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Abstract

Gestures and other body movements of humanoid robots can be used to convey meanings
which are extracted from an input signal, such as speech or music. For example, the humanoid
robot waves its arm to say goodbye or nods its head to dance to the beats of the music. This the-
sis investigates how to autonomously animate a real humanoid robot given an input signal. This
thesis addresses five core challenges, namely: Representation of motions, Mappings between
meanings and motions, Selection of relevant motions, Synchronization of motion sequences to
the input signal, and Stability of the motion sequences (R-M-S3). We define parameterized mo-
tions that allow a large variation of whole body motions to be generated from a small core motion
library and synchronization of the motions to different input signals. To assign meanings to mo-
tions, we represent meanings using labels and map motions to labels autonomously using motion
features. We also examine different metrics to determine similar motions so that a new motion is
mapped to existing labels of the most similar motion. We explain how we select relevant motions
using labels, synchronize the motion sequence to the input signal, and consider the audience’s
preferences. We contribute an algorithm that determines the stability of a motion sequence. We
also define the term relative stability, where the stability of one motion sequence is compared
to other motion sequences. We contribute an algorithm to determine the most stable motion se-
quence so that the humanoid robot animates continuously without interruptions. We demonstrate
our work with two input signals – music and speech, where a humanoid robot autonomously
dances to any piece of music using the beats and emotions of the music and also autonomously
gestures according to its speech. We describe how we use our solutions to R-M-S3, and present a
complete algorithm that captures the meanings of the input signal and weighs the selection of the
best sequence using two criteria: audience feedback and stability. Our approach and algorithms
are general to autonomously animate humanoid robots, and we use a real NAO humanoid robot
and in simulation as an example.
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Chapter 1

Introduction

A humanoid robot is designed to resemble a human, with a head, torso, two arms and two
legs. As such, a humanoid has multiple degrees of freedom (DOFs) that can be actuated to form
whole body motions. Since humanoid robots share a similar appearance as humans, the whole
body motions of humanoid robots can serve as non-verbal behavior in social interactions with
humans. For example, an ASIMO interacts with a live host in the show, “Say ‘Hello’ to Honda’s
ASIMO”, at a Disneyland park [Honda, 2005], and a NAO humanoid robot acts as a concierge to
guests at the Hilton McLean hotel and uses its motions as gestures to complement its speech that
is powered by IBM’s Watson program [Statt, 2016]. Since the articulated AIBO robots, followed
by QRIO humanoids, we have many demonstrations of a variety of artistic expressions. For
example, a QRIO humanoid conducts the Tokyo Philharmonic Orchestra that played Beethoven’s
Fifth Symphony [Geppert, 2004] and 540 humanoid robots perform a synchronized dance routine
during the 2016 Chinese New Year-themed variety show [Reich, 2016].

When a humanoid robot is animated using whole body motions, the goal is to convey the
meanings of an input signal, such as speech or music. A good animation requires that the motions
are synchronized to the input signal. Whole body motions of humanoid robots are complex and
are carefully configured so that the humanoid robots remain stable throughout the animation
given the multiple DOFs. Thus, the motions of humanoid robots are mostly pre-programmed by
motion choreographers or programmed to mimic human motions through motion capture data,
e.g., [Nakaoka et al., 2005]. Moreover, when the input signal changes, e.g., a new speech or
piece of music, the motion choreographers manually create new stable whole body motions that

1



2 1. INTRODUCTION

express the new input signal and synchronize the motions to the input signal. Such manual
animation does not easily enable the general use of robots. Similarly, new motion capture data
are collected for a new input signal, modified so that the motions are stable, and also satisfy
the physical constraints of the humanoid robot (i.e., its joint angle and velocity limits). This

thesis investigates how to autonomously animate a humanoid robot given an input signal while

ensuring that the robot remains stable throughout the animation.

The input signal is used as a guide to plan the humanoid robot’s whole body motions. In this
thesis, the input signal is pre-processed offline to identify the meanings to express. We represent
meanings using labels and extract labels and their timings by pre-processing the input signal.
The pre-processing of the input signal is synonymous to how humans study the script of a play
to understand what a character needs to portray, before acting in synchrony with the character’s
speech; similarly, dancers analyze the dance music before dancing to the beats and mood of the
music. This thesis explains how an input signal is pre-processed and used to select and plan the

whole body motions of a humanoid robot.

Whole body motions are smooth and continuous and are represented in different ways. For
example, whole body motions are represented as continuous joint trajectories using Kochanek-
Bartels (TCB) cubic splines [Ng et al., 2010] or as a set of key poses that are interpolated with
fixed times [Zheng and Meng, 2012]. The choice of the representation of whole body motions
affects how motions are modified to be synchronized with the input signal, and whether the same
motion is used in different input signals to convey the same meaning. Also, the representation
of motions affects the number of motions defined in a motion library. For example, suppose
there are two similar head nod motions – one motion where the head of the robot nods from 5◦

to −5◦ to 5◦, and another motion where the head nods from 10◦ to −10◦ to 10◦. Should similar
motions be represented as separate motions or as a single parameterized motion? This thesis uses

parameterized motions, to reduce the size of the motion library and to synchronize the motions

to the input signal.

In this thesis, motions are mapped to labels in order for relevant motions to be autonomously
selected to animate the input signal. Motions and labels have a many-to-many relationship,
i.e., a motion is mapped to multiple labels and a label is mapped to multiple motions. Manually
labeling the motions becomes laborious as the number of motions and labels increases. This

thesis investigates how to automatically map motions to labels, by extracting the features of the

motion, and by measuring the similarity between a new motion and existing motions.
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For every label in the input signal, there are multiple motions mapped to the same label.
When there is no exact match between the label of the motions and the label in the input signal,
we identify labels with similar meanings to the label in the input signal. Hence, there are multiple
choices of motions to convey the same or similar meaning(s) represented by each label in the
input signal. This thesis describes how we select relevant motions autonomously based on the

labels of the motions and the labels identified in the pre-processed input signal to form a motion

sequence, and contributes an algorithm to autonomously synchronize the motion sequence to the

input signal.

Actors in a play adapt their acting to the preferences of the audience using the audience’s
feedback such as loud cheers or applause. This thesis uses the audience feedback to learn the
preferences of motions so as to execute the most preferred animation on the humanoid robot.
This thesis investigates how the audience preferences are modeled, uses the learned model to

improve the selection of preferred sequences, and also models the effects of boredom where the

audience gets bored when they are shown the same motions repeatedly.

Continuous animation of the humanoid robot requires the humanoid robot to remain stable.
When the humanoid robot falls, the animation is disrupted. Moreover, falling may result in dis-
astrous consequences where the humanoid robot breaks or damages its joint(s) and the humanoid
robot is no longer capable of performing the motions using its whole body. Even if the robot is
able to recover from a fall without any damage, a disruption to the animation of the input signal
is still undesirable. This thesis describes how we identify unstable sequences that should not

be executed, and also selects the most stable sequence to execute, so that the robot is able to

continue to execute other sequences continuously without interruption.

When there are multiple motions with the same label, and multiple labels in the input signal,
multiple sequences of motions are feasible to animate the input signal. The multiple sequences of
motions are analogous to the different animations created by different motion choreographers for
the same input signal. Similarly, actors act differently given the same script as there are multiple
motions that convey the same meaning. The humanoid robot is only capable of executing a single
sequence of motions to animate the input signal at a particular instance. This thesis contributes a

complete algorithm that considers how to select the best motion sequence by taking into account

the meaning of the input signal, the synchronization of the motion sequence to the input signal,

the audience preferences, and the stability of the motion sequence.

Our approach is general for any pre-processed input signal that comprises labels and the
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timings of the labels, and we select two input signals to demonstrate how autonomous animation
of humanoid robots is achieved. Specifically, we use stories that are converted from text to
speech, and various pieces of music. The approach of this thesis is applicable to humanoid robots
that have a torso, two arms and two legs, and we choose a commercially-available humanoid
robot – the NAO humanoid robot – to demonstrate our work.

1.1 Thesis Question and Approach

After introducing the challenges involved in autonomously animating a humanoid robot given
an input signal, we present the thesis question, provide an overview of our approach and briefly
describe our solutions to the five core challenges, namely Representation, Mappings, Selection
and Synchronization, and Stability (R-M-S3).

The thesis question is:

In order to autonomously animate a humanoid robot given an input signal, how do we
represent motions, automate mappings between motions and meanings, select the relevant
motions and consider the audience’s preferences, synchronize motions to the input signal,
and determine a stable sequence of motions?

Overview of our approach

The autonomous animation of humanoid robots involves solving five core challenges we term
as Representation-Mappings-Selection-Synchronization-Stability (R-M-S3). We present our ap-
proach to the thesis question and summarize our approach in Figure 1.1. We describe our solu-
tions to R-M-S3 and also contribute a complete algorithm that utilizes these solutions – AAMPS
– Autonomous Animation that conveys the Meaning of the input signal and considers audience
Preferences and Stability of the motion sequences.
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Figure 1.1: Overview of our approach.

Representation

We formally define robot motions in a motion library, where the motions are parameterized
such that motions are varied and synchronized to different input signals. Motions are also cat-
egorized based on the features of the motions and we demonstrate how these categories reduce
redundancies in the motion library but yet, still be able to create many variations of motions. We
also introduce the concept of a spatially targeted motion, i.e., a motion that is directed at a target
of interest. For example, a storytelling robot waves hello to a friend when meeting a friend in the
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story by using a spatially targeted motion.
We also formally define a pre-processed input signal where labels and the timings of the

labels are extracted. We discuss the relationship between labels of the motions and the labels of
the input signal.

Mappings

We contribute an approach to autonomously assign labels to motions based on the features
of the motions. This approach is useful as it becomes more tedious to manually create mappings
between motions and labels whenever there is a new label or motion in a large motion library.

When features of the new motion to be added to the library are not available, we examine
different metrics to determine similar motions. We find an existing motion in the library that is
the most similar to the new motion and propose possible mappings between the new motion and
the labels of the existing motion.

Selection and Synchronization

We present an approach to select motions based on the similarity between the labels of the
motions and the labels of the input signal, and synchronize the motions to the input signal.
We demonstrate how motions are selected probabilistically, or by selecting the highest ranked
sequence.

Many motion sequences are feasible to animate the same input signal since there are multiple
motions with the same label and there are many labels in the input signal. The humanoid robot
executes one motion sequence and we aim to select the most preferred sequence according to the
audience’s preferences of the motions. We contribute an approach to model the audience’s pref-
erences of the motions and determine the most preferred motion sequence based on the feedback
of the audience at the end of the motion sequence. Given that the audience may get bored of
watching different sequences of motions for the same input signal, we do not execute all possible
sequences to determine the most preferred sequence. In our approach, the robot learns from the
feedback of executed sequences and determines the next sequence to execute, balancing explo-
ration (collecting feedback on a new sequence) and exploitation (selecting the best sequence in
its model). We also show that we do not execute all possible motion sequences to find the most
preferred sequence of motions for the input signal.
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Stability

We aim to determine the stability of motion sequences so that the humanoid robot animates
the input signal continuously without interruption. We contribute an algorithm that predicts if a
motion sequence is stable without executing the motion sequence, nor modeling the dynamics
of the humanoid robot. Although each motion in the motion library is assumed to be stable,
a sequence of various motions may be unstable. Hence, the stability of a sequence of motions
before executing the sequence on the robot must be known. The stability of a sequence of motions
is important for two reasons:

1. The meanings of the input signal are successfully conveyed by the robot when the robot
remains stable after executing the sequence of motions.

2. If the sequence of motions executed by the robot causes the robot to fall, severe wear and
tear of the robot may occur. If the robot repeatedly falls, the robot may not be able to
execute whole body motions and is only capable of actuating some joints.

We contribute an algorithm to determine the most stable sequence of motions by comparing
the relative stability of a sequence among other possible sequences of motions generated for the
same input signal. We choose the most stable sequence so that the robot continues to execute
more sequences of motions without interruption.

Complete algorithm – AAMPS

We contribute a complete algorithm – AAMPS – Autonomous Animation that conveys the
Meaning of the input signal and considers audience Preferences and Stability of motion se-
quences. AAMPS plans the best sequence of motions for a labeled input signal, that fulfills these
conditions:

1. Motions are relevant given that the labels of the motions are similar to the labels of the
input signal.

2. Motions are synchronized to the timings of the input signal’s labels.

3. Motions are stable and do not cause the robot to fall.

4. Motions that are preferred by the audience are rated higher and selected.

AAMPS selects relevant motions, generates multiple sequences of motions that are synchro-
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nized to the input signal, ranks the sequences based on a weighted criteria consisting audience
preferences and stability so as to select the best sequence of motions.

We assume that the autonomous generation of whole body motions for a humanoid robot is
possible when the following conditions are met:
• The physical constraints of the robot are known, e.g., joint angular limits and joint velocity

limits.

• The motions in the motion library are defined for the humanoid robot.

• The motions in the motion library are labeled.

• The input signal is pre-processed to determine labels that represent the meaning of the
input signal and timings of the labels.

• There exists a list of criteria to determine the best sequence of motions.

• Each motion in the motion library is stable.

• The body angle trajectories for each motion and interpolations between pairs of motions
are collected using the inertial measurement unit of the robot.

Throughout the thesis, the Aldebaran NAO humanoid robot is used to demonstrate our algo-
rithms and approaches. The Aldebaran NAO humanoid robot is a fully autonomous robot with
an internal CPU and sensors. Though we use the NAO robot in this thesis, our algorithms and ap-
proaches are general for humanoid robots that are similar to the NAO robots. Besides collecting
data on the NAO humanoid robot, we also use Webots 7 [Webots, 2014], a real-time simulator
that simulates the dynamics of the NAO robot in physically realistic worlds.

To evaluate this thesis, two input signals are considered: stories that are converted to speech
using a text-to-speech program, and various pieces of music. We demonstrate that we generate
stable relevant motions synchronized to speech for a story-telling robot, and stable relevant mo-
tions synchronized to music for a dancing robot. Our approach and algorithms are general to be
used for humanoid robots that are similar to the NAO humanoid robots, and input signals that are
pre-processed to determine the labels and the timings of the labels.
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1.2 Contributions

The main contributions of this thesis are:

• A formal definition of robot motions which allows many variations of motions that are
used in different input signals and the motions are synchronized to the input signals;

• A formal definition of pre-processed input signals;

• An algorithm to automatically map labels to motions;

• A metric to determine similar motions to map existing labels to new motions;

• An approach to generate variations of sequences of motions probabilistically and synchro-
nize the motions to the input signal;

• An approach to select the best sequence by ranking different sequences of motions based
on different criteria;

• An algorithm to select the best sequence based on audience preferences;

• An algorithm to predict the stability of a sequence of motions (i.e., whether the robot is
stable after executing the sequence) without a model of the robot or prior executions of the
sequence;

• A formal definition of relative stability where the stability of a sequence is compared to
the stability of other sequences;

• An algorithm to predict the most stable sequence by comparing the relative stability of a
sequence among other sequences using executions of other sequences of motions;

• A complete algorithm of autonomous robot animation that captures signal meaning and
weighs the criteria of audience preferences and stability.

1.3 Thesis Document Outline

Figure 1.2 presents an overview of the chapters in this thesis. The outline below presents a
summary of the following chapters:

• Chapter 2 presents an overview of the five core challenges to autonomous animation
of humanoid robots, namely Representation, Mappings, Selection, Synchronization and
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Stability (R-M-S3). We also explain how we utilize our solutions to R-M-S3 in the com-
plete algorithm for autonomous robot animation to capture signal meaning and weigh the
criteria of audience preference and stability – AAMPS.

• Chapter 3 describes how we formalize robot motions and pre-processed input signals. This
chapter illustrates the relationship between the labels of the robot motions and the labels of
the input signals. This chapter also describes how we create the motion library and input
signals we use to demonstrate our work.

• Chapter 4 explains how we autonomously map labels to motions and reduce the work to
manually label motions. This chapter also discusses the metrics used to determine similar
motions so as to map existing labels to new motions.

• Chapter 5 explains how we select relevant motions based on labels that capture the mean-
ings of the input signal and audience preferences and synchronize motions to the input
signal.

• Chapter 6 presents an approach to predict the stability of a sequence of motions (whether
the robot is stable or falls after the execution of the sequence) with no prior execution
data and no model of the dynamics of the humanoid robot. This chapter also presents an
approach to predict the relative stability among a set of sequences and determine the most
stable sequence.

• Chapter 7 discusses related research with respect to the different aspects of R-M-S3 and
how they relate to this thesis.

• Chapter 8 concludes with a summary of the thesis’ contributions and a discussion of future
work.


