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Abstract

We explore two advantages of interleaving execution with planning. First,
the overall planning and execution time can be reduced. Second, information
from the environment can be incorporated into the planner’s knowledge of the
world. We extend the PrRODIGY planner to handle execution as prompted by
the user and to incorporate information that results from this execution. Such
information can either arise automatically or can be input by the user. Finally,
we briefly discuss ways to help the user determine potentially useful or needed
points for execution during planning.

Keywords: Planning and reasoning on action and change, Planning and
execution, Interactive Planning.



1 Introduction

Planners do not generally have the ability to actually manipulate and sense the real
world. Instead, they receive domain and problem descriptions from a human user
and return a sequence of actions to be executed. Ideally, planners have enough time
and information to reach a complete solution before execution must begin. However,
this is not the case in either time-critical or incompletely-defined situations. On the
one hand, the user may want to begin execution while the planner is still planning
to improve the combined planning and execution time. On the other hand, the user
may need to start execution to gather information necessary to continue planning.

It is a well-recognized complex problem to decide when and how to interleave
execution and planning [1, 10, 11]. In this initial work towards addressing this general
issue, we assume that the planner does not autonomously determine when to execute
a plan step: the user decides. We present a planning and execution algorithm which
we implemented as an extension to the current PRODIGY planning algorithm [2]. The
algorithm allows the user to execute planning steps either for efficiency reasons or
for information gathering purposes. The planner is extended to accommodate the
user-selected execution in three ways. First, it is prepared to recommend actions
for execution during the planning process. Second, it keeps track of which actions
have been executed (as indicated by the user), so that it can produce a final plan
accordingly. Third, it is able to incorporate new information from execution into its
planning process. This final extension also allows us to incorporate changes in the
planning state due to extraneous events.

Several researchers have investigated the problem of interleaving planning and
execution [5, 6, 8, 15]. The main focus of this research was on the definition and
investigation of reactive planning, and on issues of efficient replanning. When de-
liberative planning was used to generate plans, most of the combined planning and
execution approaches assumed that execution would be delayed as long as possible.
During execution, elaborate methods for replanning are developed and invoked when
execution alters the planning state in an unpredictable way. More recently, other
researchers focused on producing contingency plans that try to enumerate different
possible outcomes of actions at execution time. In addition, specific information gath-
ering operators are added into the deliberative planning process to execute actions
that probe the environment for planning information [3, 12, 13]. In our work, we learn
from and build upon these different aspects of previous work. The main contributions
of our work at this stage of development, as presented in this paper, are as follows.
First, we recognize the possible benefits of early execution. Being aware of the diffi-
culty of deciding correctly and generally when to start execution, we include the user
in the planning loop, allowing the user to decide when execution should take place.
Second, we extend the PRODIGY planning algorithm to handle user-guided execution,



suggesting possible break points for the user to request execution. Third, we provide
a mechanism by which execution can be used to update the planning knowledge base.

2 Implications of Execution in Planning

Planning, independently of which planning algorithm is used, proceeds incrementally.
New plan steps are introduced into the plan one at a time and choices and commit-
ments are made as to which steps to select along the way. If a planning algorithm
is to be complete, then all the choices must have a chance to be visited. Hence,
no commitment made during the planning process should eliminate a portion of the
search space that could possibly yield a solution: every significant choice is reversible
through backtracking. Steps may be reordered when threats are found, different op-
erators may be selected to achieve a particular goal, and different plan refinements
may be explored.

Real execution of an action during the planning process removes some control
from the planning algorithm: it can no longer backtrack over all of its deliberative
commitments. In this sense, execution consists of real-world commitment. Real
execution can also provide additional knowledge for the planning process. In this
sense, execution consists of real-world sensing.

In general, real execution of plan steps while planning, i.e., before planning is
completed, has multiple implications. In this paper, we focus primarily on two par-
ticular issues: the impact in terms of overall running time and quality of solutions of
the combined planning and execution process; and the information gathering aspect,
by which execution provides additional information to be used by the planner.

2.1 Quality of plans and time of plan execution

As mentioned above, one aspect of execution is real-world commitment as opposed to
the exploration of alternatives at planning time. For example, consider the following
example of planning with limited resources. Suppose a driver needs to plan a route
from one location to another, perhaps including some necessary intermediate stops.
Suppose further that it is late at night, so that gas stations are not open. When the
vehicle moves, its fuel gets spent, and fuel in this situation is a limited resource. The
intelligent agent starts planning for particular routes and destinations that would
be reached. There are several alternatives. Suppose that the intelligent agent, in
its deliberative mode, explores the alternative of moving along path A. It continues
planning and later on, by analyzing further knowledge, it comes to the conclusion
that path A leads to a dead end. This leads the planner to a failure, but the planner,
in its deliberative reasoning, simply backtracks and plans to send the vehicles through
a different path B.



Suppose now that planning is interleaved with execution: when path A is proposed
as an option, the driver goes ahead and orders the vehicles to start moving along path
A. When path A is found to lead to a dead end, the planner cannot control that choice
any longer as the step is already under execution. The vehicle may not be able to
return back from path A as its fuel may not be enough for the return path. The eager
execution leads to a real failure.

There is therefore a clear tradeoff between the simulation of execution at delib-
eration time, which allows the planner to backtrack upon its choices, and the real
execution of steps which triggers the need for replanning instead of simple backtrack-
ing. Figure 1 illustrates this particular trade-off in a general planning scenario using
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(a) The planner can simulate execution. Operator b is applied to the state | and

anew interna state, S1, is achieved. Planning fails as plan step a cannot
be executed in state S1. The planner simply backtracks and succeeds.
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(b) Operator b is executed; b’ reversesits effects; Suboptimal solution results.

Figure 1: During planning, the planner can backtrack over its choices, as shown in
(a). If planning is combined with real execution, replanning may be needed and new
steps must be added to the plan, as shown in (b). Real executed steps are shown in
diamonds. I is the initial state and G is the goal statement. Operator b’ reverses the

effects of b.



the representation of the search space in PRODIGY [4, 16]. The figure clearly illustrates
the difference between the simulation of execution at planning time, which allows the
planner to backtrack upon its choices, and the real execution of steps which triggers
the need for replanning instead of simple backtracking.

As shown in Figure 1(b) early execution may lead to solutions that are longer than
an optimal solution (shown in Figure 1(a)). Interleaving planning and execution af-
fects the global time of the combined planning and execution process. An optimal
plan may be executed successfully concurrently with planning; but concurrent exe-
cution may also cause generation of UN-optimal solutions in which conditions need
to be reachieved. Figure 2 sketches the possible effects of interleaving planning with
execution in terms of solution quality and overall running time.

—————— (a) 6 steps executed; Total time = 12.
"""""" —_—— ——_——— (b) 6 steps executed; Total time = 9.
""" i (c) 8 steps executed; Total time = 11.
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Figure 2: Interleaving planning and execution affects the global time of the combined
planning and execution process. It may also affect the quality of the plans generated:
in (b) the optimal plan (6-step long) is executed successfully in only 9 time steps; in
(c) early execution leads into a non-optimal plan (8-step long) but combined execution
and planning time is better than in (a); finally (d) shows the undesirable situation
corresponding to a longer plan and delayed execution.

2.2 Execution as a source of information

Time pressure is only one force that can cause the user to execute an action. Ex-
ecution can also allow real observation of the effects of plan steps. In incompletely
or incorrectly defined planning domains, execution is the best (and maybe the only)
source of gathering accurate planning information. Execution adds knowledge from
the world that can be used for future planning. Explicit requests for execution of
plan steps can be triggered during the planning process, as designed by information-
gathering planning operators [3, 12]. Opportunistic or informed execution may also
be requested by a user during the planning process; the planning knowledge is then
freshly updated for more informed future planning. In general, information gathered
by execution during planning may open or prune alternatives for the planner. Fig-
ure 3 illustrates a planning scenario in which execution of an early step is needed to
complete the plan.
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Figure 3: The planning process fails because, according to its internal knowledge of
the world, the planner finds that a necessary plan step, namely the operator ¢, cannot
be achieved in the current state S1. The user triggers execution of the plan step b
which updates the planning knowledge to a new state S2 where ¢ can now be selected
by the planner.

In general, information gathered via real execution makes the planner proceed in a
more informed manner. The chances of needing to replan during the execution phase
should decrease.

3 User-Guided Execution

What is so difficult about interleaving planning and execution? Since the planner
loses control of the steps that it executes, it should try very hard to guarantee that
these steps will not interact with future steps before committing irrevocably to them.
The ability to give this guarantee is very difficult for a planner. However, the human
user may have intuition or knowledge of when it is safe to execute. In addition, the
information gathered at execution time may enable new planning choices or invalidate
others. Although it is hard for a planner to predict the effects of executing an operator
in the real world, a user may be better aware of the right moment to execute.

We implemented a framework where a user can interact with a planning algorithm
to select the execution of plan steps. We extended the PRODIGY planning algorithm
to incorporate real execution. The PRODIGY algorithm is well suited for interleaving
planning and execution because it can reason about a simulated execution sequence
[4, 14]. Thus real execution can proceed from a sequence of plan steps which are
available for execution. Using its means-ends analysis strategy, early in the planning
process, PRODIGY selects operators that reduce the differences between the current
state and the goal statement. These plan step choices may be revised as planning
proceeds, as long as they have not yet been executed. PRODIGY readily provides a set
of plan steps to be executed rather early in its planning process. Other planners that
do not use state information in their planning process would need to modify their
algorithms to produce plan steps that are candidates to be executed at any given
planning moment.

The planner queries the user every time it has a new operator to suggest for
execution. It suggests operators that have been applied, but not ezecuted. Applied



operators are those whose execution has been simulated by the planner according
to its internal state. Applying an operator by the planner produces a new internal
world state. Executed operators are those selected for execution by the user from the
set of applied ones. When an operator is executed, the internal state of the planner
is updated with new information gathered. Table 1 sketches the extended planning
algorithm combined with user-guided execution.

1. Terminate if the goal statement is satisfied in the current planning state. Return a
list of plan steps indicating which have been executed.
2. Check if there is an ezecutable plan step, i.e., a step which has been applied but not
vet executed. If there is none, go to step 4.
3. Ask the user if this chosen plan step should be executed. If yes,

o Close all backtrack points corresponding to the executed operator.

o Incorporate newfound information from the execution into the planning state.

o Go to step 2.
4. Plan:

o Identify a goal that needs to be achieved.

e Add a new operator or link an existing plan step to achieve this goal.

o Go to step 1.

Table 1: The PRODIGY planning algorithm combined with user-guided real execution
of plan steps.

The extension to the PRODIGY planner consisted mainly of adding the following
functionality for when a plan step is executed: new state information is gathered and
the internal state of the planner is updated; all of the choices made leading up to
the application of that operator are finalized, i.e. they can no longer be backtracked
over; and operators that would normally be discarded because they reverse the effects
of previous operators are now considered, but as a last resort. In this way, when an
operator is executed, all efforts are made to find a solution that uses that operator
productively.

The interesting illustration of our technique would be a demo of the implemented
algorithm, where the user can select which steps to be executed. As it is not possible
to give a real demo in a written paper, we include a few running traces in a very
simple task to exemplify the user-guided method as developed so far.

Consider a domain where luggage is loaded into containers of limited capacity to
be carried by an airplane. At planning time, there is no knowledge of the weight
or size of each piece of luggage. Thus there is no basis on which to plan to select
new containers after some amount of luggage has been loaded into a particular con-
tainer. The planning operator “Load-Container”, as shown below using PRODIGY
representation language [2], only checks if a container is available.



(OPERATOR LOAD-CONTAINER
(params <object> <container> <airport>)
(preconds
((<object> OBJECT)
(<container> CONTAINER)
(<airport> AIRPORT))
(and (at <object> <airport>)
(at <container> <airport>)
(available-container <container>)))
(effects
O
((del (at <object> <airport>))
(add (inside <object> <container>))
(add (loaded <object>)))))

Real execution of each loading step decreases the amount of available space in
the container being loaded until it is full. Then execution monitoring updates the
planner’s knowledge and the planner receives the information that the particular
container is no longer available. If execution is not interleaved with planning, the
planner plans to load all the luggage into the same container. In this case, the real
execution, after planning is completed, necessarily leads to failure and the need to
replan. The trace shown in Figure 4 (slightly edited for presentation purposes) shows
one example where execution is successfully interleaved with planning and another
one where the lack of execution leads to uninformed planning.

In the first example of Figure 4, the user guides the planner to execute the first
step as soon as possible. In doing so, the planner learns that cont1 can not hold any
more objects beyond obj1. This information is not available to the planner prior to
execution: the state of the world is updated as a result of the execution. With this
one step executed, the planner then knows to load the other objects in cont2 rather
than contl. Indeed, the resulting plan can be successfully completed.

The motivation behind including the user in the loop, is that the user may have the
sensitivity to know when it could be important to execute an operator. For example,
the user may know that contl can easily hold several objects and thus delay real
loading for a while. After some time, the user may opt to execute in order to see if
there is still room available. Note that in this case, the planner could not decide based
on the operator being considered that execution is a good idea: the user may decide
that the “Load-Container” operator should not be executed at first, but later that it
should indeed be executed. The planner may be able to suggest which operators are
occasionally useful to execute early, but ultimately the user decides.

In our modified version of the PRODIGY algorithm, the availability of cont1l is
deleted not by a planning operator, but by separate function that is invoked to rep-
resent real execution. Were our system hooked up to a robot that could manipulate



In this situation there are three objects, objl, obj2, obj3,
to be loaded and two containers available, contl and cont2;
contl has enough capacity to carry only object obji.
;;User selects execution to gather additional information:
<cl> (run)
[Initial state: ... (available-container conti)
(available-container cont2)
(available-container cont3)]
** <LOAD-CONTAINER 0OBJ1 CONT1> can be executed.
Should I execute <LOAD-CONTAINER OBJ1 CONT1>? y
Executed. Information update to the planning state:
[delete: (available-container conti)]
** <LOAD-CONTAINER OBJ2 CONT2> can be executed.
Should I execute <LOAD-CONTAINER OBJ2 CONT2>? n
** <LOAD-CONTAINER 0OBJ2 CONT2>, <LOAD-CONTAINER 0BJ3 CONT2>
can be executed -- independent steps.
Should I execute <LOAD-CONTAINER 0OBJ2 CONT2>? n
Should I execute <LOAD-CONTAINER 0OBJ3 CONT2>? n
Outcome of Planning:
<LOAD-CONTAINER OBJ1 CONT1> - executed.
<LOAD-CONTAINER 0BJ2 CONT2>
<LOAD-CONTAINER 0OBJ3 CONT2>
Execution:
<LOAD-CONTAINER OBJ2 CONT2> - executed.
<LOAD-CONTAINER OBJ3 CONT2> - executed.
Success. Goals achieved after planning and real execution.
; ;Execution is not interleaved with planning.
; ;Replanning is needed.
<cl> (run)
** <LOAD-CONTAINER 0OBJ1 CONT1> can be executed.
Should I execute <LOAD-CONTAINER 0BJ1 CONT1>? no-more
Outcome of Planning:
<LOAD-CONTAINER 0OBJ1 CONT1>
<LOAD-CONTAINER 0OBJ2 CONT1>
<LOAD-CONTAINER 0OBJ3 CONT1>
Execution:
<LOAD-CONTAINER OBJ1 CONT1> - executed.
<LOAD-CONTAINER 0BJ2 CONT1> - failed.
Failure. Replan needed.

Figure 4: Interleaving execution and planning to gather information for informed
planning.



and sense the world, then this change of state would not have to be modeled. Rather,
it could be sensed by the robot. The planner’s internal state that results from ap-
plying operators to it’s initial state must incorporates such changes of state that are
not the result of planning operators by always including them in its internal state
representation and then reasoning from this representation. The successful result of
such a process is illustrated in the first example of Figure 4.

On the other hand, when the user does not guide the planner to execute the first
step, as in the second example of Figure 4, the planner continues on without the
necessary information. Since nothing deletes the availability of cont1, the planner
plans to load all three objects into this container. Then when execution is attempted,
a failure results: planning must begin anew.

We can run a variety of other execution examples that show other information
gathering opportunities and the impact in the quality of solution and overall run-
ning time. We can also have the planner prompt the user for missing information
that should have been discovered by the user during execution. For instance, in the
example above, PRODIGY could ask the user for the weight of obj1 when it is ac-
tually loaded and then determine whether or not there is any more room in conti
afterwards.

4 Discussion and Conclusion

In our current work, we are working towards connecting the algorithm to real execu-
tion agents, both software and robotic [7]. We would also like to propose useful exe-
cution breaking points to a completely automated system or to less-informed users. A
domain-independent heuristic to select execution points should allow execution when
there is reason to believe that either there will not be a need to backtrack over the
resulting execution or that execution will provide additional information needed for
future planning. In this case, allowing real execution will: save overall execution and
planning time, as the plan starts being executed concurrently with planning; relieve
the need for a completely-defined planning domain, as execution can provide infor-
mation to refine other planning steps; and increase overall planning efficiency, as the
planner is free from the need to keep track of a large number of open choices. After
execution, the situation is equivalent to starting a new and potentially more informed
planning problem.

The characteristics of the heuristic described remind us of the properties of Knoblock’s
abstraction hierarchies [9], which can lead to no backtracking across refinement spaces.
We can execute the refinement of each abstraction step incrementally, also with the
hope that execution of the plan steps corresponding to the refinement of one abstrac-
tion level will gather information necessary for the refinement of the other abstraction
steps as illustrated in Figure 5.
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Figure 5: Execution break points guided by abstraction level information.

Another heuristic that the planner could use to suggest execution points is based
on the past decisions of the user. By caching the operators that the user has decided
to execute in the past, and by noticing at what point in the planning process the
decision was made, the planner may be able to learn when it it may be useful to
begin execution. We intend to explore this possibility further in the future.

We discussed why interleaving planning and execution is hard, and presented the
framework we created in which the user interacts with the planner. The user enables
the planner to take advantage of execution to gather new planning information and
to incorporate this information into the planning state, thus improving overall per-
formance. We implemented the approach as an extension to the PRODIGY planner.
The trace shown in this paper does not make use of our current graphical user inter-
face. We are currently also developing more sophisticated graphical representations
of the planning alternative decisions and dependencies to better support the integra-
tion with the human user. Adding the ability to interleave planning and execution
controlled by the user can increase the usefulness of general purpose planners.
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