 2011a]. Using the similarities derived, Erdogan and Veloso used a variant of agglomera-
tive hierarchical clustering to determine groups of similar robot trajectories [Erdogan and Veloso,
2011a]. However, Erdogan and Veloso’s method is used to find a cluster of trajectories that is
assigned to only one group. Their method cannot be applied in a many-to-many relationship
where a cluster of trajectories is assigned to one group and a subset of the trajectories is assigned
to another. For our task of assigning labels to a new motion, some of the labels are assigned to
other motions as well. Thus, a motion is mapped to different labels and a label is mapped to
many motions, resulting in a many to many relationship.

Researchers have also considered how to determine similarity between motions of humanoid
robots and human motions from motion capture data so as to determine if the imitated human
motions are similar to the robot’s motions. Imitated human motions are associated with exist-
ing robot motions whereby the robot motions are assigned to certain tasks or labels. To avoid
duplications in the robot motions stored in the library, researchers used variations of Hidden
Markov Models (HMM) to differentiate between similar and different motions [Kulić et al.,
2008, Okuzawa et al., 2009, Calinon et al., 2010]. Others used methods like Principal Compo-
nent Analysis [Motomura et al., 2009, Tran et al., 2010] or expectation-maximization clustering
algorithms [Sung et al., 2012]. However, these methods also do not allow motions to be clustered
into different groups at the same time.

Huang et al. used a similarity function that compares the joint angles and velocities with a
parameter that is adjusted to weigh the similarity between the spatial effect and temporal effect
[Huang et al., 2010]. We consider both spatial and temporal effects by varying the joint angles
and velocities separately and both joint angles and velocities in our experiments.
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Comparisons of Labels

Labels refer to different things in different input signals. For example, using a piece of
emotional music as the input signal, emotional labels are used to identify different emotions and
are represented using Thayer’s 2-dimensional Activation-Valence (AV) model [Thayer, 1989].
Using a 2-dimensional AV model, we compare the differences in labels by using the Euclidean
distances between two 2-dimensional points [Xia et al., 2012]. Besides using a 2-dimensional
AV model, we did not find other models that compare emotional meanings. Another example is a
story whree text labels are used to represent semantic meanings. Similarity of semantic labels is
determined by using open-source large lexical database such as WordNet (Princeton University)
[Princeton University, 2010] and MindNet (Microsoft) [Microsoft Research, 2005]. We leverage
on the research on the similarity of the semantic meanings of words and use existing large lexical
databases to determine the similarity of the semantic labels. We use word2vec [Mikolov et al.,
2013] that determines the similarity of words using numerical values, so that it is easy to compare
and determine the differences in meanings.

7.3 Selection and Synchronization

We considered how motions are selected, generated to motion sequences, and synchronized
to dance music and text-to-speech. We will present work done for virtual agents and robots. We
note that the difference between synchronization of motions to the input signal for virtual agents
and robots differs in the aspect of physical embodiment. With physical embodiment, physical
constraints such as joint velocity constraints are taken into account. Nonetheless, synchroniza-
tion of motions to the input signal for virtual agents and robots share many similarities. We also
review how the audience evaluates the motion sequences and researchers acquire the feedback
from audience to improve the selection of motions. We organize the review into these subsec-
tions:

• Selection and Synchronization for Autonomous Dances;

• Selection and Synchronization for Autonomous Co-Verbal Gestures;

• Selection of Motions using Audience Preferences of Motion Sequences.
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Selection and Synchronization for Autonomous Dances – Virtual Agents

Creating dancing characters is commonly found in computer animation research [Kim et al.,
2007, Oliveira et al., 2010]. Researchers extract features of the motions based on the features of
the music, e.g., rhythms or beats of the music, and classify these motions into groups [Kim et al.,
2003a, Shiratori et al., 2006, Kim et al., 2007, Oliveira et al., 2010]. They select the motions
based on the features of a new piece of music and synchronize the motions to the beats of the
music. However, their approach requires the music to have a similar feature of the music, e.g.,
beats, to select relevant motions in the motion library, so this approach is not general for all
kinds of music. We did not find work done on examining the emotions of the music to generate
emotional dances for virtual agents. Though the virtual agents’ motions are synchronized to the
music, physical constraints are not enforced or taken into consideration. The trajectories of the
motions for the dancing characters are often fixed.

Selection and Synchronization for Autonomous Dances – Robots

Robot dances are generally choreographed by humans or generated from motion capture
data of humans [Nakaoka et al., 2003, Kudoh et al., 2008]. As we previously mentioned in
Section 7.1, robots such as Keepon were programmed to dance to the beats of the music by
randomly selecting parameters to change the motions at random intervals [Michalowski et al.,
2007]. Others also randomized the selection of motions from the motion library using a few
discrete options or paths for the robot’s dance [Grunberg et al., 2009, de Sousa Junior and Cam-
pos, 2011], whereas Seo et al. generated repetitive rhythmic motions like head nodding or hand
shaking for the DARwIn-OP humanoid robot to dance to the rhythm of the music [Seo et al.,
2013]. Although some of the robot dances are autonomously generated to dance to the beats of
the music [Grunberg et al., 2009, Seo et al., 2013], they select random motions with no consid-
eration of the relationship between the motion and music. We select relevant motions based on
the motion’s AV label and the AV label of the music. Thus, with our approach, the emotions of
the music are reflected in the robot dances.
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Selection and Synchronization for Autonomous Co-Verbal Gestures – Vir-
tual Agents

Sergey et al. generate gestures based on the online processing of live speech and select
gestures using a Markov decision process and value iteration [Sergey et al., 2010] and there is
no synchronization as the gestures are selected based on the prosody features for an utterance.
Several virtual agents select gestures based on the rules defined and specify timing constraints
at the phoneme level for co-verbal gestures [Cassell et al., 2001, Kopp and Wachsmuth, 2004,
Salem et al., 2012]. The stroke phase of the gesture is set to precede the corresponding text by a
given offset (e.g., 0.3 seconds) or to start exactly at the start of the text [Kopp and Wachsmuth,
2004]. Sometimes, the exact gesture is specified to be executed at a certain time [Salem et al.,
2012]. Some researchers timed the use of different types of gestures: for example, for the iconic
or metaphoric gesture, the preparation of the gesture is set to begin at or before the beginning
of the text and to finish at or before the next gesture, or the intonational stress of the phrase,
whichever comes first [Cassell et al., 1994, Kipp et al., 2007b, Nieuwenhuisen and Behnke,
2013]. The use of the gestures is dependent on the linguistic and contextual information extracted
from the speech [Cassell et al., 1994, Breitfuss et al., 2007, Breitfuss et al., 2009]. Similarly,
gestures for virtual agents rarely consider the physical constraints, such as the dynamics of the
motions, since virtual agents do not fall. Also, physical humanoid robots have less degrees of
freedom than a virtual animated character, thus the expressiveness of the gestures is decreased.

Selection and Synchronization for Autonomous Co-Verbal Gestures – Robots

Many researchers focus on generating a single type of gesture for humanoid robots, either
deictic [Striegnitz et al., 2005, Okuno et al., 2009, Shiwa et al., 2009] or emblematic gestures
[Erden, 2013]. Salem et al. use the ACE framework where the speech utterance is described us-
ing the Multimodal Utterance Representation Markup Language (MURML) [Salem et al., 2012].
The ACE engine synchronizes the motions and speech by adapting the motion to the structure
and the timing of the speech by obtaining absolute motion time information at the phoneme level
[Salem et al., 2012]. There are only a few systems where different types of gestures, e.g., com-
bination of iconics, metaphorics and beat gestures, are generated for a robot [Bennewitz et al.,
2007, Ng et al., 2010]. For example, Ng et al. probabilistically selects the gesture type based on
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the possible candidates for each word and the desired expressivity [Ng et al., 2010]. Next, the
timing of the word and style parameters are used to determine the shape of the motion trajectory
[Ng et al., 2010]. We do not select gestures based on gesture type, but our approach allows the
gestures to be labeled with the gesture type and the input signal is processed to produce such
labels. We present two ways to select motions, either probabilistically or based on a weighted
criteria.

Research has shown different guidelines on the synchronization of the gestures to speech.
Shiwa et al. studied the preferred length of response time for communication robots to deter-
mine design guidelines and suggested that a maximum of one to two seconds delay in a robot’s
response is acceptable [Shiwa et al., 2009]. Kanda et al. found that the robot’s body movements
should be delayed for 0.89 seconds to look natural for route guidance interaction [Kanda et al.,
2007]. Yamamoto and Watanabe found that the robot’s body movements should be delayed after
0.3 seconds and utterance should be delayed about 0.6 seconds in a greeting interaction [Ya-
mamoto and Watanabe, 2006]. We define the function H to synchronize the motions for speech
to the start of each label as an example. The function H can be defined using these guidelines or
according to the users’ needs.

Gestures have also been broken down into various phases defined by Kendon [Kendon, 1980]
and researchers have analyzed gestures based on these phases [Kita et al., 1998, Kipp et al.,
2007a], namely preparation, stroke, hold and retraction also known as recovery. Preparation is
the phase whereby the gesture moves to the stroke’s starting position. Stroke is the most energetic
part of the gesture and is a phase that always exists in a gesture. Multiple strokes can occur in
a gesture [Kita et al., 1998]. With the breakdown of these phases, the stroke “occurs either with
or just before the phonologically most prominent syllable of the accompanying speech [Cassell
et al., 1994, Kopp and Wachsmuth, 2004]. Hold is an optional still phase that can occur before
and/or after the stroke. Retraction or recovery is the phase that returns to a rest pose (e.g. arms
hanging down, resting in lap, or arms folded). Motion primitives in the library are deemed as
strokes and we perform preparation automatically by interpolating to the first keyframe of each
motion primitive. We perform holds when there is enough time between labels to hold the static
pose before moving on to other gestures. We also perform recovery to the initial pose defined
whenever the robot has time to return to the initial pose, and the robot performs gestures smoothly
and does not stop at awkward poses. At the end of each sequence, the robot returns to the initial
pose.
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Figure 7.1: Temporal alignment between different types of gestures and lexical affiliates. [Huang
and Mutlu, 2013]

Huang and Mutlu proposed a model of how people coordinate their gestures with their
speech [Huang and Mutlu, 2013]. Huang and Mutlu identified lexical affiliates which are “words
and phrases that co-express meaning with representative gestures, including deictic, iconic and
metaphoric gestures” [Huang and Mutlu, 2013]. To determine the timings when a gesture starts
and ends, Huang and Mutlu empirically obtained the timings from observations of participants
acting as instructors to teach how to fold paper [Huang and Mutlu, 2013]. Figure 7.1 shows
the temporal parameters and Figure 7.2 shows the algorithm for synchronizing robot behaviors.
Similarly, though we synchronize the start of each gesture to the word that matches the seman-
tic label, we note that our formalization of the motions allows variations in the synchronization
function where one chooses to synchronize the start of the gesture earlier or at the start of the
label since our approach allows the user to define the synchronization function H.

Figure 7.2: Algorithm for synchronizing robot behaviors. [Huang and Mutlu, 2013]
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Selection of Motions using Audience Preferences of Motion Sequences

Hartmann et al. proposed to capture gesture expressivity with a set of six attributes to evaluate
co-speech gestures [Hartmann et al., 2005, Hartmann et al., 2006], namely overall activation,
spatial extent, temporal extent, fluidity, power and repetition. Overall activation refers to the
quantity of movement during a conversational turn (e.g., passive/static or animated/engaged).
Spatial Extent is the amplitude of movements (e.g., amount of space taken up by body). Temporal
Extent is the duration of movements (e.g., quick versus sustained actions). Fluidity is smoothness
and continuity of overall movement (e.g., smooth/graceful versus sudden/jerky). Power is the
dynamic properties of the movement (e.g., weak/relaxed versus strong/tense). Repetition is the
tendency to rhythmic repeats of specific movements. In this thesis, we explore overall activation
and repetition using the definition of the parameter N , the number of times a motion primitive is
repeated, and also look at temporal extent, where the motion is dependent on the timings of the
labels in the input signal.

Kamide et al. developed a humanoid-oriented psychological scaled called PERception to
humaNOiD (PERNOD) that comprises five dimensions: Familiarity, Utility, Motion, Control-
lability and Toughness [Kamide et al., 2014]. Bartneck et al. came up with the GODSPEED
measure that measures five aspects of the robot: Anthropomorphism, Animacy, Likeability, Per-
ceived Intelligence, and Perceived Safety [Bartneck et al., 2009]. Joosse et al. also developed
a data collection instrument, BEHAVE-II, to assess user responses towards a robot’s behavior
using both attitudinal and behavioral responses [Joosse et al., 2013].

Pelachaud conducted human studies to evaluate their virtual agent’s gestures with speech
[Pelachaud, 2005]. Pelachaud also created a “neutral” move of generic action in which the setting
of each parameter in their algorithm was set to neutral [Pelachaud, 2005]. Ng et al. conducted
evaluations of their co-verbal gestures for ASIMO, the Honda humanoid robot, using videos of
the ASIMO in action [Ng et al., 2010]. Salem et al. had evaluations of their co-verbal gestures
for ASIMO evaluated with the real robot since they argued that “it is necessary to evaluate non-
verbal behavior in actual interaction scenarios” [Salem et al., 2012].

Huang and Mutlu also came up with measures that we summarized in Table 7.2 to evaluate
robot’s gestures with speech [Huang and Mutlu, 2013] in a scenario where the robot instructs
the participants to fold paper. Several researchers also proposed guidelines for motion design
for humanoid robots [Breemen, 2004, Ribeiro and Paiva, 2012, Jung et al., 2013, Kamide et al.,
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2014] by using animation principles and studies done to evaluate speech-based motions.

We note that some of the evaluation approaches are dependent on the task involved and may
be different in other scenarios. Also, subjective measures of human evaluation have to be care-
fully considered since measures such as naturalness of robot’s behavior are difficult to quantify
unless compared to a baseline. These metrics can be incorporated in creating the audience ratings
for motions.

Table 7.2: Measures used to evaluate robot’s gestures and speech.

Type of Measure Category of Measure Measure
Objective Task Performance Participants’ recall of the informa-

tion presented by the robot
Subjective Perceived Performance Naturalness of robot’s behavior

Perceived Performance Competence of robot
Perceived Performance Effective use of gestures
Social and Affective Evaluation Engagement with robot
Social and Affective Evaluation Rapport with robot

Behavioral Narration Behavior of the participants’
ability to retell the robot’s story

Narration duration

Narration Behavior of the participants’
ability to retell the robot’s story

Gesture Use

Feedback from the audience ranges from using visual cues such as the audience holding col-
ored markers such as paddles [Knight et al., 2011] to indicate their preference or audio feedback
such as the applause or cheers from the audience or surveys at the end of the interaction [Addo
and Ahamed, 2014]. These feedback can be converted into a noisy numerical value to model the
distribution of the observed audience preference.

Knight et al. models the audience using the features of jokes and selects the best joke for a
robot to tell using the audience feedback and the features of the joke [Knight et al., 2011]. We do
not need to model the features of motions and use the feedback on sequences to model the ratings
of individual motions. The approach of Knight et al. assumes that the audience preference on
features do not vary over time, whereas we model the boredom of the audience and account for
different weights assigned to the motions in different sequences. Addo and Ahamed also use a
robot to tell jokes, but use reinforcement learning [Addo and Ahamed, 2014]. However, to learn
a good policy, they have to explore all jokes in all the states, whereas we do not have to query all
sequences to pick the best sequence.
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Abbeel and Ng introduce the concept of inverse reinforcement learning, where the reward
function is unknown and that it is difficult to specify a reward function, but the “unknown reward
function is expressed as a linear combination of known features” [Abbeel and Ng, 2004]. Our
approach is similar in the sense that the audience rating of a sequence is expressed as a linear
sum of the unknown ratings of single motions. However, we do not require a Markov decision
process made up of states and actions to model the audience preferences and determine the best
policy for each state. Instead, we only model the ratings of single motions.

Akrour et al. explore the use of a Markov decision process and rank sequences of state-
action pairs based on the preferences instead of assigning values to the sequences [Akrour et al.,
2012]. We do not order preferences through ranking as the magnitude of how much a sequence
is preferred over another sequence is lost in ranking of sequences.

Our approach, MAK, uses the multi-armed bandit algorithm and Kalman filter. The multi-
armed bandit problem is a well-known problem, where the goal is to select which arms to pull
to maximize the sum of expected rewards, and Thompson sampling [Thompson, 1933] is one
of the common algorithms used to optimize the arm-pulling. The multi-armed bandit problem
was applied to allocating training instances to learning agents, so as to estimate their learning
rates and maximize the team performance [Liemhetcharat and Veloso, 2014b, Liemhetcharat and
Veloso, 2014a], and Kalman filters were used to estimate the agents’ learning rates. In this paper,
we use a single Kalman filter to estimate the audience preferences for the motion-label pairs, and
we modify the multi-armed bandit problem to select multiple motions to match a sequence to
receive feedback from the audience.

7.4 Stability

Researchers have tackled the problem of generating co-speech gestures in the area of com-
puter animation for virtual conversational agents and in the area of robotics for non-verbal be-
haviors along with speech in humanoid robots [Salem et al., 2012]. Salem et al. highlighted the
difference between the level of complexity between these two fields by stating that “character
animation has less restrictive motion than even the most state-of-the-art humanoid robots as an-
imation of virtual agents reduces or even eliminates the problems of handling joint and velocity
limits”, whereas a robot has real physical restrictions on its motions [Salem et al., 2012]. Sta-
bility is vital for robots since a fall for a robot may cause the robot to be damaged or broken
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whereas a virtual agent can easily reset to its original pose without any issues.

Falls should be prevented for a humanoid robot as it takes time to get up and may cause the
robot to damage some of its joints or cause serious wear and tear. To predict a fall, researchers
determine the dynamic stability using a model of the robot and its environment. They verify their
predictions by executing the sequence of motions in simulation or on the real robot and check if
they are stable. However, it is difficult to obtain an accurate model to predict stability reliably as
it is hard to model real world variables such as friction, wear and tear and slippage.

Motion planners for stability generally require an accurate model of the robot and its environ-
ment. It is also difficult to generate dynamically balanced motion for humanoid robots due to the
high number of degrees of freedom and “the size of the space to explore is augmented with the
robot velocity and footprint positions” [Dalibard et al., 2013]. Some researchers plan geometric
paths by approximating a dynamic trajectory [Dalibard et al., 2013]. However, the drawback of
this method is that “some feasible dynamic motions are inherently impossible to compute with
this approach” [Dalibard et al., 2013]. There are planners that compute dynamically stable mo-
tion trajectories offline [Kuffner et al., 2003, Kanehiro et al., 2008], but these planners require an
accurate robot model and change the desired motions in terms of the timings and the trajectories.
Adjusting the timings of the desired motion causes the motion to be no longer synchronized to
the input signal and changing the motion trajectory may change the meaning expressed.

Falls predictions are generally made through online monitoring methods. These online mon-
itoring methods predict falls by thresholding relevant physical attributes such as angular mo-
menta [Kajita et al., 2003]) or determine stability by tracking the position of the zero moment
point (ZMP) [Czarnetzki et al., 2010] or center of pressure (CoP) such that the CoP stays within
the support polygon. Others analytically model the robot’s dynamics to determine if a fall will
occur [Kuffner et al., 2003, Borovac et al., 2011]. However, these methods do not scale well to
humanoid robots with complex geometries and high degrees of freedom. Others adopt a data-
driven approach where sensor data of stable and unstable trajectories are classified to determine
if a fall will occur since it is difficult to model real world variables such as wear and tear [Höhn
and Gerth, 2009, Kalyanakrishnan and Goswami, 2011]. The prediction is done during the exe-
cution before a fall occurs whereas we do not execute any motion sequence to make a prediction.
Searock et al. monitored the sensor readings of a dynamically balancing Segway RMP to de-
tect the onset of a robot’s failure by using supervised learning techniques to create a classifier
[Searock et al., 2005]. Our approach is to use sensor values from previous executions of single
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motions and interpolations to predict if a motion sequence is stable offline. We do not execute or
monitor the execution of the motion sequence on the robot. We also do not require a model of
the robot to analyze its dynamics or model its environment.

Some researchers adopt fall avoidance methods where falls are avoided using reflex motions
to stop the fall [Höhn et al., 2006, Renner and Behnke, 2006, Petri et al., 2013], or to execute a
controlled falling motion [Höhn and Gerth, 2009] to reduce the impact of falls. Others determine
if there is a need to insert additional motions before a fall is apparent [Noritake et al., 2006].
However, executing reflex motions or inserting additional motions that override the intended
motions [Höhn et al., 2006, Renner and Behnke, 2006] will change the motions that convey
the meanings of the input signal and are synchronized to the input signal. We want to execute
sequences of motions on the robot without the robot falling or appears to be unstable. If we use
reflex motions or perform controlled falling, the animation is interrupted. Changing the intended
motions may also alter the meanings expressed by the motions.

Fall avoidance methods reduce the damage done to the robot by predicting when falls will
occur and perform motions to reduce the impact of falls. Fall avoidance are triggered in the midst
of the execution of a motion sequence and only slightly before the fall occurs. Fall avoidance
methods cannot predict falls before execution and require training data of instances of the robot
falling. Fall avoidance methods can be falsely triggered if the training data are insufficient. Even
if the falls are predicted accurately, the controlled falling motions may not be executed in time to
prevent bad consequences. Therefore, our approach of using offline predictions of falls without
execution will be better than trying to reduce the impact of a fall. Fall avoidance should only be
used as a last resort to avoid significant damage to the robot when a fall occurs.

Relative Stability

The term – relative stability is a concept used in control systems to determine the range of
parameters for a control system to remain stable so that there is room for margin of error [Ogata,
2001]. In the case of relative stability of sequences, we want to select the most stable sequence
for the same reason. Research are concentrated on ensuring the stability of a humanoid robot
with online monitoring methods to predict falls by thresholding relevant physical quantities (e.g.,
angular momenta [Kajita et al., 2003]) or determine stability by tracking the position of the zero
moment point (ZMP) [Czarnetzki et al., 2010]. Others analytically model the robot’s dynamics
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to determine if a fall will occur [Kuffner et al., 2003, Borovac et al., 2011]. We build upon
our work where we predict falls without a model of the robot and no previous history of the
executions of sequences of motions [Tay et al., 2016]. To our knowledge, we have yet to come
across literature that evaluates relative stability of sequences, where sequences of motions are
compared to determine the most stable sequence.

A Markov Decision Process (MDP) is generally used to model decision making at different
states where the outcomes are stochastic and dependent on the current state and the action taken
[Bellman, 1957]. The inverted pendulum problem is solved using a MDP with reinforcement
learning whereby the policy determines the best action to execute based on the current state [Sut-
ton and Barto, 1998]. Researchers have also used the inverted pendulum model where equations
for the dynamics of the humanoid robots are determined for gait planning [Kajita et al., 2001]
and push recovery [Stephens and Atkeson, 2010] in order for the robot to remain stable. Instead
of using the inverted pendulum model for equations on the dynamics of the robot, we apply the
approach of modeling the humanoid robot as an inverted pendulum and using a MDP where the
states of the robot are discretized and the actions are the motions executed.
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Chapter 8

Conclusion

This chapter presents the contributions of this thesis and discusses the potential applications
and several directions for future work that build on this thesis.

8.1 Contributions

In this thesis, we set out to address the following question:

In order to autonomously animate a humanoid robot given an input signal, how do
we represent motions, automate mappings between motions and meanings, select the
relevant motions and consider the audience’s preferences, synchronize motions to the
input signal and to determine a stable sequence of motions?

This thesis addresses the question with the following contributions:
• Keyframes

We formally define two types of keyframes – fixed and variable keyframes for parameter-
ized motion primitives. A fixed keyframe is represented with fully defined joint angles,
whereas a variable keyframe is represented with joint angles that are varied based on the
parameter, α.

147
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• Motion Primitives
Robot motions are parameterized motion primitives that are instantiated. We explain how
parameters in motion primitives are instantiated to form a humanoid robot’s whole body
motion. We define two types of motion primitives – general motion primitive and spatially
targeted motion primitive. A general motion primitive is made up of fixed keyframes
with two parameters to adjust the duration of the motion primitive and the number of
times the motion primitive is repeated. A spatially targeted motion primitive (STM) is
made up of variable keyframes and is a parameterized motion primitive, where one of
the parameters defines the target the STM is directed at. A STM is directed at a defined
point or direction or repeated by changing the parameters in a STM. We also contribute
an algorithm, DeterminePoseForSTM, to instantiate a STM. The formalization of a STM
reduces the number of motion primitives defined in the motion library as we do not have
to define different motion primitives for different targets or define motions with varying
changes in joint angles, e.g., the robot nods by varying its head pitch angle from 5◦ to −5◦

to 5◦ compared to another nod where the pitch angle is varied from 10◦ to −10◦ to 10◦.

• Motion Primitives Categories
We propose using the robot’s body parts to categorize motion primitives so that variations
of the whole body motion can be generated. We show that we generate many whole body
motions for a dancing robot using a small motion library. The approach of using body part
categories also reduces the number of motion primitives in the motion library.

• Pre-processed Input Signal
We formally define a pre-processed input signal. We describe the relationship between the
labels of the input signal and the labels of the motion primitives. We explain how the labels
of the input signal are used to select relevant motion primitives.

• Autonomous Mappings between Motions and Labels
We describe how manual mappings between motions and labels become tedious when
the motion library grows. We contribute an approach, LeDAV, to identify features in the
motions using emotional static poses collected to automatically map motions to labels.
Specifically, we use the emotional static poses collected to identify the similarity between
the keyframes of the motions and the emotional static poses and use a weighted similarity
to assign emotional labels to the motion.
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• Metric to determine similarity between motions
In situations where the features of the new motions are unavailable and cannot be au-
tonomously labeled, we identify similar motions in the motion library to assign existing
labels to the new motions. We evaluate multiple variations of motion trajectory metrics to
determine the similarity between motions, and compare the different metrics and present
the efficacy of each distance metric using precision and recall. We determine the best
metric to be EuclideanJoint in terms of precision, recall and computational complexity.

• Probabilistic Selection and Synchronization
We contribute an approach – CEN – to probabilistically select relevant motion primitives
for each label of the input signal using three factors – continuity, emotion and normaliza-
tion. We also demonstrate how to synchronize the sequence of motion primitives to the
beats of the music by varying the parameter, β. For probabilistic selection and synchro-
nization, we use an autonomous dancing robot as an example.

• Selection and Synchronization using Weighted Criteria
We select relevant motions based on an existing similarity function defined for text labels.
We synchronize each motion primitive to the start of the corresponding label in the input
signal. We use a weighted criteria to rank the sequences and select the best sequence. For
selection and synchronization using weighted criteria, we use an autonomous storytelling
robot as an example.

• Selection using Audience Preferences
We aim to select the best motion sequence given the list of possible motion sequences
for an input signal, and noisy observations of the audience preference using the audience
model we created. We investigate how to determine the audience preference of the in-
dividual motions from the audience preference of motion sequences. We also consider
the effects of audience ‘boredom’ with a degradation model. We contribute an approach –
MAK – that selects the sequence to query the audience for the rating, updates the estimates
of the preference of the individual motions, and repeats the process until convergence. We
show that MAK outperforms the least-squares benchmark with and without the effects of
audience ‘boredom’.

• Predicting the Stability of a Motion Sequence with No Prior Execution
We contribute ProFeaSM, an algorithm that predicts the stability of a motion sequence with
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no data on prior executions of the sequence. We collect sensor data on the execution of
the individual motions and the interpolations between pairs of motions. Using these sensor
data, we predict if the sequence of motions is stable using ProFeaSM. We demonstrate the
efficacy of ProFeaSM in simulation and on the real robot.

• Predicting Relative Stability of Motion Sequences Using Prior Executions
We introduce relative stability, that refers to the comparison of how stable a sequence is
compared to other sequences. Relative stability is useful when we want to determine the
most stable sequence so as to increase the probability that the humanoid robot continues
to animate without interruptions such as a fall. We contribute an approach, RS-MDP,
that determines the relative stability of motion sequences using a MDP generated from
previous executions of motion sequences. RS-MDP then predicts the relative stability of
new motion sequences. RS-MDP does not require a model of the robot, compared to
existing algorithms to determine if a robot falls or is stable. We demonstrate that RS-MDP
outperforms two baseline comparison methods, RightAfter and Anytime.

• Complete Algorithm to Autonomous Animation for Humanoid Robots
We contribute a complete algorithm, AAMPS, which captures the meaning of the sig-
nal by selecting relevant motions and determines the best sequence based on a weighted
criteria comprising the stability of sequences and the audience preferences. We explain
how AAMPS is made up of the solutions proposed for each of the five core challenges:
Representation, Mappings, Selection, Synchronization and Stability (R-M-S3).

• Autonomous Animation for Two Types of Input Signals
Throughout the thesis, we demonstrate our work using two types of input signals – music
and text-to-speech – and show that we autonomously animate a dancing NAO humanoid
robot and a storytelling NAO humanoid robot.

8.2 Potential Applications

This thesis is motivated by the laborious work put in to manually animate a humanoid robot
stably given an input signal. We break down the problem into five core challenges and present
our solutions to these five challenges and a complete algorithm that automates the process of
animating a humanoid robot stably given an input signal. We also take into account the audience
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preferences of motions used in the animation.

We summarize the requirements to autonomously animate a humanoid robot R using our
approach and algorithms:

• The physical constraints of R are known, e.g., joint angular limits and joint velocity limits.

• A labeled motion library is available and the motion primitives in the motion library are
defined for R using our representations. The interpolation times for each motion primitive
are defined.

• If some motions in the library are not labeled, there are examples of labeled motions that
are used by our autonomous mapping algorithms to map existing labels to the new motions.

• The input signal is pre-processed to extract the labels that are animated and the timings of
these labels.

• The similarity function S for determining the similarity of the labels is defined.

• The synchronization function H is defined.

• The sensor data required for predicting the stability of R are collected on R and R is used
to animate all motion sequences.

• The audience preferences of motion sequences are assigned using our audience model.

Given the contributions of this thesis, manual generation of a sequence of motions for an input
signal is replaced by an autonomous approach of selecting a motion sequence to animate the
humanoid robot.

We hope that our work will be useful to robot choreographers and facilitate their work to
animate the humanoid robot, instead of starting from scratch for different input signals. Thus,
robot choreographers can use our approach as a guide to determine the motion sequence using
our criteria or customize the criteria based on their needs. They can also use our work as a
starting point before they refine the final motion sequence for the humanoid robot to animate.
Robot choreographers who have previously manually animated humanoid robots can build their
motion library using their previous manual animations of the humanoid robot.

Robot choreographers who have a large library of motion primitives can use our autonomous
mapping algorithms to determine if there are more mappings between motion primitives and
labels without having to manually go through all the motions and labels. Choreographers can also
choose between a probabilistic approach or a set of criteria to select the motions. Choreographers



152 8. CONCLUSION

can use our audience model to determine the most preferred motion sequence assuming that the
audience assigns preferences according to our model. Robot choreographers can also minimize
the execution of unstable sequences using our algorithm to predict the stability of a motion
sequence and to determine the most stable sequence using the prediction of relative stability.

8.3 Future Work

This thesis presents new algorithms and approaches to autonomously animate humanoid
robots in general. We enumerate a few directions for future work.

• We defined a keyframe-based representation for motions. Motions such as stable walk-
ing require modeling the dynamics of the robot and cannot be represented with fixed
keyframes. We can investigate how stable walking is incorporated so that the humanoid
robot walks around and gestures at the same time.

• We can relax the constraint that a motion is only synchronized to the input signal when the
start of a motion corresponds to the start of the label the motion is expressing. For example,
a motion is still synchronized to a sequence when the start of the motion is within a certain
time duration of the start of the corresponding label in the input signal.

• We can investigate the similarity of labels so as to map new labels to existing motions. For
example, the label “happy” is a synonym to the label “cheerful”. Hence, motions with the
label “happy” can also be mapped to the label “cheerful”.

• Labels such as “wave” can convey different meanings in different text-to-speech input
signals and require different motions to convey the meaning, e.g., “wave goodbye” versus
“wave a wand”. We currently model the audience preference using a rating for each label-
motion pair. With our approach, the rating for the same label-motion pair will vary across
different text inputs. In the future, the context of the sentence can be considered.

• We evaluated eight distance metrics that are varied along three dimensions – Euclidean
versus Hausdorff distances, joint angles versus POIs, Original versus Mirrored motions.
We can consider other distance metrics such as dynamic time warping, longest common
subsequence, etc. These distance metrics can also be evaluated to compare their perfor-
mance in precision, recall and computational complexity.
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• The original motion can be labeled with “waving with his left hand” and the mirrored
motion can use the same label by replacing the word “left” to “right” and vice versa. We
can keep a dictionary of such words and motion features so as to replace the corresponding
words in the labels.

• We consider using only body angles to predict the stability and relative stability of motion
sequences. We can explore using other sensor data such as foot pressure sensor readings,
which are commonly available in humanoid robots.

• We use RS-MDP to predict the relative stability of sequences. For instances where a
particular motion in the motion sequence has not been performed at a particular state, we
take a “pessimistic” view that the robot will fall and give it the minimum reward. For future
work, we can adopt an “optimistic” view that the robot is stable and give it the maximum
reward so as to try out different motion sequences to update the MDP.

• This thesis contributes to the autonomous animation of a single humanoid robot. We can
build upon this thesis to generate multiple motion sequences for multiple robots.

• We can explore changing the input signal to allow time for a highly preferred motion to be
used when the duration of the motion is too long and cannot be synchronized to the input
signal. For example, we can insert pauses to the text-to-speech input signal.

8.4 Concluding Remarks

This thesis addressed the five core challenges for the thesis question to autonomously an-
imate humanoid robots. These five core challenges are Representation, Mappings, Selection,
Synchronization and Stability (R-M-S3). We introduced representations for motions, input sig-
nals and labels. We contributed algorithms to autonomously map motions to labels and evaluated
metrics to determine similar motions. We selected relevant motions using the similarity between
labels of the motions and the labels of the input signal and synchronized the motion sequence to
the input signal. We demonstrated different approaches to consider selection of relevant motions,
i.e., probabilistic selection and selection via weighted criteria. We described how we consider
audience preferences and stability of motion sequences. We demonstrated our approach and
algorithms using a NAO humanoid robot and a simulated NAO humanoid robot in Webots 7
[Webots, 2014] for two types of input signals – music and text-to-speech.
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Appendix A

List of Symbols

The list of symbols here is used as a reference to the symbols used throughout this thesis.

Symbol Description Chapter(s)

m Motion primitive 2, 3, 4, 5, 6

M Set of motion primitives consisting general and spatially
targeted motion primitives

2, 3, 4, 5, 6

l A label of a motion primitive m 2, 3, 4

L Set of all labels 2, 3, 4

ML Set of labeled parameterized motion primitives in the mo-
tion library

2, 3

s A pre-processed input signal 2, 3, 5

S Set of all pre-processed input signals 2, 3, 5

X Function to determine if a mapping between a motion
primitive m and label lm exist

2, 3, 4

u A sequence of motions 2, 5, 6

U A set of sequences of motions 2, 5, 6

us Sequence of motion primitives for the signal s 2, 5, 6

155



156 A. LIST OF SYMBOLS

U Set of all sequences 2, 5, 6

U s Set of sequences for signal s 2, 5, 6

S Function to determine similarity of meanings between la-
bels

2, 4

lm Label-motion pair 2, 5

A Function to observe the audience rating of a sequence 2, 5

H Function to determine if a sequence of motion primitives
is synchronized to the input signal

2, 5

µ Motion primitives are selected with a similarity value
larger or equal to this variable

2, 5

F Function to determine feasibility (stability) for a sequence
of motion primitives

2, 6

U Function to determine relative stability of a sequence
given the set of possible sequences

2, 6

SS Function to determine relevant motions, generate possible
sequences, synchronize motions and discard unsynchro-
nized sequences

2

uss Stable synchronized sequences of instantiated motion
primitives for signal

2

U ss Set of stable synchronized sequences of instantiated mo-
tion primitives for signal

2

Â Audience rating 2, 5

Âmax Maximum audience rating 2, 5

Âmin Minimum audience rating 2, 5
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P Function to return the normalized audience rating 2, 5

γ Weight to the criterion – relative stability 2

R Robot 3

D Number of actuated joints or degrees of freedom 3

Jd Robot’s joint with index d 3

θd Robot’s joint angle with index d 3

θmind Minimum angle of the joint d 3

θmaxd Maximum angle of the joint d 3

θ̇maxd Maximum velocity of the joint d 3

ζ D-dimensional configuration space of R 3

k Keyframe 3

kf Keyframe with fixed joint angles 3

Kf Set of fixed keyframes 3

α Factor to the amplitude of the relative changes in a vari-
able keyframe

3

kv Variable keyframe 3

θ̃ Relative joint angle change 3

θ̃min Minimum relative joint angle change 3

θ̃max Maximum relative joint angle change 3

Kv Set of variable keyframes 3

K Set of all keyframes consisting fixed and variable
keyframes

3
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mg General motion primitive 3

M g Set of general motion primitive 3

mst Spatially targeted motion primitive 3

M st Set of spatially targeted motion primitive 3

G Number of primitives in a general motion primitive 3

Mg Primitive in a general motion primitive 3

β Factor to interpolation time 3

N Number of times a motion primitive is repeated 3

tn−1,n Time to interpolate between kn−1 and kn 3

T Time computation function to determine minimum dura-
tion required to interpolate from one keyframe to another
keyframe

3

S Number of primitives in a spatially targeted motion prim-
itive

3

V Vector that defines the direction mst’s first keyframe is
directed at

3

P s, P e P s and P e are two ego-centric coordinates used to define
the vector V

3

Mst Primitive in a spatially targeted motion primitive 3

Dmin, Dmax Minimum and maximum distance the STM can be at, so
that if the STM’s distance to the target is within the de-
fined range, the STM is executed

3

PRo Robot’s original global position 3
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OR
o Robot’s original global orientation 3

T STM’s target for the robot to face, can be a point or vector
defined in global coordinates

3

ts STM’s target point or the starting point of T 3

te STM’s target point or the ending point of T 3

ωa Angular tolerance between current mst’s orientation and
desired orientation

3

Ost Current mst’s orientation 3

OT Desired mst’s orientation 3

P A point P 3

PRf Robot’s final global position 3

OR
f Robot’s final global orientation 3

Dmean The mean distance between minimum and maximum dis-
tance the STM can be at

3

P gs ts in global coordinates 3

P ge te in global coordinates 3

f Motion feature 3

F Set of motion features 3

c A motion primitive category 3

C Set of all motion primitive categories 3

C Function determine if a feature f is assigned to the cate-
gory c

3

b Body part 3
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cb Body part category 3

J c
b Name or index of joint in category cb 3

ls A label assigned to the pre-processed input signal s 3

Ls A set of labels assigned to the pre-processed input signal
s

3

lm A label assigned to the motion primitive m 3

Lm A set of labels assigned to the motion primitive m 3

I Number of primitives in a pre-processed signal s 3

S Signal Primitive 3

tss Start time of label in signal 3

tse End time of label in signal 3

dl
s
i Duration of label li in signal 3

ε Increment to the interpolation time between keyframes 3

tms Starting time of the motion primitive 3

em Emotion 4

EM Set of emotions 4

SP Emotional static pose 4

a Activation value in the activation-valence label 4

v Valence value in the activation-valence label 4

AV Function to determine the activation-valence label of a
motion primitive

4

θoriginal
i Joint angle for ith joint in the original motion 4
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θmirror
i Joint angle for ith joint in the mirrored motion 4

dt Duration of motion 4, 6

ED Euclidean distance between joints 4

EP Euclidean distance between POIs 4

DM Metric for motion similarity 4

TP True positive 4

FP False positive 4

FN False negative 4

C Continuity factor 5

E Emotion factor 5

N Normalization factor 5

DE Cartesian distance between two activation-valence labels 5

λ Maximum time multiplier 5

η Time multiplier for body part category 5

R Ranking 5

χ Number of criteria 5

w Weights to criteria 5

LM Set of label-motion pairs 5

ami Audience rating for ith label-motion pair 5

asi Audience rating for the ith sequence of motions 5

ãmi Audience rating for ith label-motion pair in the model or
mean audience rating in the model

5
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ṽami Variance audience rating for ith label-motion pair 5

ÃM Set of mean audience ratings in the model 5

Ṽ AM Set of variance audience ratings in the model 5

DF Degradation factor 5

Rk Variance of observation noise 5

wji Weight to the audience rating of the ith label-motion pair
in jth sequence

5

WU Set of weights to the audience ratings of the label-motion
pairs

5

MI Maximum iterations for the stopping condition of MAK 5

ε Maximum absolute difference between current and previ-
ous model of audience ratings for the stopping condition
of MAK

5

maxAbsoluteDiff Function to determine ε 5

λ Absolute difference between current and previous model
of mean audience ratings

5

λv Absolute difference between current and previous model
of variance audience ratings

5

vi Number of times the ith label-motion pair is viewed 5

Υ Absolute difference between ModelBest and
FindBestAndGetFromBlackBox

5

ρ Absolute difference between BestFromBlackBox and
FindBestAndGetFromBlackBox

5

Ψ Time steps 6
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f Frequency 6

ψ Time stamp 6

ς Number of iterations 6

ba Body angles 6

bax Body angle X 6

bay Body angle Y 6

bax Median of body angle X 6

bay Median of body angle Y 6

vel Body angle velocities 6

acc Body angle accelerations 6

BAx Set of body angle X 6

BAy Set of body angle Y 6

D Variable to discretize body angles 6

NS Number of states in the RS-MDP 6

uH Past sequence 6

UH Set of past sequences 6

UTrain Set of training sequences 6

UTest Set of test sequences 6

−→v Vector of states for RS-MDP 6
−→
V List of vector of states for RS-MDP 6

Ω Function that maps sequences into the respective state
vectors

6
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bas Current state 6

bas′ Next state 6

BAS Set of states 6

BASP Set of states and probabilities 6

a Current action 6

A Set of actions 6

RF Reward function 6

TC(bas, a, bas′) Number of times the robot’s state transitions from bas to
bas′ after taking action a

6

T̃C Set of all transition counts 6

TP (bas, a, bas′) Probability of the robot’s state transitions from bas to bas′

after taking action a
6

T̃P Set of transition probabilities 6

er Expected reward for sequence 6

ER Set of expected rewards for set of sequences 6

aer Average expected reward for sequence 6

AER Set of average expected rewards for set of sequences 6

RAfall
i Number of times the robot falls right after ith action 6

RAstable
i Number of times the robot is stable right after ith action 6

RAPi Probability the ith action is stable for the metric
RightAfter

6

R̃AP i Average probability the ith action is stable for the metric
RightAfter

6



165

RAPSi Probability the ith sequence is stable for the metric
RightAfter

6

ATstable
i Number of times the ith action is found in a stable se-

quence
6

ATi Number of times the ith action is found in an unstable
sequence

6

ATPi Probability the robot is stable after the ith action for the
metric Anytime

6

ÃTP i Average probability the robot is stable after the ith action
for the metric Anytime

6

ATPSi Probability the ith sequence is stable for the metric
RightAfter

6

rsi Reward for ith sequence 6

RS Set of rewards for ith sequence 6

arsi Actual relative stability for ith sequence 6

ARS Set of actual relative stability for sequences 6

TRS Function to evaluate the actual relative stability 6

bin Index of the state for body angle 6

$ Divisor to determine state for body angles 6

Y Function to convert body angles into states 6

binX Index of bin for the body angle X 6

binY Index of bin for the body angle Y 6

g Actual relative stability value 6
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h Predicted relative stability value 6

G Set of actual relative stability values 6

H Set of predicted relative stability values 6

Table A.1: List of Symbols.



Appendix B

Fifty Two Words and Corresponding Number of Motions

Word Number of motions Word Number of motions

Wolf 3 Yes 6

Look 3 Point 6

Small 3 Cat 3

No 14 Nod 2

Raise 4 Happy 8

Chicken 2 Left 2

Shake 4 Think 3

Surprised 6 Bird 4

Right 2 Bow 2

Wipe 4 Fear 5

Baby 3 Goodbye 5

Sneeze 2 Clean 4

Sad 8 Eyes 3

Hello 4 Kick 4
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Sing 3 Angry 6

Ear 3 Wave 6

Dance 8 Throw 2

Disgust 6 Mouth 3

Eat 7 Clap 3

Big 3 Proudly 5

Car 3 Run 4

Laugh 4 Drive 2

Up 3 Lion 2

Airplane 2 Down 3

Push 3 Pull 3

Stop 3 Open 1

Table B.1: List of Fifty Two Words and Number of Motions Per Word.



Appendix C

Twenty Stories

These are the twenty stories created using fifty two words (labels) selected. There are at least
two labels per sentence and five sentences per story. Each label is highlighted in bold.

Story 1
A lion, wolf, cat and chicken were stranded on an island after a ship to the London Zoo

capsized. The cat ate the chicken. The lion ate the cat. The wolf pleaded to the lion in fear to
spare his life. The lion was disgusted at his timidness.

Story 2
An airplane heading towards New York from Paris experienced some flight problems after

going up in the air. After much struggle, the pilots were able to maintain the airplane in flight
and calmed everyone down. The airplane finally touched down in Paris. Ambulance has ar-
rived to treat passengers who experienced trauma and shock, especially those shaking with fear.
After the ordeal was over, the pilots shook hands to recognize each other’s efforts in saving five
hundred lives onboard the plane.

Story 3 At the party, Cinderella laid her eyes on a young prince and began dancing with
him. After the dance, she happily took a drink from the waiter and nodded to thank him. She
sneezed and accidentally spilled the prince’s eyes with wine. The poor prince had to clean and
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wipe himself dry. Cinderella was disgusted at her carelessness and left the party in fear of em-
barrassing herself further.

Story 4
Dan and Jill went hunting happily, hoping to find something to eat. Dan pointed to a wolf

in the distance. The wolf saw them and ran towards their direction. Jill raised and aimed her
gun at the wolf. The wolf was shot dead, and the scene disgusted Dan.

Story 5
A couple had a baby together and were very happy. He had the eyes of the father and mouth

of his mother. One day, a wolf went into the house and took the baby away. The couple were
deeply saddened and could hardly eat for days. The wolf raised the baby like its own child.

Story 6
Mary greeted Barry at the circus with a welcoming hello happily. They went to watch the

famous clown show and saw the clown’s dog run from left to right. They could not stop laugh-
ing and clapped happily. They were surprised when the clown suddenly pushed the dog down
into a pool of water. The dog disappeared before their eyes and the clown proudly showed that
the dog was actually inside a box.

Story 7
The kindergarten children were having fun and running around happily. The teacher taught

them a song and dance. It goes If you are happy and you know it clap your hands. If you are
happy and you know it nod your head. If you are happy and you know it and you really want
to show it, then you can go on to clap your hands.

Story 8
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I was driving down to the countryside when the radio played the song ”Love Me” by Colin
Raye. The lyrics of the song reminded me of the happy times spent with my grandmother.
Grandma had already left my world and I thought about my times with her. As I reminisce
my childhood in happiness, sadness of nostalgia still struck me. I wiped my tears off as they
dripped down my face.

Story 9
As students of Dunman High school, bowing to say hello to our teachers has long become

a custom in our lives. However, when the teacher we bowed to dismisses us with little respect,
we will be very angry. Teachers who say hello back makes us happy. We thought that waving
hello will be the same. We should raise this point up the next time we meet the teachers.

Story 10
Joe was surprised to see Lee greeting him with a hello. He had been sad and angry these

few days. What thing could have happened to make him so happy to sing today? Joe went into
deep thought and looked around. Just then, he heard someone laugh and clap in the distance.

Story 11
One day, Tommy saw a small bird on the tree. He threw a stone at it and smiled proudly

as it fell down the tree. Tommy walked over to where the injured bird has fallen and kicked it
cruelly with his right foot. A car pulled over and off alighted a tall lady screaming “NO” at the
top of her lungs. Tommy’s mouth opened in horror when he looked up and saw the familiar
face of the discipline master.

Story 12
Dad drove Tom to school in his car. He pulled over the car and said goodbye to Tom. Tom

looked up, thanked his father and got out of the car with his small bag. He smiled at his son
proudly, and drove away. Pushing his right foot on the accelerator, he made a right turn and
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slowly accelerated away.

Story 13
Tim’s dad drove to Tim’s school with a wide smile on his face that stretched from ear to

ear. He beamed proudly as he pulled open the door of the principal’s office. Earlier, he was
informed that his son was the only student who had stayed behind and voluntarily cleaned the
big mess made after assembly. It was a small deed but it had a big impact on the other students.
As he bid goodbye to the principal, the chirping of the birds seemed to be extremely melodious
and he found himself humming along the tune.

Story 14
Jim was bored one day as he strolled along the streets so he kicked the baby birds hidden in

the bush. He opened his small arms wide and cheered proudly as he saw one of them shivering
in pain. Suddenly he felt a pull on his ear. He pushed away the hand and looked up imme-
diately, feeling angry. It was his turn to shiver when he saw a big sized lady glaring at him,
making him have no other thought but regret for his action.

Story 15
Tim exclaimed, “Your pet bird is really big and pretty!”. Jov replied, “Yes, it used to be

so much smaller when I first bought it though”. The bird kicked and danced a little in her
cage proudly as she heard Tim compliment her. Tim: “Look, that’s my father’s car over there.
Goodbye Jov, my father is driving her to the vet now to get a checkup for her loss of appetite
recently”.

Story 16
Tim and Tom got into a fight in school and they have been kicking and pushing each other

for ten minutes since the fight started. Tom got hit by a big blow and his mouth started bleeding,
leading to a big crowd gathering around them. Someone pointed to the right and they both
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looked to find their form teacher running towards them. The teacher pushed past the crowd and
brought Tom to her office to have his wound cleaned, before reprimanding them harshly. She
then drove Tom to the hospital to have his wound on his mouth properly attended to.

Story 17
Cleaning one’s mouth is actually an important thing to do. To clean it the right way, one

must brush their teeth after meals and we can say goodbye to decaying tooth. This way, they can
proudly show off their teeth and look great. Brushing one’s teeth often helps remove any big or
small pieces of food left in the mouth cavity. Cleaning one’s mouth should not be overlooked
or else problems will start kicking in one after another.

Story 18
Mary pulled out a piece of tissue from the tissue box as she sneezed for the hundredth time

that day. She let out a sigh as she looked at the mess on the sofa, having no other choice but to
clean it before the tissue paper balls roll onto the floor. Her mouth felt exceptionally dry and she
felt this tingling sensation in her ears. She threw her thermometer on the sofa in frustration as
she saw her temperature going yet another half a degree up. She decided that she could not take
it anymore and drove to the small clinic nearby to get some treatment for her terrible cold.

Story 19
He looked up, caught the ball and threw it into the net. Cheers of yes could be heard all

around in the indoor stadium as their score went up yet another point. The national tournaments
were going on, a big event that no one would ever want to miss. Right at this moment, a whistle
ringed in our ears. This signifies yet another win for our school team, and we smiled proudly,
knowing that this big confidence boost will aid in our last round of competitions, the finals.
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Story 20
Hundreds of cars drove into the shopping mall today. Fans queued for hours and pushed

past the crowd just to have a quick look at their favorite writer. The writer beamed proudly as
he saw his fans carrying big piles of his bestsellers, queuing orderly on his right to wait for his
autograph. The queue stretched all the way up to the second floor of the bookshop, yet the place
was kept quite clean. There was also no presence of crying and kicking small kids as there have
usually been for his previous book signing events.



Appendix D

Twenty Four Static Poses for Paul Ekman’s Six Basic Emotions

Happy

Figure D.1: 4 Happy Static Poses.

Table D.1: Heights and Tilts for 4 Happy Static Poses.

Poses Height Tilt

Happy1 3 2

Happy2 5 2

Happy3 5 3

Happy4 5 3

175



176 D. TWENTY FOUR STATIC POSES FOR PAUL EKMAN’S SIX BASIC EMOTIONS

Sad

Figure D.2: 4 Sad Static Poses.

Table D.2: Heights and Tilts for 4 Sad Static Poses.

Poses Height Tilt

Sad1 1 5

Sad2 1 5

Sad3 3 3

Sad4 2 4
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Anger

Figure D.3: 4 Anger Static Poses.

Table D.3: Heights and Tilts for 4 Anger Static Poses.

Poses Height Tilt

Anger1 4 4

Anger2 5 3

Anger3 5 5

Anger4 4 4
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Surprise

Figure D.4: 4 Surprise Static Poses.

Table D.4: Heights and Tilts for 4 Surprise Static Poses.

Poses Height Tilt

Surprise1 5 2

Surprise2 4 1

Surprise3 5 2

Surprise4 4 2
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Fear

Figure D.5: 4 Fear Static Poses.

Table D.5: Heights and Tilts for 4 Fear Static Poses.

Poses Height Tilt

Fear1 3 5

Fear2 1 5

Fear3 1 5

Fear4 3 2
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Disgust

Figure D.6: 4 Disgust Static Poses.

Table D.6: Heights and Tilts for 4 Disgust Static Poses.

Poses Height Tilt

Disgust1 2 4

Disgust2 5 2

Disgust3 4 4

Disgust4 1 2
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