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Abstract
A long standing goal of robotics research is to create algorithms that can au-

tomatically learn complex control strategies from scratch. Part of the challenge of
applying such algorithms to robots is the choice of representation. Reinforcement
Learning (RL) algorithms have been successfully applied to many different robotic
tasks such as the Ball-in-a-Cup task with a robot arm and various RoboCup robot
soccer inspired domains. However, RL algorithms still suffer from issues of large
training time and large amounts of required training data. Choosing appropriate rep-
resentations for the state space, action space and policy can go a long way towards
reducing the required training time and required training data.

This thesis focuses on robot deep reinforcement learning. Specifically, how
choices of representation for state spaces, action spaces, and policies can reduce
training time and sample complexity for robot learning tasks. In particular the focus
is on two main areas:

1. Transferrable Representations via Tensor State-Action Spaces
2. Auxiliary Task Learning with Multiple State Representations

The first area explores methods for improving transfer of robot policies across
environment changes. Learning a policy can be expensive, but if the policy can be
transferred and reused across similar environments, the training costs can be amor-
tized. Transfer learning is a well-studied area with multiple techniques. In this
thesis we focus on designing a representation that makes for easy transfer. Our
method maps state-spaces and action spaces to multi-dimensional tensors designed
to remain a fixed dimension as the number of robots and other objects in an envi-
ronment varies. We also present the Fully Convolutional Q-Network (FCQN) policy
representation, a specialized network architecture that combined with the tensor rep-
resentation allows for zero-shot transfer across environment sizes. We demonstrate
such an approach on simulated single and multi-agent tasks inspired by RoboCup
Small Size League (SSL) and a modified version of Atari Breakout. We also show
that it is possible to use such a representation and simulation trained policies with
real-world sensor data and robots.

The second area examines how strengths in one robot Deep RL state represen-
tation can make-up for weaknesses in another. For example, we would often like
to learn tasks using the robot’s available sensors, which include high-dimensional
sensors such as cameras. Recent Deep RL algorithms can learn with images, but
the amount of data can be prohibitive for real robots. Alternatively, one can create
a state using a minimal set of features necessary for task completion. This has the
advantages of 1) reducing the number of policy parameters and 2) removing irrele-
vant information. However, extracting these features often has a significant cost in
terms of engineering, additional hardware, calibration and fragility outside the lab.
We demonstrate this on multiple robot platforms and tasks in both simulation and the
real-world. We show that it works on simulated RoboCup Small Size League (SSL)
robots. We also demonstrate that such techniques allow for from scratch learning on
real hardware via the Ball-in-a-Cup task performed by a robot arm.
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Chapter 1

Introduction

1.1 Motivation

Learning algorithms that allow robots to learn complex control strategies are a key component
to making robots more useful and ubiquitous in everyday society. Reinforcement Learning (RL)
research has made great progress towards making this vision a reality, having been successfully
applied to many complex real-world domains such as: learning to perform Ball-in-a-Cup task
with a robot arm, playing RoboCup robot soccer inspired games, manipulating objects, and flying
a model helicopter. [2, 79, 87, 89, 116] However, despite recent advancement in Deep RL, there
are still scalability issues due to the large amount of training time and training data required.
Solving this entire problem is an undertaking too large for a single thesis. While there are many
avenues of research investigating solutions for the scalability issues such as improvements to
the policy learning algorithm and intelligent exploration methods, we focus on exploring how
choices in representation for the states, actions and policies can help tackle these issues.

In this thesis, we focus on exploring how representations affect robot deep reinforcement
learning and how to choose good representations for states, actions, and policies, such that the
burden of training time and training data can be reduced. Choosing a good representation can be
the difference between a robust robot policy that works outside the lab, or a fragile robot policy
that works only in highly controlled environments. For example, a feature-based representation
that requires a motion capture system to provide high accuracy position features will be excellent
for learning a policy in the lab. However, it will be difficult to utilize such a policy anywhere
this motion capture equipment is unavailable. Alternatively, other sensor types such as images or
range finders can be utilized. However, these types of representations often require large amounts
of training data in order to converge to reasonable behaviors, as the information important to the
control task is not as distilled as in the feature-based representation. Which choice is made has a
large effect on the capabilities of the robot system and how fast and efficient the learning can be.

Representations can also affect how well a robot policy generalizes to environments that
differ from the training environment. The more generalizable a policy, the less likely additional
training data and time will be required to make adjustments for the environment changes. If
the types of changes can be anticipated, it is possible to design representations that increase a
policies generalizability across these changes. Even if the up-front training cost is high, if the
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policies can be applied across many similar environments, these costs can be amortized. For
example, using highly distilled feature-based representations may allow for efficient learning on
one task, but if care is not taken, the system may be locked into the specifics of the original task
environment. On the other hand, one may choose to use highly general image sensors, which
contain a large amount of information and work in general environments. However, these sensor
types can over-fit to the training data. When picking representations for RL on robotic systems,
one must be careful to find the sweet-spot between fast training time and generalizability.

Finally, representations of a policy have a large effect in encoding priors about how states and
actions are processed and what types of behaviors are representable. For example, convolutional
layers encode an assumption of translational invariance and that locality is important for process-
ing the input. If the representation requires a highly non-local view of input or the inductive bias
of translational invariance is a bad fit for a problem, then different layer types might be required.

Naturally, each of these components have been explored in some capacity, see Chapter 5
for a discussion on existing work in this area. However, in this work we focus specifically on
tasks involving robot systems. Additionally, we focus on the representation choices that can be
combined with other approaches to scalability like better exploration methods and policy learning
algorithms.

1.2 Thesis Question

Given the large number of choices in representation available for any RL application, this thesis
tries to address the following question:

How can we improve scalability, transferrability, and deployability of robot deep
reinforcement learning via intelligent choices of state, action, and policy network
representations where: environment sizes change, number of robots vary, states
and actions are high-dimensional, and tasks have sparse rewards.

By scalability we refer to the amount of training time and data required, as we believe this
is one of the biggest blockers to learning with real robot hardware. Unlike in simulation, when
training on real hardware, the world cannot be sped-up to train faster. The only potential speed-
up is to parallelize the training with multiple robots in multiple training environments. However,
given the current day cost of robots, building the necessary robots and the necessary training
environments can be prohibitively expensive if a large amount of training data is required. Addi-
tionally, when training on real-hardware, one must be concerned with the safety of the robot and
the environment. The faster the robot converges to reasonable behavior, the less time there is for
catastrophic mistakes to be made.

There are many dimensions of transferrability, that can be considered, but in this thesis we
focus on transfer as the number of robots varies, the number of other objects in the environment
vary, and the size of the environments change. Transferrability of a policy is important for
real-robot systems because it can help a policy learned in a simplified lab environment become
applicable to similar, but larger, or more complex real-world environments. Additionally, even
if training costs are high initially, the more transferrable a policy is, the more this cost can be
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amortized across different changes to the environment.
Finally, we focus on deployability of our policies to real hardware. Whether the policy is

trained entirely in simulation or directly on the real-robot hardware. We want to design methods
that lead to policies that at test time work on the real hardware. Without special care, simulations
can ignore crucial difficulties with real-world robot RL, such as safe execution, the asynchronous
nature of the environment, and the real-time requirements for running a policy in dynamic en-
vironments. This can lead to policies that train and test well in simulation, but completely fail
during tests on real hardware. In this thesis we focus on methods that at test time can run on
real-hardware, regardless of if the training was done in simulation or real-hardware.

We address aspects of all these concerns through a combination of techniques involving
choices of representations in the states, actions, and policy networks. By state and action repre-
sentations we refer to aspects such sensor types and actuator types, along with the policy’s input
state-space and output action space, which may be different from real-robot high-dimensional
sensors. We also consider how specific network architectures combine with these state-action
representations, such that we can leverage data sharing across modalities or build in biases that
help speed-up training in these spaces.

1.3 Approach

As shown in the previous section, there are a large number of choices to make when designing a
representation for a robot RL task. This thesis focuses on two different aspects of representations
used in robot RL:

1. Transferrable Representations via Tensor State-Action Spaces

2. Auxiliary Task Learning with Multiple State Representations

The first approach explores how representations can be designed specifically with transfer
in mind. While the initial learning may be expensive, if the policy can be transferred across a
variety of environment changes, this training time can be amortized across many scenarios.

The second approach examines how weaknesses in a test time representation can be compen-
sated for at training time by other representations. The goal being to end with a flexible, robust
representation, while speeding up the training by utilizing information from alternative repre-
sentations. This can be especially useful for learning policies in high-dimensional state-action
spaces.

1.3.1 Transferrable Representations
A few approaches to transfer learning exist. This thesis specifically focuses on designing repre-
sentations that can be transferred across specific types of changes to the environment. By pick-
ing a representation with transfer in mind, it is possible to include biases about how the policy
should adapt to environment changes. It also can remove the need to learn or adapt weights after
a change has occurred. The advantage of a transferrable representation is that even if the learning
takes a large amount of time and training data initially, this cost can be amortized by allowing
a policy to apply to a wide variety of similar environments. We look at not only transferring

3



single agent policies where the number objects in the environment are changing, but transferring
multi-agent policies where the number of agents in the environment may vary.

We additionally, present the Fully Convolutional Q-Network (FCQN) policy network rep-
resentation, which is designed to work with our transferrable representation in environments
where robot and object positioning is important to task performance. In such environments,
policy training time can be reduced and performance can be improved. Additionally, this net-
work architecture allows for transfer across environment size changes, in addition to the type of
transferred facilitated by the state-action space design.

1.3.2 Auxiliary Task Learning with Multiple State Representations

We specifically look at learning final policies that work with only the sensors available on the
robot at test time. This may include things like cameras, range finders and internal joint sensors.
The downside of learning a policy with high-dimensional states such as images is the increase
in training time and required training data. However, we can reduce the penalty of using such
a representation if the agent simultaneously learns a policy with a more task-specific, “feature-
based” state representation. This feature-based representation may require additional sensors
and preprocessing that would make running the feature-based policy outside the lab infeasible.
However, these types of sensors are often required to extract a reward signal in the real world,
so it makes sense to utilize this additional information during training time. Learning a feature-
based policy is often faster, which can allow for better data collection and exploration, which in
turn can speed-up learning with the image based representation.

The method in this thesis builds off of existing work in auxiliary task learning to create
a method where tasks differ not only in rewards, but also in their state-spaces. Using such a
technique, data collected while executing a task in the train-time, low-dimensional, feature-based
state-space can be reused to speed-up training in the train-time, high-dimensional state-space.
Additionally, this technique is compatible with other auxiliary task work which allows for using
tasks with different rewards to guide exploration and speed-up the process of collecting useful
samples for the network optimizers.

1.4 Robots and Tasks

In this section we give a brief overview of the two main robot task environments we use to test
and demonstrate the thesis contributions. More details for these environments are given in the
appropriate section. Additionally, the tasks here are not exhaustive, but only the main tasks used
throughout multiple chapters and sections. We use both simulated and real-world versions of
these robots and their associated tasks.

RoboCup Tasks RoboCup is an international competition where teams of researchers compete
to create teams of autonomous robots that play versions of soccer. [101] Learning the whole game
end-to-end is outside the scope of this thesis. However, we use various sub-tasks both single and
multi-agent from this domain to test our contributed techniques.
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RoboCup Small Size League (SSL) Robots For the RoboCup tasks, we use RoboCup Small
Size League (SSL) robots, specifically the CMDragons robots. [17, 64, 104, 110] These are
small, omni-wheel robots which are velocity controlled via radio commands. The robots have
the capability of basic ball manipulation via contact as well as flat kicks across the ground and
chip kicks which arc the ball through the air. We test our techniques both with simulated and real
versions of these robots.

Ball-in-a-Cup Task The Ball-in-a-Cup game consists of a handled cup, with a ball hanging
under the cup via a string attached to the handle. [88] The goal is for the player to swing the cup
and catch the ball inside of the cup. Figure 1.1 shows an illustration of this task. A successful
execution of the task typically consists of three phases: start, swing-up, and catch. At the start
the ball hangs below the cup with no motion. During the swing-up phase the arm holding the
cup swings the cup back and forth to build up momentum in the ball. After the ball has enough
momentum to swing up past the top of the cup, the catch phase starts. The arm must position the
cup to catch the falling ball and complete the task.

Start Swing-up Catch

Figure 1.1: Illustration of the Ball-in-a-Cup task.

Sawyer Robot For the Ball-in-a-Cup task, we utilize both a simulated and real Sawyer robot
from Rethink Robotics. 1 This is a 7 Degrees of Freedom (DoF) robot arm with various modes
of joint and tool space control. For our tasks we utilize joint velocities. The robot has built in
compliance through the series elastic actuators, which can help the robot safely learn policies in
the real world at the expense of some control precision.

1.5 Simulation vs. Reality
Throughout this thesis we focus on techniques that work for real robots vs techniques that solely
work in simulation. Simulations have a reality gap due to differences in physical modeling.
Additionally, many simulations, unlike the real-world, act completely synchronously with the
policy decisions, meaning no changes in the environment happen while the agent is deciding the
next action and there is no real-time constraint on the agents decision making.

Despite the differences between simulation and reality, we make heavy use of simulation
throughout this thesis. Simulations are still useful for running large scale experiments and col-
lecting large amounts of data under controlled circumstances which can help highlight differ-
ences between techniques under ideal conditions. Additionally, if the reality gap is taken into

1http://mfg.rethinkrobotics.com/intera/Sawyer_Hardware
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account when developing the techniques, it is possible to train in simulation and execute on the
real-world hardware. Differences such as physical modeling errors can sometimes be lessened
via appropriate choices of the state-action space and simulations can be designed to act asyn-
chronously. We consider a technique appropriate for real-world robots if at a minimum trained
policies can be executed on real hardware. However, the ideal case is that training also works
directly on the real-hardware so that these simulation reality gap concerns can be ignored.

1.6 Contributions

This thesis makes the following robot deep reinforcement learning contributions:

• A new representation using multi-dimensional tensors for both states and actions that al-
lows for zero-shot transfer across number of robots and objects in an environments.

A general description of how to map from the original task state-action spaces to this
designed tensor state-action space

A specific mapping that works well for environments where robot and object posi-
tioning are important for task performance

• A policy network representation that works in tandem with the tensor state-action space to
allow transfer across environment sizes.

• A method for using different state representations during training time to produce a flexible
policy at test time using only the available robot sensors

Demonstration that such a technique can speed-up training on high-dimensional states,
such as images

Demonstration that such a method works on both simulated and real-robots

Demonstration that such a technique can learn a sparse reward policy directly on real
robots

• Demonstration of the various approaches on dynamic robot tasks, both in simulation and
on real-robot systems, including systems and tasks such as:

Ball-in-a-Cup with a robot arm

RoboCup Robot Soccer related domains

1.7 Reading Guide to the Thesis

The following outline summarizes each chapter of the thesis. Chapter 2 provides an in-depth
look at the RoboCup SSL domain and how standard Deep RL can be applied to such a robot
and domain. We also use this example to point out shortcomings with existing techniques that
are addressed by the thesis contributions. However, if you are familiar with RoboCup, Deep RL
applied to robots and the associated shortcomings, this chapter is not necessary for understanding
the thesis contributions. Instead, refer directly to chapters 3 and 4 for the presentation of the
thesis contributions.
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Chapter 2 — Assessing Shortcomings of Current Reinforcement Learning for Robotics gives
an overview of the main shortcomings that arise when applying existing Deep RL tech-
niques to robotic systems. The RoboCup Small Size League (SSL) domain, which is used
throughout this thesis, is introduced and used as an example to illustrate these shortcom-
ings on a real robot system performing various tasks. Finally, the chapter presents a short
summary of how we address these shortcomings through the thesis contributions. This
chapter can be skipped if the reader is familiar with RoboCup and Deep RL.

Chapter 3 — Tensor State-Action Spaces as Transferrable Representations describes how multi-
dimensional tensors can be used to represent both state and actions, such that zero-shot
transfer is possible as the number of robots and other objects in an environment vary. Ad-
ditionally, we introduce the Fully Convolutional Q-Network (FCQN) network architecture,
which works with this representation to allow for zero-shot transfer across different envi-
ronment sizes. We show how this technique works for environments where positioning is
important using different domains inspired by RoboCup SSL. We also show the generality
of this representation to other domains via transfer results from a modified version of Atari
Breakout. Finally, we demonstrate that despite the representation being at a higher abstract
level, the policies learned in simulation can be applied to real robots using real sensor data.

Chapter 4 — Auxiliary Task Learning with Multiple State Representations introduces the aux-
iliary task framework used in this thesis, including the contributed method for allowing
learning simultaneously with different state representations. This method allows for the
state to include additional information at test time, that may come from additional sensors
only available in a lab environment, and then at test time use only the sensors on the robot
and in the test environment. For high-dimensional test-time states, such as those contain-
ing camera images, this method can also significantly speed-up training. We discuss how
auxiliary tasks can be designed and demonstrate how they can apply to simulated RoboCup
SSL tasks. Finally, we more fully introduce the Ball-in-a-Cup with a robot-arm domain
and show that the thesis approach is capable of learning a policy from pixels with sparse
rewards directly on the real-robot hardware.

Chapter 5 — Related Work reviews the literature related to the approaches presented in this
thesis.

Chapter 6 — Conclusion and Future Work concludes the thesis with a summary of its con-
tributes, and presents potential directions for future related research.

7



Chapter 2

Assessing Shortcomings of Current
Reinforcement Learning for Robotics

This chapter points out shortcomings of existing Deep Reinforcement Learning (RL) techniques
when applied to robots. We begin by discussing what we view as some of the largest challenges
in applying existing Deep RL to robots. We demonstrate these shortcomings by applying RL to
tasks related to RoboCup Small Size League (SSL) soccer. This domain is used throughout the
thesis and serves as a good introduction to the types of problems the thesis contributions address.
After showing how current technique apply to such a domain, and how the identified shortcom-
ings manifest themselves, we discuss how the thesis contributions address these shortcomings.

2.1 Shortcomings of Existing Deep RL Approaches

While it is possible to apply existing Deep RL algorithms to robots, there are number of short-
comings that prevent wide-scale application. Three of the biggest shortcomings are:

1. Large training time and number of samples required

2. Adaptability of the policy to changes such as environmental changes, or number of agents/objects
in the environment

3. Safety while training and executing

Each of these issues are discussed in more details in the following sections.

2.1.1 Sample Complexity and Training Time
The first major issue is sample complexity and training time. When training with complex robots,
dynamic tasks, and high dimensional sensor data the number of training samples can be quite
large. Especially, when training in the real world, we want to minimize the amount of train-
ing time and data, as unlike simulation, real-world training cannot run faster than real-time. At
best, one can parallelize the learning using multiple robots and environments, but this can be
prohibitively expensive depending on the robot and tasks. Additionally, the less time spent train-
ing before reasonable behavior is learned, the less chance there is for the robot to violate safety
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constraints and damage itself or the environment.
Another aspect affecting sample complexity is the reward function used. Ideally, we would

train with a sparse reward function, as this most accurately captures the goals of a task. How-
ever, given random exploration, in a large state-action space, it is unlikely for a robot to hit
these sparse reward state-action pairs, and therefore, the amount of training data required can be
unmanageable for many useful robotic tasks.

2.1.2 Adaptability

The second shortcoming, is the trained policies lack of adaptability to changes in the environ-
ment. The more adaptable trained policies are, the less the training time and sample complexity
matters. If a policy is applicable for only a narrow set of task configurations and environments,
then to deploy a RL approach for a real-world robotic task will require training a large number of
policies to handle the different variations. Combined with the potentially large cost for training,
this quickly becomes infeasible for many useful, real-world robotic tasks. Alternatively, if poli-
cies are adaptable to changes in the environment, then even a large amount of up-front training
can be amortized across a range of similar environments. Similarly, if the policy is generaliz-
able to changes in the environment, then training can happen in a more restricted lab setting or
simulation environment and still apply to final robotic system.

2.1.3 Safety

Finally, keeping the robots and the robots’ environment safe during training and execution presents
a major obstacle. Given the randomness of exploration and an uninitialized policy, it is very likely
that a robot will attempt dangerous actions. These can lead to robot breakages or damages of the
surrounding environment. One approach to mitigate safety concerns is to train in simulation
and then apply the learned policies to real robots via sim2real techniques. [3, 72, 83, 84, 106].
However, there is always a mismatch between simulations and real-systems, and a big enough
gap will lead to policies that work in simulation but not in the real-world. Other approaches
use standard RL techniques, but engineer safeties such that the robots are confined to a safe
workspace, with only safe actions available at any time [72, 89]. While these approaches work,
it can be significant effort to setup these systems and may include the need for additional sensors
and equipment which make it difficult to train or test policies outside of a lab environment. More
exotic techniques focus on optimizing the rewards for the RL agent such that unsafe actions are
avoided while still allowing the original policies to execute. [4, 77] However, these techniques
are still under-developed for robotic systems.

Even after training is finished, safety is still a concern. Unlike classical robotic algorithms,
the policies do not have many guarantees about behavior. Instead, behavior is empirically eval-
uated along metrics such as reward per episode and success rate. Given that the policies lack
guarantees regarding robustness and safety, it is common to still run the trained policies with
hard-coded safeties to prevent clearly unreasonable action choices. Therefore, even if simulation
is used to avoid safety issues during training, one still has to worry about safety at test time when
executing on the real hardware.
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2.2 Applying RL to RoboCup Domains

This section now demonstrates an application of existing RL techniques to the RoboCup SSL
domain. We begin by introducing the RoboCup domain along with a description of the robots
used and the tasks learned. We show, through this domain that while it is possible to do Deep RL
with robot systems, the shortcomings identified in the previous section come into play repeatedly.

2.2.1 RoboCup Description

RoboCup robot soccer is an international competition where researchers compete to create teams
of autonomous soccer playing robots [101, 110]. There are many different leagues, each with dif-
ferent research goals. There is a the 2D simulation league which simulates circular omni-wheeled
robots with partial observability [105]. There is a 3D simulation league featuring humanoid
robots each with their own observations [105] There are also numerous real robot leagues, in-
cluding those that use humanoid robots such as the Nao robots [103]. Middle Size League (MSL)
features teams of decentralized wheeled robots which play with a full sized soccer ball [102]. Fi-
nally, the domain of focus in this thesis, the Small Size League (SSL), which features centrally
controlled teams of omni-wheeled robots which play with a golf ball [104].

Small Size League (SSL)

In this thesis, we focus on the Small Size League (SSL) domain. Figure 2.1 shows an illustration
of the SSL field setup. A full game of SSL soccer uses 11 vs 11 robots. Each robot has a unique
computer vision pattern that identifies the robot, the robot’s team, the robot’s position and the
robot’s orientation. The ball uses a special color that can easily be detected and tracked. Over-
head cameras send images to a central vision server, which detects the robot patterns and the
ball(s) and sends the detection information to each team at approximately 60Hz. [15] Typically,
teams use a single computer that receives this information, plans and computes new robot com-
mands and then sends these commands via radio to the entire team. The whole process repeats
at 60Hz.

Each team designs and builds their own robots. These robots can be of any design (with
some limitations on ball manipulation strategies, volume, etc.). Most teams have converged on a
close to cylindrical robot with 4 omni-wheels around the base. This thesis makes heavy use both
simulated and real versions of the CMDragons’ robots. The CMDragons have a long history of
research and competition in RoboCup SSL having won multiple competition years. [17, 64] This
thesis utilizes the robots as well as existing code and infrastructure developed by multiple team
members over the years. Chapter 5 contains more information the research contributions from
the CMDragons.

Figure 2.2 shows a picture of the CMDragons robot with and without the cover and next
to a standard SSL ball. The robot is approximately 18cm in diameter and can move omni-
directionally. In addition to navigation via the omni-wheels, the robots posses a dribbler bar,
which can apply forward or backward spin to the ball so that the robot can ”pull” the ball or push
it forward when moving. The robots additionally have two means of kicking: flat kicks and chip
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Figure 2.1: RoboCup Small Size League (SSL) field setup.

kicks. Flat kicks apply an impulse to the ball and keep the ball on the ground, whereas chip kicks
launch the ball into the air in an arc.

Depending on the design, the robots can be controlled in different modes. For the CMDrag-
ons robots, each robot receives a specified wheel velocity for each wheel [v0, v1, v2, v3]. There
is also a higher level egocentric velocity control [vx, vy, ω], which uses a model of the wheel
configurations and the robot mass/inertia to translate to individual wheel velocities. [81].

Teams can use any onboard sensing and send back any information they desire. The CM-
Dragons robots can send back limited information about the wheel states, battery levels and
kicker state. The feedback rate is reduced as the number of robots being controlled increases. So
for most tasks in this thesis we rely solely on feedback from the standard SSL vision system. [15]

2.2.2 SSL Tasks
Small Size League (SSL) presents many challenges to any RL approach. The environment is
multi-agent, adversarial, uses real sensors and real robots, and contains many dynamic control
tasks. Learning to play the entire game of robot soccer end-to-end would be an exciting project,
however, it would be too large an undertaking for a single thesis. Instead, we use different
pieces of the SSL robot soccer game from simple navigation control tasks to multi-agent team
coordination games inspired by Keepaway [95, 96]. Tasks from the SSL league (and RoboCup
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Figure 2.2: CMDragons robots with standard SSL ball.

in general) have been proposed as benchmark tasks for reinforcement learning [94, 96]. This has
lead to a number of previous works investigating RL for RoboCup soccer [30, 78, 79, 96, 107]
and a number of sub-task domains, some of which we use and adapt in this thesis. The remainder
of this section gives a high-level overview of the tasks that are used in the experiments throughout
this thesis.

Navigation

One of the most basic skills in RoboCup soccer is the ability to use the sensors on and off
the robot to control the robot’s motion on the field in order to position the robot for plays and
navigate around opponents and obstacles. Depending on the speed of the robots, this can be a
highly dynamic control task, where large wheel velocities can cause slippage or in the worst case
a flipped over robot.

Ball Manipulation Skills

Another fundamental skill in RoboCup soccer is ball-manipulation. These include dribbling
(moving the ball in a controlled manner through physical contact), passing between robots and
shooting goals. Most of these skills require a fast control rate due to the dynamic nature of the
task. Many forms of ball-manipulation skills have been previously studied in an RL context.
Riedmiller et al. [79] used RL on real robots for the Middle Size League in order to learn ball
manipulation skills. Recent Deep RL work from Hausknecht et al. [43] was able to learn, in
simulation, to navigate to a ball and score on an empty goal using imitation learning. Later this
was refined to learn, in simulation, from scratch [42].

Keepaway

Keepaway is a subdomain inspired by RoboCup robot soccer. It is multi-agent and can be par-
tially observable (with each agent limited to its own sensor view of the environment) [95, 96].
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The game consists of two teams of agents. One team starts with the ball, and attempts to maintain
control of the ball as long as possible by dribbling and passing to teammates. An opponent team
of agents attempts to intercept and take the ball from the opposing team as quickly as possible.

2.2.3 Problem Description
The existing CMDragons’ team code used a Skills, Tactics, and Plays (STP) architecture [13].
STP is a hierarchical architecture consisting of three levels. Skills are coded policies that rep-
resent low-level tasks, used repeatedly in the game of soccer. These include: dribbling the ball,
navigating to a point, etc. Tactics combine skills into behaviors for a single robot. Typically
coded as state machines, where specific skills are called in each state. Plays are how multiple
tactics are coordinated. Each robot is assigned a tactic based on cost functions, and then the
robots execute these tactics independently.

Previously, all of the code for each level in this hierarchy is hand-written using classical
robotics and planning algorithms. Low-level policies used algorithms such as Rapidly-exploring
Random Tree (RRT) [14, 16, 56], while the tactics have been written using intuition and improve-
ment through expensive testing. Ideally, we would be able to replace the entire STP hierarchy
with a fully end-to-end, multi-agent policy. However, the amount of training data, time, and
computation would likely be quite large. Also, there would likely be issues with choosing an ap-
propriate reward function (ideally sparse), state representation (how to deal with robots as they
enter/leave the game), action representation (how to deal with breakages, changing action space),
and safety while training (e.g. do not crash while exploring new policies and break the robots).
Instead, we will focus on a much smaller task: learning individual skills in simulation and then
combine these skills manually with a simple state-machine into a tactic. These skill policies and
the tactic can then be executed on the real robot.

Specifically, we learn three different skills from scratch in simulation: go-to-ball, turn-
and-shoot, and shoot-goalie. Each skill is trained from scratch in simulation to avoid
issues with long training times and safety. After each skill has converged we can chain them
together to navigate the robot to the ball and score on an empty goal in simulation. Finally, we
can take these trained skills and test them directly on the real robot hardware.

2.2.4 Deep Reinforcement Learning of Soccer Skills
This section introduces the basic notation used for our reinforcement learning problems. We also
give an overview of the algorithms used.

Markov Decision Process (MDP)

Markov Decision Processes (MDPs) are a mathematical representation of a class of sequential
decision making problems [75]. An MDP is defined by a tuple (S,A,R, T, γ). There is a set
of states S and a set of actions A available to the agent. T is a function p(st+1|st, at) which
describes the probability of transitioning from state st to state st+1 under action at. R is a reward
function R : (st, at)→ R. γ ∈ [0, 1) is a discount factor which trades off short term rewards for
long-term rewards. To solve an MDP, a policy π : s→ a must be found such that the cumulative
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discounted reward Eπ [
∑∞

t=0 γ
tR(st, at)|at ∼ π(st), st+1 ∼ p(·|st, at), s0 ∼ p(s)], where p(s) is

the initial state distribution. Reinforcement Learning is a method of solving and MDP when
the transition function T and reward function R are not known ahead of time. Instead an agent
must try actions in different states in order to gather data about the transition function and reward
function in order to find the optimal policy for the MDP.

Reinforcement Learning

Model-free RL, which we use throughout this thesis, determines a policy by learning a state-
action value function, commonly called a Q-function. [115] A Q-function is defined for a policy
as Qπ(st, at) = R(st, at) + Eπ [Q(st+1, π(st+1))|st+1 ∼ p(·|st, at)]. Which represents the cu-
mulative reward of choosing action at in state st and then following the policy thereafter. Off-
policy methods will follow some behavior policy to collect data while estimating the optimal
Q-function, Q∗. Typically, this behavior policy is the current best policy estimate with some
exploration actions added in.

Continuous action space policies generally cannot represent a policy as a Q-function, as
choosing the optimal action would require a continuous optimization of the current Q-function
to choose the best action. Instead, typically an actor-critic method is used. An actor which
represents the policy mapping from a state to a continuous action is learned. A critic representing
a Q-function evaluates the actions chosen by the actor in order to update the actor’s policy. Once
training is complete, only the actor function is needed. In our case, we will train three pairs of
actor/critic networks, one for each skill. At test time we will execute the three actor networks,
one for each skill.

We specifically train using the Deep Deterministic Policy Gradient (DDPG) algorithm. [60]
DDPG is an actor-critic method suitable for learning in continuous states and action spaces.
Like in most Deep RL algorithms, it utilizes a replay buffer, which stores (s, a, r, s′) tuples
experienced while training. To update the actor and critic networks samples are drawn from this
buffer and combined into random mini-batches. To further speed-up training and reduce sample
complexity we start the replay buffer with simple, non-optimal demonstrations of the skills as in
Vecerik et al. [109]. We also utilize reward shaping to help the critic network converge faster.

2.2.5 Environment Setup

We assume that the standard SSL vision system is available when learning and testing the skill
policies. This means a feature-based representation can be used, where features are derived from
the position and orientation information provided by the vision system. All skills use coordinates
relative to the robot’s frame of reference. Figure 2.3 shows an illustration of the robots frame
and the world frame of reference. (xR, yR) is the robot frame and (xW , yW ) is the world frame
of the environment.

The robot is commanded via velocities in the robots frame of reference at 60Hz. We also
allow the robot to control the speed of the dribbler bar spin, which affects how much backspin is
put on the ball.
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Figure 2.3: Robot and world frame definitions used to calculate features for each skill.

go-to-ball Skill

The goal is for the robot to end with the ball positioned on it’s kicker and dribbler. The robot
starts with some random position and orientation, while the ball starts with some random position
on the field.

We use the following state features for this skill:

s = (PB, V R, ωR, dr−b, P
R
top, P

R
bottom, P

R
left, P

R
right) (2.1)

where PB is the x-y location of the ball, V R is the robot’s linear velocity, ωR is the robot’s
angular velocity, dr−b is the distance from the robot to the ball and PR

top, P
R
bottom, PR

left, P
R
right are

relative coordinates to the closest points on the top, bottom, left, and right edges of the field to
the robot. Figure 2.4 shows an example of these features.

Pleft Pright

Ptop

Pdown

Figure 2.4: go-to-ball features.

The action space of the robot is: (vRx , v
R
y , ω

R) where vRx is the x-velocity of the robot, vRy is
the y-velocity of the robot, and ωR is the angular velocity of the robot.

The reward function is a combination of a reward for being in contact with the ball and a
shaping term based on the relative distance and orientation of the robot’s dribbler to the ball. The
reward function is:
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rtotal = rcontact + rdistance (2.2)

rcontact =

{
100 ball on the dribbler
0 otherwise

(2.3)

rdistance =
5√
2π

exp−d
2
r−b + θ2

r−b

2
− 2 (2.4)

where θr−b is the angle between the forward direction of the robot and the ball.
We seed the replay memory with simple demonstrations of the robot driving straight into the

ball. The robot is spawned facing the ball some distance away and commanded to drive straight
for the whole episode.

turn-and-shoot Skill

The goal is to learn to dribble the ball in place so that the robot faces the goal, at which point the
robot should shoot the ball at the goal. The robot must learn the proper control of dribbler bar
speed and rotation velocity, as well as proper kick strength and timing. For this skill there is no
goalie. The robot starts with some random position and orientation on the field. The ball starts
on the robot dribbler.

The state features are:

s = (PB, V B, ωR, dr−g, sin(θl), cos(θl), sin(θr), sin(θr), Iballkicked) (2.5)

where PB is the x-y location of the ball, V B is the linear velocity of the ball, ωR is the angular
velocity of the robot, dr−g is the distance from the robot to the goal, θl is the angle between the
front of the robot and the left goal post, θr is the angle between the front of the robot and the
right goal post, and Iballkicked indicates if a kick command greater than 0 has been issued by the
agent this episode. Figure 2.5 shows an illustration of how these features are calculated.

α

β

θl

θr

Figure 2.5: turn-and-shoot features.

The action space of the robot is: (ωR, dribble, kick) where ωR is the commanded angular
velocity of the robot, dribble is the dribble motor speed, and kick is the command kick power.
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The reward function is shaped so that fast kicks when the robot is faced between the goal
posts give high reward, fast kicks when not aimed at the goal result in high negative rewards, and
losing the ball while dribbling provides negative reward. The reward function is:

r =





exp (α−β−0.05)∗|V B |
5

− 1 ball kicked
−0.5 ball not on dribbler
0 otherwise

(2.6)

where α is the angle between the goal posts relative to the robot’s position, and β is the larger
one of the angle differences between the kicking direction and the two goal posts.

We seed the replay memory with demonstrations by spawning the robot facing towards the
center of the goal and sending a high kick command. These demonstrations give some initial
training data with positive rewards, without demonstrating any of the dribbling and aiming parts
of the skill.

shoot-goalie Skill

This skill is like the turn-and-shoot skill, but this time there is a static goalie. This makes
the aiming portion of the skill more difficult.

The state space is the same as turn-and-shoot but with the following additional features:
sin(θgoaliec ), cos(θgoaliec ), sin(θgoaliel ), cos(θgoaliel ), sin(θgoalier ), cos(θgoalier ). Where θgoaliec is the
angle of the front of the robot to the center of the goalie, θgoalier is the angle of the front of the
robot to the right side of the goalie, and θgoaliel is the angle of the front of the robot to the left side
of the goalie. Figure 2.6 shows an illustration of these additional state features.

θgoaliel

θgoalier

Figure 2.6: shoot-goalie additional features. The other features are the same as turn-
and-shoot skill features shown in figure 2.5.

For this skill, we use a constant dribbler speed, and let the robot only control angular velocity
and the kick strength: (ωR, kick).

We utilized a sparse reward function based on successfully or unsuccessfully completing an
episode. The reward function is:
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r =





1 episode success
−1 episode not successful
0 otherwise

(2.7)

An episode is successful when the ball is in the goal after crossing the goal line at least
100mm away from the side of the goalie. The restriction on distance to the goalie prevents the
robot from learning a strategy that ricochets the ball of the goalie robot into the goal. In this case,
we do not seed the replay memory with any kind of demonstration.

2.2.6 Empirical Results
This section presents results of the simulation training, including final policy performance as well
as learning curves from throughout training. We also present the results of the policy performance
when applied, with no further training, to real robot hardware.

Training Parameters

We use the same network structure for each skill, adjusting only the replay memory size and
noise parameters. Both the actor and critic are two fully connected layers with ReLU activation.
Actions from the actor enter the critic as inputs to the second layer. Appendix A.2 gives more
details as to specific layer sizes, learning rates, etc. For the go-to-ball and turn-and-
shoot skills we initialize the replay memory with 10,000 demonstration transitions.

Simulation Results

Figures 2.7a, 2.7b, and 2.7c show the training curves for the three skills. To generate this curve,
network weights throughout training were saved. Each set of saved weights was then run, with
no noise 100 times and the results were averaged. This whole process was repeated from scratch
3 times and average to produce the mean curves shown and the shaded regions depicting the
variance between the different independent runs. All three skills were successfully learned, with
the go-to-ball skill converging fastest and being the most stable.
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(a) go-to-ball skill
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(b) turn-and-shoot skill
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(c) shoot-goalie skill

Figure 2.7: Training curves for all three skills.

We compared the learned skill performance against the hand-coded version of the skills.
Table 2.1 shows the results of this comparison. For each skill we ran 1000 episodes of the trained
skill and 1000 episodes of the hand-coded skill and tracked the success rate. The original hand-
coded turn-and-shoot skill optimized for time taken for a shot. For this reason, the robot
would take risky shots near the edge of the goal, which lead to a reasonably high failure rate.
In the absence of a goalie, optimizing for speed isn’t necessary. So we adjusted the hand-coded
skill to optimize for accuracy and re-ran the comparison.

Success Rate

Hand-coded Policy Trained Policy

go-to-ball skill 1.0 0.999
turn-and-shoot skill 0.71 0.878
turn-and-shoot skill (fine-tuned) 0.948 0.878
shoot-goalie skill 0.978 0.99

Table 2.1: Comparison of hand-coded policy and trained policy

We also compared the average time taken between the trained and hand-coded policies. Ta-
ble 2.2 shows the result of this comparison. The trained go-to-ball skill takes slightly longer
than the hand-coded go-to-ball skill. Qualitatively, the learned skill looks more “organic”,
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the robot makes a smooth curve towards the ball, which is not necessarily optimal. Whereas the
hand-coded skill does a linear interpolation between the starting position and orientation and the
desired position and orientation, which leads to a straight line path that can take less time. The
other two skills are much closer in terms of time taken to completion.

Hand-coded Policy (s) Trained Policy (s)

go-to-ball skill 1.46± 0.47 2.11± 1.19
turn-and-shoot skill 2.11± 0.99 2.35± 2.01
shoot-goalie skill 1.59± 0.36 1.56± 0.76

Table 2.2: Comparison of time taken between hand-coded policy and trained policy

Figure 2.8 shows a series of images from the execution of the go-to-ball skill followed
by the turn-and-shoot skill in simulation. The blue circle shows the robot. The blue line
shows a short history of the robot’s trajectory. The orange circle is the ball. The orange line
shows a short history of the ball’s trajectory. The robot begins executing the go-to-ball skill
in figure 2.8a. The robot heads towards the ball adjusting its heading along the way. The robot
gets the ball on its dribbler in figure 2.8b, which finishes the go-to-ball skill. The robot
begins executing the turn-and-shoot skill in figure 2.8c until it is aimed at the goal as
shown in figure 2.8d. Once aimed the turn-and-shoot skill kicks the ball and scores a goal
as shown in figure 2.8e.
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(a)

(b)

(c)

(d)

(e)

Figure 2.8: Images from execution of go-to-ball and turn-and-shoot skills on simu-
lated SSL robot.
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Real Robot Results

After training and testing the policies in simulation, we ran the final learned policies on the real
robot hardware. No additional training was performed on the real-robot hardware. The robot
and ball were put in different configurations for each episode. Table 2.3 shows the results of our
evaluation. We tested 7 runs for go-to-ball, 36 runs for turn-and-shoot and 12 runs for
shoot-goalie. go-to-ball succeeded 6 out of 7 times, turn-and-shoot succeed 33
out of 36 runs and shoot-goalie succeeded 11 out of 12 runs. Figures 2.9, 2.10, 2.11 show
images from the real robot tests.

Skill Number of Successes Number of Trials Success Rate (%)

go-to-ball skill 6 7 85.7
turn-and-shoot skill 11 12 91.7
shoot-goalie skill 33 36 91.7

Table 2.3: Success-rate of simulation skill trained policies on real-robot hardware

Figure 2.9 shows a sequence of images from the execution of the go-to-ball skill. Fig-
ure 2.9a shows the robot and ball at the initial position when executing a trial of the go-to-
ball skill. Figure 2.9b shows the robot approaching the ball and turning towards it. Figure 2.9c
shows the robot successfully achieving the goal, ending with the ball on its dribbler.

(a) (b) (c)

Figure 2.9: go-to-ball skill on real robot

Figure 2.10 shows a sequence of images taken from the execution of the turn-and-
shoot skill on the real robot. Figure 2.10a shows the initial configuration of a trial of the
turn-and-shoot skill on the real robot. The robot starts with the ball touching the dribbler.
Figure 2.10b shows the robot beginning to turn while dribbling the ball. Finally, figure 2.10c
shows the ball after being kicked as it is heading towards the goal.
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(a) (b) (c)

Figure 2.10: turn-and-shoot skill on real robot

Figure 2.11 shows a sequence of images taken from the execution of the shoot-goalie skill
on the real robot. Figure 2.11a shows the initial configuration of the shoot-goalie skill exe-
cuting on the real robot. Figure 2.11b shows the robot kicking the ball towards the gap between
the goalie and edge of the goal. Figure 2.11c shows the ball as it is almost entering the goal
following the kick in figure 2.11b.

(a) (b) (c)

Figure 2.11: shoot-goalie skill on real robot

2.2.7 Discussion of Shortcomings in the RoboCup Domain
We now analyze how the shortcomings identified at the start of this chapter manifested them-
selves in the RoboCup domain. We discuss how such issues were engineered around and why
further improvements to these areas are needed in order to make Deep RL more widely applicable
to robots.

Training Time and Data

We mitigated the effect of training time and data in this domain through three techniques:

1. Running the simulation faster than real-time

2. Seeding the replay memory with non-optimal, but correct demonstrations of simple cases

3. Heavy reward shaping

The first approach is only viable when training in simulation, but in this thesis some of the
techniques are applied directly on real-robot hardware. Additionally, it is not always trivial to
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create a realistic model of a task. Tasks that are highly dynamic, have many contacts, use high-
dimensional sensors or have difficult to simulate objects (such as deformable objects like ropes)
may be difficult or impossible to accurately simulate.

Seeding the replay memory and shaping the reward gave the learner useful data early on
to quickly learn reasonable behavior that it could refine through further exploration. [109] The
danger of such a technique is that it biases the policies towards particular solutions to a problem.
Depending on the strength of the bias, the learner may converge to a local optimum and never
discover a better approach. Additionally, it is not always possible to come up with a non-optimal
policy for a task up-front. At which point, this technique cannot be used.

Finally, we made use of heavy reward shaping, taking advantage of our expert knowledge of
the tasks. While such shaping can help in some tasks, changing the reward function biases the
agent towards particular behaviors. Depending on how the reward is changed, it is very easy to
make a policy that would be optimal in the sparse reward case, non-optimal. Or worse, make a
policy that does not accomplish the task at all, the optimal policy for the shaped reward.

2.2.8 Adaptability of Policies

In our application of Deep RL to RoboCup soccer, we made no attempt to transfer policies to dif-
ferent environments other than the simulation to real transfer. And the simulation was designed
to mimic the real world as closely as possible to minimize this gap. However, in real-robot soccer
games the environment would vary a lot from our training and test environment. Specifically the
environment would be sized differently, with the robot playing on a larger field with potentially
different ratio of field height and width. Even more different, there would be multiple robots on
the field, some cooperative and some adversarial. Our feature based state while compact and well
designed for this particular task, would need to be changed to accommodate different numbers
of robots. A change in the state representation would necessitate learning a new policy. These
types of changes (environment size and varying number of agents and objects) are not unique to
the RoboCup domains, but can come up with many robotic systems.

2.2.9 Safety while Training and Executing

Safety while training was mitigated by our use of simulation. In simulation the robot can try
anything and there is no risk to the real-hardware an environment. The agent can simply be
provided with a negative reward for actions deemed dangerous and allowed to train until it learns
to avoid such behaviors. As discussed, it is not always possible, or desirable to train in simulation.

Safety while testing was addressed via human intervention (i.e. stopping the agent when
it was doing something dangerous) and engineered safety controls that modified the agent ac-
tions to prevent dangerous actions. Appendix A.1 gives details about how these safeties were
implemented.
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2.3 How this Thesis Addresses the Shortcomings
Finally, we conclude this chapter by giving an overview of how this thesis works to address the
shortcomings identified in this chapter. While the main focus of the thesis is on reducing training
time and increasing flexibility of learned policies through representation choices, we also discuss
how the thesis contributions can contribute incidentally to safety.

2.3.1 Improving Policy Adaptability
One of the main contributions of this thesis is designing a representation for state, actions and
policies that allows for zero-shot transfer as the number of agents and objects in an environment
vary and the size of the environment varies. The goal is to allow for a single policy to work across
a wide variety of changes at test time, thus training cost, even if large, can be amortized across
these different domains. The thesis approach designs a tensor state-action space and a special
network architecture that uses only convolutions and deconvolutions. For 2D environments this
ends-up being an image-like representation for tasks. Specifically we focus on environments and
tasks where positioning is important to completion. Our main test domains focus on environ-
ments inspired by RoboCup soccer, but positioning is important in many other robot tasks such
as restaurant robots [68] and indoor navigation robots [29, 111]. Chapter 3 explains the repre-
sentation, how learning is performed with such a representation, and presents empirical results
in both simulation and with simulation policies applied to the real SSL robots.

2.3.2 Reducing Required Training Time and Data
The second main contribution of this thesis is an extension of the Scheduled Auxiliary Controller
(SAC-X) framework, such that tasks can vary not only by reward but in the representation of the
state. [80] The goal is to leverage strengths of different state representations across tasks to
shore up weaknesses in each particular representation. We show that this approach is capable
of significantly reducing training time, especially for high-dimensional states such as camera
images. Chapter 4 explains the auxiliary task framework, how auxiliary tasks are chosen, how
learning with different state representations works and provides empirical evidence for simulated
RoboCup SSL tasks and a real-world Ball-in-a-Cup performed with a robot arm.

2.3.3 Safety
While safety is always a concern when applying RL to real robot systems, this thesis assumes
that in the short-term, it is possible to engineer safety into the system. Additionally, because of
the lack of safety guarantees, even for trained policies, these types of engineered safety systems
would most likely be required for any real-world deployment of an RL policy to a robotic system.
Nevertheless, thesis techniques can incidentally improve safety.

Designing transferrable representations, means that rather than starting from scratch when
the environment changes, the policy should maintain reasonable (but not necessarily optimal)
behavior after transfer. This reasonable behavior should be far safer for the robot and the envi-
ronment than random exploration with a brand new agent training from scratch. Additionally, as
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we will show in our approach for tasks where positioning is important, our tensor state-action
space can eliminate certain types of unsafe actions by making them not representable. Rather
than allowing any random actions, which could for example crash the robots into walls, the agent
actions can be restricted to valid position commands only.

Using the auxiliary task with different state representation technique we can significantly
reduce training time. By reducing training time and samples we reduce the amount of time the
robot has to make catastrophic mistakes before it assumes reasonable behavior. Additionally, our
technique allows for different sensors at train and test time. This means we can use specialized
sensor setups in the lab during training that make it easy to keep the robot safe during the most
dangerous part of the learning phase, and then not require these setups at test time. This can
make it easier to design the safety systems in use.
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Chapter 3

Tensor State-Action Spaces as
Transferrable Representations

As discussed in chapter 2, one of the shortcomings of existing Deep RL approaches is the lack
of adaptability to changes in the environment. In this chapter, we present the thesis contribution
which addresses this short-coming: tensor state-action spaces and the Fully Convolutional Q-
Network (FCQN) architecture. [88, 90] By anticipating the types of changes we would like a
policy to adapt to, before we begin training, namely changes in the environment size and changes
in the number of agents and objects in the environment, we show that it is possible to design a
representation that allows for zero-shot transfer across these changes. Specifically our approach
uses multi-dimensional tensors for both states and actions. We show that this representation
works especially well for tasks in which positional information is important to performance. We
demonstrate our approach on simulated tasks inspired by RoboCup SSL. We show the generality
of our approach by performing transfer in a modified Atari breakout game. Finally, we show
that despite the abstracted nature of our tensor representation, the learned policies are capable of
applying to real robot hardware and real sensor data.

3.1 Problem Description

For many robotics problems, training an initial policy can be expensive. Additionally, for many
robotic tasks, we would like to have policies that can adapt to changes in the environment. Specif-
ically, in the case of the RoboCup SSL domains presented in chapter 2 we can anticipate that the
robot’s policy should work on different size fields and with different numbers of other robots on
the field. Using the standard representations for states, actions, and policy network, we would
need to train different policies for every scenario, or have some way of adapting the policy to the
new environment changes online. As an alternative, knowing the types of environment changes
we expect, we can try to design a representation for the states, actions, and policies that will
allow the policy to apply with no additional learning required. Allowing the policy to transfer
without additional learning, means that even if the initial training is slow, overall we may end up
needing to do less training, as we only need to train one policy that can work across a number of
environments. For many robotics problems, training an initial policy can be expensive. In this
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thesis we explicitly consider two types of changes: changes to the size of the environment, and
changes to the number of agents and objects in the environment.

While not true in all robotic tasks, spatial positioning of a robot in relation to the environment
and other agents and objects is often very important to successful task completion. For example,
in the RoboCup SSL domains from chapter 2, agents must know where they are located on the
field, where the ball is, where their teammates are and where the opponents are at. In this thesis,
we give special consider to transferrable representations for tasks where spatial positioning is
important to the successful execution of a policy.

3.2 Tensor Representations

In this section, we introduce the basic notation used throughout this thesis contribution. We
explain why standard feature representations present difficulties for transfer. We then explain
how we can translate the standard state and action representations back and forth between our
tensor state and action spaces. The new tensor state-action space is designed to not have the
transferrability issues of the original representation, while still allowing for optimal policies to
be representable.

3.2.1 Background and Notation
We assume that an environment can be modeled as an Markov Decision Process (MDP) as de-
scribed in section 2.2.4. We assume that within the MDP environment there are some set of
entities X , which are either agents or some other objects of relevance to the MDP task. Each
entity will be associated with some features ∀x ∈ X,F x. These features contain information
relevant to the entity that is needed for the task such as positions and velocities.

As in normal Deep RL, the goal will be for each agent to find a policy πθ, where θ are the
parameters of the policy, that optimizes the discounted sum of rewards. Typically, such a policy
will include a number of Fully Connected (FC) layers. The number of parameters in an FC layer
are directly related to the input and output size of the layer. Thus the number of parameters
will be directly related to the number of features used as the state input to the policy network.
Therefore, any changes to the feature representation, including adding new features for new
agents or objects, will require finding a new set of θ parameters.

A simple way of representing the full state of the MDP is to create a vector concatenating
all of the features observations: S = [F 0, F 1, . . .]. This standard state representation can allow
for normal Deep RL policy learning, however, this representation will not allow for easy transfer
as agents and objects are added or removed from the environment. This is because adding or
removing agents and objects will add or remove features, which will change the feature vector
length. As mentioned, this will change the size of the FC layers which will require a new policy
parameterization for the changed representation.

We will consider scenarios with both discrete actions ad ∈ Ad and parameterized actions [42]
ap(y) ∈ Ap where y is generally some entity in the environment. The full action set is the
combination of both types of actions: A = Ad ∪ Ap. A typical discrete action may be “move
left”. A parameterized action may be “pass ball to y”, where parameters y is another agent in
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the environment. Naı̈vely, Parameterized actions can be treated as discrete actions by grounding
all parameters, which makes it possible to use any standard discrete action Deep RL approach
to learn a policy. If using the grounded actions for learning, the dimensionality will vary when
new entities are added or removed from the environment, as new groundings will be added or
removed. Like with the state vector, if using FC layers in the policy, changing the dimensionality
of the actions will require a change in the policy parameters θ. Requiring new parameters to be
found when the environment changes makes transferring a learned policy much more difficult.

The goal in this work is to develop a representation for states and actions that can encode the
original state and action space while remaining a fixed dimensionality regardless of how many
entities are added or removed from the environment. If such a representation is used, then when
the number of entities change, new new parameters need to be found and the same policy can
be applied with no changes. Note, that this policy after transfer may not be optimal. We can
invent tasks where the reward function or transition function changes drastically as entities are
added and removed from the environment. However, in many domains the basics will remain the
same, even if adjustments will be needed at the high level. For example, in the RoboCup domain,
the basics of soccer should not change regardless of how many agents are on the field. While
the optimal policy for 1-vs-1 soccer can be different from 11-vs-11 soccer, the basic objective is
still for the team to control the ball and score using basic skills of navigation, ball manipulation,
shooting, etc.

3.2.2 Tensor-based States and Actions
We will design a new multi-dimensional tensor state St that has a fixed dimensionality regardless
of the number of entities in the environment. To use this new representation, we will design a
mapping from the original feature vector state S to this new tensor state ST . Similarly, we will
construct a new multi-dimensional tensor action At that has a fixed dimensionality regardless of
the number of entities in the environment. To use this new action representation we will design
a mapping from this tensor action space At to the original action space A. With the original
state-action space we learned a policy π : S → A. Any change in the number of entities changed
the dimensionality of S and A which required a new set of policy parameters. Instead, we can
learn a policy πt : St → At. Because St and At are designed to not change dimensionality as we
vary the number of entities, the policy will not need to be reparameterized.

Let φ : S → St be an injective mapping function that converts the original state vector to this
new tensor state with fixed dimensionality regardless of number of entities in the environment.
This means that every state in S has one and only one representation in St, however, there may
be additional values of St that have no representation in S. For some environments, such a
grid-world, some Atari games, or RoboCup SSL, an image of the environment will satisfy these
requirements. An image is just a special case of an arbitrary dimensioned tensor.

Let ψ : At → A be a surjective mapping function that converts from the tensor action space
At back to the original action space A. This means that every tensor action can be mapped back
to the original action space, however, multiple of the tensor action representations may map to the
same action. Again we could consider an image like representation for the actions for domains
such as Atari, RoboCup SSL, or grid-world environments. The key is that there must be some
way of converting this image like representation back to the original action space. And in the
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more general case the action will be a multi-dimensional tensor which may have more than the
standard 3 dimensions of an image.

Given these mapping functions, we can learn a policy πt : St → At instead of the policy
π : S → A. Figure 3.1 shows how this tensor based representation relates to the original MDP
for a given example of a 5x5 grid world with 2 entities: agent 0 and object 0. Part (a) shows
the feature based state, where each entity has 2 features. Part (b) shows the tensor based state
created by applying the position mapping φ to the feature state in (a). Part (c) gives an example
of the Q-value output of a policy network. Part (d) shows how the Q-values from part (c) are
transformed into one-hot action tensors via the argmax function. Finally (e) shows the result of
applying the action mapping function ψ to the one-hot action tensor output in order to produce
an action in the original MDP action space. In this case this results in ap with parameter object 0
being chosen as the action. A traditional MDP policy maps directly from (a) to (e) in the figure.
Our approach takes the path (a) - (b) - (c) - (d) - (e) in the figure.

Agent 0 (px0x , p
x0
y , f

x0
1 , fx02 ) = (0, 0, 1, 0)

Object 0 (px1x , p
x1
y , f

x1
1 , fx12 ) = (1, 3, 0, 1)

Agent 0 Action ap((1, 3))

S
A

φ ψ

π

St

1
0

Q

High Q Value
Medium Q Value
Low Q Value

St

F1
F2

πt

Q(ad)

Q(ap)

Argmax

At

Chosen action
Not chosen

At

ad

ap

;

(a)

(b)
(c)

(d)

(e)

Figure 3.1: Example transformation to the tensor-based state and action representation.

3.2.3 Optimality of Policies with Tensor Representation

Because φ is injective, the new tensor state space is fully observable and can represent all states
possible in the original state space. The ψ is surjective, meaning that for a given state, there is
at least one action in the new action space that maps back to each possible action in the original
space. So the policy may always select the same actions it would have in the original action
space. Given these two properties, the optimal policy can be represented exactly in the new state
action space. The benefit from this new tensor state-action space is that we can design it to be a
fixed dimensionality for a given environment size, which allows a policy to apply with no new
parameters needed as agents and other objects are added and removed from the environment.
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3.3 Position Based Mappings
In the rest of this section, we consider tasks where all entities have position features. Tasks
such as RoboCup SSL provide these features via a vision system. Other robotic systems may
extract these coordinates via motion capture systems, SLAM algorithms, object detectors or a
combination of all of these. Under the assumption that position information is available for all
relevant agents and objects in the environment we give a specific pair of mapping functions φ
and ψ.

3.3.1 Environments
Previously, we have mentioned the agent’s “environment”. Here we will formalize what is meant
by this term in order to define the position based mappings. For tasks with heavy importance
on spatial positioning the concept of the environment is usually implicitly encoded in the MDP
transition function. For example, no transitions to positions outside of the environment are pos-
sible and the environment uses Euclidean space. An environment E can be defined for an MDP
where the environment has some spatial dimensions D, where E ∈ RD. All entities must exit
inside the environment bounds. To be observable, entities must have positions in the environ-
ment: pxi = (pxi1 , . . . , p

xi
D ) ∈ E. If we assume finite environments, then pi ∈ [emini , emaxi ] where

emini is the minimum value of dimension i of the environment and emaxi is the maximum value
of the dimension i of the environment. In the rest of the formulation, we assume that positions
are either discrete or can be discretized to an appropriate level where the learning problem is still
tractable. However, any feature other than the position coordinates may remain continuous.

3.3.2 Position based φ and ψ Mappings
If we assume each xi ∈ X has a position and a single feature fxi representing information such as
an ID number. We can construct a tensor zj of dimensionality D that spans the full environment
E. Positions in the tensor corresponding to an entity’s position will take the feature value f , and
all other positions will get a default value. Mathematically:

∀xi ∈ X,∀fxij 6= cdefault, ∀(k1, · · · , kd) ∈ E

zj(k1, · · · , kD) =

{
fxij k1 = pxi1 , · · · , kD = pxiD
cdefault otherwise

(3.1)

Because the tensor spans the whole environment, entities can be added and removed without
affecting the dimensionality, only the values in the tensor.

Most environments will have multiple features for each entity. We can construct one zj tensor
for each feature. If the features represent the same semantic information, we can put them in the
same tensor. We can then stack each of these zj tensors along a new dimension to give us a tensor
representation of the full state: St = zq × · · · × z|Fx|. This includes all of the information in the
original state, but with a fixed dimensionality D + 1, where D has size equal to the span of the
environment and the final dimension has size equal to the number of feature types.
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For 2D environments, this is like a multi-channel 2D image. Many mobile robot tasks can
be considered a 2D environment. For example, RoboCup SSL is often treated as fully 2D, as the
only 3D component is when the ball is kicked in the air. The navigation and positioning of the
robots themselves, can be considered entirely on a 2D plane. Figure 3.1 from (a) to (b) shows an
example of mapping a 5× 5 grid world with 2 feature types to this representation.

Actions can be represented as a one-hot, D + 1 dimensional tensor. The first D dimensions
have size equal to the environment, and the final dimension is equal to the number of action types:
|AP | + |Ad|. To select a discrete action, the agent can mark its own position in the actor tensor.
To select a parameterized action, it can mark the parameter’s position in the action tensor. This
action space will be larger than the original action space. Actions that do not have a matching
action in the original action space can be mapped to a “do nothing” action or a similar default
action. Figure 3.1 part (d) shows an example of an action tensor where action ap is selected with
a parameter corresponding to object 0’s position.

Here were presented a simple mapping where each entity position maps to a single location
in the state tensor, and each action maps from a simple position in the action tensor. However, it
is possible to map the feature information in the state to multiple positions in the state tensor, or
to allow multiple action tensor positions to map to the same action in the original action space.
In a 2D environment, this state can be thought of as generating an image of various shapes filled
with feature value. Similarly, in the action space, it allows the agent to mark a region to indicate
an action.

3.4 Policy Learning with Tensor Representations

Agents can use any RL algorithms that learns action-value functions. In this work we use the
standard Double DQN algorithm [41]. However, other algorithms such as Soft Actor-Critic
(SAC) with a Gumbel-Softmax distribution could also be used [39, 40, 51]. Any RL policy that
can handle multi-dimensional state tensors and discrete action spaces should work. We can learn
a policy network which has an output equal in size and dimensions to At. The value of each
position in this output tensor would correspond to the action-value function value for the input
state and marking that particular spot in the one-hot action tensor. Therefore, to get the action
tensor that our mapping function ψ expects from the output of the policy network, we can just
take an argmax. Figure 3.1 (c) shows an example Q-value tensor output. Part (d) shows how the
argmax transforms this dense tensor into the 1-hot action tensor required by the ψ mapping.

3.4.1 Single Agent Tensor State-Action Training Algorithm
Algorithm 1 shows the pseudocode for training a single-agent tensor state-action space policy.
We refer to this as the Tensor State-Action - Single (TSA-Single) algorithm. This algorithm
follows a typical RL training loop with the additional steps of converting the states and actions
between the original space and the tensor space as shown in figure 3.1.

Starting the algorithm, line 2 initializes an empty replay buffer B. Line 3 initializes parame-
ters for the FCQN network using a standard deep learning initialization function such as Glorot
initialization. [37] Line 4 begins the main training loop. Note that in practice one would usually

32



collect some number of random samples and add these to the replay memory before beginning
the actual training to prevent over-fitting to the first few samples. Line 5 initializes the envi-
ronment to a new episode and gets the starting state s in the original state space. Then for the
remainder of the episode we repeat liens 6 through 17. Each iteration of the inner episode loop,
we convert the current state s to our tensor state st through our position mapping function φ as
shown on line 7. We then evaluate this state st with our current FCQN parameters θ to get a
tensor action at as shown on line 8. On line 9 we add some exploration to this tensor action,
typically with greedy-ε exploration. On line 10 we convert the selected tensor action a′t back to
the original action space a through our position mapping function ψ. Lines 11 through 13 are
what is done in a typical RL algorithm. We execute the action, add a new transition to our replay
and then sample a mini-batch of transitions. The samples we store use the original state space s
because they typically require less memory. So line 14 converts every state s and next state s′ in
the mini-batch transitions to st and s′t using the mapping function φ to create a tensor batch bt.
Line 15 does a standard RL policy update using whichever training algorithm one chooses. We
use Double DQN in the experiments. [41] Line 16 updates the current state for the next loop and
the whole process repeats.

Algorithm 1 Tensor State-Action - Single (TSA-Single) training algorithm.
1: function TSA-SINGLE

2: B ← ∅ . Empty replay memory
3: θ ← Initialize params for πt
4: while Training do
5: s← reset environment state
6: for episode length do
7: st ← φ(s) . Transform to tensor state
8: at ← argmaxπt(θ, st) . Select action
9: a′t ← exploration− policy(at) . Add exploration noise

10: a← ψ(a′t) . Transform to original action space
11: s′, r ← execute a
12: B ← B ∪ {(s, at, r, s)} . Add transition to replay buffer
13: b← sample− batch(B)
14: bt ← apply − φ− to− state(b)
15: θ ← update− policy(θ, bt) . We use DDQN in experiments
16: s← s′

17: end for
18: end while
19: end function

3.4.2 Masking Channels
The tensor based action space has the downside of being much larger compared to the original
action space. The benefit of this additional dimensionality is that we can transfer without learning
new parameters, however, exploring a large dimensional action space may still be difficult. This
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is a problem that has been encountered in other domains such as Starcraft II [113]. An approach
that has been used is to provide an additional input with a binary list of whether a particular
action is relevant to the current state [113]. We mimic that approach in our work by providing an
additional “Masking channel”. Each state tensor will have an additional channel where positions
corresponding to valid markable positions in the action space are marked, and all other positions
take on some default value. Note this does not give away the final policy to the agent. The agent
must still 1) learn to take advantage of this additional information and 2) choose the optimal
action from among the marked action positions.

3.4.3 Fully Convolutional Q-Network (FCQN)
The policy network πt could use a standard architecture of convolutional layers for the image-
like state input, followed by a flattening operation and some number of FC layers. However, this
representation is non-ideal for reasons including:

• FC layers can only accept fixed size inputs, so our policy will only work on a fixed size
environment.

• FC layers require a flattened input and flattening will lose all of the spatial information built
into our tensor representation. This makes it difficult to correlated positions in the action
tensor with the state tensor, and does not allow us to bias the policy to take advantage of
locality and translational invariance in an environment.

• The size of the action space is large, which will require a large FC layer with many pa-
rameters. Having lots of parameters will generally slow down training and increase the
required training data.

Instead, we can adapt Fully Convolutional Networks (FCN) [61] from computer vision to
represent the Q-values and our policy. We refer to this architecture as Fully Convolutional Q-
Networks (FCQN). Long et al. [61] introduced a method for creating a network entirely out of
convolutions and deconvolutions in order to perform dense image segmentation. Dense image
segmentation requires mapping each position in an input tensor to a class. This produces an
output tensor of the same size where each position’s value correspond to the class value of the
same position in the input image. Our tensor policy is performing a similar operation, but instead
of mapping positions to discrete class values, we are mapping the positions to continuous Q-
values, which are then converted into an action choice. The advantage of using all convolutions
and deconvolutions for the policy network are as follows:

1. (de)convolutions do not require a flattened input

2. (de)convolutions are designed to work well for local interactions

3. (de)convolutions are designed to take advantage of translational invariance of an input

4. (de)convolutions can accept any size input and output a proportionally sized output without
any change in the number of parameters or the values of those parameters

Because the tensor is never flattened, the spatial information encoded in our representation is
maintained. This should make it easier for the policy to correlate positions in the action tensor
to positions in the state tensor. Locality and translational invariance can allow an agent to more
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easily generalize experiences across positions in the state space. Finally, because any size input
can be accepted, we can also apply a single policy across changes to environment sizes. A larger
environment, will be represented by a larger tensor. The same (de)convolutions can be applied
to get out an action tensor proportionally sized, with no changes to the parameters of the layers
themselves.

3.5 Multi-agent Policies

As discussed, our representation is designed to transfer when the number of agents in the environ-
ment varies. Therefore, if we can learn a good multi-agent policy, we can do zero-shot transfer
as the number of agents varies. For domains such as robot soccer, this is a very useful property
of the representation. Throughout a game of robot soccer, robots may be added or removed from
the field for many reasons including rule violations and mechanical breakdowns. SSL RoboCup
currently uses team sizes of 8, but plans to move to a full sized soccer team of 11 robots. If
we learned a policy that was not capable of transferring across team sizes, we would have to
learn policies for each combination of team sizes which would be 121 policies. Additionally, it
may be more difficult to learn a policy with many robots due to the increase in states that can be
encountered in a typical run of the game. By allowing for transfer, it may be possible to learn in
a simpler case of a handful of robots on each team, and then scale up this policy to the full team
size through transfer.

We use a simple multi-agent setup, where each agent has executes its own policy. Each agent
receives its state features and constructs its tensor representation. It then evaluates its own tensor
policy to pick its own individual actions. Rewards are shared across the whole team. Since the
goal of this work is to focus on representation, we do not make use of any of the complex MARL
approaches such as learning to communicate. We apply Double DQN to learn each agent policy
just as in the single agent case. To help stabilize the policy learning and avoid issues inherent
in MARL we make use of an averaging layer as described in Sukhbaatar et al. [97]. An internal
hidden layer of each agent policy is averaged together to produce an additional input into each
agents next hidden layer. Figure 3.2 shows an illustration of this. This gives an insight into what
the other agents on the team are doing. And an averaging operation can support any number of
inputs while producing a fixed size output. Therefore, transfer with no additional parameters is
still possible.

The final issue is what weights to add when a new agent is added to the environment (or
conversely what set of weights to remove). Instead, of requiring new sets of weights to be added
or removed, we force all agent policies to share the same set of weights. Therefore, adding a new
agent just means we evaluate an additional copy of the network weights on that new agents state.
Similarly, if we remove an agent we just evaluate one less copy. Note, that despite the policies
all sharing the same weights, we are not learning a centralized policy. Each agent still evaluates
the policy on its own states and produces its own personal actions.
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Figure 3.2: FCQN network architecture with multi-agent averaging layer.

3.5.1 Multi-Agent Tensor State-Action Training Algorithm
Algorithm 2 shows the pseudocode for training a multi-agent tensor state-action policy. We refer
to this as the Tensor State-Action - Multi (TSA-Multi) algorithm. It is very similar to the TSA-
Single algorithm shown in algorithm 1 but adapted to work with multi-agent procedure described
above. The main differences are that for each step we have multiple states and actions (one for
each agent in the environment). Additionally, we need to split the policy network into the part
that computes the hidden layer inputs for the averaging layer f and the part that uses the hidden
layer and average hidden layer to compute the action g. In this case πt = g(f(st), h̄) where h̄ is
the average hidden layer and st is the agent’s tensor state.

Line 2 initializes an empty replay memory. In practice one will usually fill this with some
random samples before starting the training loop. Line 3 and 4 initializes both halves of the
network, the pre-averaging layer weights f and the post averaging layer weights g inside πt. For
each episode we start by resetting and getting the initial states for each agent on line 6. Lines
7 through 20 repeat until the end of the episode. On line 8 we convert all the agent states to
tensor states using the mapping function φ. Line 9 computes the hidden layer just before the
averaging layer for each agent. We call these outputs h and they come from the f part of the
policy network. Line 10 is the averaging layer. All h from the agents are averaged to produce
h̄. Line 11 computes each agent action using that particular agent’s hidden output h as well as
the average hidden output h̄. The actions for each agent may be modified for exploration on line
12. Line 13 converts every tensor action to the original action space. Line 14 executes all agent
actions to get new agent states and a team reward r. Because all of the weights are shared among
agents, we add all agent samples to the same replay buffer. Line 16 through 18 are standard RL
procedure. We sample a mini-batch, then convert all the states in the batch to our tensor state
space, and then update the policy weights. Finally 19 does some book-keeping to setup for the
next iteration of the loop.
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Algorithm 2 Tensor State-Action - Multi (TSA-Multi) training algorithm.
1: function TSA-MULTI

2: B ← ∅ . Empty replay memory
3: η ← Initialize shared f parameters . Part of policy πt
4: θ ← Initialize shared g parameters . Part of policy πt
5: while Training do
6: s0, · · · , sk ← reset environment state . k agent states
7: for episode length do
8: s0

t , · · · , skt ← φ(s0), · · · , φ(sk) . Transform each agent state
9: h0, · · · , hk ← f(η, s0

t ), · · · , f(η, skt ) . Evaluate up to averaging layer
10: h̄← 1

k

∑k
i=0 h

i
t . Average each agent hidden layer

11: a0
t , · · · , akt ← argmax g(θ, h0, h̄), · · · , argmax g(θ, hk, h̄)

12: a0′
t , · · · , ak

′
t ← exploration− policy(a0

t ), · · ·
13: a0, · · · , ak ← ψ(a0′

t ), · · · , ψ(ak
′
t )

14: (s0′ , · · · , sk′), r ← execute(a0′
t , · · · , ak

′
t )

15: B ← B ∪
{

(s0, a0′
t , r, s

0′), · · · , (sk, ak′t , r, sk
′
)
}

16: b← sample− batch(B)
17: bt ← apply − φ− to− state(b)
18: θ, η ← update− policy(θ, η, bt) . We use DDQN in experiments
19: s0, · · · , sk ← s0′ , · · · , sk′
20: end for
21: end while
22: end function

3.6 Simulated Empirical Results

In this section we present empirical results for training both single and multi-agent policies on
three different simulated environments. Two of the environments are inspired by RoboCup SSL
tasks. We also include some simulated results from a modified version of Atari Breakout in order
to show the generality of the contributed representation and learning approach.

3.6.1 Environment Descriptions
We use three different environments for the experiments: Passing, Take-the-Treasure,
and Breakout. Passing and Take-the-Treasure are grid-worlds representing abstracted
parts of RoboCup robot soccer. Passing is a single agent environment. The agent starts with a
ball. There are a number of environment controlled teammates and environment controlled op-
ponents which move randomly around the environment. The goal is for the agent to pass the ball
along a column or row of the grid to a teammate as quickly as possible without interception by an
opponent. Take-the-Treasure is a grid-world environment inspired by Keepaway [95] that
is multi-agent. It has the same dynamics as Passing, but this time there is a team of agents that
start with the ball. The goal, like Keepaway, is to keep the ball, or in this case treasure, away from
the environment controlled opponents. Opponents capture the treasure by occupying an adjacent
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position to the treasure holder. Just like Passing the agent with the treasure can choose to pass
to a teammate along a row or column. While this environment has a similar goal to Keepaway
the dynamics are sufficiently different that we gave it a different name. Additionally, as will be
shown in later sections because of the differences, the optimal strategy learned by the agents is
significantly different. Finally, Breakout is a clone of Atari Breakout [67]. The difference
being that our clone allows for the size of the playing environment to be modified. Changing the
height changes the number of rows of bricks. Changing the width increases the number of bricks
in each row as well as the allowable travel distance of agent controlled paddle.

Passing and Take-the-Treasure use the state tensor mappings described in the pre-
vious section. Breakout is already represented as an image, which is compatible with our
tensor representation, so no modification is made to the state. Just the raw pixel representation
is used. In Breakout, the action tensor has 3 regions that can be marked. A region centered
on the paddle indicates a “do nothing” action which keeps the paddle in place. A region to the
left of the “do nothing” region indicates a move left, and similarly, a region to the right indicates
a move right. Figure 3.3 shows an image from the Breakout domain with the three action
regions highlighted in different colors. The red region corresponds to the “move left” action, the
green region to “stay still” and the blue region to the “move right” action.

Figure 3.3: Action pixel regions for Breakout.

3.6.2 Hyper-Parameters and Network Architecture
We tested three different combinations of network architectures and state-action representations.
As a baseline we use a standard Fully Connected layer network architecture with the original
feature state space and discrete action space. To test the tensor state-action space separately from
the FCQN architecture we train a Fully Connected layer network with the tensor state-action
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space. Finally, we test the FCQN network architecture with the tensor state-action space. This
same network is then used in all the transfer experiments and the real-robot experiments shown
later.

The Passing FCQN network is the same as shown in figure 3.2 with the same layer sizes.
Skip connects were used between all matching sized pairs of conv/deconv layers. All hidden
layers use ReLU activations.

The Passing using state features and fully connected layers and the Passing network
with tensor state input and FC layers both use approximately the same number of parameters as
the Passing FCQN network. This is to remove issues where one representation outperforms
another solely because it has more parameters that can be tuned. Details about the specific sizes
and connections can be found in Appendix A.3.

Figure 3.4 shows the network structure used in the breakout experiments. All hidden lay-
ers use ReLU activations. Skip connections are used between matching sized convolution and
deconvolutions.

84× 84× 3

39× 39× 32

13× 13× 32
10× 10× 32

5× 5× 32

1× 1× 128 1× 1× |A|

5× 5× 32

10× 10× 32
13× 13× 32

39× 39× 32

80× 80× 1

ad

Figure 3.4: Breakout network structure. Red: max-pooling layers. Blue: bilinear upsampling
layers.

All networks were trained using the Double DQN algorithm [41] and the Adam optimizer.
ε-greedy exploration was used during training. Appendix A.3 provides detailed numbers for the
specific parameters.

3.6.3 Learning Performance
Figures 3.5a, 3.5b, and 3.5c show the training curves for our method compared to baselines. We
compare our approach to a network with fully connected layers applied to the tensor representa-
tion, and a dueling network architecture [114] using a state vector and discrete action space. For
each evaluation point, ε was set to zero and 100 episodes were run, and the average return was
calculated. This was repeated from scratch 10 times. The solid line shows the average across
the 10 runs, and the shaded region shows the minimum and maximum performance across the
10 runs. Both the FCQN network and the fully-connected network have approximately 3.5 mil-
lion parameters, so differences in performance cannot be accounted for by the amount of free
parameters.

In both Passing and Take-the-Treasure the FCQN with the tensor representation
converges significantly faster than either the tensor representation with FC layers or the standard
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representation with a dueling architecture. In fact, the other representations fail to learn a mean-
ingful policy on Take-the-Treasure within the allocated training steps. This demonstrates
that the combination of FCQN and tensor representation can lead to speed-ups in environments
where spatial information, locality, and translational invariance are important to the task. Note
that for Passing, a reward of 1.0 is the best possible outcome, showing our representation does
allow for optimal policies.
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(b) Take-the-Treasure training curve
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(c) Breakout training curve
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Figure 3.5: Average training performance.
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Take-the-Treasure was trained with 3 agents vs 3 agents on a 10 × 10 environment.
The opponents learn a coordinating policy, where the treasure holder runs from opponents, while
teammates form walls or surround the holder to block opponents. This wall building and sur-
rounding behavior is likely optimal. As if the teammates cannot block off all routes to the
treasure-holder they can hold the treasure indefinitely. Thus passing is actually less of an op-
timal strategy in most cases for this environment.

Figure 3.6 shows parts of a sequence of the trained Take-the-Treasure policy being
executed. Green cells are empty field. Blue cells are teammates. Yellow cells are opponents.
The red cell is the treasure holder. Figure 3.6a show the initial configuration from this run. The
treasure holder, teammates and opponents are initialized at random positions. Figure 3.6b shows
the state after a few steps in the environment. We can see the yellow opponents closing in on the
red treasure holder. We can also see the two blue teammates forming a small wall that blocks
the direct path of the yellow opponents below. Figure 3.6c shows another state a few steps later
where the treasure-holder is being chased around the wall formed by the teammates. This being
chased around the wall behavior is continued in figure 3.6d. Sometimes, the yellow opponents
manage to out-maneuver the teammates, which case the wall must shift and change shape. We
can see a different wall shape in figure 3.6e from later in the same episode.

(a) (b) (c)

(d) (e)

Figure 3.6: Images from execution of Take-the-Treasure policy operating with training
environment size and team sizes.

Breakout takes the longest to begin showing improvement. This is likely because the
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dynamics in the environment are more complicated than in the other environments. However, by
approximately 1 million steps, the qualitative performance becomes good. The agent will clear
approximately 25 blocks before losing a life. More training could potentially further improve
this policy.

Figure 3.7 shows a sequence of frames from an episode of the trained Breakout policy.
Like the results from the original Atari DQN paper we see a similar policy of “tunneling”. [67].
Figure 3.7a shows the initial start of the episode. In figures 3.7b and 3.7c shows the agent building
the tunnel by breaking blocks along the right column of the screen. Figure 3.7d and 3.7e shows
the agent taking advantage of the tunnel by bouncing the ball between the bricks and the ceiling
to quickly clear a large section with minimal risk. Finally 3.7f shows the state of the world after
the advantage of the tunnel is gone and the agent needs to carefully clear the remaining blocks.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Example sequence from Breakout policy operating on same size environment as
training environment.

3.6.4 Zero-shot Transfer Across Team Sizes
We trained one Passing network with a team size of 3 vs 3 opponents on a 20x20 environ-
ment. Figure 3.8 shows the average reward achieved by the policy as it transfers across team
and opponent team sizes, as well as a version normalized to the original team-size performance.
Figure 3.8a shows the absolute performance for each team size combination, where brighter is
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better. The absolute performance remains relatively consistent and close to the max possible 1.0
across the team size combinations tested. Only when there are large number of opponents, such
that few passing opportunities occur, do we see a major difference in performance.

Figure 3.8b shows the same data, but normalized with respect to the reward achieved on
the original team size of 3 vs 3. This makes it easier to see small changes in the performance
across transfers. Here team size combinations with value equal to 1.0 have the same performance
as the original team size combination. This is represented by a white color. As performance
increases relative to the original team size combination performance, the color becomes more
green and the values increase from 1.0. As performance decreases relative to the original team
size combination performance, the color becomes more purple and the values decrease from 1.0.
We can see that overall the performance is better than on the original team size. This is expected
as more teammates means more passing opportunities. The exceptions happen on the part of the
grid where the number of opponents is much higher than the number of teammates, and even
there the performance is mostly equal to the original performance, with only a few combinations
having a drop in performance of about 20%.

We trained one Take-the-Treasure network with 3 agents and 3 opponents on a 10x10
grid environment. Figure 3.9 shows the average reward achieved by the policy as it transfers
across team sizes and opponent team sizes, as well as the same data but normalized to the original
team size combination’s performance. Figure 3.9a shows the absolute performance for each team
size combination, where brighter is better. We see good transfer performance, when the team
sizes are equal or the agent team is larger. This is expected, as 1) the randomly chosen starting
state is less likely to have the treasure holder already surrounded by opponents and 2) it is easier
for more opponents to out maneuver the teammates.

Figure 3.9 shows the same data but normalized to the performance on the original team size
of 3 vs 3. Cells with performance equal to the original team size have a white color and a value
of 1.0. Team size combinations that perform better than the original team size combination have
a value greater than 1.0 and are more green the better they are. Team size combinations that
perform worse than the original team size combination have a value less than 1.0 and are more
purple the worse they are. We see that when teammates greatly outnumber the opponent team size
the performance is better, as expected. Similarly, when close to equal, the performance remains
the same as in the 3 vs 3 case. And when opponents outnumber teammates the performance
drops, with more severe drops the greater the team size imbalance.

Figure 3.10 shows a sequence of images taken from the execution of the Take-the-
Treasure policy trained with 3v3 to an environment that is 4v1. Green represents empty field,
blue teammates, yellow opponents, and red the treasure holder. Figure 3.10a shows the initial
state of this episode. Figure 3.10b shows the closest teammates (in blue) starting to surround the
treasure-holder (in red) to protect it from the yellow opponent. Figures 3.10c, 3.10d, 3.10e show
the teammates forming blocking walls while the treasure-holder gets chased around these walls
by the yellow opponent. Finally figure 3.10f shows an example where the teammates surround
the treasure-holder, minimizing the available directions the treasure-holder can be tagged from.
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(a) Passing transfer as team sizes vary
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Figure 3.8: Absolute and normalized performance of transfer across team sizes for Passing
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(b) Take-the-Treasure transfer as team sizes vary, normalized to performance
on original team size

Figure 3.9: Absolute and relative performance of transfer across team sizes for Take-the-
Treasure
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Example sequence executing Take-the-Treasure policy transferring to a
different team size.
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3.6.5 Performance of Transfer vs Trained from Scratch
While the transferred policy has similar performance before and after transfer, it may actually
perform poorly vs a policy trained directly with the new team size. We trained policies from
scratch on different team sizes for 500,000 steps and compared this policy performance vs the
zero-shot transfer performance of the policy from the previous section. We evaluate the relative
performance defined as (RT − RS)/RS where RT is the average reward/episode length for the
transferred policy andRS is the average reward/episode length for the trained from scratch policy.

Table 3.1 shows the statistics for relative transfer performance on Passing and
Take-the-Treasure. Passing was evaluated for every team size combination from Fig-
ure 3.8a. Take-the-Treasure was evaluated across 7 different team size combinations.

Relative Performance

Min Max Mean ± Std Dev

Passing -0.25 0.2 -0.03 ± 0.07
Take-the-Treasure -0.11 0.26 0.14 ± 0.31

Table 3.1: Relative performance of policies transferred to different team sizes vs policies trained
from scratch with those team sizes.

Passing transferred performance is only slightly worse on average, with a small standard
deviation. Take-the-Treasure has a larger standard deviation, but on average the trans-
ferred policies actually slightly outperform the from scratch policies. This is likely, because
training in a smaller environment and then transferring to a larger environment allows the agent
to explore and learn in a smaller state and action space. Thus requiring less samples for training,
yet retaining the performance when moving to a larger environment.

3.6.6 Zero–shot Transfer Across Environment Sizes
Table 3.2 shows the average transferred policy performance as environment size changes. Each
new size evaluated the transferred policy over 100 independent episodes. Passing was trained
on a 20x20 grid and then evaluated as height and width were varied independently from 20 to 40
with steps of 5. Take-the-Treasure was trained on a 10x10 grid and transferred to grids
of different heights and width varied independently from 10 to 20. Breakout was trained on
the standard 84x84 pixel image and transferred to environments of different heights and widths
varying from 84 to 120 in increments of 6 pixels.

Just like when transferring across number of agents in the environment, we see that trans-
ferred performance is relatively consistent as environment size changes. This is despite never
seeing any training data from the new environment sizes.

Figure 3.11 shows a sequence from an episode where the Breakout policy trained on an
84x84 image is applied zero-shot to an 84x108 image. This can be compared to the sequence in
figure 3.7 to see that despite changes in the environment size the behavior is similar. Figure 3.11a
shows the initial state. Just like in the original sized environment, the agent employees a tunnel-
ing strategy. Figure 3.11b shows the agent building this tunnel. Figure 3.11c shows the agent
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Mean ± Std Dev Unit

Passing 0.89± 0.03 Reward
Take-the-Treasure 84.67± 6.55 Episode Length
Breakout 19.34± 7.98 Blocks per life

Table 3.2: Performance of transfer across environment sizes.

taking advantage of the tunnel to break a lot of bricks. Figure 3.11d shows the aftermath of using
this tunnel.

(a) (b) (c) (d)

Figure 3.11: Sequence of images taken from a Breakout policy trained on 84x84 images
running on an image of 84x108.

3.7 Applications to Real Hardware
In the previous section, we showed that using the contributed tensor state-action space and FCQN
network, it is possible to learn well-performing policies in a variety of simulated domains. In
this section, we will show that despite the abstract nature of the simulated domains and the
representation, it is possible to apply learned policies to real robot hardware. We utilize the
simulation trained Take-the-Treasure policies with the RoboCup SSL robots and camera
system described in chapter 2.

3.7.1 Real-world State Action Mappings
We use the policies trained in simulation with no additional learning. We run on a field size
of approximately 5m by 3m, although the exact field dimensions can be changed thanks to the
transferrability across environment sizes of the representation. Robot positions detected by the
camera system are discretized into a grid with cells being approximately the diameter of a robot
(i.e. 18cm by 18cm), learning to a 28 × 17 tensor state. Orientation is ignored as the robots
can move omni-directionally, and orientation had no affect in the simulated environment. The
environment tracks the feature of which robot controls the treasure and which team each robot
belongs to. This information is also added to the tensor state in the same way described in the
previous sections.
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The move actions are translated to continuous desired positions in real-world coordinates at
the center of the discretized field grid cell. These coordinates are used as set points of a PID
controller running at 60Hz using the raw vision system detections. Passing the treasure updates
the internal environment state of which robot currently has the treasure.

New decisions are made by the agents and opponents at a fixed 5Hz regardless of whether the
PID controller has reached the desired set-point chosen at the last decision time. In simulation
actions are guaranteed to complete and always succeed (assuming the action is allowed by the
environment transition function). However, the real robots may not finish executing and due to
noise in the actuation and sensing, may not achieve the desired positions. Because the policy is
deterministic, new actions will only be selected if at least one robot has changed positions or a
successful treasure pass action has been executed.

3.7.2 Empirical Results
We ran 30 runs of 3 vs 3 robots collecting the number of steps taken in each episode. Like in
simulation each episode starts with random initial positions of all the robots. Table 3.3 shows the
results of these experiments compared to simulation results.

Mean ± Std Dev

Real Robot 71.2± 17.7
Simulation 76.13± 15.6

Table 3.3: Real-robot Take-the-Treasure policy performance. 3 vs 3 robots on a 28 × 17
grid corresponding to roughly a 5m by 3m real world environment.

We can see that despite the policies only training in simulation with perfect action execution
and no noise on the input state, the policies have only a slight drop in performance when executed
on the real robot hardware. This is despite noise in the computer vision detections, imperfect
action execution and asynchronous execution of the agent actions.

Figure 3.12 shows a sequence of frames from the simulation trained Take-the-Treasure
policy executing on the real robots. Note, that this is also an example of transfer across environ-
ment size as the policy was trained on a 10x10 grid, but the execution here is on a 28x17 grid.
The grid lines showing approximately locations of the cells was added after the video was taken.
The robot highlighted red currently has the treasure. The robots with yellow backs are opponents
and the plain black robots are teammates.

Figure 3.12a shows the initial configuration for this episode. The grid is edited in for visual-
ization purposes. The red square marks the current treasure-holder. The robots with yellow color
on the back represent opponent robots and the black robots are teammate robots. Figure 3.12b
shows the teammates moving in to protect the treasure-holder while the opponent robots close in
from above and to the right. Figures 3.12c and 3.12d show the team and the treasure-holder mov-
ing towards the bottom right corner. Note the small 2 robot wall formed by the teammate robots
that is blocking one of the opponents. Eventually the robots reach a configuration where the
treasure-holder is perfectly protected. Figure 3.12e shows this configuration, with the treasure-
holder in the bottom right corner and the teammates protecting tags from above and to the left.
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For the rest of the episode the robots remain in the configuration seen in figure 3.12f despite the
yellow robots pushing against the teammates to try and get to the treasure-holder.

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Example sequence of Take-the-Treasure policy trained on 3v3 team on a
10x10 grid executing with 3v3 real robots on a 28x17 grid.

3.8 Summary
This chapter presented the thesis contribution of tensor state-action spaces, a representation that
is designed up front to facilitate transfer across different number of agents and objects in an
environment. The chapter also describe the FCQN network architecture, which combined with
the tensor state-action representation allows for transfer across environment sizes. By designing
such a representation for states, actions and the policy network, this thesis has provided a new
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method of increasing the adaptability of learned policies. We showed empirically that such tech-
niques work well for environments where positioning is important, and that despite the abstract
nature of the representation is can work on real hardware and sensors.
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Chapter 4

Auxiliary Task Learning with
Multiple State Representations

As shown in chapter 2, one shortcoming of existing Deep RL approaches is the large amount
of training time and samples required to converge to a reasonable policy. This is especially true
when using sparse rewards and high-dimensional state and action representations. The approach
introduced in chapter 4, greatly improves a policies adaptability to specific types of changes in
the environment, but at the cost of making both states and actions high-dimensional. In this
chapter, we introduce an extension to the Scheduled Auxiliary Controller (SAC-X) framework
that allows for learning with auxiliary tasks that differ not only by reward function but by state
representation [89]. We show how such an approach allows us to quickly learn good policies
even with high-dimensional states such as raw camera images. We begin by introducing the
SAC-X framework and the thesis contribution. We discuss how auxiliary tasks are chosen. We
then demonstrate our approach on a simulated RoboCup SSL task. Finally, we show that our
approach works directly on real hardware with image sensors. We more fully introduce the Ball-
in-a-Cup with a robot arm domain, and show empirical results for such a task in both simulation
and from learning directly on real hardware.

4.1 Problem Description

One common strategy for minimizing the amount of training data required for RL is to carefully
curate the information used to represent the state of the MDP into so-called features. These fea-
tures — e.g. positions, orientations, and velocities of the robot links and important objects —
can simplify the learning problem since: 1) learned policies can use less parameters to repre-
sent the policy and 2) learned policies do not need to learn to recognize things if interest in a
high-dimensional state space. Alternatively, one can try to learn with a high-dimensional state
and action space such as the tensor state-action space from chapter 3. In this case the number
of states and actions to explore is greatly increased which can increase the amount of training
data required. Additionally, one may also learn directly with high-dimensional sensors such as
cameras. In this case the agent must learn to ignore spurious signals and distractors in order
to converge to a robust, well-performing policy. In both of these high-dimensional cases, the
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amount of required training data can be much larger than when training from a distilled set of
task-specific features.

While feature based representations can have a sample complexity advantage, as we showed
in chapter 3, this can come at the cost of an inflexible policy. Using the contributed tensor state-
action space, the learned policies can adapt to changes to the number of agents and objects and
changes to the size of the environment. Even more important than flexibility, when learning with
real robots, computing or extracting a distilled set of features can be computationally expensive,
difficult and can require additional sensor arrays and pre-processing pipelines. Even when it is
possible to extract these features during training, it is often desirable to learn a policy that does
not require these additional constraints. This allows the agent to be deployed in other locations
and scenarios with minimal setup. For example, in the Ball-in-a-Cup with a robot arm task,
described later in this chapter, we make use of an object tracking system during training. Such
a system requires additional specialized cameras and markings. If such an apparatus was also
required at test time, the scenarios and environments where the robot can apply this policy is
severely restricted.

In this part of the thesis contribution, we introduce a method that can simultaneously learn
control policies with different state spaces, from scratch in both simulation and on real-robot
hardware for dynamic tasks. In this case, both a feature-based representation and a high-dimensional
set of camera images are used at train time, but at test-time the policy uses only the camera image
representations. The thesis method extends the multi-task RL framework of Scheduled Auxil-
iary Controller (SAC-X) [80] to scenarios where tasks differ not only in rewards but also in state
space 1. The approach is based on the following assumptions:

1. An extended set of observations is available to the agent at training time, including raw
sensor data (e.g. images), proprioceptive features (e.g. joint angles), and “expensive”
auxiliary features (e.g. object positions) given via an object tracking system

2. At test time, the expensive auxiliary features are not available, requiring the policy to rely
only on raw sensors, proprioceptive features and any internal state variables.

3. Control policies from features will converge faster than policies learned from raw-sensor
data, which will provide a guiding signal for learning the vision based policies

4. A subset of the observations provided to the learning agent forms a state that is sufficient
for an optimal policy to be found.

Using these assumptions, our method was developed to have the following properties:

1. Like SAC-X our approach allows joint learning of a control policy for a main task and
multiple auxiliary tasks

2. Our method allows for joint learning of vision and feature based policies for all tasks

3. Through a special network architecture, all of the learned policies share a set of features
(i.e. they share hidden layers) in order to enable accelerated learning

4. Executing feature based skills during training improves the convergence of vision based
control policies

1See section 5.2.1 for more background on alternative auxiliary task frameworks.

54



We first apply our approach to a simulated navigation task using the RoboCup SSL robots.
This demonstrates that the approach works on a simple domain and that it allows for speed-ups in
simulation. Following this, we demonstrate this approach on the more challenging Ball-in-a-Cup
task using a robot arm. The approach is able to learn this task from scratch, on a real-robot, with
no imitation data in approximately 28 hours of training on a single robot 2.

4.2 Training and Network Approach
This section describes in detail how the thesis contribution works. We first give an overview
of the notation used in this section. We then explain how to expand the SAC-X framework
to allow auxiliary tasks with different state spaces. We explain how policies are evaluated and
updated. Finally, we discuss how our technique combines nicely with the asymmetric actor-critic
technique [74].

4.2.1 Background and Notation
We assume that the agent is using a model-free reinforcement learning algorithm. For the remain-
der of this section we will use probabilistic policies in our notation as probabilistic policy learn-
ing has been shown to help learn more robust policies as well as improve exploration. [39, 40]
However, our approach should apply to deterministic off-policy learning methods with minor
notational changes. More specifically the agent is trying to find a policy πMθ (a|s) where π is
the policy for MDP M parameterized by parameters θ, a is an action, and s is a state. The
goal is for the agent to solve the maximization problem: J(θ) = Ep(s)

[
Qπ
M(s, a)|a ∼ πMθ (a|s)

]

where the action-value function (or Q-function, see section 2.2.4) is defined by Qπ
M(st, at) =

rM(s, a) + EπMθ [Q(st, ·)|st+1 ∼ p(·|st, at)].
In this case, we are not interested in solving a single policy πθ for a single MDP M. We

also want to learn policies for a set of auxiliary rewards {rA1(s, a), · · · , rAK (s, a)}, where like
in the SAC-X paper [80] each of these auxiliary reward functions define a set of auxiliary MDPs
A = {A1, · · · ,AK}. Unlike SAC-X, in our approach these auxiliary MDPs may differ not only
in reward function, but also in the state-space. We want to learn not only the πθ for the main
task, but also a πAiθ (a|s) for each of the auxiliary tasks. Like SAC-X, these auxiliary policies
can be called intentions, because they are intentionally executed during training. The goal is for
these auxiliary policies to entice the agent into exploring interesting regions of the state-action
space. And in our approach, the auxiliary policies collect good training data for more complex
representations by executing the more quickly learned policies in the feature state-space.

To collect data for the learning, an intention is randomly chosen and executed for some fixed
number of steps. Such a random execution of intentions is referred to as SAC-U in the original
paper [80]. During execution a reward vector r(s, a) = [rM(s, a), rA1(s, a), · · · , rAK (s, a)] is
saved for each transition. All data collected is put into a replay buffer B. An off-policy learning
algorithm draws data from this buffer in order to update all of the different policies. In the
experiments later in this chapter we utilize two different policy learning algorithms: Stochastic

2Training time ignores the episode reset time, which due to entanglement of the string adds an overhead of
20-30%.
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Value Gradients (SVG-0) [44] with retrace [69] and Soft Actor-Critic (SAC). However, any off-
policy, probabilistic policy learning algorithm can be used.

4.2.2 SAC-X with Different State Spaces
We extend the SAC-X framework to allow the tasks to differ not only by reward, but also by
state-space. The main policy uses the state space desired at test time. In the case of RoboCup
SSL, this might be the raw images from the vision system as well as any proprioceptive features.
Whereas, auxiliary tasks may utilize additional features available only at training time, such as
the information provided by the vision detection system that processes the raw images to extract
features like robot positions.

Let Sσ be a set of all measurable signals at time t that make up an over specified full state st
during training as shown in equation 4.1.

st = Sσ(t) =
{
o0
t , o

1
t , · · · , ont

}
(4.1)

Where oit is an observed measurement at t. These observations may include proprioceptive
features, features from external tracking systems, and “raw” sensor data such as camera images.
Proprioceptive features may be readings from internal sensors such as wheel encoders from the
SSL robots or joint angles from a robot arm. External features may include position and velocity
estimates from a motion capture system or processing computer vision tags from the raw images.
In a standard setup, a minimal subset of these observations would be used to construct the MDP
state in order to make the learning process easier. For example, the state could be composed
of only the proprioceptive features and the positions detected by the SSL vision system. Or we
could construct a state from the raw camera images and the proprioceptive features. We consider
the case where Sσ can be decomposed into multiple, non-overlapping subsets of observations:

S =
{
Sσi , S

σ
j , · · · |Si =

{
ok, · · ·

}
∧ Sσj =

{
ol, · · ·

}
∧ Sσi ⊆ Sσ ∧ Sσj ⊂ Sσ ∧ Sσi ∩ Sσj = ∅

}

(4.2)
Without loss of generality, for the remainder of this explanation we consider the following

three feature sets:
Sσproprio Contains internal robot sensor and state information such as SSL wheel encoder values

or a robot arm joint positions. Other internal data such as previous time-step actions could
also be included here.

Sσfeatures Contains information extracted from raw sensor data, that is known to be needed for the
task. For SSL tasks this might include estimated positions and velocities of the robots and
the balls as detected by the external vision system and computer vision tags.

Sσimage Contains the raw images collected from the cameras. These are the same images may
have been processed to produce some of the features in Sσfeatures, but there is no restriction
that they be the same image sensors. Also, in other tasks other high-dimensional sensors
may be more appropriate such as high-resolution depth scans.

These are the key groups necessary to explain the approach. However, different groupings
may be more appropriate depending on the set of auxiliary tasks and the main task being learned.

56



Using these features sets we associated a fixed masking or filter-vector with each of the
constructed sets Sσi , given by an index vector:

Sfilteri =
[
Ii(task0), Ii(task1), · · · , Ii(taskN)

]
(4.3)

The indicator function Ii(taskk) is defined on a per-task basis and returns 1 if this state set
should be enabled for task k and 0 otherwise. We define two filter vectors one for the action-
value critic — SfilterQ,i — and one for optimizing the policy — Sfilterπ,i . This allows different
combinations of feature sets for different tasks between the actor and the critic

4.2.3 Policy Evaluation

The learned action-value critic function Q̂π
T (st, at;φ) for T ∈ {M,A1, · · · ,AK} with parame-

ters φ is represented by a feed-forward neural network. The network is defined as:

Q̂π
T (st, at;φ) = f([e1 � g1,:, e2 � g2,:, e3 � g3,:];φT ),

g = [gφp(S
σ
proprio(t)), gφf (S

σ
features(t)), gφi(S

σ
image(t))]

T ,

e = [IQ,proprio(T ), IQ,features(T ), IQ,image(T )]

(4.4)

Here g is a concatenated output of three function approximators, each of which are them-
selves feed-forward neural networks with parameters φp, φf , and φi respectively. Each of these
feed-forward networks is applied to the state-features from each feature group. � denotes an el-
ement wise multiplication, subscripts denote element (in the case of ei) and row-access (in case
of gi,:) respectively. f denotes the final output layer, and the full parameters of the network are
given by φ = {φM, φA1 , · · · , φAK , φp, φf , φi}. With this setup, only features that are within an
activated feature set for task i are utilized by the network f . This allows for joint learning of the
g-networks across multiple tasks, while the output function f can specialize on a per-task basis,
where a task is a combination of a reward function and a state-space. By specializing per task,
rather than reward, the network can adjust the policy to account for differences in the observation
types. For example, part of the environment may be very noisy in one observation type and not
noisy in another. Learning is performed the same as in Riedmiller et al. [80] by regressing with
retrace [69] targets:

min
φ
L(φ) =

∑

T

Eτ∼B
[(
Q̂π
T (s, a;φ)−Qret)2

]
,with

Qret =
∞∑

j=i

(
γj−i

j∏

k=i

ck

)[
rT (sj, aj) + δQ(sj+1, sj)

]
,

δQ(si, sj) = γEπT
θ′ (a|s)

[Qπ
T (si, ·;φ′)]−Qπ

T (sj, aj;φ
′),

ck = min
(

1,
πTθ′(ak|sk, T )

b(ak|sk)
)
,

(4.5)

Here b are recorded policy probabilities under which trajectory T was recorded and and φ′

denotes parameters of a target network which is copied from current parameters θ using standard
target network update procedures.

57



The above describes the general approach, however, the specific policy optimizations may
differ depending on the off-policy algorithm used for learning. Additionally, aspects such as the
ck value may or may not be present depending on the use of techniques such as retrace [69].

Algorithm 3 shows the pseudo-code for the actor using our multiple state representation
SAC-X approach. We refer to algorithm as Multi-State SAC-X (MS-SAC-X) Actor. This al-
gorithm will run in a separate process from the Learner shown later. Multiple of these actors
can run simultaneously to parallelize exploration like in other works. [27] The actor takes four
parameters: number of trajectories N , number of steps per episode T , scheduler period ξ, and
number of tasks K. Each trajectory starts by fetching the latest actor network parameters from
the learner shown on line 3. Line 4 initializes an empty trajectory buffer which will be sent to
the learner after the episode finishes. Line 5 resets the environment and gets the initial state.
Lines 6 through 17 repeat until the episode finishes. At each episode step we check if the current
time-step t is a multiple of the scheduler period ξ. If so then on line 8 we sample a new task Ti
uniformly from the K auxiliary tasks and the main MDP taskM. Line 10 splits the state into
the specified feature sets for use by the actor network. On line 11 the agent samples an action
from the actor using the current state and task. Line 12 executes the chosen action to get a next
state s′. Line 13 calculates the auxiliary rewards and main task rewards for this state action pair.
The reward, action, and states are then added to the trajectory buffer on line 14. Lines 15 and 16
are book-keeping for the loop. After the episode finishes all samples in the trajectory buffer are
sent to the learner on line 18.

4.2.4 Policy Improvement
Similarly to the action-value function defined in the previous section, we can define policy net-
works as:

πTθ (·|st) = N (µT , Iσ
2
i )

[µT , σ
2
T ] = f([e1 � g1,:, e2 � g2,:, e3 � g3,:]; θT ),

g = [gθp(S
σ
proprio(t)), gθf (S

σ
features(t)), gθi(S

σ
image(t))]

T ,

e = [Iπ,proprio(T ), Iπ,features(T ), Iπ,image(T )],

(4.6)

Here N (µ, Iσ2) is a multivariate normal distribution with mean µ and a diagonal covariance
matrix. Policy parameters are θ = {θM, θA1 , · · · , θAK , θp, θf , θi} which are optimized using the
reparameterized gradient of J(θ) based on the learned Q-functions:

∇θJ(θ) ≈
∑

T

∇θEa∼πTθ (·|s)

[
Q̂π
T (st, a;φ)− α log πTθ (a|st)

]
, (4.7)

The second term is an additional entropy regularization with weight α. Note that different
policy representations may use something other thanN (µT , Iσ

2
i ) without changing how the pol-

icy outputs are filtered per task. However, both off-policy learning algorithms in the experiments
use a Gaussian policy for computational reasons. Additionally, different algorithms may or may
not include the entropy regularization term, or may include it in different parts of the equation.

Figure 4.1 is a diagram of the complete network architecture of a policy network with our
applications feature sets. The input layers use the previously described input gating architecture.
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Algorithm 3 SAC-X with Multiple State Representations Actor
Input N Number of trajectories

T : Number of steps per episode
ξ: Scheduler period
K: Number of Tasks

1: function MS-SAC-X ACTOR(N, T, ξ,K)
2: for n← 0, n < N do
3: fetch parameters θ
4: τ ← ∅ . Initialize new trajectory
5: s← reset environment
6: for t← 0, t < T do
7: if t mod ξ = 0 then . If scheduler period select new task
8: Ti ∼ Uniform(0, K + 1)
9: end if

10: sσfeatures, s
σ
proprio, s

σ
image ← split s into sets

11: a ∼ πθ(·|sσfeatures, sσproprio, sσimage, Ti) . Sample new action for task
12: s′ ← execute a
13: r ← [rA1(s, a), · · · , rAK (s, a), rM(s, a)]
14: τ ← τ ∪ {(s, a, r, s′)}
15: t← t+ 1
16: s← s′

17: end for
18: send τ to learner
19: n← n+ 1
20: end for
21: end function

The outputs are also gated like in the SAC-X paper. For our particular application only propri-
oceptive and feature groups are enabled for task 0 — thus allowing their inputs to flow into the
hidden layers of the f network — while the image network output is zeroed out. Bold lines show
which paths in the network are propagated to the output and allow gradients to flow. The red line
indicates where the gate zeros the output and as a side-effect prevents gradients from flowing
backwards.

In this work we assume that all of the outputs of the g functions are the same shape. These in-
puts are all summed element-wise. This reduces the amount of zeros flowing into the f network
layers, but it requires the assumption that each of the state-spaces can match the same expected
internal representations. If this is not true, then outputs of the g network can be passed as sepa-
rate, unique inputs to the f network. This would allow the f network to specialize to specific g
networks in specific tasks, but may slow down the learning by not requiring a common hidden
representation between the different feature set combinations.

Algorithm 4 shows the pseudo-code for the learner using the multiple state representation
SAC-X approach. We refer to this algorithm as Multi-State SAC-X (MS-SAC-X) Learner. This
algorithm runs in a separate process from the Actor in algorithm 3. We only run a single learner
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Task ID = 0 Sfilterproprio = [1, 1]

input gate

Sσproprio

Layer 0

· · ·

Layer i

Sfilterfeatures = [1, 0]

input gate

Sσfeatures

Layer 0

· · ·

Layer j

Sfilterimage = [0, 1]

input gate

Sσimage

Layer 0

· · ·

Layer k

⊕

gφp
gφf gφi

· · ·

Hidden Layer N

Gated outputs

Network Output for task 0

f

Figure 4.1: Network architecture with specific examples for two tasks evaluated on task 0 and
three state sets.

process in our experiments, but in principle you can run multiple and batch gradients from mul-
tiple learners before applying the parameter update. Line 2 and 3 initialize the algorithm, setting
initial actor and critic parameters and initializing an empty replay buffer B which will be filled
by the MS-SAC-X Actor from algorithm 3. Each iteration, a batch b is sampled (shown on line
5). Lines 6 through 12 convert this batch to a set of samples for different randomly selected tasks.
On line 8 we sample a random task. Lines 9 and 10 split si and s′i into the feature sets used by
the actor and critic. We also extract the specific task reward ri[Ti] from the array of rewards ri.
All of these pieces are combined into a tuple and inserted into the modified batch b′ on line 11.
On line 13 we update the actor and critic using an off-policy learning algorithm. In this thesis we
use both SAC and SVG-0 as our off-policy learning algorithms. Line 14 performs book-keeping
for the loop. We repeat this whole process until the number of requested parameter updates has
been reached.
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Algorithm 4 SAC-X with Multiple State Representations Learner
Input N Number of policy updates

1: function MS-SAC-X LEARNER(N,K)
2: θ, φ← initial actor, critic weights
3: B ← ∅
4: for n← 0, n < N do
5: sample batch b from B
6: b′ ← ∅
7: for each sample (si, ai, ri, s

′
i) in batch do

8: Ti ∼ Uniform(0, K + 1)
9: sσi,features, s

σ
i,proprio, s

σ
i,image ← split si

10: sσ
′

i,features, s
σ′
i,proprio, s

σ′
i,image ← split s′i

11: b′ ← b′∪
{

(sσi,features, s
σ
i,proprio, s

σ
i,image, ai, ri [Ti] , sσ

′

i,features, s
σ′
i,proprio, s

σ′
i,image, Ti)

}

12: end for
13: update policy parameters θ and φ using batch b′

14: n← n+ 1
15: end for
16: end function

4.2.5 Asymmetric Actor-Critic with Different State Spaces

Our approach shares similarities wit the existing asymmetric actor-critic technique from Pinto
et al. [74]. The asymmetric actor-critic allows the state space of the critic to be enhanced with
additional information that may not be available at test time. This can simplify the problem of
credit-assignment, leading to faster convergence of the critic network. After training, the critic
is not necessary, and can be discarded, similar to how our auxiliary tasks are discarded after
training. In this manner, our approach is an extension of the asymmetric actor-critic method to a
multi-task setting.

Additionally, the asymmetric actor-critic technique is complementary to our approach. For
example, we can restrict the critic state-filters (SfilterQ,i ) for all tasks to use only the feature obser-
vations. The goal being that it is easier to learn credit assignment in the distilled feature space,
which will lead to faster critic convergence, and therefore better actor updates. Additionally, we
have the flexibility to have different asymmetric representations for each task by having different
filters for each critic task. We refer to this as the asymmetric actor-critic setting in our empirical
evaluations.

4.2.6 Designing Auxiliary Tasks

In the previous sections, we described how to do learning with auxiliary tasks that use multiple
state representations. However, we did not give specific details on how one can design these tasks
when attempting to solve a particular problem. Unfortunately, it is not possible to say up-front
which auxiliary tasks are useful and which are necessary to successfully learn the goal task, but
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in this section, we give some general ideas of how to start.
The auxiliary tasks can be split into four major groups:

1. The task is required at test time

2. The task provides a shaped reward for a test time task

3. The task has relaxed constraints compared to the test time task goal

4. The task encourages exploration to potentially useful parts of the state-action space

Test Time Tasks In our work, we are considering only a single test time task, but in general
you may have more than one. Additionally, we are considering only a sparse reward version in
a specific state space. However, depending on the task one may want to use a more complicated
reward function to bias behavior in a particular manner or have test time tasks with different state
spaces. Before designing any helper auxiliary tasks, one must first determine what the test time
tasks reward and state spaces will be.

Reward Shaped Tasks Shaped rewards for test tasks, have been used for a long time in Re-
inforcement Learning [70]. While such rewards can greatly speed-up learning, it is very easy
to unintentionally learn useless policies that exploit the shaping function rather than achieve the
desired objective. By adding auxiliary tasks with shaping, yet keeping a task with the original
reward function for use at test time, one can get the benefits of shaping without the potential
downsides. Even if the shaped auxiliary task learns an exploitative policy, it will still generate
useful training data for the test-time sparse reward task. Therefore, adding various shaped reward
auxiliary tasks is a good starting point for any problem. Also, because multiple auxiliary tasks
can be created, one can try different shaping functions that emphasize different aspects of the
desired behavior.

Relaxed Constraint Tasks Achieving all conditions necessary for a sparse-reward goal-oriented
task can be quite difficult to achieve. Relaxed constraint tasks can help guide the agent to com-
pleting the full task by incentivizing it to complete easier versions of the task. For example, if
the test time task is to drive a robot to a specific (x, y) location. We could potentially create two
relaxed constraint tasks for this goal task. We could have a task that gives reward for matching
the x location only and a task that gives reward for matching y location only. Because match-
ing only part of the full test-time task goal is easier to achieve, the agent will likely see more
rewards, earlier and be able to learn a policy to achieve these exploration goals earlier. Addi-
tionally, once the agent is matching one of the coordinates, random exploration on-top of this
single-coordinate matching policy is more likely to hit the true goal conditions. Another way of
relaxing the constraints is to increase the tolerance of the sparse-reward goal task. For example,
instead of needing to be within 10cm of the goal location, we can have tasks that give rewards
when within 20cm and 100cm of the goal location. Similarly, once in this region, the agent is
closer to the goal, and so random exploration from this area is more likely to produce examples
of positive reward in the sparse goal task.
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Exploration Tasks Tasks encouraging exploration generally focus on rewarding reaching new
parts of the state-action space. Unlike the shaped reward tasks and the relaxed constraint tasks,
the goal of exploration tasks is not to complete the test time task goal or parts of the test time
task goal. The goal of these tasks is simply to explore and get “interesting” data for the policy
update to utilize when training the other tasks.

Given the above guidelines, it is easy to invent many different auxiliary tasks. Start with
the test time tasks, then add shaped and relaxed constraint versions of these tasks. Additionally,
include some exploration focused tasks to ensure good coverage of the state-action space. Given
the large number of tasks one can generate this leads to two questions:

1. Can we add too many tasks?

2. What if we add detrimental tasks?

Number of Tasks Given the above guidelines, it is generally easy to invent many different
auxiliary tasks. The concern then becomes how many tasks are too many tasks. We argue this
largely depends on the scheduler. In this thesis we use a uniform random scheduler. As the task
set grows, this will lead to each task having less time scheduled on average. While all tasks
collect training data, if the scheduling period is too small, the task switching can interfere with
the completion of any one task. Previous work used a more intelligent scheduler that attempted
to learn a good scheduling function based on the returns from the auxiliary tasks [80]. More
research into smarter schedulers can definitely improve the scalability regarding how many tasks
it is feasible to learn with. However, despite this, in our Ball-in-a-Cup experiments, we use 10 or
more tasks in various experiments and did not see any negative effects. The general rule of thumb
should be to add lots of auxiliary tasks, but tune the scheduler period so that the task interference
does not become too large.

Detrimental Tasks Finally, a remaining concern is whether adding a detrimental task can cause
the policy learning to fail. For example, a task with a reward that is the inverse of the test-time
task. Such a task would still generate rewards that would help train the test-time policy to avoid
the state-actions demonstrated by this inverse task policy. The downside is that after scheduling
the inverse task and then scheduling a non-detrimental task the agent will be starting far from the
goal. Another type of detrimental task is one that incentivizes the agent to do nothing. Unlike
the inverse policy task, the data collected by this task would likely be useless for the test-time
policy. However, given that it is only scheduled randomly, it is unlikely to cause major issues.
Later in the Ball-in-a-Cup experiments section we present results where such a task was added,
and yet the policy learning still converged. Overall, the rule of thumb should be to try to avoid
detrimental tasks, but as long as the number of detrimental tasks is small, it will likely not break
the policy learning.

4.3 Empirical Results from Simulated RoboCup SSL Domains

We now apply our technique to simulated tasks from the RoboCup SSL domain. During train-
ing we assume access to both features available from the vision detection system such as robot
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positions and estimated velocities. At test time our policy receives only images as state input
and must extract position and velocity information from these images. We demonstrate that our
technique works and that we can learn policies based on the vision data faster than if we had
learned with only vision data from the start.

4.3.1 Environment Description
We train policies for a simple navigation task. The goal is for a single robot on a 12m x 9m field
to navigate to a fixed position and orientation with some allowed amount of error in both. This is
similar to the go-to-ball skill learned in chapter 2, however, here we are not concerned with
a ball but simply controlling position and orientation. Additionally, in this environment we will
use a fixed goal position of the center of the field with the orientation of the robot facing right.
Figure 4.2 shows an example of the robot in the correct goal position and orientation. Finally,
while we will be using some tasks with features and reward shaping similar to those used in
chapter 2, ultimately we will be trying to learn a policy that works using only simulated images
and a sparse reward. The agent controls the robot at 10Hz for 300 steps (about 30 seconds). Each
episode starts with the robot at a uniform random position and orientation in the field.

Figure 4.2: An image of the simulated robot in the desired goal configuration

Table 4.1 presents the observation groups, along with the sizes that are used in the simulated
SSL navigation task. We use the position and velocity features that would be available on the
real SSL robots using the vision system. We construct the three image types by rendering a
high resolution overhead view of the robot and field, which corresponds to the high resolution
overhead camera view processed by the vision system. These images are cropped at various
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locations and down-scaled to get the images used as the state in the test-time task. We use three
image types: field image, robot image, goal image. The field image provides a low-res view of
the overall field, which has enough resolution to approximately determine robot position. The
robot image is created by cropping the high resolution overhead image around the robot’s current
position and then down-scaling. This provides the necessary resolution to determine the robot’s
current orientation. Finally, the goal image is a cropped area around the goal position that is
down-scaled. This allows the agent to fine-tune its position when it is near the goal so that it
can enter the sparse reward region. A history of the current images and the previous two time-
steps are stacked to allow the agent to estimate linear and angular velocity. In this domain the
proprioceptive features group Sσproprio is not needed.

State-group Observation Shape

Sσfeatures

Robot Position 2
Robot Orientation (sin/cos of angle) 2

Robot Linear Velocity 2
Robot Angular Velocity 1

Sσproprio

Unused —
Sσimages

Stacked Field Image 112× 84× 1× 3
Stacked Robot Image 32× 32× 1× 3

Stacked Goal Image 32× 32× 1× 3

Table 4.1: State group definitions with observation sources and shapes for the simulated SSL
navigation task.

Figure 4.3a shows an example of the full resolution overhead image that is cropped and down-
scaled to create the three image inputs. The goal region is shown as a white circle at the center of
the field. The center of the robot must be within that circle to get a +1 reward. The red line shows
the desired orientation. The flat part of the robot must be facing the right and within 5 degrees of
being perpendicular to that line to get the sparse reward. Figure 4.3b shows the down-scaled field
image from figure 4.3a provided to the agent. Note that the robot takes up approximately 1 pixel
in this image, meaning that it is enough to estimate coarse position but no orientation. And the
position information is not fine-grained enough to get within the circle consistently. Figure 4.3c
shows the cropped and down-scaled image of the goal region provided to the agent. In this case,
only part of the robot is within the cropped region. So we see the rounded back of the robot in
the upper right corner of this image. Figure 4.3d shows the cropped and down-scaled image of
the robot provided to the agent. This image is always cropped to the robot’s current position, so
we can see the full robot in its current orientation. When the robot is at the goal, the goal image
and the robot image will be very similar, just the goal image will be cropped to a bigger region.
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(a) An example of the simulated SSL field and robot for the navigation task. This is the full resolution
that is split into multiple images and downsized for processing by the actor and critic network. The white
circle shows the sparse goal region. The red line shows the goal orientation.

(b) Example of downsized
full-field image provided to the
agent for the simulated SSL
navigation task.

(c) Example of downsized
goal-region image provided to
the agent for the simulated SSL
navigation task.

(d) Example of downsized
robot image provided to the
agent for the simulated SSL
navigation task.

Figure 4.3: Examples of image observations given to agent during simulated SSL navigation
task
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4.3.2 Auxiliary Task Description
We use two different reward functions when training. Table 4.2 shows these two reward func-
tions.

Reward ID Reward Name Reward Function

1 Sparse Navigation +1 if robot is within 10cm of
the goal position and 5 de-
grees of the goal orientation.

2 Gaussian Shaping See equation 4.8

Table 4.2: Reward functions used for different tasks. Reward 1 is the main task reward that we
use at test time.

Equation 4.8 shows the shaped reward equation.

r2 =
5√
2π

exp−x
2 + y2 + θ2

2
− 2 (4.8)

In equation 4.8 x and y are the position coordinates of the robot with respect to the center of
the field and θ is the orientation of the robot with respect to the x-axis of the field. We reuse the
same coordinate frames as those shown in chapter 2 figure 2.3.

We use two different state groups: Sσfeatures and Sσimages as shown in table 4.1. We use two
different task state-spaces: features and images.

Tasks are a combination of state space type and reward function. We refer to specific combi-
nations by a reward ID, followed by either an “F” for the feature state-space Sσfeatures or “P” for
the pixel state-space Sσimages. For example, 1P rewards to the sparse task reward with the image
state-space, which is the task we are interested in at test time. We use the following tasks in our
experiments: 1F, 2F, 1P, 2P.

4.3.3 Comparison of State Space Combinations
We trained three different agents: a features agent, a pixels agent, and a features+pixels agent.
The latter being the technique contributed by this thesis. For a fair comparison both the pixels
only and features+pixels agent both use the asymmetric actor-critic technique. Therefore any
speed-ups can be attributed solely to the contribution of learning with multiple state representa-
tions. Table 4.3 shows the tasks used during training for each agent as well as the task we are
interested in at test time. All of the agents use the same network structure, but with different state
groups enabled/disabled based on train tasks. Additionally, all agents are trained with the Soft
Actor-Critic (SAC) algorithm. Appendix A.4 provides details on the specific network structures
and hyperparameters used.

We train each agent 3 times from scratch to show consistent behavior and that the results are
not very dependent on the randomly chosen initial parameters or the random exploration noise.
For each run, we save the parameters every 100 updates and then evaluate the test time policy
deterministically 10 times. We sum the rewards for each of these test runs and then average
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Agent Train Tasks Test Tasks

features 1F,2F 1F
pixels 1P,2P 1P

features+pixels 1F,2F,1P,2P 1P

Table 4.3: The combinations of train and test tasks used for each agent.

across the 3 independent runs. The lines show average performance and the shaded regions show
minimum and maximum performance across all runs.

Figure 4.4 shows the results of the evaluation. The solid lines show the mean across the runs
and the shaded area shows the minimum and maximum performance for each curve. Firstly,
we see that regardless of the training tasks and the test time state-space all three agents are
able to learn a similarly performing policy. As expected learning only with pixel state-space
tasks converges the slowest, even using the asymmetric actor critic technique. It reaches similar
performance after about 60,000 steps and then fully stabilizes at around 70,000. The training
continued for more steps than displayed and remained stable, but the plot has been clipped for
easier comparison between methods.

Figure 4.4: Learning curves comparing performance of learning only with features, learning
with pixels and features and learning only with pixels.

More interestingly, we see that the thesis approach of learning with both pixel and feature
state space tasks simultaneously and the baseline of learning with just feature based tasks perform
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similarly. The mean of the baseline features only runs and the features+pixels+asym runs are
approximately the same. Based on this result, for this domain, there does not appear to be a
difference in speed, showing that the thesis approach is capable of learning a sparse pixel state
space task about as fast as just learning a sparse feature state space task. While the means are
approximately the same, there does appear to be more variance in the features only baseline.
With the shaded region showing that the maximum performance of the features only is slightly
better than the maximum of the features+pixels+asym. For this simple task, the two techniques
perform almost the same. However, as will be shown in later sections, this is not always the case.
For more complex tasks and more realistic images the gap between the features only baseline
and the thesis technique will increase

One may also wonder why the agents sometimes drop in performance for a small span and
then quickly improve performance again. Looking at the executions of these policies visually,
we see that when the performance drops, it is not because the agent has completely forgotten
how to do the task. Instead, the agent still drives near to the goal region, but isn’t quite inside
it. It may get small amounts of reward from passing through the goal region though. Once the
agent does a few more policy updates it fine-tunes its behavior to more accurately drive to the
goal region, causing the performance to jump back up.

4.3.4 Comparison Between Tasks
Figure 4.5 shows a comparison of each of the training tasks from the features+pixels agent. Two
of the tasks (2P, 2F) use shaped rewards, which have a maximum total episode reward of 0. Two
of the tasks (1P, 1F) use sparse rewards, which have a maximum total episode reward of 1. Note
that in practice the maximum is not achievable unless the agent starts at the goal and remains
there for the whole episode. The hypothesis of our approach is that the the feature tasks with
shaped rewards converge first, which generate good training data and a good internal represen-
tation for the high-dimensional pixel state space. Once the shaped rewards are converged for all
the state spaces we should see the sparse rewards for the different state spaces converge. This is
exactly what we see in the figure. At around 4,000 actor updates the 2F task (i.e. shaped fea-
tures) converges. Shortly after at about 5,000 updates the 2P task (i.e. shaped pixels) converges.
After convergence of these shaped tasks the agents begin getting lots of examples of hitting the
sparse reward region and at about 30,000 actor updates the remaining two tasks using the sparse
rewards converge.

4.3.5 Qualitative Performance of Sparse Pixels Policy
Figure 4.6 shows an example of an execution of the trained sparse pixel policy (i.e. 1P). The left
column shows the color simulated images with the goal location and orientation drawn on top.
The images are cropped to allow for easier viewing in the document. The goal location is the
white circle and the goal orientation is marked by the red line. The right column top image shows
a cropped version of the full field image given to the agent. The bottom left image in the right
column is the goal region image given to the agent. When the robot is at the correct location the
robot should appear in this image at approximately the center.The bottom right image in the right
column is the robot image given to the agent which provides orientation information. Overall,
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Figure 4.5: Learning curves comparing the performance of each train task from the fea-
tures+pixels+asym agent.

across most runs, we see the robot twist towards the goal orientation while simultaneously mov-
ing towards the goal location. Often it has reached the goal orientation log before it has gotten
to the goal location.

Figure 4.6a shows the initial state in this episode. The robot starts facing up and above the
goal location. As the robot is far from the goal region the goal image is empty. You can see
that the field image given to the agent gives a rough position and the robot image gives a good
estimate of current orientation. Figure 4.6b shows the robot after about 20 time steps. The
robot has twisted to be close to the goal orientation and has moved much closer to the marked
goal location. Finally, figure 4.6c shows the robot after it has reached the goal location and
orientation after about 30 time steps. We can see the goal image now contains the robot and the
robot is at approximately the right location. This goal image allows the agent to fine-tune its
position once it is near the goal.
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(a)

(b)

(c)

Figure 4.6: A sequence of images from an execution of the trained sparse pixel policy on the
SSL navigation task.
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4.4 Empirical Results from Ball-in-a-Cup Task
The previous section showed that our technique works for our running example of RoboCup
SSL. In this section we show that this technique works on the Ball-in-a-Cup task preformed by
a robot arm. This demonstrates that the contributed technique works outside of the RoboCup
domain and on a more complex domain. Additionally, we demonstrate this technique directly on
real-robot hardware. Showing that the speed-ups are enough to learn from scratch, on real-robot
hardware, a policy for a dynamic task that utilizes only raw images and proprioceptive features.

4.4.1 Ball-in-a-Cup Environment
This section describes the experimental setup for both simulation and the real-robot. Table 4.4
shows the observations in each previously defined state-group (i.e. Sσproprio, Sσfeatures, S

σ
textimage)

along with the observation source and shape.

State-group Data Source Observation Shape

Sσfeatures

Vicon

Cup Position 3
Cup Orientation (Quaternion) 4

Ball Position 3
Finite Differences

Cup Linear Velocity 3
Cup Angular Velocity (Euler Angles) 3

Ball Linear Velocity 3
Sσproprio

Sawyer

Joint Position 7
Joint Velocities 7

Task

Previous Action 4
Action Filter State 4

Sσimages

Stacked Color Front Image 84× 84× 3× 3
Stacked Color Side Image 84× 84× 3× 3

Table 4.4: State group definitions with observation sources and shapes.

We use a Sawyer robot arm from Rethink Robotics 3, which has 7 Degrees of Freedom (DoF).
The policies control velocities of 4 out of the 7 DoFs (joints J0, J1, J5, J6), which are sufficient

3http://mfg.rethinkrobotics.com/intera/Sawyer_Hardware
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to solve the task. Unused DoFs are commanded to remain at a fixed position throughout the
episode.

For the real robot, position and orientation features are determined by an external Vicon
motion capture system. IR reflective markers are placed on the cup and ball and the Vicon
tracks clusters to determine positions and orientations. Estimates are accurate to sub-millimeter
precision, have low latency, and low noise.

Our setup includes two external cameras positioned roughly orthogonally to each other (see
Figure 4.7). RGB frames of 1920 × 1080 pixels are captured at 20 Hz and down-sampled via
linear interpolation to 84 × 84 pixels. A stack of the current frame and 2 previous frames are
passed into the neural network. Figure 4.8 shows pictures of the real camera images seen by the
robot during training and testing. No effort was made to finely calibrate camera positions, crop
images, tune white balance or correct for lens distortions. Instead, we rely on the adaptability of
the learning system to cope with these negative visual effects.

Figure 4.7: Picture of the real robot setup.

Figure 4.8: Agent’s perspective: down-sampled front camera (left) and down-sampled side cam-
era (right) with (84× 84) pixels.
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Data from proprioception (100Hz), Vicon (∼100Hz) and cameras (20Hz) are received asyn-
chronously. State observations are sampled at 20Hz with no buffering (i.e. latest data is always
used). The agent controls the robot synchronously with action sampling at 20 Hz. The control
rate was chosen to allow for dynamic reactions to the current ball position and velocity, while
not being so high that the learning algorithm is overwhelmed.

Physical Setup

The ball has a diameter of 5cm and is made of foam to prevent damage to the robot while
swinging. A Kevlar string of 40 cm is used to attach the ball to a bearing fixed to the robot’s
wrist. The bearing’s axis of rotation is coincident with the robot’s wrist axis of rotation to prevent
winding of the string while swinging the ball — when the ball goes around the wrist the string
rotates freely via the bearing.

The cup is 3D printed, and a woven net is attached to it ensuring visibility of the ball even
inside the cup. The cup is attached to the wrist after the bearing. Experiments are performed
with two cup sizes: a large cup with 20cm diameter at 16cm height and a small cup with 13 cm
diameter and 17cm height. Unless otherwise stated, experimental results are for the large cup.

Robot Safety

Training with the real robot presents safety issues for the robot and its environment. An agent
sending a large, random velocity action to the robot may cause self-collisions or collisions with
the environment. Additionally, quickly switching between minimum and maximum velocities
incurs wear to the robot’s motors. We utilize an action filter as well as a number of hard-coded
safety checks to ensure safe operation.

The Sawyer has built in self-collision avoidance. To prevent collisions with the workspace,
and keep everything within the trackable volume, we limit the joint positions to within a safe
region.

To prevent high frequency oscillations in velocity commands we pass the network output
through a low-pass first order linear filter with cutoff frequency of 0.5 Hz. The cutoff frequency
was chosen qualitatively so that the robot can build up large velocities before hitting joint limits,
while still preventing switches between minimum and maximum velocities. This filter has an in-
ternal state which depends on the history of actions. To keep the problem Markovian, we provide
the agent with an internal state of the action filter as part of the proprioceptive observations.

Episode Resets

Training is episodic with a finite horizon of 500 steps per episode, resulting in a wall clock time of
25 seconds per episode. Intention policies are randomly switched every 100 steps (dividing each
episode into 5 subsets). This increase diversity in starting positions for each policy. Episodic
training in simulation is easy, as the simulator can be reinitialized each episode. On the real-
robot, resetting is significantly more challenging due to string wrapping and tangling around
the robot and the cup. The string is not easily modelable or observable, making it difficult to
come up with a principled method of planning an episode reset. Instead, a simple, but effective
means is utilized to allow for automatic resets, thus allowing for unattended training. The robot
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commands the joints to drive to positions from a predefined list at random. Positions were chosen
to maximize the twisting the arm undergoes when moving between positions. This procedure is
run until it is detected that the string is untangled.

Simulation

We use the MuJoCo physics engine for simulation experiments. A model of the robot’s kinemat-
ics and dynamics was implemented using the parameters provided by the manufacturer. We do
not attempt to perfectly mimic the particulars of the real robot (i.e. via system identification).
The simulation is mainly used as a tool to gauge asymptotic learning behavior, our real-robot
experiments make no use of the simulation. Observations come directly from computed simu-
lation state, meaning that the observations are noise free. This is particularly important for the
image observations as they are rendered with a plain background and do not contain real camera
artifacts like distortion or motion blur. Figure 4.9 shows the simulation setup along with samples
of the simulated camera images.

Figure 4.9: Example of the simulation (left column) along with what the agent sees when using
the images (right column).

4.4.2 Experiments

Task Descriptions

Table 4.5 shows the reward functions used in the simulation and real-robot experiments. Ball
position is always w.r.t. the cup coordinate frame. Note that r5 is the main sparse reward function
for the Ball-in-a-Cup task (i.e. the reward we care about at test time).
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Reward ID Reward Name Reward Func-
tion

1 Ball Above Cup Base +1 if ball height
is above the base
of cup in the cup
frame

2 Ball Above Cup Rim +1 if ball height is
above rim of cup
in cup frame

3 Ball Near Max Height +1 if ball height
is near the max-
imum possible
height above cup
in cup frame

4 Ball Near Opening Shaped distance
of ball to center
of cup opening

5 Sparse Catch +1 if ball in cup
6 Shaped Ball Above Cup Base See equation 4.9
7 Shaped Swing up See equation 4.10
8 Do nothing (distractor task) Negative reward

proportional to
joint velocities

Table 4.5: Reward functions used for the different tasks. Reward 5 is the main reward for the
actual Ball-in-a-Cup task.

Figure 4.10 illustrates the different cup reference frames and positions used for reward com-
putation (e.g. the base, rim, etc.). The formula for r6 is defined in equation 4.9, which was tuned
to return [0, 1] based on minimum and maximum ball height respectively. The reward shaping
of r7 uses a 2D Gaussian with µ = 0 (cup base center) and σ = 0.09 for both X and Y axes, as
in equation 4.10. In this case, σ is defined so that values within [−2σ, 2σ] coincide with the cup
diameter and return zero when the ball is below the cup base.

r6 =
1 + tanh(7.5z)

2
, (4.9)

r7 =
1

2πσ2
e
−(x2+y2)

2σ2 . (4.10)

As discussed in previous sections, we use three state-groups: Sσproprio, Sσfeatures, S
σ
images. We use

two main state-spaces for the different training tasks, which we refer to as feature state-space
and pixel state-space. Feature state-space tasks have both Sσproprio and Sσfeatures enabled. Pixel
state-space tasks have both Sσproprio and Sσimage enabled.

Tasks are a combination of state space type and reward function. We refer to specific combi-
nations by a reward ID, followed by either “F” for feature state-space or “P” for pixel state-space.

76



Above Base: 0

Above Rim: 0
Max Height: 0 Sparse Catch: 0

Above Base: 1

Above Rim: 1
Max Height: 0 Sparse Catch: 0

Above Base: 1

Above Rim: 0

Max Height: 0

Sparse Catch: 1

Figure 4.10: Parts of the cup referred to in the task reward function definitions.

For example, 1F refers to task with reward 1 and feature state-space.

Simulation Results

We performed an ablation study in simulation, so that training runs can be parallelized and mean-
ingful statistics can be easily gathered. To evaluate we used the following procedure: after each
episode of training we freeze the weights of the main task policy and run an evaluation episode
for the sparse catch task (using the appropriate state-space) and report the cumulative reward.

Figure 4.11 shows the results of the ablation experiment. Each curve in the plot is the mean
of 10 independent runs of the average reward of the evaluated task. The yellow curve shows an
evaluation of task 5F when trained with tasks 1F, 2F, 3F, 4F and 5F. As hypothesized, training
with only features converges fastest — presumably because it is easier to learn with feature state-
space given the low dimensionality and expressiveness. With an episode time of 20 seconds,
learning succeeds in time equivalent to approximately 5.5 hours of real-time training. The purple
curve shows the evaluation of task 5P when trained with tasks 1P, 2P, 3P, 4P, and 5P. Using only
images results in training times that are approximately 8 times slower. This corresponds to an
estimated 1.6 days of continuous training time on a real robotic system. In practice, this time
would be even higher due to episode resets and the addition of noise in the observations.

The red and green curves show the results of our method. The red curve depicts the evaluation
of task 5P when training is performed with tasks 1F, 2F, 3F, 4F, 5F, 1P, 2P, 3P, 4P and 5P, with
∀i, SfilterQ,i = Sfilterπ,i . This leads to a significant speed-up in learning time compared to training
with images alone. Our method is slower by only a factor of 2 compared to training from only
features. The green curve shows the evaluation of task 5P when trained with tasks 1F, 2F, 3F, 4F,
5F, 1P, 2P, 3P, 4P and 5P, but this time with the asymmetric actor critic technique (i.e. Sσfeatures
enabled in all critic filter lists and Sσimage disabled in all critic filter lists). This leads to a slight
improvement in early training, likely due to a speed-up in convergence of the critic network.

Figure 4.12 shows a series of frames from a typical successful run of the sparse reward pixel
policy in simulation. Each frame has four quadrants. The left quadrants are the full resolution
images generated by the simulated cameras. These are down-scaled to produce the low resolution
images in the right quadrant which are passed to the agent. Figure 4.12a shows the start of
the episode with the ball hanging statically below the cup and the arm in the standard starting
position. Figure 4.12b shows the initial swing of the arm to the right. Figure 4.12c shows the arm
reversing direction with the correct timing so that the balls momentum increases. Figure 4.12d
shows the arm continuing small swings to finish building the ball’s momentum. Figure 4.12e
shows the ball just before the catch. Pay attention to the upper row where it is clear the ball is
not yet in the cup. If you look at the bottom row it is not clear if the yellow ball is in the cup or
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Figure 4.11: Comparison of simultaneously learning in different state spaces vs baselines in
simulation.

not. This highlights the fact that both cameras are necessary for this task. Finally figure 4.12f
shows the arm just after successfully catching the ball. The arm remains mostly motionless for
the remainder of the episode, making only slight movements to the left.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Sequence of frames taken from a run of the learned simulated Ball-in-a-Cup policy
using images.
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Learning from Features on a Real Robot

The simulation results suggest that our approach can lead to significant speed-ups in training as
compared to learning only with raw images. But our simulation was not designed to be a perfect
replication of the real-robot system. Firstly, the simulated parameters of the robot (e.g. actuator
torques, joint frictions, etc.) are likely not closely matching the real robot. Secondly, sensors in
simulation are prefect with no noise and missing observations, unlike in the real world. To gauge
learning performance on the real robot compared to simulation, we first trained a a feature-based
policy with feature only on the real robot.

We used a combination of tasks 1F, 2F, 3F, 4F, 5F and 8F together with the larger cup.
Figure 4.13 shows the resulting average reward of task 5F. Note that only a single robot is used
and training takes place with minimal human supervision (humans intervene only to reset the
environment when the robot is unable to reset after multiple tries).
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Figure 4.13: Real robot learning curve of task 5F for runs learning the Ball-in-a-Cup task with
combinations of tasks 1F, 2F, 3F, 4F, 5F and 8F.

The yellow curve shows the performance of the policy for task 5F when only task 5F is used
for training. This demonstrates learning is possible on the real robot with only a sparse reward,
however, the other curves demonstrate that training speed can be improved with good auxiliary
tasks. This is in agreement with the existing SAC-X work [80]. The purple curve shows the result
of training with a purposefully useless “distractor” auxiliary task (8F). Despite this useless task,
the robot learns a good sparse catch policy from features in approximately the same training
time as when only useful tasks are provided to the agent. This suggests that while finding a
minimal, optimal set of auxiliary tasks may be difficult, it may be safe to just add any additional
auxiliary tasks one thinks may be useful, with minimal effect on training time and final policy
performance.

Qualitatively, policies perform well. The swing-up is smooth and there is recovery from
failed catches. Over 20 runs, each trial running for 10 seconds, we measured a 100% catch rate.
The shortest time to catch being 2 seconds.

We repeated these experiments with the smaller cup, which increases the difficulty of the task,
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in order to assess achievable precision and control. There was a slight slow-down in learning and
a small drop in catch rate to 80%, still with a shortest time to catch of 2 seconds.

Learning with Different State-Spaces on a Real Robot

We applied our full method to obtain an image-based policy for the Ball-in-a-Cup task. Because
of the long experiment times on a real robot, we opted to only use the approach that worked best
in simulation: learning with different state-spaces combined with asymmetric actor-critic. We
initially used tasks 1F, 2F, 3F, 4F, 5F, 1P, 2P, 3P, 4P, and 5P as in simulation. The task policies
showed improvement, but learning was slower than in simulation. To minimize experimentation
time we changed the auxiliary rewards into shaped rewards, with the intention of speeding-up
training time for the auxiliary tasks so that good training data for the sparse catch task was more
quickly generated.

Figure 4.14 shows the learning curve for task 5F and 5P when trained with 5F, 6F, 7F, 5P, 6P,
and 7P. The critic filter vectors enabled only Sσproprio and Sσfeatures for all tasks. Policies for both
state-spaces converge to their final performance after around 5,000 episodes. This training time
is longer than the equivalent simulation experiment. The increase in training time is likely due to
differences in the quality of the simulated vs real-world camera images. The simulation images
are noise-free, have no motion blur, and are consistently lit with proper colors. Also, the robot
joint sensor have noise and delays which are not modeled in the simulation. Despite this, we are
able to learn a sparse catch policy utilizing only image and proprioception data, from scratch in
about 28 hours — ignoring time for episode resets. This is about twice as many episodes as in
our successful simulation experiments.
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Figure 4.14: Learning curve for task 5F and 5P. Training was done with tasks 5F, 6F, 7F, 5P, 6P,
and 7P. The asymmetric actor-critic technique was used.

We evaluated the policy learned after 8,360 episodes. During evaluation, exploration noise
was set to zero. We ran a total of 300 episodes, achieving 100% catch rate (i.e. a catch occurred
in all 300 episodes). Results of the evaluation, showing total reward and time to catch, are shown
in Table 4.6.

Figure 4.15 shows a series of frames from a typical successful the execution of the pixel
sparse reward policy. Figure 4.15a shows the robot running the reset procedure to begin a new
episode. The robot dumps the cup to make sure the ball is hanging below before beginning.
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Mean Min. Max.

Catch time (seconds) 2.39 1.85 11.80
Total reward (maximum of 500) 409.69 14.0 462.0

Table 4.6: Evaluation of pixel sparse catch policy over 300 episodes.

Figure 4.15b shows the start of the episode. Figure 4.15c shows the initial swing of the arm
which begins building momentum in the ball. Figures 4.15d and 4.15e shows the arm making
small swings with the correct timing to continue building the ball momentum. Figure 4.15f
shows the frame just after the ball has entered the cup.

4.5 Summary
In this chapter we have introduced one of the major thesis contributions: how to learn simul-
taneously with multiple state representations. The goal of this technique to speed-up learning
for high-dimensional state-spaces by providing distilled state representations at train time that
are unavailable at test time. Such high-dimensional state spaces could be the tensor state-action
spaces described in chapter 3 or raw sensors such as camera images. We show that our tech-
nique works with off-policy, probabilistic RL algorithms, allowing for further improvements as
fundamental algorithm performance improves. We demonstrated that our technique works for
simulated RoboCup SSL domains. Additionally, we showed that our technique works even on
very different robots and tasks by learning the Ball-in-a-Cup task with a robot arm directly on
real-hardware from scratch. This contribution of the thesis is not only generally applicable, but
can be applied today on real-world robots.
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Figure 4.15: Sequence of frames taken from a run of the learned real Ball-in-a-Cup policy using
images. Top left corner shows the two down-scaled images used by the agent.
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Chapter 5

Related Work

In this chapter, we discuss related approaches to the two thesis contributed techniques: tensor
state-action spaces as a transferrable representation and multi-task learning with different state
spaces. The contributions in this thesis are compared to existing works with differences and
improvements highlighted. In addition, we also discuss prior related work on Multi-Agent Rein-
forcement Learning (MARL) and RL work applied to the two major test domains used through-
out this work: Ball-in-a-Cup and RoboCup SSL.

5.1 Transferrable Representations
This section provides an overview of transfer techniques and techniques related to our trans-
ferrable representations. A brief overview of related multi-agent learning and multi-agent trans-
fer is also included, as we demonstrated our transferrable representation in chapter 3 on multi-
agent domains.

5.1.1 Transfer Learning
Transfer learning is the study of how to take policies and knowledge from one environment
and reuse the knowledge in a new, but similar environment in order to speed-up training or im-
prove final policy performance [100]. There are many different approaches to transfer learning,
with different assumptions about what properties of the environment can change including: state
space, action space, reward function, transition dynamics, or a combination of different proper-
ties. This thesis focuses on designing a representation that can encode the assumptions about
which aspects of the domain remain fixed, in order to make transferring learned policies easier.

Classic Transfer Learning Approaches

Just as there are many different assumptions about which parts of the environment can change,
there are many different approaches to how to actually perform the transfer. One method is try
and transfer partial policies between domains [5, 8, 54]. Typically, the agent, like in hierarchical
RL, will try and learn options [93], with the change that these options will be reused in the trans-
ferred environment. Another related approach is to learn a similarity function for policies and
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environments and then probabilistically transfer the policies to environments with high similari-
ties [30]. Another option is to try and directly transfer information about environments or regions
of environments with similar dynamics [57]. If these regions can be identified then the collected
exploration data can be reused in the new environment. Another approach is to use experience
in a new domain to correct a model learned in a previous domain [119]. This corrective data can
come through new data collection or a human teaching signal.

A method related to this thesis approach of finding transferrable representations is the use of
proto-value functions (PVF) for transfer [28, 63]. Proto-value functions is a method of learning
a set of orthogonal basis functions tailored for an environment that can then be used with a linear
weighted sum policy. In the context of transfer, a PVF can be learned in one environment and
then reused for training in a new environment [28]. By starting with a good representation in
the new environment the learning can be improved. While both this thesis and this work look
at transfer learning using good representations, the approaches are significantly different. PVF
are designed for linear weighted sum policies, whereas this work looks at representations in a
deep learning context. This work also explores transfer in multi-agent contexts and with different
assumptions about which parts of the environment are changing.

Simulation to Real (Sim2Real) Transfer

In robotics, a lot of effort has been put into exploring training in simulation and then executing
policies on real robot hardware. This approach is commonly known as Sim2Real [84]. There are
many approaches that attempt to completely eliminate the differences between simulation and
the real environment. If this is perfectly achieved, then nothing related to transfer learning is
being done. However, there are two commonly used techniques which do bring in an element of
transfer learning: domain randomization during training [72, 106] and additional training after
simulation in the real-world [84]. Domain randomization attempts to account for the differences
between the training simulation environment and the transferred to real-world by training with
many different perturbations to the physics settings such as coefficients of frictions, actuation
forces, and even integration time-steps [72]. Given that the agent is training across many similar
related tasks in parallel, this can also be viewed as multi-task learning [27, 46, 73].

Meta-Learning

A more modern technique, meta-learning, is also related to transfer learning. Unlike transfer
learning, which attempts to leverage previously used information from an environment in a new
environment, meta-learning attempts to learn how to improve the learning algorithm itself [6, 24,
31, 48]. One approach uses a neural network to do the gradient descent optimization [6, 48].
This network can be optimized to perform updates which lead to faster convergence. Another
approach is the Model-Agnostic Meta-Learning (MAML) class of algorithms, which attempt to
optimize a network so that when the network is applied on subsequent problems the number of
optimization updates needed is minimized [31].
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Relational Reinforcement Learning (RRL)

Relational Reinforcement Learning (RRL) is a different way of defining an MDP and RL frame-
work where the transitions and rewards are defined in an agent and object centered way [23, 25,
38]. Environments consist of a set of classes, each with multiple instances with their own state
variables. Transitions and rewards are defined as functions on class instances. The goal is to
learn value functions for the different relations which can then be composed to find a policy for
the specific instance of the environment. Previous work has explored this concept as a means to
transfer policies across varying amounts of agents and objects in an environment [38]. However,
this work assumed that value functions were composable and that the transitions and rewards
could be defined in a relational way. This thesis does focus on transferrable representations that
can accomplish similar goals (e.g. transfer a policy to different numbers of agents and objects),
but it does not require a relational MDP formulation.

5.1.2 Multi-Agent Reinforcement Learning (MARL)

Multi-Agent Reinforcement Learning (MARL) is reinforcement learning when there are multiple
agents learning policies in the same environment [18]. Each agent needs to learn not only how
to accomplish it’s goals but how to adapt to the policies of the other agents in the environment.
These other agents may be adversarial or cooperative or a mix of both. Recently there have
been a few high profile successes in multi-agent learning including human-level performance in
first-person capture the flag [50], the Dota 2 OpenAI Five Challenge [71], and the StarCraft II
AlphaStar bot [112]. While this thesis does not focus on multi-agent learning specifically, some
of the transferrable representation work presented in chapter 3 is designed to work in multi-agent
environments. Therefore, this section contains a high-level overview of MARL and multi-agent
transfer learning techniques.

There are many existing works on multi-agent learning. The most straightforward approach
in a cooperative environment is to find a centralized policy for the MDP [18]. This policy will
take in a Cartesian product of each agent state and output a Cartesian product of actions for each
agent. While this approach works, it can be quite expensive in terms of computation and training
data as the dimensionality of the state and action space grows quickly for each new agent. It
also is not suited for environments where the internal states of the other agents are unknown or
uncontrollable.

Another method of multi-agent learning is to naı̈vely apply an RL independently to each agent
in the environment pretending that the other agents are static and part of the environment [18].
While this approach can work in some cases, the non-stationarity of the other agents breaks the
assumptions of standard RL algorithms and can lead to a failure to learn. One method to rectify
this is to do importance sampling on the training data [32]. Data where the recorded transition
actions of the other agents match the current agent policies are unmodified, while actions that are
drastically different to the current policy are down-weighted. This has successfully been applied
to small StarCraft inspired domains [32].

A different approach is to allow agents to communicate with one another, either through a
learned language or a fixed vocabulary [33]. Before choosing an action, each agent can com-
municate with its peers. By sharing information with their peers the agents can learn about the
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internal states of the other agents and adjust their behavior accordingly. It is also possible to
share some of the internal hidden layers to help coordinate agents [97].

An alternative to sharing at test time is to share at training time. In an actor-critic setup, it is
possible to use the asymmetric actor-critic technique [74] to provide the critic with the states and
actions of the other agents [34, 62]. This allows the critic to learn a good estimate of the value of
an individual agents actions for a state, which leads to better optimization of the policy.

More game theoretic approaches are also possible, especially in adversarial environments
such as StarCraft II. Bowling and Veloso [12] presented a method of adapting learning rates
in a multi-agent context such that under certain conditions a Nash equilibrium strategy would
be found by the agents. AlphaStar used a tournament self-play training to slowly ramp-up the
complexity and quality of the trained agent strategies. New opponents in each tournament round
were created by branching off of successful versions of the agent from the previous tournament
rounds.

Some approaches such as the OpenAI Five [71] and First-person capture the flag [50] make
use of reward schemes where individual agents are incentivized to cooperate by a team reward,
while learning individual behaviors with an agent specific intrinsic reward. This approach is
often combined with one of the above approaches in order to have stable learning.

5.1.3 Multi-agent Transfer Learning
In this thesis we have applied our transferrable representations to MARL and then transfer these
policies as the number of agents in the environment vary. Work in Relational Reinforcement
Learning (RRL) is most similar to this approach [23, 25, 38] (see section 5.1.1). Because of the
way transitions and rewards and value functions defined based on classes of objects, it is possible
to vary the number of instances of the classes without having to relearn the value functions and
policies. However, as mentioned, this approach requires the MDP be defined as a relational MDP
which differs from standard formulations. It also placed requirements on the composability of
the sub-value functions.

Overall, the subject of multi-agent transfer learning has not been the subject of much inves-
tigation. Most of the techniques are adaptations of single agent transfer learning to multi-agent
scenarios. Adapted techniques include: object oriented MDPs [22], task mappings [11], experi-
ence sharing [99], supervision from more experienced agents [36].

5.2 Simultaneous Representations

In this section we explore techniques related to our approach of simultaneously learning policies
with different state spaces. We discuss auxiliary reward task learning, curriculum learning, multi-
task learning, and behavior cloning as related techniques.

5.2.1 Auxiliary reward tasks
The approach of learning multiple policies with different state and action spaces is an extension
of work using auxiliary tasks for training. Typically, previous work has restricted the auxiliary
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tasks to different reward functions or loss functions [49]. One of the earliest examples of this
approach is the idea of General Value functions Sensorimotor streams [98] This idea was ex-
tended to Deep RL in work on Universal Value Function Approximators [85], which learns a
goal conditioned action-value function. Each goal can be considered an auxiliary task. Hind-
sight Experience Replay (HER) [7] introduced the idea of computing rewards for different goals
“in hindsight” by treating the end of the recorded trajectory as the intended goal. Scheduled
Auxiliary Controller (SAC-X) [80], which this thesis extends, generalized this idea by learning
multiple “intention policies” for different semantically grounded, auxiliary tasks. Each of the
intention policies is executed to drive exploration for the other intention policies.

5.2.2 Curriculum learning

Our approach can also be related to curriculum learning approaches [9]. Curriculum learning
tries to speed-up learning and improve the final learned policy by starting the training on simple
tasks, and slowly increasing the difficulty/complexity over time. This technique was an important
component of letting a variety of simulated agents learn to walk over difficult terrain [45]. The
training course used by the walking agents started smooth, with easy obstacles, and as the agent
moved farther from the start, the obstacles got more and more difficult to navigate.

Curriculum learning approaches typically track internal metrics such as improvement in re-
ward, or an intrinsic motivation reward signal. These metrics are used to either schedule difficulty
changes or invent new training tasks [35, 52, 86]. Unlike some other curriculum approaches, we
restrict our available tasks to a pre-defined set. While SAC-X can do adaptive scheduling of the
different tasks, in this thesis we focus on the simple case of uniform random task selection.

5.2.3 Multi-task learning

Our approach is also related to multi-task learning, which has been studied in numerous other
contexts [27, 46, 73]. However, prior approaches have mostly focused on varying reward func-
tions and varying environment behaviors. Whereas the state space and action spaces were the
same. For example, multi-task learning across multiple Atari games [27], while the content in the
images used as the state are different for each game, the states are still images containing Atari
graphics. Additionally, the action space of the controller does not change between games. Work
on multi-task learning with varying observations is more scarce. The most similar approach to
the one presented in this thesis is the asymmetric actor-critic technique [72, 74]. In this technique
the critic network receives additional state-input which is only available at training time, while
the actor receives only the state observations used in the final test time policy. The goal is to ease
credit assignment by providing additional context in the critic to help when training with policies
that use images as the state. The work in this thesis generalizes this idea to different states not
only between the actor and critic, but also across different tasks. It also explores different action
spaces between different tasks.
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5.2.4 Behavior cloning

Our approach has weak connections to behavior cloning [1, 58, 59, 82], a form of imitation
learning where an agent attempts to replicate another agent’s policy. In this thesis, we show how
a policy can be learned that works with multiple state and action spaces. Typically, one state
space will be a feature-based representation for the task, and the other state space will be a raw
sensor based representation, such as images. Once the agent has learned a reasonable behavior in
the feature-based state space, this can be seen as generating demonstrations for the vision based
policies (or vice versa depending on which policy improves first). However, unlike techniques
like Guided Policy Search (GPS) [58, 59], which then treat the policy learning as a supervised
learning problem which attempts to duplicate the same behavior, we allow the different state
spaces to learn completely different behaviors. Rather than maximizing the similarity between
policies in each state-action space, we are still interested in learning the optimal policy according
to the transition samples collected.

5.3 Environments

Reinforcement Learning has been applied successfully to many environments. From classic
board games like Go [91, 92] to video games like Atari [66, 67] and even to simulated and
real-world robotic tasks like flying a model helicopter [2], robot soccer [78, 95], flipping pan-
cakes [55], manipulating objects [3, 72], walking [45], and Ball-in-a-cup with a robot arm [19,
53]. Given the wide variety in domains, there are many domains this thesis could demonstrate
its approach with. However, for the most part we choose to focus on dynamic tasks.

Dynamic robotic tasks have additional difficulties when compared to static robotic tasks.
Goal states are often located in unstable parts of the state space that are difficult to reach (and stay
in) with random exploration. Additionally, the minimum control rates necessary to achieve good
performance usually are higher due to these instabilities. Nonetheless, reinforcement learning
for dynamic robot tasks has been performed in the past on tasks such as pancake flipping [55],
walking on unstable surfaces [40], and as used in this thesis the Ball-in-a-Cup task [19, 53].

5.3.1 Ball-in-a-Cup

As described in previous chapters and sections, the Ball-in-a-Cup game consists of a robot arm
holding a cup with a ball hanging below attached via a string. The goal being to swing the ball
up and catch it in the cup. This domain has been previously studied in the context of robotic rein-
forcement learning [53]. Chiappa et al. [19] complete the task with a simulated robot arm using
motion templates generated from human demonstration data. More directly related, Kober and
Peters [53] complete the Ball-in-a-Cup task on a real robot but their required imitation learning
through kinestetic teaching, reward shaping, expressive features, and a policy class restricted to
Dynamic Movement Primitives (DMP). However, neither of these techniques work directly with
images and learn directly on real robot hardware from scratch like the techniques presented in
chapter 4.
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5.3.2 Robot Soccer Domains

As discussed in chapter 2, RoboCup soccer, and specifically RoboCup SSL is a well studied
task in robotics and RL research. Due to scalability of existing techniques, there has not been
any large successful work attempting to learn RoboCup soccer end-to-end from scratch. Instead,
different pieces of robot soccer game play can be broken into smaller test tasks that highlight
different aspects of the game from simple navigation control tasks to multi-agent ball manipula-
tion in games such as Keepaway [95, 96]. These types of environments have also been proposed
as benchmark tasks for reinforcement learning [94, 96]. This has lead to a number of works
applying reinforcement learning techniques to RoboCup soccer domains [30, 78, 79, 95, 107].

Outside of RL, RoboCup SSL, and more specifically the CMDragons’ robots have been used
in a large variety of research. [17, 64] This includes research into computer vision to design the
original butterfly pattern used by the SSL vision software [15]. There has been research into
motion planning for the robots which this thesis used in baselines and for things like episode
resets. [14, 16]. Research into physics based modeling of the robots helped to create the physics
simulations used in the simulation environments. [117, 118]. Non-RL learning has been per-
formed with the robots including bandit optimizations for free-kick tactic selection and learning
to adapt to opponent behaviors. [26, 65]. The CMDragons’ robots have also been used as a
platform for planning research in adversarial environments. [10, 21]

The following sections delve deeper into two domains related to the domains used in this
thesis.

Keepaway

Keepaway is a subdomain inspired by RoboCup robot soccer. It is multi-agent and can be par-
tially observable (with each agent having a limited sensor view of the environment) [95, 96]. The
game consists of two teams of agents. One team starts with the ball, and attempts to maintain
control of the ball as long as possible by dribbling and passing to teammates. An opponent team
of agents attempts to intercept and take the ball from the opposing team as quickly as possible.

Stone et al. [95] utilized an options [93] like framework with hand-coded low-level controls.
Agents learned to call these sub-policies at appropriate times in scenarios with 4 teammates vs
3 opponents. A significant effort went into determining the proper low level actions and state-
features to utilize.

This domain has also been used in the context of transfer learning. This was one of the test
domains used by Fernández et al. [30] in their policy library transfer work.

Ball Manipulation Skills

In addition to multi-agent domains like Keepaway other aspects of robot soccer have been stud-
ied, such as ball-manipulation skills. These may include dribbling (moving the ball in a con-
trolled manner through physical contact), passing the ball between robots, and shooting goals.
Many of these skills have been studied before in an RL context. Riedmiller et al. [79] used RL
on real robots for the Middle Size League in order to learn ball manipulation skills. Recent Deep
RL work from Hausknecht et al. [43] was able to learn, in simulation, to navigate to a ball and
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score on an empty goal using imitation learning. This was later refined to learn, in simulation,
from scratch [42].
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Chapter 6

Conclusion and Future Work

In this chapter, we review the contributions of this thesis. We then discuss future avenues of
research that can build on the foundations laid by this thesis. Finally, we summarize the entire
thesis document.

6.1 Contributions

As laid out in chapter 2, two of the major issues still holding back robot Deep RL are: sample
complexity and rigidity of learned policies. In this thesis we have shown two major techniques
that improve the state of the art in both of these categories: tensor state-action spaces and auxil-
iary task learning with multiple state representations.

Transferrable Tensor State-Action Spaces We introduced the concept of designing a trans-
ferrable state-action space using multi-dimensional tensors that allows for zero-shot transfer as
the number of agents and objects in an environment vary. By anticipating the types of changes
to the environment, we showed how a standard feature representation and parameterized action
space can be converted back and forth between a tensor representation where the amount of pa-
rameters remain fixed regardless of how many agents or other objects are added and removed
from the field. We presented a specific mapping for environments where robot positioning is key
to good performance. Using this representation we showed how to train and apply both single
and Multi-Agent Reinforcement Learning (MARL) across a number of different simulated envi-
ronments inspired by RoboCup, a modified version of Atari breakout, and execution on real SSL
robots.

Fully Convolutional Q-Network (FCQN) We introduced a new policy network architecture
called the Fully Convolutional Q-Network (FCQN), which uses only convolution and deconvo-
lution operations, rather than the more common fully connected layers. This network architec-
ture is designed to work with the tensor state-action spaces, taking advantage of assumptions
about locality and translational invariance built into convolution and deconvolution operations.
More importantly, this representation allows for zero-shot transfer of both single and multi-agent
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policies across environment sizes. We showed that this architecture works for both simulated
RoboCup inspired domains, a modified version of Atari breakout, and real SSL robot execution.

Auxiliary Task Learning with Multiple State Representations We introduced an extension
of the Scheduled Auxiliary Controller (SAC-X) framework that allows for learning simultane-
ously with multiple state representations. Doing so allows for using different features at train
and test time. Additionally, at train time lower-dimensional, task specific representations can be
used, which can speed up learning compared to learning with just the high-dimensional image
state space. We showed that this technique works on both simulated RoboCup and real-world
Ball-in-a-Cup with a robot arm. Using this technique we were able to quickly learn a policy
using multiple color images, directly on a real-robot.

Experimental Results on Multiple robot tasks All of the work presented in this thesis was
designed with real robot applications in mind. We showed in chapter 2 that while existing Deep
RL can be applied to robots, it has a number of short-comings. We demonstrated that our trans-
ferrable representation and FCQN architecture policies work on real robot hardware despite the
high-level, abstractness of the representation. We demonstrated our auxiliary task framework
technique with both simulated and real robots, including the real-world Ball-in-a-Cup with a
robot arm task.

6.2 How Contributions Improve on Shortcomings

As discussed in Chapter 2, existing approaches to robot deep reinforcement learning have a
number of shortcomings that we have worked to address in this thesis. We now summarize how
our contributions attack these shortcomings.

Sample Complexity and Training Time The thesis technique of auxiliary task learning with
multiple state representations significantly reduces the required number of samples and training
time required to learn sparse-reward policies in high-dimensional state spaces. As shown, this
technique made a previously unsolvable task, learning Ball-in-a-Cup with images directly on a
robot from scratch, into something solvable with about 23 hours of active data collection time.
Our simulation results showed how much of an improvement the contributed technique can give.

The contributed tensor state-action space with the FCQN network also contributed to reduc-
ing sample complexity and training time. In our experiments, we showed that compared to the
tensor state-action space without the FCQN and a traditional state-action space with a standard
RL policy network, our approach converged significantly faster.

The tensor state-action space also contributes to a reduction of sample complexity and train-
ing time, by allowing for zero-shot transfer of policies. As discussed, this means the initial
training cost is amortized across a wide variety of changed environments. Rather than having to
train new policies for each change, a single policy can be used.
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Adaptability The tensor state-action space with the FCQN network contributes the most to
improving adaptability of learned policies. The technique was specifically designed to make
zero-shot transfer across changes to environment size, number of objects, and number of agents
possible. A standard approach would have required training from scratch whenever one of these
properties changed.

The auxiliary task learning with multiple state representations also has some contributions
towards adaptability. The actor and critic network architecture allows the agent to learn policies
that can rely on different subsets of the available observations, which allows the tasks to operate
with different state spaces. This adaptability to different state spaces makes it easier to introduce
new sensor types when applying RL to robots.

Safety Finally, while the thesis did not focus specifically on safety, we did introduce throughout
the main thesis and appendices practical safety algorithms for our various robots. These included
algorithms to keep the soccer robots confined to a field area, physical modifications to the en-
vironment, and a low-pass filter on the Ball-in-a-Cup robot arm to protect it from exploratory,
high-frequency actions.

Additionally, our techniques do improve on scalability and adaptability. By reducing training
time and samples, agents converge to reasonable, safe behavior much faster, reducing the time
for mistakes. By adapting zero-shot across changes to the environment, reasonable behavior is
maintained despite the environment changes.

6.3 Future Work
In this section, we discuss some possible future research directions that can build off the contri-
butions of this thesis.

Alternative Transferrable Representations We showed how image-like, multi-dimensional
tensors can be used to do zero-shot transfer as the number of agents and objects vary and as the
environment size varies. However, for extremely sparse environments, this representation can be
inefficient. Other representations such as set based representations like those used in point-cloud
processing should be investigated. [76] Like the tensor state-action spaces, work would need to
be done to determine how to map between this new representation and the existing state-action
space for efficient learning.

Alternative Transferrable Policy Network Architectures We showed how the FCQN ar-
chitecture works well with our tensor state-action space representation and facilitates zero-shot
transfer across environment sizes. If other transferrable representations are developed, it makes
sense that there are likely new transferrable policy network architectures that are associated with
these new representations. Network architectures for set based states, such as point clouds, can
be investigated. [76]. Sequence processing architectures such as RNNs and ideas from Natural
Language Processing (NLP) such as transformer architectures can be investigated. [20, 47, 108]
The idea is to find representations that can deal with arbitrarily sized inputs and outputs without
requiring new parameters be learned.
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Auxiliary Task Learning with Multiple Action Representations We showed that there are
major benefits to simultaneously learning auxiliary tasks with multiple state spaces. It seems
likely that we can gain additional benefits for expanding the auxiliary task framework to accom-
modate tasks with different action spaces. This could allow for learning across multiple robot
morphologies simultaneously. Assuming some similarities, such as a common mobile base with
different arms, the action spaces would share some common components and training data from
multiple robots may lead to speed-ups or improvements in robustness of the policies. Even with
identical robots, different control spaces can be used (e.g. torque control vs velocity control) and
using sensors and models of the robot we can collect data in one action space and use it to gen-
erate data in a different action space. Finally, we could potentially have different action spaces
for the same robot that account for different parts breaking. For example, the soccer robots have
four omni-wheels but technically can drive with only three, being able to simultaneously train
policies for the ideal case of all wheels working and the backup case of specific wheels failing
could be useful.

Auxiliary Task Learning with Multiple Time-Scales We could potentially take advantage of
learning with different time-scales across auxiliary tasks. Many times, due to the difficulty of
credit assignment in long sequences, we will run the agents at a slower control frequency than
the physical hardware and sensors are capable of. For mostly static tasks, this is generally not
an issue, but for dynamic tasks and environments, the faster the robot can execute the better it
can control and react to changes. We could potentially have some tasks run at a slow, easier
to learn but not optimal, time-scale, while still collecting data at the maximum sensing rate.
This additional data could be used as good training data to speed-up training on the maximum
time-scale policies.

6.4 Summary
In this thesis we introduced two main techniques for robot deep reinforcement learning: trans-
ferrable tensor state-action spaces and auxiliary task learning with multiple state representations.
These two contributions help reduce training time and sample complexity and improve policy
flexibility for real robots. The tensor state-action space representation allows one to convert an
existing task environment to a representation that can transfer zero-shot across changes to the
number of agents and objects in the environment. This can help amortize any expensive training
cost across many different similar environments. We showed how this representation can com-
bine with a new policy network architecture, the Fully Convolutional Q-Network (FCQN), to
provide zero-shot transfer across environment sizes. This can allow for not only flexibility, but
the ability to train in smaller, less resource intensive environments and then transfer to full-scale
without additional training. We showed how one can learn multiple auxiliary tasks simultane-
ously that differ not only in reward function but in the state space. This allows for training
policies that utilize different inputs at test and train time. Additionally, we showed that this can
significantly speed-up training for high-dimensional state spaces, such as raw image sensors. We
demonstrated all of these techniques across a variety of simulated and real-robot tasks including
RoboCup SSL tasks and the Ball-in-a-Cup game with a robot arm.
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Appendix A

Hyperparameters,
Network Structures, and
Other Details

This appendix include details necessary for reproduction of the experimental results discussed in
the main thesis chapters. This include hyperparameters for experiments, specifics of network ar-
chitectures and other details such as the automatic safety algorithms and episode reset procedures
used with the real robot experiments.

A.1 RoboCup SSL Safety Checks

The action space of the robot is limited in order to keep the robots from damaging itself or the
environment. The most basic safety is to reduce the maximum allowed velocity commands.
This keeps the robot moving slowly, so even if a collision occurs damage will be reduced or
non-existent.

The more difficult problem is keeping the robot within a predefined area without restricting
exploration. While it may be fine at low speeds to let the robots bump into a physical barrier, this
is less than ideal as any physical collisions have the potential to harm the robot. Instead, I have
created a simple algorithm that provides “invisible walls” around an area. The agent can try any
action allowed by the action space, but actions that move into the walls are cancelled out. The
learning agent sees the unmodified commands, so it will need to learn that driving into the edges
of the boundary do nothing and it should use other actions in its policy.

The allowed area is defined by a set of points. These points are converted to a convex hull, the
edges of which are used as half-planes that divide the space into allowed and disallowed regions.
Algorithm 5 describes the process of constructing the region boundaries from a set of points.

The algorithms requires a set of points ~p which are 2D vectors containing an x and y compo-
nent. The boundary points can be easily collected by placing the robot around the allowed region
and recording the points. Line 2 converts the points to a convex hull, which removes redundant
points, reducing the amount of overhead while checking for boundary collisions at runtime. Line
3 gets the set of all points that form the simplex of the convex hull. In other words, the points that

106



Algorithm 5 Algorithm for converting boundary points to boundary regions.
1: function CONVERT-BOUNDARY-POINTS-TO-ALLOWED-REGIONS(~p)
2: C ← convex-hull(p)
3: ~pS ← simplex-points(C)
4: ~pc ← centroid(ps)
5: θs ← [ ] . An empty list
6: for each pi in ps do
7: ~l← ~ps − ~pc
8: θs ← θs + atan2(l.y, l.x)
9: end for

10: ~ps ← sort ~ps by θs
11: ~en ← [ ] . A list of normals of the convex hull edges
12: eoffset ← [ ] . A list of edge plane offsets
13: for i in [0, len(ps)) do
14: ~e← ~ps[i+ 1]− ~ps[i]
15: ~edir ← ~e

||~e||
16: ~en ← ~en+ < −~edir.y, ~edir.x >
17: ~emidpoint ← ~ps[i] + ~e

2

18: eoffset ← eoffset +−~en · ~emidpoint
19: end for
20: returns ~en, eoffset
21: end function

form the vertices of the convex hull. Line 4 computes the centroid of the hull by averaging the
x and y components of all the simplex points. Lines 5 through 10 sort the simplex points so that
they are counter-clockwise about the centroid. This is necessary to ensure that the edge normals
computed later all have a consistent normal direction. Lines 11 through 19 iterate through pairs
of the sorted points. Each pair of points forms an edge of the convex hull. This edge line is used
to find the equation of a 3D plane that has a normal in the 2D plane, and contains the edge line.

The plane equation is defined as ~en ·~p+eoffset = d. Each plane divides the 2D space into two
halves: an allowed region and a disallowed region. Robots are allowed to move anywhere in the
allowed region, but should not enter the disallowed region. If the robot is in the disallowed region,
it should only be allowed to perform actions which move it towards the allowed region. By
defining the regions using a plane, it is easy to check if the robot is in the allowed or disallowed
region. Simply plug in the current position as ~p and check the sign of d. If d < 0 the robot is in
the disallowed region, if d > 0 the robot is in the allowed region and if d = 0 the robot is on the
boundary.

This leads to algorithm 6 which is run on each iteration of the training environments to modify
actions sent to the radio so that the robot remains in the allowed region.

The algorithm requires a set of boundary edge planes given in ~en and eoffset, these come from
the output of algorithm 5. The algorithm also requires the current robot position ~pr, the current
robot orientation θr, the robot linear velocity command ~vr, the robot angular velocity command
ωr and the control time step used by the environment ∆t. The algorithm applies the same checks
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Algorithm 6 Safely modify SSL agent actions for real robot.
1: function MAKEROBOTACTIONSAFE(~en, eoffset, ~pr, θr, ~vr, ωr, ∆t)
2: for each (~en,i, eoffset,i) in (~en, eoffset) do
3: ~vw ← convert robot action ~vr to world coordinates based on current orientationθr
4: ~et ←< −~en,i.y, ~en,i.x > . Compute plane tangent
5: ~ve ←< ~et · ~vw, ~en,i · ~vw > . Project velocity onto axes defined by boundary plane

tangent and normal
6: d← ~en,i · ~pr + eoffset,i
7: if d <= 0 then . Robot is at boundary or in the disallowed region
8: ~ve.x← max(~ve.x, 0)
9: else . Robot is in the allowed region

10: if ~ve.x < 0 then . Robot is moving towards boundary
11: ~pintersect ← intersection point of robot with boundary given velocity command
12: ~vintersect = ~pintersect−~pr

∆t

13: ~ve.x← max(~vintersect.x, ~ve.x)
14: end if
15: end if
16: ~vw ← ~en,i~ve.x+ ~et~ve.y
17: ~vr ← convert ~vwback to robot frame
18: end for
19: returns ~vr
20: end function

to each edge plane. Line 3 converts the robot action ~vr, which is relative to the robot’s frame, into
velocities in the world frame coordinates. This is necessary because the edge plane equations are
with respect to the world coordinate frame. Line 4 computes the tangent of the edge plane. This
allows us to express the robot action velocities in a coordinate frame defined by the edge normal
and the edge plane tangent. Line 5 projects the world velocity into this coordinate frame. By
performing the check in the plane’s coordinate frame, it is easy to zero out components of the
action that move into the disallowed region, while allowing actions that move the robot out of
the disallowed region, or tangential to the boundary. Line 6 and 7 check if the robot is in the
allowed region, or in the disallowed region/on the boundary. Line 8 allows actions that move the
robot towards the allowed region, and prevents any movement further into the disallowed region.
Line 10 checks if the robot is in the allowed region and heading for a collision with the boundary.
If a collision could occur in the future, Lines 11 through 13 compute if the robot will hit in the
next time step. If the robot will hit then we reduce the velocity so that it will be able to stop at
the boundary, rather than driving through. Finally lines 16 through 17 reverse the transformation
from edge coordinates back to the robots egocentric coordinate frame.
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A.2 Chapter 2 Network and Hyperparameters
As mentioned in chapter 2 we use an actor network and critic network with fully connected layers
and ReLU activation. Table A.1 shows the network specification.

Table A.1: Chapter 2 RoboCup Skill Learning Network Parameters

Network Parameter Value

Actor Layer Sizes [300, 400]
Critic Layer Size [300, 400]
Layer Type Fully Connected
Activation ReLU

Table A.2 shows the hyperparameters used during training for each of the different skills.
The noise function was an Ornstein-Uhlenbeck process as used in the original DDPG paper [60].

Table A.2: Chapter 2 RoboCup Skill Learning Hyperparameters

Hyperparameters Value

critic learning rate 1× 10−3

actor learning rate 1× 10−4

go-to-ball replay mem size 1,000,000
go-to-ball noise parameters θ = 0.15, µ = 0, σ = 0.3
turn-and-shoot replay mem size 450,000
turn-and-shoot noise parameters θ = 0.15, µ = 0, σ = 0.1
shoot-goalie replay mem size 100,000
shoot-goalie noise parameters θ = 0.15, µ = 0, σ = 0.1

A.3 Chapter 3 Hyperparameters and Network Architecture
The Passing FCQN network is the same as shown in figure 3.2 with the same layer sizes. Skip
connects were used between all matching sized pairs of conv/deconv layers. All hidden layers
use ReLU activations.

Below is the network structure for Passing using state features and fully connected lay-
ers. c(8,4,64) represents a convolution layer with an 8 × 8 filter, a stride of 4, and 64 chan-
nels.f(512) represents a fully connected layers whose output size is 512 hidden units.maxpooling(3,3)
represents a max pooling layer which has (3,3) as the size of the pooling window. All hidden
layers use ReLU activations. The network structure is: f(256), f(256), f256, and f(|A).

The Passing network with the tensor state input and the FC layers is: c(12,4,32),
c(5,1,32), maxpooling (3,3), c(5,1,512), flatten, then we have the dueling
layer which has a value stream as f(2048), f(1), and an advantage stream as f(2048),
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f(|A|). All hidden layers use ReLU activations. Take-the-Treasure uses the same net-
work architecture.

All networks were trained using the Double DQN algorithm [41] and the Adam optimizer
with hyperparameters shown in Table A.3. We used ε-greedy exploration with epsilon decayed
linearly from εstart to εend.

Name Value

Passing learning rate 1× 10−5

Take-the-Treasure learning rate 1× 10−4

Breakout learning rate 1× 10−4

εstart 0.99
εend 0.1
ε decay steps 1,000,000
Passing replay mem size 1,000,000
Take-the-Treasure replay mem size 1,200,000
Breakout replay mem size 1,500,000

Table A.3: Hyperparameters used during training and evaluation

A.4 SSL Navigation Details
This appendix contains details related to the SSL Navigation environment described and used in
chapter 4.

A.4.1 Network Structure
Table A.4 gives the details on the layer sizes for the actor and critic network used in the SSL
navigation experiments. The actor network has 4 input groups: feature group, field image, robot
image, goal image. The feature group uses all Fully Connected (FC) layers. The image groups
start with CNN layers, the output of this is flattened and then passed to more FC layers. The
output of each group is filtered using the filter lists described in section 4.3.2 and then summed
together element wise. These are passed through shared FC layers and finally a separate set of
FC layers for each task. Unless otherwise mentioned all layers use ReLU activations.

The critic network is similar in structure, however, the only state group input is the features.
The images are not used as the asymmetric actor-critic technique is utilized. Both feature group
and actions from the actor are processed by a few FC layers before being concatenated and passed
through the shared FC layers.

A.4.2 Hyperparameters
Table A.5 shows the hyperparameters used in the SSL Navigation experiments from chapter 4.
All experiments use the Soft Actor-Critic (SAC) training algorithm. In addition to the stochastic-
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Network Section Layer Sizes

Actor Feature Group (FC) 128
Actor Field Image CNN Filter Sizes [8, 4, 3]
Actor Field Image CNN Strides [4, 2, 1]
Actor Field Image FC Sizes 128
Actor Robot Image CNN Filter Sizes [8, 4, 3]
Actor Robot Image CNN Strides [2, 2, 1]
Actor Robot Image FC Sizes 128
Actor Goal Image CNN Filter Sizes [8, 4, 3]
Actor Goal Image CNN Strides [2, 2, 1]
Actor Goal Image FC Sizes 128
Actor Shared Hidden FC Sizes [128, 128]
Actor Task Head Sizes 128
Actor Task Head Activation Squashing Gaussian
Critic Feature Group (FC) 128
Critic Action Group (FC) 128
Critic Shared Layers (FC) [128, 128]

Table A.4: Network structure for SSL Navigation environment.

ity from sampling the Gaussian distribution selected by the actor network, an additional amount
of noise is added to the action with the probability shown in the table. The additional noise is
also drawn from a Gaussian distribution with a mean of zero and the σ specified in the table.

The trainer and the sampler run in separate processes, meaning that depending on the speed
of each the amount of times the same data will be sampled from the replay memory will vary.
To prevent over-fitting from a slow sampler each sample can be used at most 64 times before
training updates are paused to wait for new data.

A.5 Ball-in-a-Cup Details

A.5.1 Network Architecture and Hyperparameters
In this section we outline the details on the hyper-parameters used for our algorithm and base-
lines. Each intention policy is given by a Gaussian distribution with a diagonal covariance matrix,
i.e. π(~a|~s, θ) = N

(
µ, ~Σ

)

The neural network outputs the mean µ = µ(s) and diagonal Cholesky factors A = A(s),
such that Σ = AAT . The diagonal factor A has positive diagonal elements enforced by the
softplus transform Aii ← log(1 + exp(Aii)) to enforce positive definiteness of the diagonal
covariance matrix.

The general network architecture we use is described in Table A.6. The image inputs are first
processed by two convolutional layers followed by a fully-connected layer (see state-group heads
size) followed by layer normalization. The other input modalities (features and proprioception)
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Name Value

Replay Memory Size 1,000,000
Actor Learning Rate 3× 10−4

Critic Learning Rate 3× 10−4

Actor τ 0.01
Critic τ 0.01
Gaussian Exploration Noise σ 0.2
Exploration Noise probability 0.9
Batch Size 256
Maximum Updates per Sample 64

Table A.5: Hyperparameters used during training and evaluation of the SSL Navigation environ-
ment

go through a fully connected layer (see state-group heads size), followed by layer normalization.
The output of each of these three network blocks are then multiplied with 1 or 0 (depending
on Sfilter). Because all the input layers output the same shape, and we assume that the different
state-groups can extract the same internal hidden representation, we sum the state-group output
layers elementwise. This reduces the number of dead inputs and number of parameters needed
in the first shared hidden layer. This summed output is passed to a set of fully-connected, shared
hidden layers (shared layer sizes in the table). The shared hidden layer output is passed to the
final output layer. In the actor, the output size is the number of means and diagonal Cholesky
factors. In the critic, the output size is 1, corresponding to the Q-value of the state-action pair.

A.5.2 Real World Episode Reset Procedure

As described in the main paper we use a hand-coded reset strategy at the beginning of each
episode (if the string was detected to be tangled around the arm). This procedure works as
follows. Before starting the episode the robot arm is driven to a preset starting position. If the
string is untangled and the ball is hanging freely, then the ball will be in the expected starting
area. If the ball is not detected in this area, then the robot begins its untangle procedure. Ideally,
we would know the state of the string and be able to either plan or learn a sequence of actions to
untangle the string. However, the string is unobservable in features and given the low-resolution
of the images, largely unobservable to the cameras. Instead, to untangle, the robot picks a random
sequence of positions from a pre-set list. This list was chosen to maximize the number of twists
and flips the arm does in order to maximize the chance that the string is unwrapped. After the
sequence is completed the robot returns to the check position. If the ball is untangled then the
next episode can begin. If the ball is still not in the expected area the entire procedure is repeated
until a successful untangle.
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Hyperparameters SAC-X
2D Conv layer features (layer 1/ layer 2) 16, 16

2D Conv shapes (layer 1/ layer 2) 4× 4, 3× 3
2D Conv strides (layer 1/ layer 2) 2× 2, 2× 2

Actor net shared layer sizes 200, 200
Actor net state-group heads size 100

Critic net shared layer sizes 400, 400
Critic net state-group heads size 200

Discount factor (γ) 0.99
Adam learning rate 0.0001
Replay buffer size 1,000,000

Target network update period 1,000
Batch size 32

Maximum transition use 2,500
Activation function elu

Tanh on networks input No
Tanh on output of layer norm Yes

Tanh on Gaussian mean Yes
Min variance 10−2

Max variance 1.0

Table A.6: Hyper parameters for SAC-X

J0 J1 J5 J6
min. position (rad) -0.4 0.3 0.5 2.6
max. position (rad) 0.4 0.8 1.34 4.0
min. velocity (rad/s) -2.0 -2.0 -2.0 -2.0
max. velocity (rad/s) 2.0 2.0 2.0 2.0

Table A.7: Joint limits imposed during the experiments

A.5.3 Robot workspace

Joint limits

The Sawyer robot arm has a very large workspace1 and can reach joint configurations which are
not required to solve the Ball-in-a-Cup task or are outside of the motion capture system volume.
In order to reduce the robot workspace, throughout all experiments we fixed J2, J3 and J4, and
constrained position and velocity limits of the other joints, as detailed in Table A.7.

Starting position

At the beginning of every episode, the robot joints J0-J6 are commanded to [0.0, 0.5, 0.0,−1.22, 0.0, 0.68, 3.3].

1http://mfg.rethinkrobotics.com/intera/Sawyer_Hardware
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J0 J1 J2 J3 J4 J5 J6
position 1 0 -2.07 0.0 0.23 0.0 0.96 0.0
position 2 0 -0.22 -2.23 0.3 0.0 1.18 3.0
position 3 0 -1.65 3.0 -0.23 0.0 0.0 3.22
position 4 0 -0.59 3.0 -0.23 0.0 0.0 3.22

Table A.8: Pre-set positions used during untangling

Untangling positions

The pre-set list of untangling positions is detailed in Table A.8.

A.5.4 Changes to Experiment Reward Functions
As mentioned in the main text, the experiment in section V-D used a set of modified reward
functions. The initial real robot training used tasks 1F, 2F, 3F, 4F, 5F, 1P, 2P, 3P, 4P, and 5P. As
discussed, these rewards were switched to shaped rewards to speed-up training time.

The actual tasks used in section V-D are 5F, 6F, 7F, 5P, 6P, and 7P. Tasks 1F, 2F and 3F have
been replaced by shaped reward 6F. Task 4F was replaced by shaped reward 7F. Similarly, tasks
1P, 2P and 3P are replaced by shaped reward 6p. Task 4P was replaced by shaped reward 7P.
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