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Abstract

More than one million queries are made every minute on the Internet, and people are ask-
ing an ever increasing number of queries. Researchers have developed Information Extrac-
tion (IE) systems that are able to address some of these queries. IE systems automatically
construct machine-readable knowledge bases by extracting structured knowledge from the
Web. Most of these IE systems, however, are designed for batch processing and favor high
precision (i.e., few false positives) over high recall (i.e., few false negatives). These IE
systems have also been developed to readily evaluate only factoid queries (e.g., what is
capital of France?). By contrast, many real-world applications, such as servicing knowl-
edge requests from humans or automated agents, require broad coverage (high recall) and
fast, yet customizable response times for non-factoid and complex queries (e.g., Is shrimp
meat healthy?). Users may be willing to trade off time for accuracy. The existing IE
techniques are inherently unsuitable to meet these requirements.

In this thesis, we investigate anytime applications, as information extraction tasks ini-
tiated as queries from either automated agents or humans. The thesis will introduce new
models and approaches for learning to respond to the truth of facts using unstructured web
information, while considering the credibility of sources of information.

We introduce OpenEval, a new anytime information validation technique that eval-
uates the truthfulness of knowledge statements. As input, agents or humans provide a
set of queries that are stated as multi-argument predicate instances (e.g., DrugHasSideEf-
fect(Aspirin, GI Bleeding))), which the system should evaluate for truthfulness. OpenEval
achieves high recall with acceptable precision by using unstructured information on the
Web to validate information.

We extend the OpenEval approach to determine the response to a new query by in-
tegrating opinions from multiple knowledge harvesting systems. If a response is desired
within a specific time budget (e.g., in less than 2 seconds), then only a subset of these
resources can be queried. We propose a new method, AskWorld, which learns a policy
that chooses which queries to send to which resources, by accommodating varying bud-
get constraints that are available only at query (test) time. Through extensive experiments
on real world datasets, we demonstrate AskWorld’s capability in selecting the most infor-
mative resources to query within test-time constraints, resulting in improved performance
compared to competitive baselines.

We further extend our information validation approaches to automatically measure and
incorporate the credibility of different web information sources into their claim validation.
To address this problem, we present ClaimEval, a novel and integrated approach which
given a set of claims to validate, extracts a set of pro and con arguments from the Web
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using the OpenEval approach, and jointly estimates the credibility of sources and the cor-
rectness of claims. ClaimEval uses Probabilistic Soft Logic (PSL), resulting in a flexible
and principled framework which makes it easy to state and incorporate different forms of
prior-knowledge. Through extensive experiments on real-world datasets, we demonstrate
ClaimEval’s capability in determining the validity of a set of claims, resulting in improved
accuracy compared to state-of-the-art approaches.

Finally, we show how our information extraction techniques can be used to provide
knowledge to anytime intelligent agents, in particular, for a find-deliver task in a real mo-
bile robot (CoBot) and for a trip planner agent. We show that OpenEval enables robots
to actively query the Web to learn new background knowledge about the physical envi-
ronment. The robot generates the maximum-utility plan corresponding to a sequence of
locations it should visit, asks humans for the object, and then carries it to the requested
destination location. For the trip planner agent, we also contribute a novel method for a
planner to actively query the open World Wide Web to acquire instant knowledge about
the planning problem. We introduce a novel technique, called Open World Planner, that
estimates the knowledge that is relevant to the initial state and the goal state of a plan-
ning problem, and then effectively generates corresponding queries to the Web using our
OpenEval query system.
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Chapter 1

Introduction

The World Wide Web (WWW) is the most diverse and largest source of information that
exists today, and it is expected to grow even more as the world’s primary source of knowl-
edge over the next decade. This rise of the Web has made it possible for both humans and
machines to get access to over 4.9 billion webpages. Since an estimated 80% of all of the
information currently on the Web is unstructured (e.g., webpages and blogs), sophisticated
information extraction techniques are required to transform such noisy content into usable
data. Even with structured data, contextualization and extraction of the right data remains
a challenge.

Search engines, such as Google, are currently used to retrieve information from either
structured or unstructured pages on the Web. Most of these search engines return results
in a multitude of links to webpages deemed relevant to the search query; however, for the
most part, they do not provide any support in processing the information. For example, in
order to decide whether a given claim is true or false, one is forced to sift through a long
list of URLs, identify a set of relevant documents among different sources of information
on the Web, analyze the content of these noisy documents, and aggregate the information.
The process can be error-prone, piecemeal, inconsistent, and tedious. The Web search
engines address only part of the overall problem, viz., producing only a list of relevant
sources.

Processing the retrieved information is important when a human or an external applica-
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tion (e.g., an agent) wants to retrieve specific information embedded in the search results.
For an individual, the process of reading the content of multiple pages, understanding their
content, and aggregating this surplus of information is an inefficient task. For an agent,
retrieving Web information and embedding the retrieved information with the task that it
is performing is a challenging problem. Moreover, it is practically impossible to manually
process thousands or millions of websites that are returned by the search engines.

A wide variety of complementary trends have started changing this transformation of
the Web, from providing a set of links, to also processing the information and providing
structured data that can be easier to use for both human and external applications. Large-
scale question-answering systems such as Watson [Ferrucci et al., 2013] and information
extraction systems such as Google Knowledge Graph [Google, 2012] are two examples
of these attempts at structuring data for more efficient access and utility. Other significant
contributions have been made by automatically constructing machine-interpretable knowl-
edge bases by extracting relational facts and rules from large text corpora such as the Web
(e.g., NELL [Carlson et al., 2010b]). These techniques aim to automate the process of
sifting through URLs returned by search engines, and retrieve an answer in response to
the user’s question, hence reducing what once took hours into a task that only needs a few
minutes.

Despite the wide success of the current Information Extraction (IE) techniques, most
of them are designed for offline batch processing and for ensuring high precision (i.e., few
false positives) knowledge extraction. This high precision may result in low recall (i.e.,
few false negatives), making them less applicable to applications that require high recall.
Moreover, in many applications, such as mobile-robot control, the anytime capability is
required, where a human or an agent expects that the quality of results improves gradually
as computation time increases.

The anytime aspect and high recall are especially important when a human or an ex-
ternal application, such as an automated agent, wants to query the knowledge base and
expects to get responses as soon as possible. For example, a mobile robot may need to
find an object (e.g., coffee) in an environment for which it requires to know the location
type (e.g., kitchen) of the input object. The knowledge acquisition technique that the robot
is using should provide the location of the input object and should also cover different
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locations and objects for which the robot may query the knowledge base.

In addition to anytime capability, some applications may require the response to be
provided within a specific time budget (e.g., in less than 2 seconds). Depending on the task
that the robot/agent is performing, it may need different types of knowledge (instances of
different predicates), and responses within different time budgets. If a response is desired
within a time budget, then perhaps only a subset of information resources on the Web can
be retrieved and processed. There is a need for an automated knowledge-on-demand and
budget-sensitive technique to choose which queries to send to which resources and how
to retrieve and process the information. Such a technique should be able to learn a policy
that accommodates varying budget constraints that are available only at query (test) time.
Ideally such a technique should be able to incorporate an on-demand knowledge integrator
that aggregates opinions not only from text data on the Web, but also from other types of
knowledge resources such as different existing KBs (e.g., YAGO), information extraction
systems, and subcomponents from existing knowledge harvesting tools such as NELL.

Another major challenge of retrieving knowledge from the Web is the fact that the
Web, by its nature, is a large and open system in which anyone may contribute. The open
and collaborative nature of the Web raises the question of how much a given source of
knowledge can be trusted. The current knowledge base (KB) systems are centered upon
extracting factoid knowledge, e.g. “Paris is the capital of France”). However, evaluating
the correctness of non-factoid claims (e.g., “Shrimp meat is healthy”), is particularly a
challenging problem as two different webpages may contain conflicting evidences even
related to a single claim. For example, while an animal rights website might not sup-
port meat-eating and thus term turkey meat as unhealthy, the website of a grocery store
might claim otherwise. Additionally, a scientific paper focusing on this question might
provide the most authoritative answer. One would want to trust evidences contained in
the credible source (the scientific paper) and ignore the other two. Hence, given a set of
claims, one needs to identify relevant sources on the Web, extract supporting and contra-
dictory evidences from those sources, estimate source credibility, and finally aggregate all
of this information to evaluate the given set of claims. This is a time consuming process,
and thus, there is a growing need for an integrated approach for automatic extraction of
relevant evidences and sources, estimation of information source credibility and utilizing
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those credibility estimates in claim evaluation.

In this thesis, we address the above challenges in the context of solving a specific
sub-problem in knowledge acquisition – how to tell whether a given claim is (likely to
be) true or false. We contribute techniques that take advantage of the powerful corpus of
the Web data in order to evaluate the truth of a claim. Evaluating truth of a claim would
have many applications. For example, many popular questions that have been searched
in Google (e.g., “is yogurt healthy?”, “is zero a number?”) can be directly converted to
propositions that require assessment of their correct value. Moreover, in applications such
as automated question answering, most of the questions and their candidate answers can
be converted to a proposition that requires assessment. For example the question “where is
Beijing located?” and the corresponding answer “China” can be converted to a proposition
“Beijing is located in China”. It has been also shown that evaluating correctness of a
proposition can be used in question answering techniques [Harabagiu and Hickl, 2006;
Magnini et al., 2002], information extraction systems [Etzioni et al., 2004, 2008; Carlson
et al., 2010d], and robotics [Samadi et al., 2012].

The principle question addressed in this thesis is:

How can we build budget-sensitive, knowledge-on-demand models for jointly esti-
mating the credibility of sources and the validity of queried claims using unstruc-
tured web information?

In this thesis, we will address the above challenges by investigating anytime applica-
tions, as information extraction tasks initiated as queries from either automated agents or
humans.

1.1 Thesis Approach

This thesis has four major contributions. First, we contribute a novel anytime IE technique
to respond to predicate-based queries while also achieving high recall (at a small cost of
sacrificing precision). Second, our IE technique is extended to integrate the answers pro-
vided by any other types of IE systems, and also to provide an on-demand time-budgeted
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query answering service. Third, we investigate the joint estimation of credibility of sources
and correctness of claims. Our technique also allows incorporating and propagating infor-
mation related to feedback that may be collected from either a human or from the use of
the retrieved information by an automated agent. We show that such feedback can be used
to improve the accuracy of our knowledge-providing technique. Finally, we apply our
IE technique to two automated agents, where each agent automatically generates queries
based on its missing and needed knowledge. We also show how the retrieved knowledge
is combined with the task that the agent is performing. In the next sub-sections, we briefly
explain each of these components.

1.1.1 Anytime Approach for Web Information Querying

In this thesis, we first introduce OpenEval, a new online and anytime information vali-
dation technique, which uses information on the Web to automatically evaluate the truth
of queries that are stated as multi-argument predicate instances (e.g., DrugHasSideEffect
(Aspirin, GI Bleeding))). OpenEval gets a small number of instances of the predicate as
seed positive examples. OpenEval automatically converts them into a set of training data
by querying the Web and processing unstructured webpages retrieved by the query. Each
resulting training is a bag-of-words extracted from the context surrounding the given pred-
icate instances on the webpages. These context-based training instances are then used as
positive examples to train one classifier for the given predicate, while a sample of the train-
ing instances of other predicates are used as negative examples. To evaluate a new instance
of a predicate, OpenEval follows an equivalent process by converting the input predicate
instance into a set of context-based instances from a web search processing, which are
given as input to the learned classifier. OpenEval computes the correctness probability of
the test predicate instance from the classifier output.

1.1.2 Knowledge Integration and Time-Budgeted Query Answering

In order to determine the response to a new query posed to OpenEval (e.g., is sugar a
healthy food?), it is useful, in addition to unstructured information on the Web, to integrate
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opinions from any other information extraction system. OpenEval aggregates the output of
any available Knowledge Resource (KR) system, where each KR system is competent at
extracting information from certain types of data (e.g., unstructured text, structured tables
on the Web, etc.). These knowledge resources vary significantly in the type of the data
and techniques they use, and therefore also vary in their precision, recall, and delay in
responding to different types of queries.

The ability to integrate knowledge from different information extraction systems im-
poses a new challenge - how to automatically decide which system should be queried to
provide an accurate answer on demand, given the limited time budget of the system that
is making the query. AskWorld, our proposed time-budgeted technique, aims to satisfy
such information needs by learning a policy for making specific subqueries to a diverse
collection of available knowledge resources, attempting to optimize the query response
it can provide within the allotted time budget, and integrating the results returned by the
different resources.

1.1.3 Measuring Credibility of Sources and Incorporating the Feed-
back

This thesis extends OpenEval and AskWorld systems to analyze content of different sources
of information on the Web, measure credibility of information sources, and aggregate the
collected information in order to make a more informed decision about whether a claim
is true or false. We contribute ClaimEval, a novel and integrated approach which given a
set of claims to validate, uses OpenEval to extract a set of pro and con arguments from the
web information sources, then jointly estimates both the credibility of sources and correct-
ness of claims. ClaimEval uses Probabilistic Soft Logic (PSL), resulting in a flexible and
principled framework which makes it easy to state and incorporate different forms of prior
knowledge.

ClaimEval also allows us to integrate users’ feedback in a principled way and extends
applicability of our IE technique. By performing a task in the real world, we will be able to
get feedback on how the agent has performed and incorporate the feedback to improve the
accuracy of our system. For example, in our mobile robot, if ClaimEval incorrectly infers
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the location of object “coffee” as “printer room,” the robot can assess the correctness of
this knowledge by going to the printer room and checking if coffee can be found there.
Another source of feedback is the interaction that CoBot has with people who can help it
to acquire examples of objects and the corresponding place where the robot can find the
object. We will explain how ClaimEval can incorporate these feedbacks in its evolution,
in a principled way.

1.1.4 Combining Retrieval and Use of Knowledge

We show how information extraction techniques developed in this thesis can be used to
provide knowledge to anytime intelligent agents, in particular for a find-and-deliver task
in a real mobile robot (CoBot) and for a trip planner agent.

For CoBot, we investigate a find-and-deliver task, where a person specifies an object
in open-ended natural language (e.g., “coffee”) and the robot needs to find-and-deliver the
object to a specified destination (e.g., “GHC-8125”). This is a challenging problem be-
cause robots have limited knowledge and perception, and people use highly variable lan-
guage when specifying a task. We show that OpenEval enables the robot to actively query
the Web to learn new background knowledge about the physical environment. In this con-
text, OpenEval returns the probability that an object can be found in the location queried
by the robot. For example, OpenEval learns the probability distribution that indicates a
possible location (e.g., “kitchen”) to contain an object (e.g., “coffee”). This probability is
then dynamically incorporated into a utility function, which takes into account the travel
distance to a location, the number of human interactions required to get to a location, and
the observation of the object during previous executions at that location. The robot then
infers the maximum-utility plan which corresponds to a sequence of locations it should
visit, asks a human to provide it with the object, and then takes the object to a destination.

We also show that OpenEval can be used to provide knowledge to a trip planner agent.
Currently, planners assume that a problem includes the predicate instances. However for
planners to address real-world problem, it is not feasible to enumerate all the instances.
For example, a trip planner may require the names of cities, hotels, museums, restaurants,
etc, but it will not make sense to input to the planner the complete set of such entities.
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The assumption that the knowledge is provided as an input to the planner, limits the ap-
plicability of the current planning techniques. We contribute a novel method for a planner
to actively query OpenEval to acquire instant knowledge about the planning problem. We
introduce a new technique, called OpenWorld, that estimates the relevant knowledge to the
initial state and the goal of a planning problem, and then effectively generates correspond-
ing queries to the WWW using our OpenEval query system. We then contribute a planner
that iteratively adds knowledge to the planning problem and searches for a solution by
calling Fast-Downward planner [Helmert, 2006b].

1.2 Contributions

In this thesis, we make the following contributions:

• OpenEval: Anytime Web Information Query Evaluation

– A novel and fully automated anytime IE approach that learns to evaluate the
correctness of a claim using the unstructured information on the Web.

– A novel exploration/exploitation search approach, that allows OpenEval to
navigate the diversity of information that exists on the Web.

– Empirical results with our model illustrate effectiveness of our approach com-
pared to related techniques. We show that OpenEval is able to respond to the
queries within a limited amount of time while achieving high F1 score.

– The use of OpenEval in three different domains: robotics, drug discovery, and
password-generation programs, and experimental results showing that OpenEval
is able to correctly validate the correctness of new predicate instances for each
of these domains.

• AskWorld: Knowledge Integration and On-Demand Time-Budgeted Query Answer-
ing

– A new Knowledge-on-Demand (KoD) service that aggregates opinions from
multiple knowledge resources to return the most accurate response to a query.
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– A budget-sensitive knowledge integration technique that is designed to pro-
vide a best-effort response within the time-budget specified by the user or the
application.

– Extensive experiments on real world datasets demonstrate AskWorld’s capa-
bility in selecting most informative resources to query within test-time con-
straints, resulting in improved performance compared to competitive baselines.

• ClaimEval: Measuring Credibility of Sources and Extracting Reasons

– A fully-integrated technique for measuring credibility of sources and validating
the truth of claims.

– A flexible and principled framework for joint credibility estimation and claim
evaluation using Probabilistic Soft Logic (PSL) [Kimmig et al., 2012; Broecheler
et al., 2010].

– Extensive experiments on real-world datasets demonstrate ClaimEval’s capa-
bility in determining validity of a set of claims, resulting in improved accuracy
compared to state-of-the-art approaches.

• ObjectEval: Using the Web to Interactively Learn to Find Objects

– An approach for learning background knowledge about the environment by
querying OpenEval system.

– An approach for finding and delivering objects that dynamically instantiates a
utility function using the results of a Web query, and which interactively learns
about the physical environment by getting feedback from humans.

– A demonstration of our system, enabling CoBot to find and fetch objects in a
real- world environment.

• OpenWorld Planner: Iterative Query-Based Open World Planning

– An automated planning approach that actively queries the Web using OpenEval
to add needed knowledge until the planner solves the planning problem.
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– Experiments show our approach is able to decrease the number of queries sent
to the Web by a factor of at least two orders of magnitude compared to the
baseline approach.

1.3 Evaluation

We evaluate our algorithms in two ways:

• Datasets: We test all of our information extraction approaches on a wide range of
predicates chosen randomly from sources such as Freebase, NELL, and Wikipedia.
We use accuracy, precision, recall, and F1 score as the main metrics, and compare
our results to the baseline and the state-of-the-art techniques.

• Simulated environment: We test our ObjectEval approach in a realistic simulated
environment, where our simulated robot is able efficiently and automatically query
ObjectEval to find novel objects. Our simulated environment consists of 290 spaces
of an office building, where only a topological map and the space types (e.g., “of-
fice,” “bathroom” etc.) are known to our system.

We also demonstrate the application of our information extraction techniques on a
mobile office robot, that actively queries OpenEval, and successfully finds and delivers
objects to different rooms in Gates Hillman Center office building.

1.4 Document Outline

The thesis is organized as follows:

• Chapter 2 introduces OpenEval and formally defines how claims are represented us-
ing multi-argument predicate instances. This chapter also explains the experimental
results comparing OpenEval to baseline approaches.

10



• Chapter 3 discusses how OpenEval can be extended to an on-demand, time-budgeted
query answering approach. We also explain how OpenEval can be extended to in-
tegrate the output of other knowledge harvesting systems in order to provide more
accurate responses. We demonstrate that our technique is capable of selecting the
most informative resources to query within test-time constraints, resulting in im-
proved performance compared to our approach presented in Chapter 2.

• Chapter 4 presents our ClaimEval approach which jointly estimates both the credi-
bility of sources and correctness of claims. We explain the detail of extensive exper-
iments on real-world datasets and compare the accuracy of the ClaimEval approach
to state-of-the-art approaches, including OpenEval.

• Chapter 5 discusses how OpenEval is used in a mobile robot to interactively learn to
find objects in an office environment. We present the detail of experiments showing
that acquiring knowledge through OpenEval can significantly decrease the number
of interactions that robot needs to have with humans, compared to a baseline ap-
proach which uses no background knowledge.

• Chapter 6 presents our automated planning approach that actively queries OpenEval
to add needed knowledge. We show that our technique is able to plan a trip for a
variety of different problems when no knowledge is given as input to the planner.

• Chapter 7 discusses areas of related research, including information extraction,
robotics, semantic web, and machine learning community, and places this thesis
into the context of these works.

• Chapter 8 summarizes our major findings and suggests potential lines of future
research.
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Chapter 2

Anytime Approach for Web Information
Query Evaluation

In this chapter, we focus on how to determine the value of a given proposition by devising
and implementing a new learning approach, called OpenEval. OpenEval evaluates the
correctness of propositions that are stated as multi-argument predicate instances using the
data on the Web.

We begin in Section 2.1 by motivating the problem of extracting structured knowledge
from the Web, and explaining the problem of information validation. Section 2.2 presents
the details of the OpenEval approach. In this section, we first explain the details of our
algorithm that converts a set of seed examples to a set of Context-Based Instances (Sec-
tion 2.2.1). Our learning algorithm to train a set of classifiers, that are later used to evaluate
the correctness of a set of predicate instances, is described in Section 2.2.2. The online
algorithm for evaluating the correctness of a test predicate instance is explained in Sec-
tion 2.2.3. Section 2.3 reports our experimental results. Section 2.4 presents the summary
of this chapter.
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2.1 Introduction

Arguments for the necessity of encoded knowledge for AI date back to McCarthy (1959).
Several subfields of AI such as question answering [Harabagiu and Hickl, 2006; Magnini
et al., 2002], information extraction [Etzioni et al., 2004] and robotics [Kollar and Roy,
2009] all profit from machine accessible knowledge. In all these cases, an external applica-
tion such as a Question Answering (QA) system needs access to a knowledge-base (KB).
The usual approach to build a wide-coverage knowledge-base is to use Information Extrac-
tion (IE) techniques that extract a large set of facts from corpora such as the Web [Etzioni
et al., 2004, 2008; Carlson et al., 2010d]. In this chapter, we address a slightly different
problem by assuming that the application interacts with the KB system by requiring the
assessment of a claim (i.e., hypothesis), e.g. the agent may ask the KB system to assign the
correctness probability to the claim DrugHasSideEffect(Aspirin, Gastrointestinal Bleed-
ing) [‘Does aspirin cause gastrointestinal bleeding as a side effect?’]. This is a specific
sub-problem of knowledge acquisition where our goal is to decide whether a given claim
is true or false (or likely to be true/false).

Evaluating the correctness of a proposition is of interest to several applications. For
example, it has been shown that the accuracy of a QA system can be improved by using
automated answer validation techniques that assess the correctness of the answers found
by the system [Harabagiu and Hickl, 2006; Magnini et al., 2002]. In automated Question
Answering systems, most of the questions and their candidate answers can be converted
to a proposition that requires assessment, e.g., the question “What are the side effects of
taking aspirin?” and the candidate answer “gastrointestinal bleeding” can be converted to
the proposition “Gastrointestinal bleeding is a side effect of taking aspirin.” Furthermore,
it is shown that the accuracy of IE systems such as KnowItAll [Etzioni et al., 2004], Tex-
tRunner [Etzioni et al., 2008] and NELL [Carlson et al., 2010d; Mitchell et al., 2015a] can
be improved by validating the correctness of the extracted facts. Finally, in Chapters 5 and
6 we show that a query evaluation system can help to learn the background knowledge
about the environment for collaborative robots [Veloso et al., 2012], learn task-relevant
knowledge from human-robot dialog, and retrieve knowledge for a planner.

In this chapter, we contribute a novel technique to respond to predicate-based queries

14



within a limited amount of time while also achieving high recall (at a small cost of sac-
rificing precision). We focus on how to determine the value of a given proposition by
devising and implementing a new learning approach, OpenEval. OpenEval evaluates the
correctness of queries that are stated as multi-argument predicate instances (e.g., DrugHas-
SideEffect(Aspirin, GI Bleeding)). A predicate such as p(x1,...,xn) defines a relationship
between entities (x1,...,xn). We call (x1,...,xn) an instance of predicate p.

As part of training, OpenEval is provided by a set of predicates (e.g., Drug(x), DrugHas-
SideEffect(x,y)) and a few seed examples with each predicate (e.g., “aspirin” and “ac-
etaminophen” for predicate Drug(x)). For each predicate, OpenEval trains a classifier
by taking a small number of instances of the predicate as an input and converting each
instance into a Web search query. It then extracts a set of positive and negative Context-
Based Instances (CBI) from the webpages returned by the search engine. The extracted
CBIs are used as training data. Each CBI is a bag-of-words, extracted from the context
around the words in the predicate instance. In principle, a single predicate instance could
return as many snippets as are on the Web referencing it. Thus, given a small set of in-
stances of the target predicates, OpenEval is able to extract many training instances from
the Web.

The extracted CBIs are then used to train a classifier (e.g., SVM) for each predicate.
The training CBIs that are extracted for a predicate are treated as positive examples. There
is a separate set of negative training CBIs which are used as negative examples of the
predicate and is obtained by sampling a portion of the training instances that are extracted
for all other mutually-exclusive predicates. Given the set of positive and negative training
CBIs, the goal of the classifier is to evaluate the correctness of a new predicate instance.

To evaluate a new predicate instance, OpenEval follows a similar process by convert-
ing the input predicate instance to a search query and extracting a set of context-based test
instances from the Web, but then gives the extracted CBIs to the trained classifier. For
each of the extracted test CBIs, we say that it supports the predicate p, if it is classified
as positive by the classifier that is trained for predicate p. The CBI does not support the
input predicate instance, if it is classified as negative by the classifier. The probability
of the input predicate instance is calculated by dividing the number of CBIs that support
the predicate, by the total number of extracted CBIs. To navigate the diversity of infor-
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mation that exists on the Web, we have presented a novel exploration/exploitation search
approach, which enables formulating effective search queries and increases the accuracy
of responses provided by OpenEval.

We tested OpenEval on a wide range of predicates chosen randomly from Freebase [Bol-
lacker et al., 2008a], a large semantic database of several thousand categories and re-
lations. The baselines for our comparison are the Pointwise Mutual Information (PMI)
technique, [Turney, 2001], and weakly-supervised classification approach [Zhang, 2004].
We show that OpenEval significantly improves the F1 score on the test data compared to
the baseline techniques.

Furthermore, to illustrate the applicability of OpenEval we show the use of OpenEval
on three different domains. In the first domain, we show that OpenEval can be used in a
mobile robot to determine the name of a place where an object is likely to be located in
an indoor environment. This has an important application in robotics since robots must
be able to autonomously follow commands that involve finding objects. In Chapter 5, we
will further explain the detail of this approach and will explain how OpenEval is used in
this setting to help a real mobile service robot. In the second domain, we use OpenEval in
a password-generation algorithm [Blocki et al., 2013] that needs to check if a given word
is “picturable.” For instance, words such as “car” and “assumption” are, respectively, ex-
amples of picturable and non-picturable words. In the third domain, we test OpenEval on
DrugBank, a comprehensive database containing information on drugs and drug targets.
The thoroughness of DrugBank is such that its information is relied upon worldwide by
medicinal chemists, pharmacists, physicians, students, as well as the general public. Over
7,500-drug entries are available (about 1,500 entries are FDA approved; about 6,000 are
experimental). However, users manually curate DrugBank, and, therefore, drug entries
are subject to human error. OpenEval is used to validate the information in the DrugBank
database related to drug interactions. We will show that OpenEval can be used to automat-
ically find human errors entered in the database. For all these three domains, we perform
an evaluation of the predictions that OpenEval makes and show that OpenEval is able to
correctly validate most of predicate instances. For the first two domains, we also show
that OpenEval can outperform a state-of-the-art technique that is specifically designed for
those domains.
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Finally, we use OpenEval as part of the Never-Ending Language Learning (NELL) [Mitchell
et al., 2015b] project to improve accuracy of information that is extracted by NELL. NELL
is a computer program that learns to read the Web 24 hours/day. NELL has been continu-
ously reading the data on the Web since January 2010, and so far has acquired a knowledge
base with over 80 million confidence-weighted beliefs, where beliefs are represented by
one- or two-argument predicates. Although NELL extracts a diverse set of beliefs, the
extracted knowledge is not always correct. To ensure that NELLs extractions are correct,
NELL uses OpenEval to evaluate the correctness of its own extractions. The probability
that is computed by OpenEval for each of NELL’s extractions, is used to decide if a partic-
ular predicate instance extracted by NELL should be promoted in order to be shown in the
final knowledge base. In the experimental section, we present the detail of experiments
showing that OpenEval can significantly improve the accuracy of NELL, in particular by
improving its F1 score from 14.67 to 16.07 in the KBP 2013 Slot Filling task [Bryan Kisiel,
2013].

2.2 OpenEval

OpenEval evaluates the correctness of propositions that are stated as multi-argument pred-
icate instances (e.g., DrugHasSideEffect(Aspirin, GI Bleeding)). A predicate such as
p(x1,...,xn) defines a relationship between entities (x1,...,xn). We call (x1,...,xn) an in-
stance of predicate p where each xi is an argument of such a predicate instance.

OpenEval includes several components, which we capture in its architecture in Fig-
ure 2.1. These components are: Learning, Predicate Instance Evaluator, and Context-
Based Instance (CBI) Extractor. The role of the learning component is to build a set of
training data, train a set of classifiers, and construct a set of reference sets. A reference set
consists of a set of keywords, that with the trained classifiers, are later used by the predicate
evaluator. The predicate evaluator evaluates the correctness of an input predicate instance
and returns a probability. Both learning and predicate instance evaluator components call
the CBI extractor, in order to extract a set of CBIs from the Web.

OpenEval considers a set P of predicates p with instantiation ip for each predicate.
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P : A set of predicates, 
I :Seed examples,
R :Mutally exclusive relationship,
t : Time for training
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of	  	  	  	  	  .	  	  ip

Figure 2.1: The architecture of OpenEval. OpenEval consists of three main components:
Learning, Predicate Instance Evaluator, and Context-Based Instance (CBI) Extractor.

For example, for p = Drug, values of ip are Aspirin and Acetaminophen, and for p =

DrugHasSideEffect, values of ip are (Aspirin, GI Bleeding) and (Acetaminophen, Nausea).
OpenEval evaluates the correctness of a combined triple t = 〈p, ip, t〉, where t is the input
time that OpenEval is allowed to use for evaluation.

In the next section, we describe in detail the three main components of OpenEval,
which we capture in its architecture in Figure 2.1, namely: Context-Based Instances (CBI)
extractor (Section 2.2.1), Learning (Section 2.2.2), and Predicate Instance Evaluator (Sec-
tion 2.2.3).
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2.2.1 Context-Based Instance (CBI) Extractor

Algorithm 1 shows the procedure to extract a set of Context-Based Instances (CBIs). Each
CBI consists of a set of features constructed by querying the open Web and processing
the retrieved unstructured webpages. The input to the CBI Extractor is the tuple 〈p, ip, k〉,
where p is the input predicate (e.g., DrugHasSideEffect), ip is an instance of predicate
p (e.g., (Aspirin, GI Bleeding)), and k is a keyword that is used to formulate the search
query (e.g., side effects). The output of the CBI extractor is a set of context-based instances
which are extracted for the input instance ip.

Algorithm 1 OpenEval - Context-Based Instance (CBI) Extractor
Require: 〈p, ip, k〉 //p: predicate, ip: predicate instance, k: keyword

1: Function: CBIExtractor (〈p, ip, k〉)
2: Bip ← φ //Bip is the set of all the CBIs for ip
3: pArgs← Arguments of ip separated by space
4: Q← “pArgs k” //Q is the search query
5: W ← Retrieve the first N documents for query Q
6: BWi

← φ //BWi
is the list of all the bags-of-words that are extracted from webpage

Wi

7: for all webpages Wi ∈ W do
8: for all occurrences of words in pArgs (close to each other) in Wi do
9: t̄← extract text around pArgs,

10: Remove stop words and words in pArgs from t̄
11: Add t̄ as a bag-of-words to BWi

12: end for
13: Add bags-of-words in BWi

to Bip

14: end for
15: return Bip

Given the input tuple, the CBI Extractor first builds the search query (Lines 3-4). The
search query Q is built from arguments of the input instance ip, and input keyword k.
For example, query Q ={“Aspirin” “GI Bleeding” side effects} is built for the predicate
instance DrugHasSideEffect(Aspirin, GI Bleeding), where the keyword is side effects. The
CBI extractor then searches the query Q in Google and downloads the first N webpages
(Line 5). For each webpage Wi, which the search engine finds, the CBI extractor searches
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the content ofWi and finds all the positions inWi whose words in ip appear “close” to each
other (Line 8). “Close” means that we allow words in ip to appear in any arbitrary order
and up to a maximum of 15 words can be in between, before and after them. For each
occurrence of words in ip, consider t̄ as the text that occurs around words in ip (Line 9).
All the stop words and the words in ip are deleted from t̄ and the remaining words in t̄
are then added as a bag-of-words into the set BWi

(Line 11). Finally all the bags-of-words
that are extracted from different webpages are returned as a set of extracted CBIs for input
instance ip (Line 13).

To show an example of Context-Based Instances (CBIs) that are extracted by the CBI
extractor, consider the text in Figure 2.2 as part of a text of a webpage that is retrieved for
predicate instance DrugHasSideEffect(Aspirin, Gastrointestinal Bleeding).

Common Aspirin Side Effects: The common aspirin side
effects are primarily related to its anti-platelet effects. Gas-
trointestinal bleeding, is the most common serious side
effect. Aspirin also frequently causes gastrointestinal irrit-
ation including gastritis, gastric and duodenal ulcers, and
esophagitis. These combined with the anti-platelet effect
which can cause any bleeding to be more severe make
GI bleeding a common aspirin side effect. Aspirin when
used in combination with other NSAIDs can greatly incre-
ase the risk of gastrointestinal bleeding.

Figure 2.2: An example of the text that is found for predicate DrugHasSideEffect(Aspirin,
Gastrointestinal Bleeding).

In the example that is demonstrated in Figure 2.2, the arguments of ip are “aspirin” and
“gastrointestinal bleeding”, and therefore the value of pArgs in Algorithm 1 is “aspirin”
“gastrointestinal bleeding”. There are only two places where a maximum of 15 words
occur between words in pArgs. For each of these two cases, we have shown the arguments
of the predicate DrugHasSideEffect in bold. The underlined text shows the value of t̄ for
each case (i.e., text around arguments of ip). The CBI Extractor returns two bags-of-words:
{Common, Common, side, effects, common,...} and {severe, make, GI, bleeding,...}. Each
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of these bags-of-words will be used as a separate CBI in Bip . The algorithm returns a set
of CBIs (i.e., Bip), represented by a set of bag-of-words.

Detecting noisy blocks: The text around the arguments of a predicate can potentially
contain non-informative content, e.g. ads or spam. This may cause the noise in the ex-
tracted context-based instances. One of the main reasons for noisy extraction is that a
webpage typically contains many information blocks, such as navigation, copyright, pri-
vacy notice, advertisements, etc., which we call noisy blocks. Figure 2.3 shows one of
the webpages that are extracted for the query DrugHasSideEffect(Aspirin, Gastrointesti-
nal Bleeding), where the main information block is shown by a solid line, and any other
information in the website is considered as noisy blocks. It has been shown by the re-
searchers [Lin and Ho, 2002; Yi et al., 2003] that noisy blocks can significantly harm the
accuracy of Web information extraction systems, since they usually have relevant key-
words but irrelevant content. Therefore, detecting and removing the noisy blocks can
significantly improve the accuracy of our IE technique.

In addition to detecting the noisy blocks, extracting the content of the main block
is also a challenging problem. Figure 2.4 shows the Document Object Model (DOM)
representation of the content of a webpage that contains a snippet related to the predicate
instance DrugHasSideEffect(Aspirin, Gastrointestinal Bleeding). DOM is an application
programming interface (API) that represents valid HTML and XML documents in the tree
structure format. The DOM tree provides a wide range of flexibility for representing and
parsing the structure of a single webpage. In DOM tree representation, tags are internal
nodes and the text of snippets, links to images, or hyperlinks are the leaf nodes.

The Figure 2.4 shows that extracting the content of a snippet such as “Common Aspirin
Side Effects: The common aspirin side effects are primarily related to its anti-platelet
effects. Gastrointestinal bleeding [...]” is non-trivial, due to the special HTML-formatting
that is used to represent the content of the snippet in the HTML page. In the figure,
this snippet is shown as one of the children of the annotated node with tag P. The word
“aspirin” in the snippet (one of the arguments of the input predicate instance) is annotated
with an anchor tag (i.e., node with tag “a”), and therefore is separated from other children
of the node P. In order for an IE algorithm to extract the complete text of the snippet,
it should be able to automatically determine that the node below tag node a should be
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Figure 2.3: An example of a webpage that is retrieved for the query DrugHasSideEf-
fect(Aspirin, Gastrointestinal Bleeding). The solid line is drawn manually and shows the
main information block of the webpage. Other information blocks in the webpage are
non-informative and should be mostly removed during the extraction.

merged with other children of its parent (node P). Determining these cases is non-trivial,
as the structure of the DOM tree can be complex and sometimes non-informative blocks
(e.g., ads) can be located as one of the children of annotated node P.

Although some interesting research has been done on detecting and removing the noisy
blocks [Yi et al., 2003; Lin and Ho, 2002; Song et al., 2004; Weninger et al., 2010], they are
not fully applicable to our setting. For example, Lin and Ho [Lin and Ho, 2002] proposed
an approach to detect the information blocks in news related webpages. However, their
work is limited by the assumption that a prior knowledge is provided which defines how
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Figure 2.4: A DOM tree representation of part of a webpage that is retrieved for the
query DrugHasSideEffect(Aspirin, Gastrointestinal Bleeding). For the snippet “Common
Aspirin Side Effects: The common aspirin side effects are...”, the text of the snippet is split
between different DOM nodes in the tree, e.g. the word “aspirin” is separated from other
parts of the snippet since it is represented by the anchor tag node a.

a given webpage can be partitioned into different content blocks. This assumption makes
their work inapplicable to the setting of OpenEval, since OpenEval retrieves any webpage
that is returned by the search engine. It is not feasible to assume that a prior knowledge
is available about the the structure of all the returned webpages. Other works, such as
[Lin and Ho, 2002], do not require prior knowledge, but instead assume that many of the
webpages are retrieved from the same website. The noisy blocks are detected by finding
the common layouts or presentation styles between different webpages of a website. Un-
fortunately, these works are not applicable to OpenEval’s setting since it is unlikely for a
search engine to return different webpages of the same website.

To address the above challenges, we propose a simple algorithm, which is based on
the layout of the HTML, and uses a set of general rules (heuristics) in order to detect most
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of the noisy blocks in a webpage. In our experiments, we have observed that our simple
extraction algorithm is able to detect most of the noisy content blocks in the webpages
retrieved by OpenEval, and further sophisticated algorithms do not necessarily result in
achieving higher accuracy. Since detecting the noisy content is not the main focus and
contribution of this thesis, we leave the further improvements to our core algorithm as part
of the future work. We now give an overview of the DOM (Document Object Model) 1

tree, which is used to represent the structure of the HTML document. We then explain the
details of our algorithm.

Each HTML document can be represented by a DOM tree structure, where tags are the
internal nodes, and the main content (e.g., text, images, urls, etc.) of the HTML document
are represented in the leaf nodes. Figure 2.4 shows an example of a DOM tree node, where
the tag nodes are represented by white rectangles, and content nodes are represented by
the gray-colored rectangles. Any given HTML document can be represented by a corre-
sponding DOM tree, where the node with tag root is the root of the tree. All the viewable
elements in a HTML document are shown under the node with tag BODY. Algorithm 2
shows our algorithm for extracting snippets of the main content of a webpage.

Algorithm 2 first converts the input HTML document H to a DOM tree (Line 2). It
then parses the DOM tree D in depth-first order. For each node n in the tree that it visits,
the algorithm calls two functions. The first time that node n is visited, the algorithm calls
function ParseHead, which takes a node and the depth of the tree as an input (Line 6),
and returns false if the node contains a non-informative block. For each node of the DOM
tree, the function ParseHead is called only once. If ParseHead detects that the subtree of
a particular node contains noisy information, the algorithm then does not parse the content
of the node. Next, we explain the details of the ParseHead function, shown in Algorithm 3.

Algorithm 3 shows the detail of the ParseHead function used by the Traverse function,
which (i) detects noisy information blocks, and (ii) extracts/merges the texts of the snippets
in the subtree of the input node n. From our experiments, we have observed that a few
simple heuristics can be extremely helpful in determining most of the noisy blocks. Lines
3-5 shows the heuristics that we have used, which can be summarized as follows:

1http://www.w3.org/DOM/
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Algorithm 2 OpenEval - Traversing and processing information of the DOM tree in the
depth-first order
Require: HTML Document H

1: Snippets ← {} //Set of all extracted snippets. Public variable that is used by both
Traverse and and ParseHead functions.

2: Function: Traverse (H)
3: D ← Convert H to a DOM tree
4: Node node = D.root
5: depth ← 0
6: while node 6= null do
7: containsNoisyBlock← ParseHead(node, depth)
8: if node.childNodeSize() > 0 & containsNoisyBlock == false then
9: node=node.childNode(0)

10: else
11: while node.nextSibling() == null & depth > 0 do
12: node=node.parentNode()
13: depth← depth −1
14: end while
15: if node == root then
16: break
17: end if
18: node=node.nextSibling()
19: end if
20: end while
21: return Snippets

• If a DOM node name contains the word code, then it is likely to be a code block,
and avoid parsing it.

• If the HTML style of a DOM node is set to display:none, then do not parse the
content of the node, since it is a hidden node and its content is not displayed to the
user.

• If the name of a DOM node contains either of the words ad or img, do not parse the
content as it is very likely to contain an advertisement or an image.

Although an adversary can break the above heuristics easily, most of the webpages on the
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Algorithm 3 OpenEval - Parsing a DOM node
Require: DOM node n, depth

1: currentSnippet← “” //Contains accumulated snippet text
2: Function: ParseHead (n,depth)
3: if ( n.nodename == “code” or n.attribute(“style”) == “display:none” ) OR (

n.nodename contains either “ad” or “img” ) then
4: return false
5: end if
6: if n is a text node then
7: Clean the text of node n, and add it to currentSnippet
8: else if n is an Element node then
9: if (n is a block node or has tag name br) AND length(currentSnippet) > 0 then

10: Add currentSnippet to Snippets
11: currentSnippet← “”
12: end if
13: end if
14: return true

Web use the standard naming format in the HTML structure, and the current heuristics
should be adequate. Moreover, in the next sections we will explain that the classifier that
we train for each classifier can also learn to decrease the weight of CBIs that are not
informative.

As we are parsing the nodes in the DOM tree, Algorithm 3 accumulates the text of
snippets that it sees in the DOM tree, until it reaches either a block node or a node with the
tag name br (Line 9). These two types of nodes determine when we have reached the end
of the snippet text. When the algorithm reaches either of these types of nodes, it then adds
the content of the accumulated snippet (variable currentSnippet) to the list of all extracted
snippets (shown by global variable Snippets in Algorithm 2). After parsing all the nodes in
the DOM tree and extracting the snippets, Algorithm 2 returns the list of all the extracted
snippets.
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2.2.2 Learning

As part of training, OpenEval is given the tuple 〈P, I, R, t〉where P is a set of predicates, I
is a set of seed examples for each predicate in P , R is the mutually-exclusive relationships
between predicates P , and t is the time that the learning algorithm should spend for the
training. To decide if an extracted set of context-based instances belongs to a certain
predicate, we train a separate classifier (such as SVM) for each predicate. The OpenEval
learning algorithm is shown in Algorithm 4.

Algorithm 4 OpenEval - Learning classifiers
Require: 〈P, I, R, t〉 //P : a set of predicates, I: seed examples, R: mutual-exclusive

relationships of predicates in P ,t: time for training (seconds)
1: Function: LearningClassifiers (〈P, I, R, t〉)
2: CBIp ← Call CBIExtractor to extract CBIs for all instances of p that exists in I (no

keyword is used)
3: CBI′p ← Randomly sample and remove a set of CBIs from CBIp //used to estimate

how OpenEval performs on future test data
4: for all p ∈ P do
5: pos← CBIp
6: neg← Sample instances from CBIi ∀ predicates i that are mutually-exclusive to p
7: Cp ← Train SVM using pos and neg
8: end for
9: while elapsed time ≤ t do

10: Cp′ ← Find classifier Cp′ that has maximum entropy on CBI′

11: ref ← Extract reference set from Cp′
12: k ← Choose a keyword from ref
13: NewCBIs←Extract CBIs for predicate p′ using instances I and keyword k
14: CBIp′ ← CBIp′ ∪ NewCBIs
15: Retrain classifier for predicate p′

16: end while
17: return C, reference sets for all the predicates

The learning algorithm first iterates over all the predicates p ∈ P and extracts a set of
CBIs (denoted by CBIp) for each predicate p using the input seed examples (Line 2). It
also constructs another set, CBI′p, by randomly choosing and removing 10% of the CBIs
from set CBIp (Line 3). CBI′p is used as an evaluation set during the learning to estimate
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how OpenEval performs on the future test data. A SVM is then trained for each predicate
p by considering the CBIs that are extracted for p as positive examples (Line 5). To build
the set of negative examples, we sample from the instances that are extracted for all other
predicates that are mutually exclusive from p (Line 6). Each of these CBI examples is
then transformed into a feature vector, where each element corresponds to the frequency
of a distinct word in the CBI. The dimension of the vector is equal to the total number
of distinct words that occur in the training data. We train a classifier for each predicate p
so that it classifies the input feature vector f as positive if f belongs to p, and classifies
it as negative otherwise (Line 7). The classifier that is trained for p is later used in the
evaluation to decide if a new CBI belongs to predicate p.

Iteratively Minimizing Entropy of Trained Classifiers

After training a classifier for each predicate using extracted CBIs (Lines 3-8), OpenEval
iteratively chooses a classifier with the lowest accuracy and tries to improve its accuracy
by extracting more training examples from the Web. To achieve this goal, our learning
algorithm iteratively minimizes the entropy for the trained classifiers (Lines 9-16). We
explain the details of our learning algorithm below.

Consider predicate p and assume that CBI is the set of CBIs extracted for predicate
p and CBI ∗ as the set of CBIs extracted for predicates that are mutually-exclusive to
predicate p. Also assume:

• Cp: is the classifier trained for predicate p

• CBI+: A subset of CBIs in CBI that are classified as positive by classifier Cp

• CBI−: A subset of CBIs in CBI that are classified as negative by classifier Cp

• CBI ∗+ and CBI ∗− are defined similarly to CBI+ and CBI−, but for the CBIs that
are extracted from predicates mutually-exclusive to p.

• Cp(CBI ): sum of confidence values assigned by Cp to instances in CBI .

Ideally, our learning algorithm should train a classifier that has the minimum entropy
value for each predicate. Having the minimum entropy value means that the classifier Cp
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should classify all the CBIs that are extracted for predicate p as positive, and all other CBIs
that are extracted for other mutually-exclusive predicates as negative. It should also assign
a high confidence value to its prediction. Therefore, the ideal classifier should maximize
CBI+ and minimize CBI−. Using the entropy notation, this objective can be written as
minimizing:

E = Cp(CBI
−) ∗ log(Cp(CBI

−))− Cp(CBI+) ∗ log(Cp(CBI
+)) (2.1)

Similarly we can write it for set CBI ∗:

E∗ = Cp(CBI
∗+) ∗ log(Cp(CBI

∗+))− Cp(CBI ∗−) ∗ log(Cp(CBI
∗−)) (2.2)

Our learning algorithm minimizes the value of E + E∗. Figure 2.5 shows an example
of different values of E, for different values of Cp(CBI+) and Cp(CBI−).

Figure 2.5: Entropy values (value of E in Equation 2.1) for three different cases. The first
figure from the left shows that the entropy value is high since the classifier has classified
most of the (positive) instances in the set CBI as negative. The figure in the middle shows
that the entropy value is equal to zero (the classifier is performing almost randomly). The
figure on the right shows that the entropy value is low since the classifier is able to classify
most of the instances correctly (classifying instances in CBI as positive).

To minimize the entropy value of classifiers, the learning algorithm iteratively finds a
classifier Cp′ that has the maximum entropy value on the evaluation set CBI′ (Line 10).
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The training data of the predicate which has the maximum entropy is then increased by
extracting new CBIs (Lines 10-15). By increasing the number of training data and retrain-
ing the classifier, OpenEval tries to decrease the entropy value of a classifier and make it
more accurate and confident in its prediction.

To extract new CBIs for a predicate, the learning algorithm first chooses a keyword
from the reference set that is constructed for the predicate. A reference set contains a
set of keywords that represent some of the underlying semantic concepts of a predicate
and mostly distinguishes a semantic meaning of a predicate from others. For example,
keywords such as {drug, drug effects, adverse effects} can be used as part of the reference
set for predicate DrugHasSideEffect(x,y). The reference set can be built by selecting a set
of relevant phrases from CBIs that are already extracted for a predicate. Different feature
extraction techniques that have been studied in the machine learning community can be
used to construct the reference set [Blum and Langley, 1997]. Among these techniques,
we use feature ranking using weights from a linear SVM classifier which has been shown
to be an effective approach for text classification tasks [Mladenić et al., 2004]. Thus,
the reference set is constructed by selecting the top K% keywords that have the highest
absolute weights in the trained SVM (i.e., the normal to the hyperplane that separates
positive and negative classes).

What does OpenEval learn?

In linguistics, the term “word sense” is used when a word has different meanings. For
example, the word “apple” has at least two senses, “apple” as a fruit and “apple” as the
name of a company, means that “apple” is an instance of two different predicates: fruit and
company. In this paper we assume that a set of entities (x1, ..., xn) can potentially be an
instance of different predicates. For example, (J.C. Penneys, United States) is an instance
of both PersonBornInCountry and CompanyLocatedInCountry predicates. In this case we
say that (J.C. Penneys, United States) has two different senses.

By iteratively choosing keywords from a reference set, OpenEval automatically learns
how to map a set of entities to an appropriate predicate (i.e., sense) to which they belong.
For example, given a predicate instance such as Fruit(Apple), OpenEval uses keywords
that are chosen from the reference set of predicate Fruit as part of the search query which
biases the search engine to return the documents that contain information about apple as a
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fruit. For example, by using a keyword such as {vitamin}, the search query for predicate
Fruit(Apple) would be {“Apple” vitamin} which forces the search engine to return the
results that are more likely to mention “apple” as a fruit rather than as a company. Using
a keyword as part of the search query helps OpenEval to automatically extract CBIs that
specify an appropriate sense of the input predicate instance. It is worth mentioning that in
the first iteration of the learning algorithm (Lines 2-8), no keyword is used to extract CBIs.
However, since CBIs are extracted for a set of seed examples (not only one), OpenEval
eventually would be able to converge to extract relevant keywords for the reference set.

Choosing Negative Examples

To train a classifier for predicate p, a subset of context-based instances that are ex-
tracted for the other predicates (mutually-exclusive to predicate p) are randomly chosen
as the negative examples of predicate p. The set of negative instances can help to circum-
scribe the desired keywords for predicate p. For example, negative CBIs that are extracted
for other predicates will help the classifier to eliminate keywords that are common across
different predicates.

facts, love, :, arranged, forum, kind, article, forum,
kind, article, economy, over-standing, followers, rudolph,

mandaean, encyclopedia, educational, discussion, ?x,
spiritual

facts, arranged, followers, over-standing, educational, kind,
opportunities, discussion, article, forum, religion,

religion-facts, love, basics, influential, mandaean, spiritual,
beliefs, god, faith,

Figure 2.6: The top 20 highest-ranked features that are extracted for predicate Religion(x).
The first row shows the features that are learned by the classifier using only two predicates
Religion(x) and AcademicField(x) for training. The second row shows the learned features
when all the predicates in Tables 2.1 and 2.2 are used in training. In general, having more
predicates in the ontology would improve the accuracy of OpenEval, since a more diverse
set of negative examples would be chosen from the ontology.
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For example, Figure 2.6 shows a set of words that is learned by the classifier for predi-
cate Religion(x) when the words are sorted by their weights in the resulting SVM classifier.
The first row shows the result when we have used only two predicates Religion(x) and Aca-
demicField(x) in the training. The second row shows the result when all the predicates in
the ontology (shown in Tables 2.1 2.2 in the experimental result section) have been used
in the training. It can be seen that the features in the second row are relatively more infor-
mative compared to the first row.

As shown in Figure 2.6, selecting negative examples from a more diverse set of pred-
icates helps the classifier to learn more informed weights for the features, and potentially
achieve higher accuracy. For example, assume that an agent (e.g., a semantic parser that
needs to annotate a sentence) asks OpenEval to validate if Himalaya is a name of a color.
The true answer is false, since Himalaya is the name of a mountain and the predicate
Mountain is mutually-exclusive to predicate Color. Now assume that predicate Mountain
is not defined in the ontology of OpenEval. In this case, most of the CBIs that are ex-
tracted for instance Himalaya contains features and keywords that the classifier has not
observed during the training, or has not had enough data to learn useful weights. This can
cause significant noise in the classification and affect the accuracy. However, if Mountain
is defined in OpenEval’s ontology, then the classifier that is trained for predicate Color
has learned to classify some of the snippets that are extracted for predicate Mountain as
negative. Hence, the classifier is more likely to reject Himalaya as an instance of predicate
Color.

The portion of the negative examples and how they have been chosen have an im-
portant impact on the accuracy of OpenEval. For example, it has been widely shown in
the machine learning literature [Kubat et al., 1997] that the accuracy of learning systems
decreases when the negative examples heavily outnumber the positive examples. In our
current approach, we take a random sample from all the training instances that are ex-
tracted for other mutually-exclusive predicates. In order to bound the size of the negative
examples, for each predicate we take 10 times as many negative instances as positive in-
stances. We defer further consideration of other relevant sampling techniques for future
work.
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Seed Examples

One of the main advantages of OpenEval is that it only needs a few seed examples for
training, mainly because the actual training data are created by converting the input seed
examples to a set of CBIs. However, similar to any other machine learning techniques,
providing more seed examples helps OpenEval to achieve higher accuracy. For example,
consider predicate AcademicField(x). Figure 2.7 shows the top 20 highest-ranked features
that are learned for the predicate AcademicField(x) when we train OpenEval using dif-
ferent number of seed examples. As expected, it can be seen that the features are more
informative as we increase the number of input seed examples to OpenEval.

Figure 2.7: The top 20 highest-ranked features that are learned for predicate Academic-
Field(x). The number of seed examples that are used in the training is shown on the left.

2.2.3 Predicate Instance Evaluator

To evaluate a new predicate instance, OpenEval follows a similar process to the learning
algorithm by converting the input predicate instance to a set of CBIs, but gives the ex-
tracted CBIs to the trained classifier to compute the correctness probability of the input
predicate instance. The input of the predicate evaluator is predicate p, the candidate in-
stance ip, and time t (seconds). OpenEval outputs the probability of ip to be an instance of
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predicate p.

To evaluate if ip is an instance of predicate p, OpenEval iteratively selects a set of key-
words from the reference set that is built for predicate p (the reference set is built during
the training) and calls the CBI Extractor to extract a set of CBIs for ip using the selected
keywords. The goal is to select a set of keywords and to formulate search queries that cap-
ture different senses/aspects of a predicate. For example, predicate UniversityProfessor(x)
is related to different aspects such as teaching professor and research professor. Different
aspects of this predicate can be captured by keywords such as {research, teaching, paper,
...}. To decide which keywords should be chosen, we define a utility function that mea-
sures the utility value of each individual keyword using the documents that are retrieved
from the Web. Given this utility function, we propose a learning algorithm that iteratively
explores/exploits different keywords from the reference set, retrieves documents from the
Web, and extracts CBIs from the retrieved documents.

Let ref = {k1, . . . , kn} be a reference set that is extracted for predicate p, where each
ki is one of the keywords that is extracted during the training. Also consider set K as a
subset of keywords that are selected from ref and CBIK as a set of CBIs that are extracted
for input predicate instance ip using keywords in K. To construct CBIK , we go through all
the keywords in K and extract a set of CBIs for ip using the selected keyword. We express
the utility of the set of keywords K as the following:

U(K) = |
∑

ci∈CBI+K

conf(ci)−
∑

ci∈CBI−K

conf(ci) | (2.3)

where CBI+
K is a set of all CBIs that are classified as positive by the classifier of predi-

cate p and CBI−K is a set of all CBIs that are classified as negative. conf(ci) is the confidence
value that is assigned to ci by the classifier. The utility U(K) shows how keywords in K
could help to classify ip either as positive (true) or negative (false) classes. If predicate
instance ip belongs to predicate p, then we would like to find keywords K to extract CBIs
that give the highest confidence value on classifying ip as positive (large value of U(K)).
On the other hand, if ip does not belong to predicate p, then we would like to find key-
words that help to classify ip as negative where they give the highest confidence on the
classification vote. Therefore, our goal is find a set of keywords K that maximizes the
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utility value U(K):

arg max
K

U(K) (2.4)

To maximize the expected utility, one naive approach is to rank each of the keywords
based on its utility and always choose the keyword that has the highest utility value. We
call it a greedy approach. This approach may deprive us of the opportunity of finding
the optimal set of keywords K. Therefore, we face a trade-off between exploitation and
exploration to gain the optimal overall utility [Gittins and Jones, 1974]. To achieve both
exploitation and exploration goals, we rank the keywords based on their expected utility
plus a term related to their variances, instead of solely using the expected utility as in the
greedy approach. The term related to the variance is known as the exploration bonus [Sut-
ton, 1990]. We use a similar algorithm to the UCB1 algorithm [Auer, 2003] which aims at
obtaining a fair balance between exploration and exploitation in a K-Armed bandit prob-
lem, in which the player is given the option of selecting one of the K arms of a slot machine
(i.e., the bandit). In the context of our work, each keyword in the reference list ref is treated
as an arm which can be used to formulate a search query and extract the correspondence
CBIs. The selection of keywords is directly proportional to the number of times that all
the keywords have been selected and inversely proportional to the number of times that
each keyword is selected. We also assume that an initial reward value is assigned to each
keyword which is calculated from the initial weight assigned to each keyword during the
training. More precisely, we assign Q(k) value to each keyword k:

Q(k) = Ūk + C ′

√
2 log (n+ 1)

Nk + 1
(2.5)

The keyword k that maximizes Q(k) is selected at each iteration. Ū is the average utility
(reward) that we have obtained by selecting keyword k after n iterations, Nk is the number
of times that keyword k is selected. C ′ controls the balance between exploration and
exploitation.

Algorithm 5 shows the detail of our technique for evaluating the correctness of an
input predicate instance ip. We first extract the reference set for the predicate p (Line 3).
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The average reward for each keyword is initialized by the weight that is assigned to it in
the reference set divided by the sum of all the weights of keywords in the reference set
(Line 5). The algorithm then iteratively updates Q values for all the keywords (Line 8)
and extracts CBIs using the keyword that has the maximum Q value (Lines 9-10). The
utility for the selected keyword is then calculated (Line 12) and the average utility value
(Ūk′) is updated (Lines 13-15). Finally, the algorithm classifies each of the extracted CBIs
(Lines 17-18). The next step of the algorithm is to combine the classification results for
all the extracted CBIs.

Algorithm 5 OpenEval - Predicate instance evaluator
Require: 〈ip, C, t〉 //ip: a predicate instance to be evaluated, C: classifiers trained for

predicates, t: time (seconds)
1: Function: Evaluator (〈ip, C, t〉)
2: CBI← {} //set of CBIs for predicate p
3: ref ← Extract reference set from classifier Cp
4: Nk ← 0 ∀k ∈ ref //number of times that k is used as a keyword
5: R̄k ← weight of k in ref

sum of weights in ref ∀k ∈ref //initializing average reward obtained by using
keyword k

6: n← 1
7: while elapsed time ≤ t do
8: Qk ← Q(R̄k, Nk, n) ∀k ∈ref //update Q values
9: k′ ← Choose keyword with maximum Q value

10: B ← CBIExtractor(〈p, ip, k′〉)
11: CBI← CBI ∪B
12: U ←∑

[ci∈B+] conf(ci)−
∑

[ci∈B−] conf(ci)
13: Nk′ ← Nk′ + 1
14: Ūk′ ← (Ūk′ + |U |)/Nk′

15: n← n+ 1
16: end while
17: Classify instances in CBI
18: eval← calculate weighted majority vote for instances in CBI
19: return true if eval ≥ 0.5; false otherwise

Combining the Classification Results

The simplest way to combine the classification results from multiple CBIs is within
a voting framework. In this framework, the correctness probability of the input predicate
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instance ip is calculated by dividing the number of instances that are classified as positive
by the total number of instances that are returned by the CBI Extractor, where the classifier
vote is weighted by its confidence value. This scheme is known as weighted majority
(or plurality) voting which has been shown to be very robust compared to other more
intelligent voting schemes that have been used in forecasting literature [Clemen, 1989;
Dietterich, 1998]. The correctness probability of ip can be written as follows:

P (ip = t|CBIs(ip)) =
1

Z

∑

c∈CBIs(ip)

W[Cp(c)=t] × 1{Cp(c) = t} (2.6)

where Z is the normalization factor:

Z =
∑

b={t,f}

∑

c∈CBIs(ip)

W[Cp(c)=b] × 1{Cp(c) = b} (2.7)

and W[Cp(c)=t] is defined as the confidence of classifier Cp where it classifies c as positive.

2.3 Experimental Evaluation

We designed our experiments to study the following questions.

1. What is the accuracy of OpenEval in terms of recall and precision and how does
it compare to the PMI technique [Turney, 2001] and weakly-supervised relation
classification [Zhang, 2004] for different types of predicates?

2. How is the accuracy of responses provided by OpenEval affected if we use different
parameter settings? In particular, how is the accuracy affected when more time is
given for training and evaluation?

3. How does OpenEval perform when it is used in different domains or applications?
In particular, how does it perform in three different domains: finding objects in an
environment, password creation, and drug discovery?

4. How to incorporate OpenEval in an information extraction system like NELL, and
how can it help to improve accuracy of extraction?
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2.3.1 Setup

OpenEval is tested on 50 predicates that are chosen randomly from the Freebase knowl-
edge base [Bollacker et al., 2008a], a large semantic database. Freebase contains 360 mil-
lion instances of different relations. These predicates contain both categories (predicates
with one argument) and relations (predicates with two arguments). For each predicate, 25
instances are provided as training seed examples to train OpenEval and 50 instances are
randomly chosen as the test data. The test data for each predicate p consists of 25 positive
examples (i.e., instances of predicate p) and 25 negative examples. The negative examples
are chosen from predicates that are mutually-exclusive to p and also from predicates that
are not used as part of training in OpenEval.

Our approach is general and can be used for predicates with any number of argu-
ments. However, to be able to compare our results with other related work, we have tested
OpenEval only on predicates with one and two arguments. Tables 2.1 and 2.2 list all the
categories, and Table 2 lists all the relations. We have used Support Vector Machines
(SVM) as the classification technique in OpenEval. MinorThird [Cohen, 2008], a set of
tools for machine learning and information extraction, is used in our implementation.

AcademicField Airport Animal Artery
Attraction Athlete Beverage Bodypart
Color Conference Currency Disease
FilmFestival Food Hobby Language
Muscle Museum Protein Religion
ShoppingMall Architect AutomobileModel
NonProfitOrganization AwardTrophyTournament

Table 2.1: List of categories (predicates with one argument) used to train and test
OpenEval.
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UniversityInCity CompanyAcquiredCompany ActorStarredInMovie AirportInCity
AthletePlaysSport AutomakerProducesModel CEOOfCompany CityCapitalOfCountry
CurrencyOfCountry DirectorDirectedMovie DrugHasSideEffect LanguageOfCountry
MuseumInCity MusicianPlaysInstrument NewspaperInCity PersonGraduatedSchool
TeamWonTrophy CompanyProducesProduct RadioStationInCity SportUsesEquipment
TeamPlaysSport TransportationInCity AcademicProgramAtUniversity
PoliticianHoldsOffice PlaceOfWorshipPracticesReligion

Table 2.2: List of relations (predicates with two arguments) used to train and test
OpenEval.

2.3.2 Comparison Metrics

We compare our technique to the baselines using the standard performance metrics of
precision, recall, and F1. Precision and recall are calculated by:

Precision =
TP

TP + FP
(2.8)

Recall =
TP

TP + FP
(2.9)

where True Positives (TP ) refer to examples that are correctly labeled as positive, False
Positives (FP ) are the negative examples that are incorrectly labeled as negative, and
False Negative (FN ) refers to positive examples that are incorrectly labeled as negative.
F1 score is defined as:

F1 Score =
2 ∗ (precision ∗ recall)
precision+ recall

. (2.10)

2.3.3 Baseline Approaches

The first baseline that we compare against is the weakly-supervised relation classifica-
tion [Zhang, 2004]. In this work, a bootstrapping approach is used on top of SVM to clas-
sify each predicate instance to one of the predicates in the ontology. The input of SVM is
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a set of lexical and syntactic features extracted from the input corpus. To be able to do a
fair comparison between Zhang’s approach and OpenEval, for each predicate instance in
the training and test data, we search the arguments of such predicate instance in Google
and crawl the first N returned webpages. N is set to be the same as the number of web-
pages that are used in OpenEval. The list of predicates, seed examples for each predicate,
and webpages crawled from Google are given as an input to Zhang’s self bootstrapping
approach.

The other baseline for our comparison is the PMI technique. Given a predicate p and a
predicate instance ip, the PMI score is calculated as follows [Turney, 2001]:

PMI(ip, p) =
|Hits(ip, p)|

|Hits(p)|×|Hit(ip)|
(2.11)

where |Hits(p)| and |Hit(ip)| are the number of search engine hits for query p and ip,
respectively, and |Hits(ip, p)| is the number of hits when both ip and p appear in the search
query. To evaluate correctness of an instance ip of predicate p using the PMI technique,
we calculate PMI(p, ip) and if PMI(p, ip) > Threshold, then we accept ip as an instance
of p.

One should note that PMI is an unsupervised technique and it doesn’t require any hu-
man annotated data, while OpenEval requires 15-25 seed examples for each predicate.
Other studies such as [Etzioni et al., 2004] have shown that the accuracy of the PMI tech-
nique can be improved by using patterns (such as “has side effect” for predicate DrugHas-
SideEffect(x,y)) in the search query. The pattern-based techniques usually require sending
a large number of search queries to the search engines. They also require the patterns to
be given as an input to the evaluator. In our experiment, the PMI value is calculated only
by using the name of the predicate and the predicate instance. Therefore, PMI is taking
the advantage of using the predicate name, while OpenEval automatically extracts a set of
keywords (i.e., called reference set) that are used to issue search engine queries.
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Figure 2.8: The precision/recall curve for test predicate instances. OpenEval uses 100 iter-
ations for training and 5 iterations for evaluation. We also plot the curve for two baseline
approaches.

2.3.4 Accuracy of OpenEval in terms of Precision and Recall

Figure 2.8 shows the precision/recall curve of OpenEval, PMI, and Zhang’s self boot-
strapping approach [Zhang, 2004] for 50 predicates chosen randomly from the Freebase
knowledge base. To decide if the input test instance ip is an instance of predicate p, we
check if the correctness probability that is calculated by the OpenEval is greater than a
predefined threshold. Different points in the graph are obtained by changing the threshold
value for the correctness probability.

The experiments are obtained when OpenEval is trained with 100 iterations and CBIs
are extracted by crawling the first 5 webpages from Google. Each iteration of training is
a one time step in Algorithm 4 (Lines 9-16) and on average takes 43 seconds in an 8-core
2.67 GHz CPU workstation. The value of parameter C ′ in predicate evaluator is also set
to 3. OpenEval uses 5 iterations (Lines 8-17 in Algorithm 5) to evaluate a new predicate
instance.

Figure 2.8 shows that for most of the different recall values, OpenEval achieves signif-
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icantly higher precision compared to PMI. Comparing the results of OpenEval and base-
lines, OpenEval has achieved the best F1 score of 80% while the best F1 scores of PMI
and Zhang’s approach are around 74% and 70%, respectively. One should note that the F1
score of OpenEval can be improved by using more iterations in the training and evaluation
(as will be shown in the following results).

2.3.5 Comparison of Different Values of Parameters

The accuracy of OpenEval depends on the parameters such as the number of iterations that
are used in the training. A comparison of different values of these parameters is important
for understanding how the result of OpenEval can be improved when more time is given
for training.

Figure 2.9 shows the results of OpenEval where the x-axis represents the number of
iterations that are used for training. These experiments are done when OpenEval uses only
one iteration for evaluation. The result shows that OpenEval achieves a high F1 value even
when it uses very few iterations for the training. For example, it achieves a F1 score of
about 73% when it uses only 10 iterations. Moreover, the figure shows that the F1 score
of OpenEval increases from 0.72 to 0.81, since it uses more numbers of iterations during
the training. Note that the number of iterations corresponds to the time that OpenEval uses
during the training.

Figure 2.10 shows the F1-score of OpenEval when different numbers of iterations are
used for evaluation (OpenEval is trained by using 100 iterations). Interestingly, although
the number of training iterations are fixed for all different data points in the figure, the
result shows that OpenEval is able to improve its accuracy as more time is given for eval-
uation. OpenEval uses the trained classifier to measure the effectiveness of each keyword
and iteratively finds the set of keywords that are most relevant to the input query. At itera-
tion one, OpenEval achieves a F1 score of 74% while the F1 score is increased to 80% at
Iteration 5. It is worth mentioning that each iteration of the predicate evaluator only takes
about 1.2 seconds to be completed.
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Figure 2.9: F1-score of OpenEval when it uses different numbers of iterations for training.
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Figure 2.10: Precision, recall, and F1-score of OpenEval when it uses different numbers
of iterations for evaluation.

2.3.6 Results of Using OpenEval in Different Applications

We show the detail of the results of using OpenEval in three different applications: find-
ing objects in an indoor environment, detecting picturable and non-picturable words, and
DrugBank database. For the first two domains, we show that OpenEval outperforms the
baseline approaches and achieves higher accuracy in validating the correctness of a set
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of claims. We also show that OpenEval can help to improve the accuracy of DrugBank
database.

Finding Objects in Indoor Environment

OpenEval can be used in a mobile robot to determine the name of a place where an object
is likely to be located in an indoor environment. This has an important application in
robotics since robots must be able to autonomously follow commands that involve finding
objects. In Chapter 5, we will explain the details of this approach and will explain how
OpenEval is used in this setting to help a real mobile service robot [Samadi et al., 2012;
Kollar et al., 2012].

To be able to use OpenEval to find the location of arbitrary objects, we train OpenEval
on two predicates that describe where an object can be found in a given location: objectIn-
Location(x,y) and objectNotInLocation(x,y). Each predicate takes the name of an object as
the first argument and the location type of the object as the second argument. We collected
914 unique names of objects from Amazon’s mechanical Turk for 40 different location
types that can be located in different types of indoor environments. Table 2.11 shows all
the location types that are used in this experiment.

Apartment Attic Balcony Hospital Ward
Basement Bathroom Bedroom Conference Room
Cafe Cellar Classroom Coffee Shop
Deck Buffet Corridor Computer Lab
Home Hallway Gym Laundry Room
Kitchen Laboratory Bar Living Room
Lobby Lounge Nightclub Waiting Room
Stairway Prayer Room Restaurant Printer Room
Store Room Study Room Office Ticket Office
Kids Room Home Office Dining Room

Figure 2.11: List of location types used to train and test OpenEval.

The data is then split by randomly choosing 80% for training and the other 20% for
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testing. OpenEval is trained and tested by using the first N = 20 webpages that are
returned by Bing. OpenEval uses only one iteration for both training and evaluation. We
evaluate OpenEval using standard performance metrics of precision, recall, and F1. By
using the ESP [von Ahn and Dabbish, 2004] dataset in place of documents retrieved from
a search engine, we are able to compare OpenEval to the performance of [Kollar and Roy,
2009].

Figure 2.12 shows the precision/recall graphs for the 40 location types that we used
in our experiments. We can see that the model trained on ESP performs worse than
OpenEval. This is likely because few of the ESP documents contain location types, so
the number of retrieved documents is small.
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Figure 2.12: The precision/recall curve of the OpenEval approach for over 40 test loca-
tions.

Detecting Picturable and Non-Picturable Words

The second domain for which we use OpenEval, is a password management scheme, called
Shared Cues, developed by Block et al. [Blocki et al., 2013] at Carnegie Mellon University.
The main idea behind their technique is to “strategically share cues to make sure that each
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cue is rehearsed frequently while preserving strong security goals.” In their approach,
the user is assigned with an arbitrary object (e.g., a lion), an action (e.g., torturing), and a
person (e.g., Michael Jordan). The Person-Object-Action (POA) cue is created by showing
the user the picture of the person (e.g., Michael Jordan) and a separate arbitrary picture.
The user is then told to imagine that the scene related to the POA is taking place inside
the picture, and to create a story that involves the POA. The picture is later shown to the
user to help her remember the POA triple. The user password is either the POA triple or
is related to it.

In order for the Shared Cues password management schema to work well, it needs to
check if a given word (object) is “picturable”. A word is labeled as picturable if we are
able to draw or find a good image of the word. For example, words such as car or dog are
picturable while assumption or revenge are not picturable. They have shown that providing
a set of picturable words to a user would help her remember the password for a longer
time. One of the key challenges for these password-generation schemes is to recognize if
a given word is picturable. In this section we show the accuracy of OpenEval when used
to evaluate the correctness of predicates picturableWord(x) and picturableWord(x) where
x is the input word.

To measure the accuracy of OpenEval in recognizing picturable and non-picturable
words, we randomly collected 110 words for each of the predicates Picturable(x) and
NonPicturable(x) from the Basic English Dataset [Ogden, 1944]. We randomly split the
data into two sets, 80% for training and the remaining 20% for testing. Figure 2.13 shows
the evaluation of OpenEval using metrics of precision and recall. For comparison, we use
the ESP dataset[von Ahn and Dabbish, 2004] and classify a word as picturable if it appears
as a label of an image in the ESP dataset. OpenEval is trained using 20 webpages returned
by the search engine. We have only used one iteration for the training and testing.

DrugBank Database

We apply OpenEval to DrugBank [Knox et al., 2011], a comprehensive online database
containing information on drugs, their mechanisms and their targets. DrugBank is a unique
bioinformatics and cheminformatics resource that contains detailed drug information. The
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Figure 2.13: The precision/recall curve of the OpenEval approach for predicates Pic-
turableWord(x) and NonPicturableWord(x).

thoroughness of DrugBank is demonstrated by the fact that its information is relied upon
worldwide by medicinal chemists, pharmacists, physicians, students, and the general pub-
lic. Over 7,500 drug entries are described in DrugBank (about 1,500 entries are FDA
approved; about 6,000 are “experimental”). However, users manually create DrugBank,
and therefore drug entries are subject to human error. While DrugBank entries were found
to be accurate when an entry is made, by manually checking DrugBank’s records, we have
found that errors have occurred with updating drug information. For example, some of
the drug entries that were FDA-approved upon entry creation were never updated to re-
flect subsequent FDA withdrawals. A manual audit to detect these errors is not efficient in
terms of time and cost, and is subject to human error.

In order to evaluate how OpenEval can improve the accuracy of the DrugBank database,
we have chosen 80 drugs. Among these drugs, 40 of them are approved, and others are
withdrawn from the market. All of those 80 drugs are used as the training data. For the test
data, we have (manually) found 12 drugs that are listed as approved drugs in DrugBank
2013 [Knox et al., 2011] but are withdrawn from either the Europe, Canada, Australia, or
US market. We have also used another set of 12 approved drugs as part of the test data.
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OpenEval is trained and tested using 50 webpages returned by the Bing search engine.
We have only used one iteration for the training and testing. During the training, we have
explicitly excluded the DrugBank website from the sources that OpenEval may use for
retrieving information from the Web.

Figure 2.14 shows the precision recall of OpenEval on the test data chosen from the
DrugBank database. The figure shows that OpenEval achieves precision of 0.84 at the
recall value of 0.4. The results indicate that OpenEval can improve the manual process of
checking the DrugBank data, by automatically checking the accuracy of some of the en-
tries in the DrugBank database and finding some of the data that are likely to be false. For
example, if we set the threshold of OpenEval to 0.6, then four out of five drugs that have
a confidence value of less than 0.6 are officially withdrawn from the market: Temazepam
(withdrawn from Australian market), Levamisole (withdrawn from the U.S. and Canadian
markets), Rimonabant (withdrawn from the European market), and Lumiracoxib (with-
drawn from the Australia, UK, and other markets).

Figure 2.14: The precision/recall curve of the OpenEval approach for approved and with-
drawn drugs. The test data consists of 12 approved and 12 withdrawn drugs. The with-
drawn drugs are listed as “approved” in the DrugBank database 2013 [Knox et al., 2011],
but are withdrawn by official sources (these are errors in the database).
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2.3.7 Using OpenEval as part of the NELL System

Never Ending Language Learning (NELL) [Carlson et al., 2010a; Mitchell et al., 2015a] 2,
is a never-ending learning agent whose goal is to learn to read the Web. The input of
NELL is: (i) an ontology that consists of a set of one- or two-argument predicates, (ii)
10-20 labeled training examples for each predicate, (iii) the Web data, and (iv) occasional
human labeled data (i.e., a set of labeled predicate instances). Given this input, NELL
is run 24 hours 7 days per week, and either extracts a set of new predicate instances or
corrects its beliefs on the predicate instances that are already extracted. In addition, NELL
learns how to read better over time. NELL has been running since January 2010, and has
extracted over 80 million predicate instances.

NELL’s learning tasks consists of: category classification, relation classification, en-
tity resolution, and learning inference rules. In this chapter, we only focus on the first
two learning tasks, since OpenEval is directly used in both of these tasks to improve the
accuracy of NELL.

NELL’s goal for category extraction task is to extract a noun phrase and map it to one
or some of the categories in its ontology. For each category, NELL uses five distinct func-
tions, where each function predicts if a noun phrase belongs to a category. These functions
include: Coupled Morphological Learner (CML) [Carlson et al., 2010d], Coupled Pattern
Learner (CPL) [Carlson et al., 2010d], Set Expander for Any Language (SEAL) [Wang and
Cohen, 2009], Never Ending Image Learning (NEIL) [Chen et al., 2013b], and OpenEval.
For the task of relation extraction, NELL uses CPL, SEAL, and OpenEval to classify if a
given pair of noun phrases belong to a relation. NELL’s software architecture is shown in
Figure 2.15 (figure is reprinted from [Mitchell et al., 2015a]).

We evaluate the effectiveness of OpenEval in the NELL system by showing the official
result of the Knowledge Base Population (KBP) evaluation3, which was organized by
the Text Analysis Conference in 2013. The goal of KBP is to evaluate technologies for
building and populating knowledge bases that are built by automatically extracting named
entities from unstructured text. NELL was participating in the Slot Filling (SF) task of

2http://rtw.ml.cmu.edu/
3http://www.nist.gov/tac/2013/KBP/
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Figure 2: NELL’s software architecture. NELL’s grow-
ing knowledge base (KB) serves as a shared blackboard
through which its various reading and inference modules in-
teract. NELL’s learning cycle iteratively retrains these soft-
ware modules using the current KB, then updates the KB
using these refined modules.

from noun phrases to category labels should be consistent
with the subset/superset constraint.

NELL’s never ending learning problem thus contains over
2500 learning tasks, inter-related by over a million coupling
constraints. In fact, NELL’s never ending learning problem
hL, Ci is open ended, in that NELL has the ability to add
both new consistency constraints in the form of learned Horn
clauses (as discussed above) and new learning tasks, by in-
venting new predicates for its ontology (as discussed below).

NELL’s Learning Methods and Architecture
The software architecture for NELL, depicted in Figure 2,
includes a knowledge base (KB) which acts as a blackboard
through which NELL’s various learning and inference mod-
ules communicate.1 As shown in the figure, these software
modules map closely to the learning methods (CPL, CML,
SEAL, OpenEval, PRA, NEIL) for the different types of
functions mentioned in the previous section, so that NELL’s
various learning tasks are partitioned across these modules.

Learning in NELL as an Approximation To EM: NELL
is in an infinite loop analogous to an EM algorithm (Demp-
ster, Laird, and Rubin 1977) for semi-supervised learning,
performing an E-like step and an M-like step on each iter-
ation through the loop. During the E-like step, each read-
ing and inference module in NELL proposes updates to the
KB (additions and deletions of specific beliefs, with specific
confidences and provenance information). The Knowledge
Integrator (KI) both records these individual recommenda-
tions and makes a final decision about the confidence as-

1The KB is implemented as a frame-based knowledge represen-
tation which represents language tokens (e.g., NounPhrase:bank)
distinct from non-linguistic entities to which they can refer (e.g.,
Company:bank, LandscapeFeature:bank), and relates the two by
separate CanReferTo(noun phrase, entity) assertions.

signed to each potential belief in the KB. Then, during the
M-like step, this refined KB is used to retrain each of these
software modules, employing module-specific learning al-
gorithms. The result is a large-scale coupled training sys-
tem in which thousands of learning tasks are guided by one
another’s results, through the shared KB and coupling con-
straints.

Notice that a full EM algorithm is impractical in NELL’s
case; NELL routinely considers tens of millions of noun
phrases, yielding 1017 potential relational assertions among
noun phrase pairs. It is impractical to estimate the probabil-
ity of each of these potential latent assertions on each E-like
step. Instead, NELL constructs and considers only the be-
liefs in which it has highest confidence, limiting each soft-
ware module to suggest only a bounded number of new can-
didate beliefs for any given predicate on any given iteration.
This enables NELL to operate tractably, while retaining the
ability to add millions of new beliefs over many iterations.

Knowledge Integrator in NELL: The Knowledge Inte-
grator (KI) integrates the incoming proposals for KB up-
dates. For efficiency, the KI considers only moderate-
confidence candidate beliefs, and re-assesses confidence us-
ing a limited subgraph of the full graph of consistency con-
straints and beliefs. As an example, the KI considers all
beliefs in the current KB to assure that argument types are
satisfied for new relational assertions, but does not consider
possible updates to beliefs about these argument types in the
same iteration. Over multiple iterations, the effects of con-
straints propagate more widely through this graph of beliefs
and constraints. Recently, (Pujara et al. 2013) has demon-
strated a more effective algorithm for the joint inference
problem faced by the KI; we are now in the process of up-
grading NELL’s KI to use this implementation.

Adding Learning Tasks and Ontology Extension in
NELL: NELL has the ability to extend its ontology by
inventing new relational predicates using the OntExt sys-
tem (Mohamed, Hruschka Jr., and Mitchell 2011). OntExt
considers every pair of categories in NELL’s current ontol-
ogy, to search for evidence of a frequently discussed relation
between members of the category pair, in a three step pro-
cess: (1) Extract sentences mentioning known instances of
both categories (e.g., for the category pair hdrug,diseasei the
sentence Prozac may cause migraines might be extracted if
prozac and migraines were already present in NELL’s KB).
(2) From the extracted sentences, build a context by con-
text co-occurrence matrix, then cluster the related contexts
together. Each cluster corresponds to a possible new rela-
tion between the two input category instances. (3) Employ a
trained classifier, and a final stage of manual filtering, before
allowing the new relation (e.g., DrugHasSideEffect(x,y)) to
be added to NELL’s ontology. OntExt has added 62 new re-
lations to NELL’s ontology. Note each new relation spawns
associated new learning tasks, including three new tasks of
learning to classify which noun phrase pairs satisfy the rela-
tion (based on different views of the noun phrase pair), and
a task of learning Horn clause rules to infer this new relation
from others.

Figure 2.15: NELL’s software architecture. Reprinted from [Mitchell et al., 2015a].

KBP in 2013. We first explain the detail of the SF task and then explain how OpenEval
helps NELL to improve its accuracy for this particular task. Second, we compare the result
of OpenEval with other components of the NELL system using a set of random predicates
and predicate instances obtained from the Freebase knowledge base.

For the KBP Slot Filling task, an initial knowledge which is a snapshot of English
Wikipedia is provided as an input. Each page in the KB corresponds to a Wikipedia page
for either a person, an organization, or geopolitical entity. Each of these entities have a
set of predefined attributes (a.k.a slots) which are derived from Wikipedia infoboxes. The
goal of the KBP Slot Filling task is to collect information from the input corpus regarding
certain attributes about target entities in unstructured text. For example, for a person, a slot
can be a single-argument predicate DateOfBirth or two-argument predicate EmployeeOf.
The list of attributes for entity types person and organization are listed in Tables 2.16 and
2.17, respectively.

CMUML [Bryan Kisiel, 2013] is the name of the CMU system for the KBP 2013
English Slot Filling (SF) task. CMUML was using a combination of distant supervi-
sion [Mintz et al., 2009], generalized stacking [Wolpert, 1992a] and CRF-based structured
prediction [Betteridge et al., 2014; Krishnamurthy and Mitchell, 2012]. Given a candidate
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AlternateNames DateOfBirth Age CountryOfBirth
StateOrProvinceOfBirth CityOfBirth Origin DateOfDeath
CountryOfDeath Title CityOfDeath CauseOfDeath
CountriesOfResidence Charges CitiesOfResidence SchoolsAttended
StateOrProvinceOfDeath Children Religion Spouse
EmployeeOrMemberOf Parents Siblings OtherFamily
StatesOrProvincesOfResidence

Figure 2.16: Predicates (slot names) used for entity person in KBP 2013 evaluation.

CountryOfHeadquarters FoundedBy TopMembersEmployees Members
NumberOfEmployeesMembers MemberOf AlternateNames Parents
PoliticalReligiousAffiliation DateFounded DateDissolved Subsidiaries
StateOrProvinceOfHeadquarters Shareholders CityOfHeadquarters Website

Figure 2.17: Predicates (slot names) used for entity organization in KBP 2013 evaluation.

sentence, the CMUML system first generates different layers of annotation using multiple
syntactic and semantic annotators. A Conditional Random Field [Lafferty et al., 2001]
(CRF)-based structure predictor is then used to integrate and map these layers to the KBP
ontology. Finally, the extractions from the CRF were integrated and validated before pro-
ducing the final answers. The detail of the CMUML system is explained in [Bryan Kisiel,
2013] and the overall system architecture is shown in Figure 2.18.

Slot filler values that are extracted by the CMUML system are evaluated and filtered
by OpenEval to determine whether or not sufficient evidence for them could be found by
querying the live Web. Note that the official submission of the CMUML system did not
use the OpenEval component, since web access was not allowed in the main submission.
However, we were allowed to submit unofficial versions of the system for evaluation.

Table 2.3 shows the official result published by KBP organizers. The table shows
the result of two different CMUML submissions, where CMUML+OpenEval builds on
CMUML by including OpenEval as the post-processing validation step. The table shows
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Abstract

In this paper, we present an overview of the
CMUML system for KBP 2013 English Slot
Filling (SF) task. The system used a com-
bination of distant supervision, stacked gen-
eralization and CRF-based structured predic-
tion. Recently available anchor text data was
also used for better entity matching. The sys-
tem takes a modular approach so that indepen-
dently developed semantic annotators can be
effectively integrated without needing target
ontology-specific retraining. While precision
can of course be improved, the system turned
out to be particularly conservative in its pre-
dictions resulting in lower recall. In addition
to the main submission, we also made publicly
available1 automatically tagged semantic cat-
egories of about 13 million noun phrases ex-
tracted from the KBP 2013 source corpus.

1 Introduction

In this paper, we describe the CMUML system for
KBP 2013 Slot Filling (SF) task organized by NIST.
The system used a combination of distant supervi-
sion (Mintz et al., 2009), stacking (Wolpert, 1992),
and CRF-based structured prediction. The driving
philosophy behind this system was to keep com-
ponents modular so that researchers working with
different ontologies could contribute without hav-
ing to conform their tools to one common ontology.
Given a candidate sentence, this system first used
multiple semantic and syntactic annotators with het-
erogeneous schemas to produce different layers of

1Semantic categories of 13 million noun phrases from the
KBP 2013 corpus: http://rtw.ml.cmu.edu/rtw/nps

Figure 1: Overview of the CMUML Slot Filling (SF) sys-
tem. The OpenEval validator was not used in the official
submission (CMUML1) as it requires web access.

annotations. These layers of annotations were in-
tegrated and mapped to the KBP ontology using a
Conditional Random Fields (CRF)-based structured
predictor. Finally, extractions from the CRF were
integrated and validated before producing the final
answers with provenance. The overall system ar-
chitecture is shown in Figure 1. We provide brief
discussion of each component below.

2 Document Retrieval and Entity
Matching

The KBP 2013 source documents were indexed us-
ing Lucene2. Now, given a query, this index was

2Lucene: http://lucene.apache.org/

Figure 2.18: Overview of the CMUML Slot Filling (SF) system. Reprinted
from [Bryan Kisiel, 2013].

System Recall Precision F1
CMUML 9.67 30.34 14.67
CMUML+OpenEval 10.69 32.3 16.07

Table 2.3: Official evaluation scores of various CMUML submissions. CMUML is the
system based on NELL, and CMUML+OpenEval uses OpenEval as the post-processing
validation step.

that OpenEval greatly improves both the precision and recall of the CMUML system.
OpenEval improves the precision of CMUML by 2% without any cost in the recall. Indeed,
the recall of CMUML+OpenEval is improved by 1%, compared to the CMUML system.
Overall, the F1 score of CMUML+OpenEval is improved by 1.6%.
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2.4 Summary

This chapter introduced OpenEval, a novel online information validation approach that
automatically evaluates the correctness of a predicate instance using the Web. We ex-
perimentally showed that OpenEval massively outperforms the related techniques such
as PMI and weakly-supervised relation classification technique [Zhang, 2004]. We also
discussed the detail of the results of using OpenEval in four different applications. Over-
all, OpenEval is a general anytime technique, requires minimum supervision (in terms of
seed examples and input ontology), and improves its accuracy as more time is given for
evaluation and training.
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Chapter 3

Knowledge Integration and On-Demand
Time-Budgeted Query Answering

Up to now, we have assumed that only a single knowledge harvesting system, OpenEval,
is available to process the information. In this chapter, the assumption is changed so that
there are multiple knowledge harvesting systems available to be queried. We address the
problem of integrating knowledge from all of the systems. We also enable an answer of a
query to be calculated by requesting and aggregating the opinion of different systems for
different non-query predicates. Finally, we address the problem of how to best utilize the
input time-budget by choosing which queries to send to which resources.

We begin in Section 3.1 with motivating the problem of integrating opinions from mul-
tiple knowledge harvesting systems, and requirements that a knowledge-on-demand sys-
tem should accommodate. Section 3.2 formally defines the problem of on-demand time-
budgeted query answering. Section 3.3 presents the details of the AskWorld approach and
the formulation of the problem with MDP. Section 3.4 reports our experimental results and
compares AskWorld to baseline and state-of-the-art approaches. Section 3.5 summarizes
this chapter.
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3.1 Introduction

One of the main motivations behind the OpenEval system, described in Chapter 2, was to
develop an information extraction approach that achieves high recall in providing accurate
answers to queried predicate instances, by processing unstructured information on the
Web. In addition to OpenEval, over the past few years, several other knowledge bases
(KBs) and information extractors have been developed, examples include NELL [Carlson
et al., 2010a], Yago [Suchanek et al., 2007], and Freebase [Bollacker et al., 2008b]. These
KBs can cover thousands of predicates (e.g., HealthyFood, FoodCanCauseDisease(Food,
Disease)) and millions of instances of such predicates (e.g., Sugar is an UnHealthyFood).
While some of these KBs are user contributed (e.g., Freebase), others are constructed from
semi-structured data (e.g., Yago), or from unstructured Web data (e.g., NELL).

These knowledge harvesting systems vary significantly in the type of the data and
techniques that they use, and therefore in their precision, recall, and delay in responding to
different types of queries. For example, Freebase is primarily built by its community mem-
bers and therefore is highly precise, although its coverage can be limited. For example,
70% of people included in Freebase have no place of birth information [West et al., 2014b].
In contrast, NELL has a different ontology covering somewhat different categories and re-
lations, including many informal relations such as BeverageServedWithBakedGood(x,y).
OpenEval automatically extracts information on demand from both structured and unstruc-
tured information on the Web and therefore achieves higher coverage at the price of losing
some precision. For all of these systems, precision and recall also can vary dramatically
for different predicates, e.g. NELL is more accurate for categories compared to relations.
The different systems also have very different response times. For example, querying a
static knowledge base such as Yago involves only a quick database lookup, while query-
ing OpenEval takes longer since it crawls and parses information from the Web as needed
to attempt to answer the query on demand. Together, we shall refer to these KBs and
on-demand extractors as Knowledge Resources (KRs) in the rest of this chapter.

Given the heterogeneity of source data and extraction algorithms involved, these KRs
can contain complimentary or often conflicting facts. Moreover, the degree of these dif-
ferences and expertise of each KR may vary from one predicate to another. In order to
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satisfy the knowledge need of an end user or application [Samadi et al., 2012], a single
KR is not sufficient and it is necessary to integrate evidence from all these different KRs
and return a consolidated response. For example, a real mobile service robot may need to
query the Web and fill up its missing knowledge required to perform a task. Depending
on the task that the robot/agent is performing, it may need different types of knowledge
(instances of different predicates), and responses within different time budgets. In other
words, it needs to have access to a Knowledge-On-Demand (KoD) service which is able
to aggregate opinions from all these diverse KRs taking their respective complementarity,
conflicts, and expertise into account.

3.1.1 Requirements that a Knowledge-On-Demand Systems Should
Accommodate

There are two requirements that such KoD systems should accommodate.

A. Knowledge integration: Even for a given entity, the KI may request multiple opinions
from the same or different expert component, and hence should be able to automatically
integrate all the responses. Predicates in the KRs often have coupling relationships among
them. For example, even though the input query asks whether sugar is an UnHealthy-
Food, the KI may probe OpenEval to check whether it thinks sugar might also be a High-
SucroseFood, another predicate from AskWorld’s ontology. Since HighSucroseFood and
UnHealthyFood are usually correlated, OpenEval’s opinion on such a non-query predicate
(HighSucroseFood) may ultimately influence AskWorld’s response on the query predicate
(UnHealthyFood). As we shall see in Section 3.4.2, significantly more accurate responses
are obtained when KR opinions on non-query predicates are also aggregated.

B. Time-budgeted query answering: While the result of expanding query evaluation is
promising, it puts additional constraints on how best to utilize and allocate the already
scarce time budget specified by the user or application making the query. As the sec-
ond requirement, the user (or application) generally needs to obtain an answer within a
bounded time budget that may vary with each query. AskWorld, therefore, assumes that
its input includes both a query and a time budget, and attempts to provide a best-effort re-
sponse making full use of the available budget, with a potentially improved response with

57



increasing budgets.

Ideally, given an input query such as “Is City(Buenos Aires) true?”, we would like the
KoD service to aggregate opinions from all available KRs. Response time from a KR may
vary depending on the predicate, especially for on-demand extractors such as OpenEval. In
many applications of practical significance, the final response is desired within a specified
time budget, and polling all available KRs is unfortunately infeasible. Thus, the KoD
service has to devise a policy to decide on which subset of KRs to poll as a function of
the query predicate and the specified time budget. We emphasize that the time budget may
vary depending on the tolerance limits of the agent using the KoD service, and we would
like the policy to be able to incorporate this gracefully, returning a more accurate response
when more time budget is available. The polling policy also needs to be prepared a-priori
(as there may not be time to learn the policy on the fly).

Recently, the problem of learning under budget-constraints has received considerable
attention [Saberian and Vasconcelos, 2010; Xu et al., 2012, 2013; Karayev et al., 2013].
We review these techniques in Chapter 7. While some aspects of the problems mentioned
above have been studied in previous research, to the best of our knowledge, no previous
research has addressed all the issues simultaneously, and definitely not in the context of a
KoD service. We bridge that gap in this chapter and propose the AskWorld system.

3.1.2 AskWorld

AskWorld, the system proposed in this chapter, aims to specifically satisfy these informa-
tion needs by learning a policy for making subqueries to a diverse collection of available
resources, attempting to optimize the query response it can provide within the allotted
time budget, and integrating the results returned by the different resources. The architec-
ture of the AskWorld system is shown in Figure 3.1. Given a user query with associated
time budget, the Budget Policy Executor (BPE) module of AskWorld selects the subset of
available KRs to poll, such that the ultimate response can be provided within the specified
time budget. Responses from the KRs are integrated by the Knowledge Integrator module
and returned to the user.

AskWorld incorporates an on-demand Knowledge Integrator (KI) that aggregates opin-
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Query: Is City(Buenos 
Aires) true?

(max. wait time (budget): 2s)

Response: Yes, City(Buenos 
Aires) is true.

(response time: 1.98s)

AskWorld

Knowledge 
Integrator

Knowledge Resource 1 (CPL)

Knowledge Resource 2 (SEAL)

Knowledge Resource N (OpenEval)

Budget Policy
Executor

. 

. 

.

Knowledge Resource 3 (SEAL)

Figure 3.1: Architecture of the AskWorld system. Given a user query (e.g., UnHealthy-
Food(sugar)?) and a time-budget within which this query must be answered (e.g., 2sec
above), the Budget Policy Executor selects a subset of the available knowledge resources
(KRs) to poll (shown by solid lines in the figure; dotted lines connect knowledge resources
that are not used to answer this particular query at the specified time budget). Responses
from the KRs are integrated by the Knowledge Integrator and the final response is returned
to the user within the specified time budget.

ions from other existing KBs (e.g., YAGO), and IE systems such as s NELL. The AskWorld
architecture is shown in Figure 3.1, where CPL, CMC, and SEAL are three NELL sub-
systems that AskWorld’s KI has access to, and OpenEval is an external information ex-
traction technique that AskWorld can query. We can think of each one of them as an expert
whose opinions are integrated by the KI. For example, given the entity Buenos Aires and
predicate City, CPL will explore in unstructured text whether it can find patterns of the
form “is the capital of”, and if it does, then its confidence in Buenos Aires being a City in-
creases, which is then communicated to the KI. Similarly, the CMC sub-component looks
for certain orthographic features in the entity name which might indicate that the entity as
an instance of the corresponding predicate. Similarly, the SEAL sub-component checks
whether Buenos Aires is redundantly mentioned in the context of other known unhealthy
foods in HTML tables on the Web. OpenEval automatically generates the Google search
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query “Buenos Aires city” and evaluates if Buenos Aires is an instance of theCity predi-
cate by parsing and processing the search results. In short, given an entity and a predicate,
each of these components will return their confidence in the entity being an instance of the
predicate. These returned confidences are then integrated by the KI and the final response
is returned to the user or application. Thus, by exploring such components and existing
KBs, AskWorld is able to provide a knowledge-on-demand (KoD) service.

While some aspects of the problems mentioned above have been studied in previous
research and shall be reviewed in Chapter 7, to the best of our knowledge, no previous
research has tackled all the issues simultaneously, and definitely not in the context of a
KoD service.

3.2 Problem Statement

Let (p, x,B) be a user query, where p is a predicate from an ontology O, x is a candidate
instance, and B is a response time budget (e.g., (isCity, Buenos Aires, 2sec)). We want
AskWorld to validate whether x is a true instance of p by classifying it within the time
budget B to one of the labels from Y = {false, true}. AskWorld may poll a set of
knowledge resources (KRs), R, to determine whether x is an instance of p or of any other
predicates from the ontology O, and aggregate all of the responses. The poll (p′, x, r)

checks the opinion of resource r ∈ R, on whether x is an instance of predicate p′ ∈ O

and costs c(r, p′) time (note that p′ is not necessarily equal to p). We assume that c(r, p′)
remains constant during train and query time, and for the entire training data, we extract
the value of all the queries during the training time (regardless of the query cost). We
also assume that an upper bound on the test budget is known during training, but the exact
value of the test budget may vary for different test instances.

To simplify our explanation, we assume that we have a set of polling queries K =

{〈r, p′〉 | r ∈ R, p′ ∈ O}, i.e., all possible combinations of knowledge resources in R and
predicates in O. For each possible combination of resources in R and predicates in O,
there is a correspondence query q = 〈r, p〉 in K. In this case, |K|= |R|×|O|. Cost of
query q, denoted by c(q), is equal to c(r, p).
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Given a user query, the main challenge is to learn a policy that identifies a subset of
resource-predicate polling queries K ⊆ K so that the most accurate response is provided
within the response time budget. The policy should be able to handle varying query-time
budget (subject to a maximum upper bound) without the need for retraining.

Note that while the assumption that the cost of polling a KB with a predicate instance is
constant during train and test time may not be always true, we think that this is a reasonable
assumption in the setting explored in this chapter. To verify whether this assumption is true
or false, we have queried each knowledge resource 10K times at different times of the day.
Average query cost (millisecond) and standard deviation of query cost for each knowledge
resource are as follows: KB: (AVG=77.5, STD=3.7) , CKB: (AVG=84.2, STD=6.27),
CMC: (AVG=90.8, STD=5.0). This validates our claim that the cost of polling a KR for
test and training times are similar, since the standard deviation is relatively low compared
to the average values. We leave it to future work to extend AskWorld to handle cases
where the test and training times are different.

3.3 Our Approach

In this section, we describe the AskWorld system. The AskWorld (Algorithm 6) con-
sists of two steps. In step 1, given a query and a time budget, AskWorld identifies
the subset of knowledge resources to poll using BUDGET POLICY EXECUTOR (BPE)
(Section 3.3.1); and in step 2 it aggregates the responses obtained from step 1 using
KNOWLEDGE INTEGRATOR (Section 3.3.3) and returns the final result to the user.

3.3.1 Markov Decision Process (MDP) Formulation of
BUDGET POLICY EXECUTOR (BPE)

We cast the budget-sensitive query evaluation problem as solving a Markov Decision Pro-
cess (MDP), M, represented as a tuple M = 〈γ,S,A, T ,R〉 where γ is a discounting
factor. The remaining components of the MDP are described below:
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Algorithm 6 AskWorld - Query evaluation for knowledge-on-demand
Require: 〈p, x,B, Q, h〉 /* p: predicate, x: instance to be evaluated, B: input budget, Q:

Budget policy learned during training h: knowledge integrator function. */
1: /* Step 1: BudgetPolicyExecutor */
2: t← 0; B0 ← B; K0 ← {}
3: S0 ← 〈K0,B0〉
4: while Bt > 0
5: // use budget policy Q to select next resource-predicate pair, 〈r, p′〉, to poll

6: a〈r,p′〉 ← argmaxa〈r,p′〉Q(St, a〈r,p′〉)

7: Poll resource r ∈ R to validate if x is an instance of predicate p′

8: // note that p′ is not necessarily equal to p

9: Kt+1 ← Kt ∪ {〈r,p′(x)〉} // update poll response set

10: Bt+1 ← Bt − c(r, p′) // update residual budget

11: St+1 ← 〈Kt+1,Bt+1〉 // update state

12: t← t+ 1
13: end while
14: /* Step 2: KnowledgeIntegrator */
15: Build feature vector x′ and indicator vector z from the result of polls in Kt
16: return y∗ = arg max

y∈{true,false} h(x′, y, z)

States (S): Each state, St = 〈Kt,Bt〉 ∈ S, of the MDP represents intermediate knowl-
edge acquired, where Kt ⊂ K is the set of knowledge resource-predicate polling queries
issued by AskWorld and responses received, and Bt is the residual budget allowed to be
used starting from state St. During query time, the agent starts executing the MDP policy
starting from S0 = 〈{},B〉, where {} indicates that no polling response (feature) has been
acquired and B is the input budget.

Actions (A): Each action a〈r,p′〉 ∈ A corresponds to a resource-predicate tuple 〈r, p′〉
which indicates which knowledge resource r to poll to validate if x is an instance of pred-
icate p′. By taking the action a〈r,p′〉, we acquire the response from resource r at the cost of
c(r, p′).
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Transition function (T ): The transition function, T (St, a〈r,p′〉,St+1), is defined as
follows:

T (St, a〈r,p′〉,St+1) =





1 if Bt+1 = Bt − c(r, p′) ≥ 0

& 〈r, p′〉 ∈ Kt+1,

0 otherwise
(3.1)

where Bt is the remaining budget that we are allowed to use starting from state St.
Intuitively, Equation 3.1 says that the probability of moving from state St to St+1 by taking
action a〈r,p′〉 is equal to 1 if the cost of a〈r,p′〉 is less than the remaining budget Bt and if
the query 〈r, p′〉 is part of Kt+1.

Why should budget be included in the transition function?
The alternative option, similar to [Weiss and Taskar, 2013a], is to incorporate the budget
constraint as part of the reward function. For example, when a transition is invalid (i.e.,
we are out of budget), the value of the reward function would be either a large negative
value or zero. This approach has two main disadvantages: (i) defining the reward to be
negative for the invalid transitions may affect the learning process since the expected
reward value of a state can be potentially penalized as the agent receives negative value
for the states that it is not able to move to, and (ii) defining the reward of the invalid
transitions to be equal to zero also makes it impossible for the agent to differentiate
between states that are not reachable and those that have the expected reward of zero.
By defining the budget constraint as a part of the transition function, we avoid both of
these problems since the agent is not able to traverse to states that require more budget
than the remaining budgetBt. Thus, unlike [Weiss and Taskar, 2013a]’s approach which
may find a policy that violates the input budget, our approach always finds a policy that
satisfies the input budget constraint.

Reward function (R): The reward function R is defined as the value of the informa-
tion added by each action a ∈ A given current state St. More precisely,

(3.2)R(St, a,St+1) =

{
1
|Ψ′|

∑
(xi,yi)∈Ψ′ h̄(xi, yi, zt+1)− h̄(xi, yi, zt) t 6= 0

0 t = 0

where Ψ′ is the set of evaluation data (subset of the input training data Ψ) in the form of
Ψi = (xi, yi). zt is defined as a binary vector where |zt|= |K|. The jth element of zt is
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equal to 1 if the value of query 〈r, p〉 appears in the state St (as part of Kt), and otherwise
it is equal to 0. Vector z can be seen as an indicator vector used as input of a predictor
(knowledge integrator, Section 3.3.3) function. Function h̄(x, y, z) is defined in terms of
h(x, y, z). Function h(x, y, z) is a predictor function which returns the confidence value
of predicting label y ∈ Y for the input instance x using queries indicated by vector z. The
function h̄(x, y, z) is defined as follows:

h̄(x, y, z) = h(x, y, z)−max
y′ 6=y

h(x, y′, z) (3.3)

Function h̄ returns the maximum difference in the confidence value of the classifier in
predicting the true label compared to all the other labels in Y .

Intuitively, Equation 3.2 says that each time that we poll 〈r, p〉, the reward that we
receive is equal to the change in the margin of our predictor h, averaged over all the training
data points. In other words, the reward function measures the value of the knowledge that
we acquire from each of the resources. If the value of R(St, a,St+1) > 0, then it means
that the selected action increases the confidence value of our predictor in predicting the true
label compared to the other labels, and if R(St, a,St+1) < 0, it means that it is decreasing
the confidence value. Ideally, we would like to choose a polling query that increases the
confidence of our prediction when moving from state St to St+1.

Given a deterministic policy Π and a sequence of states S0, ...,Sn computed from Π,
we define RΠ as the reward that we receive by the following policy determined by Π.
Then,

RΠ =
∑

(xi,yi)∈Ψ′

h̄(xi, yi, zn)− h̄(xi, yi, z0) (3.4)

Equation 3.4 says that the reward that we receive from following policy Π is equal to
the difference between the confidence value of the predictor h when using the acquired
queries in state Sn and the queries in state S0.

Predictor Function: To build the predictor function h(x, y, z), we use Support Vector
Machines (SVM). The SVM is trained by assuming that all the polling query responses
(feature values) are acquired for all the training instances. For any new instance where
some of the feature values are missing (i.e., zero elements in the z vector), we use the
prior value for the missing feature as the average feature value over all the training data
(assuming that the size of positive and negative data are equal). Thus, each feature of the
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SVM corresponds to a response to a polling query in K, thereby making its feature space
|K|-dimensional.

Theorem 1. (Property of MDP) In the MDPM, for every two policies Π and Π′ which
respectively map states 〈{},B〉 and 〈{},B′〉 (B 6= B′) to some actions, S(Π)∩S(Π′) =

∅, where S(Π) and S(Π′) are the sets of all the states that can be generated by policies
Π and Π′, respectively.

This theorem can be proved by contradiction. Assume that in separate executions of
policies Π and Π′, starting from initial states S = 〈{},B〉 and S ′ = 〈{},B′〉 (B 6= B′), we
could reach to states S1 = 〈K1,B1〉 and S2 = 〈K2,B2〉, where S1 = S2. In other words,
we assume that there is at least one common state that separate executions of policies Π

and Π′ may reach to, i.e. S1 ∈ S(Π) ∩ S(Π′) and S2 ∈ S(Π) ∩ S(Π′). Both states S1

and S2 are identical, and hence K1 = K2 and B1 = B2. From Equation 3.1, we know
that K1 and K2 contains all the actions (i.e., polling a knowledge resource for a predicate)
that are executed from the initial states S and S ′. Since, K1 = K2 and B1 = B2, we can
reverse all the actions inK1 andK2, add the corresponding budget to B1 and B2, and reach
to the same initial states with the same initial budget cost, which is in contradiction to our
assumption that B 6= B′.

Intuitively, Theorem 1 says that the policies we learn for the different initial budgets
are independent of each other. In other words, there is no advantage of simultaneously
learning policies for the different initial budget values. In the next section, we explain how
to address this problem by abstracting states in the MDP.

3.3.2 Solving MDP

The number of states in the MDPM depends on the size of ontology, number of resources,
and the upper bound on the input test budget. Depending on the number of predicates in
the ontology O and the resources in R, the state space can be very large. For example, for
an ontology of size 25 and 3 resources, the size of MDP is of the order of 275. Given the
size of the state space, it is practically infeasible to directly learn a policy for each state of
the MDP.
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In this section, we present two approaches to solve the MDP and will compare their
results in the experimental results section. First, we explain how to directly abstract the
state space in the MDP and solve the abstracted MDP using the value iteration algorithm.
We then explain how to learn the policy using Q-Learning with linear function approxi-
mation [Sutton and Barto, 1998]. We also discuss the advantages and the disadvantages of
each of these approaches.

AskWorld (V*): Abstracting MDP and Solving It Using Value Iteration

We abstract the state space ofM to a smaller space. The resulting MDP is denoted by M̄.
The abstraction is done in the following way: (i) defining the remaining budget in each
state to be within an interval, instead of being equal to an exact budget amount, and, (ii)
reducing the size of polling queries in K to a smaller set K̄.

To define the budget interval for each state, we assume that BU is the upper bound on
the budget that we receive during query time. The size of each interval is defined to be
equal to δ and we have BU

δ
distinct intervals. In the abstract MDP, each state is defined as

St = 〈Kt, [BLt ,BUt ]〉, where the second element is the budget interval, BLt = k × δ, and
BUt = (k + 1) × δ. The reward function in the abstract MDP is the same as the original
MDP.

The transition function for the abstract MDP depends on the budget interval defined
in each state, the cost of the actions, and the value of the budget that we receive during
the query time. For example, assume that during the test time, we are in a state where the
budget interval is [40, 60], δ = 20, and we are executing action a〈r,p〉. If the true remaining
budget is 40 and c(a〈r,p〉) = 5, then we move to a state where the budget interval is [20, 40].
However, if the remaining budget is 50, we then move to a state where the budget interval
is [40, 60] (in both these cases 〈r, p〉 is added as one of the queries in the state). The
problem is that we don’t know the exact budget that is given during the test time while
learning a policy for the MDP. To address this issue, we assume that different budget values
are equally likely to be given during test time, and then define different probabilities for
transitioning to different states, e.g. in our example, we move to the state with budget
interval [20, 40] with probability c(a〈r,p〉)

δ
= 0.25 and the move to the state with budget
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interval [40, 60] with probability δ−c(a〈r,p〉)
δ

= 0.75. This example helps us to formally
define the transition function.

To define the transition function, we know that the cost of each action a〈r,p〉 can be
written as c(a〈r,p〉) = δ × k + m, where k = b c(a〈r,p〉)

δ
c. Therefore, m = c(a〈r,p〉)− δ × k.

The transition function for the abstract MDP can be defined as,

T (St, a〈r,p〉,St+1) =





m
δ if BUt+1 = BUt − (k + 1)× δ

& BLt+1 = BLt − (k + 1)× δ
& a〈r,p〉 ∈ Kt+1 & BLt+1 > 0

δ−m
δ if BUt+1 = BUt − k × δ

& BLt+1 = BLt − k × δ
& a〈r,p〉 ∈ Kt+1 & BLt+1 > 0

0 otherwise

(3.5)

where the budget intervals of states S and S ′ are respectively defined by [BLt ,BUt ] and
[BLt+1,BUt+1].

Abstracting the state space in MDP not only beneficial by reducing the number of
states, but also creates shared states between the policies learned for the different budget
values.

Theorem 2. (Property of Abstract MDP) In the abstract MDP M̄, if δ ≥ BU

|Ā| , ∀a
0 ≤ c(a) ≤ δ, then for any two initial states S0 and S ′0 with different budget intervals,
S(S0) ∩ S(S ′0) 6= ∅, where S(S0) and S(S ′0) are respectively the sets of all the states
that are reachable from states S0 and S ′0 in the MDP M̄.

Using the transition function of abstract MDP M̄, defined in the Equation 3.5, and
the assumption that ∀a 0 ≤ c(a) ≤ δ, it can be shown that there is an edge in MDP M̄
between every two states S = 〈K, [BL,BU ]〉 and S = 〈K∪{〈r, p′〉}, [BL− δ,BU − δ]〉 for
all actions a〈r,p′〉 /∈ K and BL ≤ δ. By induction, we can then show that every initial state
S = 〈{}, [BL,BU ]〉 is connected to state S = 〈K, [0, δ]〉, if |Ā| ≥ BU

δ
.

In addition to abstracting the budget, we also need to reduce the number of polling
queries in K to a smaller set K̄. Different feature/variable extraction techniques that have
been studied in the machine learning community [Blum and Langley, 1997] can be used
to construct K̄. Among these techniques, we use feature ranking using weights from
a linear SVM classifier which has been shown to be an effective approach for feature
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selection [Guyon et al., 2002]. The SVM is trained using the training data set and the top
K ranked polling queries are chosen to be included in K̄. In our experiments, we drop all
polling queries with zero weight and keep the rest as part of K̄.

Given the abstract MDP, we can directly learn a policy using the value iteration algo-
rithm. Instead of calculating the policy as the optimal action to be taken from each state,
we save the value of Q(S, a〈r,p〉) for all the states S and actions a〈r,p〉, and calculate the
optimal policy during the test time given at each state. This allows us to make sure that the
action that we are choosing is always within our remaining budget. For example, during
the test time, if we are in a state where the budget interval is [0, 10] but the actual remain-
ing budget is equal to 4, we should eliminate selecting actions that require budgets higher
than 4.

Our approach to abstract the MDP and solve it using the value iteration algorithm needs
to tune a few parameters such as the value of δ. In addition, even with the abstraction, the
size of the state space could still be huge when the ontology is very large. Although in
the experimental results, we show that by solving the abstract MDP we could significantly
outperform other baseline approaches, in the next section we explain how to approximate
the value iteration algorithm using Q-learning with linear function approximation which
might be more suitable for applications with a very large ontology.

AskWorld (PQL): Q-Learning with Linear Function Approximation

An alternative approach to solve the MDP is to approximate the policy using the temporal-
difference, or TD Q-learning, with function approximation [Sutton and Barto, 1998; Lagoudakis
et al., 2003]. In the standard setting of TD Q-learning with linear function approximation,
the Q-function is represented as a weighted combination of a set of features as follows,

Qθ(S, a) =
∑

i

θiφi(S, a)

where φi(S, a) are the features defined over state S and action a, and θi are the set of
weights to learn. To learn the parameters θi, we follow the standard setting [Sutton and
Barto, 1998; Lagoudakis et al., 2003], where an online algorithm is used to update the
values of θi and reduce their temporal differences between successive states.
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3.3.3 KNOWLEDGE INTEGRATOR

Using the training data Ψ, we first train the predictor h(x, y, z) (e.g., SVM classifier) and
then calculate the Q values using either the state abstraction or function approximation
techniques. Given a trained predicator h and the Q function, we follow the policy defined
by Q starting from state 〈{}, B〉. On reaching the last state, denoted by Sn, the label for x
is calculated as:

y∗ = arg max
y∈Y

h(x, y, zn)

3.4 Experimental Results

In this section, we evaluate the following two questions:

• Can the knowledge-on-demand system provide a more accurate response if it were
allowed to query all of the predicates in the Ontology? (Section 3.4.2)

• Is AskWorld effective in identifying the right resources to query under the test-time
runtime constraints? (Section 3.4.3)

We describe the datasets and the setup used to answer the above questions in the subse-
quent sections.

3.4.1 Datasets & Setup

For the experiments in this section, we use 25 categories (predicates with one argument),
randomly chosen from all the categories that are in common between the Freebase [Bol-
lacker et al., 2008a] and NELL [Carlson et al., 2010a] knowledge bases. It is necessary to
make sure that the selected categories are part of the ontology of both knowledge bases,
since the resources used in our experiments (see below) can be only queried for the predi-
cates that are part of the NELL’s ontology. Figure 3.2 shows the list of categories used in
our experiments.
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TelevisionShow Athlete Book Bridge
PoliticalParty Disease Hospital Magazine
VideoGame Movie Mountain Newspaper

PlaceOfWorship School Politician Restaurant
ShoppingMall Protein University Language
MusicArtist City Company Musician

MedicalProcedure

Figure 3.2: List of the 25 categories used in our experiments. For each category, we use
200 training and 50 test instances.

For each predicate, all the instances are chosen randomly from the Freebase knowledge
base. 200 instances are provided as seed examples to train AskWorld. The seed examples
are split into two sets: training and evaluation. The training set is used to train the SVM
classifier and the evaluation set is used to solve the MDP (used as part of the reward func-
tion) or to find greedy ordering for the baseline approaches. 50 instances are also randomly
chosen as the test data. The test data for each predicate p consists of 25 positive examples
(i.e., instances of the predicate p) and 25 negative examples. The negative examples are
chosen from the other predicates in the FreeBase ontology. We compare AskWorld to the
baseline approaches using the standard performance metrics of precision, recall, and F1
score.

For the resources in R, we use three different knowledge acquisition techniques that
are developed as part of the NELL project.

• CMC: The first one is CMC which looks for certain orthographic features in the
query entity name. For example, if the query noun phrase ends in the suffix ”-burgh”
(e.g., in Pittsburgh), then it is likely to be a location.

• KB: The next resource is the NELL KB itself, which is built using several sub-
components. One such sub-component is SEAL which checks for recurring patterns
in HTML tables on the Web. For example, if SEAL finds that London and Pitts-
burgh are often mentioned in the same column of different tables across the Web
and we already know that London is a location, then it will infer that Pittsburgh is
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also a location with high probability. Another sub-component is CPL which learns
to associate textual patterns in unstructured text to infer specific categories. For ex-
ample, if CPL finds that the noun phrase Pittsburgh is often expressed in the context
of pattern “lives in ”, then Pittsburgh is likely to be a location.

• CKB: While KB has high precision and low recall, CKB is its noisy version (low
precision), but covers many more facts (high recall). Queries against CKB tend to
be slower since it has higher coverage.

Please note that the performance of these resources varies significantly across predicates,
and thus given an instance, it is not always clear which resource to query and how to com-
bine their result. This is especially important in settings with runtime budget constraints
which prohibits exhaustive querying of all the resources.

3.4.2 Does polling KRs for non-query predicates help?

One of the contributions of this chapter is to show that the accuracy of a knowledge-on-
demand system is improved by aggregating opinions of different KRs for all the predicates
in the ontology, compared to when we only poll KRs for the query predicate. For example,
to answer a query for target predicate Mountain, we may benefit by querying some other
predicates in the ontology (e.g. Food), since it is highly likely that a query entity is not a
Mountain if it is also a Food.

Figure 3.3 shows the precision-recall curve comparing the setting when only the query
predicate (referred to as Single Predicate) is allowed compared to the setting when we
poll KRs for all predicates in the ontology (All Predicates). All results are averaged over
all 25 target predicates. The result of the different queries are aggregated using a trained
SVM classifier. The result shows that the precision of our system is improved by around
25% absolute when we aggregate opinions of KRs for all the predicates in the ontology
compared to the single predicate approach, e.g., the precision is improved from 0.64 to
0.81 at the recall value of 0.75.
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Figure 3.3: Precision-Recall curve comparing performance of AskWorld when it is re-
stricted to issue queries only related to the target predicate (Target Predicate Queries)
vs. when it is allowed to issue queries for all predicates in the ontology (All Predicates
Queries). All results are averaged over all 25 target predicates. We observe that allow-
ing more diverse queries, as in the All Predicates Queries setting, significantly improves
performance.

3.4.3 Are budget-sensitive policies able to select effective polling queries?

Note that the All Predicates setting in the previous section is slower than the Query Pred-
icate approach since it requires polling KRs for all of the predicates in the ontology. This
leaves us with the question of how quickly we can achieve the same result as the All Pred-
icates setting while using the minimum budget. To answer this question, we consider the
following baselines:

• Random: The first baseline that we consider is Random, where given a test time
budget, we randomly choose which resource and predicate to query until running out
of the budget. The values returned for different queries are given as an input to the
trained SVM classifier, with missing values in the input of the classifier represented
by zeros.
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• Random+: Random+ is similar to Random, except that missing feature values
are represented by prior values calculated during the training (as explained in Sec-
tion 3.3.1).

• Single Greedy+: This method ranks queries in the greedy order based on their
information gain. For each predicate in the ontology, the algorithm iterates over
all the queries in K, measures the information gain for each single query given all
the queries chosen in the previous iterations, and then selects the query with the
maximum information gain. The algorithm finds only one ordering for queries in K

for each predicate in the ontology (for each predicate, a separate ordering is found).
To measure the information gain for each query, we use trained SVM and measure its
accuracy on the evaluation dataset. The missing values in the input of the classifier
are represented by the features’ prior values. During the query-time, given a new
query, the algorithm polls resources by following the greedy ordering until running
out of time budget.

• Multiple Greedy: The Multiple Greedy algorithm is similar to the Single Greedy+,
except that it iterates over different potential budget values and finds a greedy order-
ing for every predicate and for every such budget value. Also, instead of training a
single SVM and handling the missing values using the features’ prior values, Mul-
tiple Greedy trains a separate SVM for each possible budget value. For example, if
the upper bound budget is 10 (integer value), the algorithm finds 10 different greedy
orderings for different budget values (1 to 10), and for each one, it trains a separate
classifier.

• Greedy Miser: Greedy Miser is the learning approach presented by [Xu et al.,
2012]. We consider Greedy Miser to be representative of the state-of-the-art. Greedy
Miser uses step-wise regression [Friedman, 2000] which minimizes a loss function
that explicitly trades off the feature cost and the accuracy. The output of the learning
algorithm is an additive classifier which is a linear combination of a set of regression
trees. At each iteration of the learning, the greedy Classification and Regression Tree
(CART) algorithm [Breiman et al., 1984] is used to generate a new tree, which is
then used in the additive classifier. We use the Greedy Miser code published by the
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authors 1 trained with the same training data as our other algorithms.

Note that GreedyMiser handles the input budget-constraint indirectly using a λ pa-
rameter which defines the tradeoff between cost and accuracy. We tuned λ over the
range of values suggested in[Xu et al., 2012], and used the optimal value of λ = 0.06

for the experiments in this section. For other parameters, we use a learning rate of
0.1, depth of 2 for each decision tree (depth of higher than 2 makes GreedyMiser
inapplicable for small budget values), squared loss function, and a total of 300 re-
gression trees in the final additive classifier.

• AskWorld (PQL): This is one of the proposed methods. AskWorld (PQL) shows
the result of the Parametric Q-Learning (PQL) approach (Section 3.3.2) where the
features for the linear approximation function are chosen as follows. First, each
query in q ∈ Q is associated with two boolean features: one which indicates if q is
acquired as part of the knowledge of the MDP state, and the other indicates if q is
selected as an action from the state. This allows us to represent both arguments of
Q(S, a) function in the linear approximation function. The remaining budget in the
state is also represented by one feature. We have tried other different choices such
as merging actions and states’ features, representing the remaining budget by a set
of boolean variables etc. However, the other alternative approaches either decreased
or did not change the performance.

• AskWorld (V*): The result for AskWorld (V*) is obtained by abstracting MDP using
δ = 5 (Section 3.3.1), ordering queries using their information gain, and selecting
top k% of features with non-zero information gain. The value of k depends on the
size of the memory and the computation resources available to solve the MDP. In our
experiments, we choose k = 50% which results in approximately 15M states in the
MDP. Since AskWorld (V*) is trained only on a subset of queries, we may acquire
all of the queries using the learned policy and still have some leftover budget. In this
case, we follow the greedy policy and acquire knowledge using queries that have not
been already sent.

1http://www.cse.wustl.edu/˜xuzx/research/code/GreedyMiser.zip
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Discussion

Figure 3.4: F1 scores comparing different systems against varying test-time budgets (in
milliseconds). We observe that variants of the proposed approach, AskWorld, outperform
all other baselines.

F1 curves comparing these systems are presented in Figure 3.4. In this figure, the x
axis is the total test-time budget (in milliseconds) and the y axis is the F1 score (the har-
monic mean of precision and recall). Comparing the results for Random and Random+ in
Figure 3.4, both algorithms perform equally, except that the F1 score of the Random algo-
rithm is lower at the beginning. The main reason that the Random algorithm is performing
poorly at the beginning is that there are many zero elements in the feature vector of the
classifier and therefore the constant value in the linear regression function of the SVM
plays an important role in biasing the classification result (e.g., at the beginning, when all
the features are zeros, only the sign of the constant value in the SVM classifier determines
the decision in the classification).

Comparing the results of the two greedy algorithms, we can see that Multiple Greedy
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outperforms Single Greedy+ since it learns different greedy ordering and learns a separate
SVM classifier for different budget values. Since the Multiple Greedy approach requires
iterating over the different budget values, its applicability is limited when the upper bound
on the test time budget is very large.

The figure also shows the result for the state-of-the-art approach: Greedy Miser [Xu
et al., 2012]. Comparing the result of the Greedy Miser with the Single Greedy and Mul-
tiple Greedy algorithms, we can see that Greedy Miser performs poorly at the beginning
(budget values less than 400), but then outperforms the other algorithms for larger budget
values. GreedyMiser uses a different classification technique (cascade of decision trees)
and does not achieve the same F1 score as other approaches at higher budget levels.

From Figure 3.4, we observe that both AskWorld(PQL) and AskWorld(V*), our pro-
posed approaches, perform better than all the baselines, including Single Greedy+, Multi-
ple Greedy and Greedy Miser. Note that the Multiple Greedy approach requires iterating
over all the budget values with one model per budget value, and therefore does not scale as
the budget cost increases. In contrast, AskWorld is capable of handling varying test-time
budgets (up to a specified upper bound) without retraining and in a single model. Com-
paring the results of Greedy Miser and AskWorld, we observe that AskWorld significantly
outperforms Greedy Miser for smaller values of the test budget, and achieves similar re-
sults for the larger budget values. For example, for the budget value of 750 Milliseconds,
the Greedy Miser algorithm achieves F1 score of 0.74, while the result of PQL and V* are
about 0.76 and 0.79, respectively.

In summary, AskWorld, our proposed approach, is able to improve the performance by
selecting more informative queries for a given predicate, and without increasing the model
footprint.

Examples of Policies Learned by AskWorld

Figure 3.5 shows three examples of policies learned by AskWorld (V*) system for three
different predicate instances. AskWorld interactively queries any of the available resources
until it exceeds the input budget. At each step, it chooses one of the 25 predicates in
Table 3.2 and query from any of the 3 resources (total of 75 = 25 x 3 different queries). At
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Figure 3.5: Three examples of policies learned by the AskWorld (V*) system. For each
example, the input query to the system is first shown (with grey background), followed
by the ordered list of queries asked by AskWorld. For each query asked by AskWorld,
we show the name of the resource that is queried (in bold), the name of the predicate, the
cost of the query (in milliseconds), the prediction score returned by the resource, and the
leftover budget. In each case, AskWorld predicts true, the correct response.

each step, the figure shows the query that has been asked, and the value returned for each
of the queries. For all of these queries, AskWorld correctly returns the true label.
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For example, for the query Mountain(Mount Ritter), since the budget is small, AskWorld
is conservative and only checks if Mount Ritter is an instance of Mountain using CKB and
CMC resources. For the query Athlete(Josh Heupel), where a larger budget is available,
AskWorld first gets some evidence about the input instance being an Athlete by querying
CKB and CMC resources. Both CKB and CMC respectively return the prediction score
of 0.8 and 0.7 (the probability of the input predicate instance being correct). Since there
are still some budgets available, AskWorld explores other categories that are potentially
mutual-exclusive with predicate Athlete by getting prediction scores for predicates Politi-
cian and Musician (e.g., a musician usually is not an athlete). All the resources return the
prediction score of 0.0 for Josh Heupel to be an instance of either Politician or Musician,
which increases the confidence of AskWorld in correctly predicting that Josh Heupel is
indeed an Athlete.

3.5 Summary

In this chapter, we presented AskWorld, a novel system which is capable of providing
knowledge-on-demand. We showed that the accuracy of knowledge acquisition improves
when the system is allowed to issue polling queries corresponding to non-query predicates
in the ontology. Even though this relaxation results in an explosion of polling possibilities,
AskWorld is able to select the most informative ones within runtime budget constraints.
To the best of our knowledge, AskWorld is the first knowledge-on-demand system of its
kind which is capable of handling varying query-time budgets without model retraining.
Through extensive experiments on real world datasets, we demonstrated AskWorlds capa-
bility of selecting most-informative queries within query-time runtime constraints, result-
ing in improved performance while achieving reduced model footprint.
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Chapter 4

Measuring Credibility of Sources and
Extracting Reasons

In this chapter, we present ClaimEval, a novel and integrated approach which given a set of
claims to validate, extracts a set of pro and con arguments from the Web using OpenEval,
and jointly estimates credibility of sources and correctness of claims. ClaimEval uses
Probabilistic Soft Logic (PSL), resulting in a flexible and principled framework which
makes it easy to state and incorporate different forms of prior-knowledge.

We begin in Section 4.1 by motivating the credibility assessment problem. In Sec-
tion 4.2, we explain the details of our ClaimEval technique. In this section, we first explain
how to use OpenEval for automatically building a Credibility Assessment (CA) graph. We
then motivate and present the details of the assumptions that we have used throughout the
rest of this chapter for assessing the credibility of sources and validating the truth of the
claims (i.e., prior knowledge). The details of our approach for using Probabilistic Soft
Logic (PSL) to formalize representation of the prior knowledge, and to find the truth of
claims and credibility score of sources are then discussed. The experimental results and
comparison with baseline approaches are presented in Section 4.3.
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4.1 Introduction

The Internet is a source of a vast amount of information, and any individual who has
access to the Internet can publish materials that can be reached by millions of people. The
Web search engines, such as Google, Bing, etc., that operate over millions of documents
have made this information readily available to everyone. However, despite the ease of
access to enormous amounts of material on the Web, it is now much harder for an average
Internet user to assess the credibility of a particular source of information. Assessing
the credibility of an information source is especially important when a user is seeking to
validate correctness of a given claim.

To make it possible to readily evaluate factoid claims (e.g., “Paris is the capital of
France”), several large knowledge bases (KBs), such as Freebase, Yago, Google Knowl-
edge Graph, etc., have been developed in recent years. In spite of this democratization
of information, evaluating the correctness of non-factoid claims (e.g., “Turkey meat is
healthy”), is still an open challenge. This is particularly challenging since two different
webpages may contain conflicting evidences even related to a single claim. For exam-
ple, while an animal rights website might not support meat-eating and thus classify turkey
meat as unhealthy, the website of a grocery store might claim otherwise. A scientific paper
focusing on this question might provide the most authoritative answer. One would ideally
want to trust evidences contained in the credible source (the scientific paper) and ignore
the other two. Hence, given a set of claims, one needs to identify relevant sources on the
Web, extract supporting and contradictory evidences from those sources, estimate source
credibility, and finally aggregate all of the information to evaluate the given set of claims.
This is a tedious and time consuming process, and current Web search engines only address
the first aspect of this bigger problem, viz., identifying relevant sources. Thus, there is a
growing need for an integrated approach for automatic extraction of relevant evidences
and sources, estimation of information source credibility and utilizing those credibility
estimates in claim evaluation.

Estimating information source credibility may also be subjective [Bhattacharya et al.,
1998; Gambetta, 1990]. In other words, we may have to take user preferences and con-
text into account when estimating source credibility and evaluating claims. This can be
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illustrated through an example shown in Figure 4.1. In this example, there are two claims:
“Turkey is healthy” (C1) and “Chicken is healthy” (C2). These claims are either sup-
ported (SupportsClaim) or refuted (DoesNotSupportClaim) by evidences originating from
webpages of two domains, peta.org, website of an animal rights activists’ group, and
whfoods.com, a non-profit promoting healthy food. The user has also indicated that she
believes C1 is in fact true (shown by a green double-line rectangle). Given this initial
information, we would like to evaluate whether claim C2 is true or false. In this case, we
find that all the evidences originating from the domain peta.org are in contradiction with
the user’s assessment of claim C1. Hence, we would like to decrease the credibility of
peta.org and reduce the influence of all evidences originating from it while evaluating C2.
We note that the evidences from domain whfoods.com is in agreement with the user’s as-
sessment of C1, and hence we should increase its credibility. We note that these credibility
adjustments are claim (and user) specific. If instead of claims involving healthy meat op-
tions, they were focused on animal cruelty, then peta.org might have been a very credible
source.

The above example shows that the correctness estimates of claims in the Credibility
Assessment (CA) graph and the credibility of non-claim nodes can be calculated by propa-
gating any available information about the correctness of claims or the credibility informa-
tion of other nodes over the CA graph. Our intuition is that humans naturally do this type
of credibility and correctness propagation based on prior-knowledge using a set of rules.
The prior-knowledge specifies how the credibility inference should be performed across
the CA graph. Ideally, in order to automatically calculate the credibility of a set of claims
and sources, a credibility assessment approach should be able to take the prior-knowledge
as an input and incorporate it in its credibility calculation.

In this chapter, we introduce a novel and fully-automated technique, called ClaimEval,
which validates the truth of a set of claims, by automatically crawling the relevant infor-
mation from the Web using the OpenEval approach (introduced in Chapter 2), calculating
the credibility of sources, and incorporating the calculated credibility scores to validate
the truth of the given claims. When presented with a claim to verify, ClaimEval first uses
OpenEval to search the Web for different evidences (i.e. context-based instances) that are
in favor or against the input query claim. OpenEval automatically extracts evidences using
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peta.org

      whfoods.com

http://www.peta.org/living/
food/top-10-reasons-eat-

turkeys/ 

——————————— 
———————————

http://www.whfoods.com/
genpage.php?

tname=foodspice&dbid=
125 

—————————— 
——————————

      Turkey flesh is brimming  
with fat. Just one…

With ample time spent  
       foraging in a pasture with…

Turkey (together with  
       chicken) has emerged…

    Lose the Fat, Avoid the  
     Flu, Both the Centers….

   Chickens are the most    
      bused animals on the…

Organic standards help  
        lower risk of contaminated…

      Pasture raising of chickens  
           has been recently analyzed…

http://www.peta.org/living/
other/top-10-reasons-eat-

chickens/ 

——————————— 
———————————

http://www.whfoods.com/
genpage.php?

tname=foodspice&dbid=
116 

——————————— 
———————————
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DoesNotSupportClaim
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   Turkey is    
  healthy.

     Chicken is  
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  All meats are the same.  
      Every cell is wrapped in..

HasWebPage
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W2
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W4
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E2

E5

E6

E7

E8
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E10

C2

   Turkey is    
  healthy.C1

Figure 4.1: The Credibility Assessment (CA) Graph is constructed to evaluate C2, while
the user has already specified the other claim C1 to be true (green concentric rectangle).
In addition to the claims, the CA graph also consists of nodes corresponding to Domains,
Webpages and Evidences. While some evidences are supportive of the claims (solid green
lines), others are not (red dotted line) (see Section 4.2.1 for details). ClaimEval, the pro-
posed system, estimates the credibility of the domains based on the assessment available
on claim C1, and combines that with the level of support from evidences originating from
those domains to evaluate claim C2 (see Section 4.2.2 for more details).

both structured and unstructured information on the Web, and measures the sentiment of
the extracted evidences (determining if they are against or in favor of a claim) using the

82



trained classifiers. Given these extracted evidences, ClaimEval then builds the CA graph
using the retrieved information. Given the constructed CA graph, ClaimEval iteratively
flows the information from the sources to the claims, and then back to the sources, in order
to find the credibility of the sources and the truth of the claims.

To represent the prior knowledge on how the credibility of sources influence claims and
vice versa, we first define a set of simple rules that explicitly define how the information
in the graph should flow between the nodes, e.g. if an evidence is coming from a credible
website and the evidence is supporting a claim to be true, then the claim is true. Each node
in the graph is represented by a ground atom, which takes a soft truth value in the interval
[0, 1]. We show how to represent these rules in the form of a set of first-order logical
rules. Using Probabilistic Soft Logic (PSL) [Broecheler et al., 2010], that is a framework
for probabilistic reasoning in relational domains, we present a novel credibility approach
that takes these logical rules and the CA graph, builds a joint probabilistic model over all
the nodes in the graph, and assigns values to the different nodes by solving a continuous
optimization problem. The values are assigned to the nodes in the graph so as to have
maximum consistency with the set of defined rules. Our technique is efficient and its time
complexity is polynomial in terms of the number of nodes in the graph.

4.2 Our Approach: ClaimEval

ClaimEval performs joint estimation of source credibility and claim evaluation in one sin-
gle model using Probabilistic Similarity Logic (PSL). Algorithm 7 summarizes the process
that ClaimEval follows for evaluating a claim. ClaimEval consists of the following two
steps: (i) Credibility Assessment(CA) Graph Construction (Section 4.2.1 - Line 1 in
Algorithm 7), and (ii) Joint Source Credibility Estimation and Claim Evaluation (Sec-
tion 4.2.2 – Lines 7-8 in Algorithm 7).

In the following two sections, we describe each one of these two steps in greater detail.
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Algorithm 7 ClaimEval - Evaluating the correctness of a alaim
Require: 〈U,L, r,K〉 /* U is a set of unlabeled claims that should be evaluated, L is a set

of labeled claims (label is either true or false), r is the category that U and L belong
to, and R is a set of first-order logic rules defining the prior credibility knowledge. */

Ensure: 〈label (True or False), confidence〉 for claims in U
1: CAG← Construct the CA graph by calling BuildCAGraph (U,L, r) //Algorithm 8
2: R̂← Relax logical operators in R using Luka-siewicz real-values operators
3: P ← Convert R̂ and CAG to an optimization problem using Probabilistic Soft Logic

(PSL)
4: [〈labels,confidence values〉] ← Solve the optimization problem P and find the label

(True or False) and confidence value for each unlabeled claim in U
5: return [〈labels,confidence values〉]

4.2.1 Credibility Assessment (CA) Graph Construction

Let us consider the two claims: “Turkey is healthy” (C1) and “Chicken is healthy” (C2) as
shown in Figure 4.1. In practice, in order to evaluate these claims, one would probably first
try to identify sources (e.g., webpages) which are likely to contain evidence either in favor
or against such claims. An evidence may be considered as a text snippet (e.g., a sentence
or paragraph in a webpage) expressing an opinion about the claim in a webpage. Overall,
a claim is substantiated by one or more evidences which are contained in webpages, with
webpages in turn contained within domains. This is combined in a multi-relational graph
that is called a Credibility Assessment (CA) graph. A CA graph has four types of nodes:

• Domain: A domain name is an identification string that defines a realm of admin-
istrative control within the Internet. Domain names are used in URLs to identify
particular webpages.

• Webpage: A webpage is a web document.

• Evidence: An evidence is a small section of text in a webpage.

• Claim: A claim is a category instance, of which we may or may not know the truth
value.

Nodes are connected by the following five types of edges:
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• HasWebPage(Domain, WebPage): Connects a webpage of a specific domain.

• ContainsEvidence(WebPage, Evidence): Connects an evidence that is extracted from
a particular webpage.

• DoesNotSupportClaim(Evidence, Claim): Connects an evidence to a claim, where
the evidence does not support the claim.

• SupportsClaim(Evidence, Claim): Connects an evidence to a claim, where the evi-
dence supports the claim.

For example, in Figure 4.1, evidence node “All meats are the same...” (E1) DoesNot-
SupportClaim C1. Evidence E1 is found in the webpage represented by webpage node
W1. This particular webpage is from the peta.org domain which is represented by node
D1 in the CA graph.

The input of ClaimEval is similar to the input of OpenEval system, where a set of
categories of claims, and a set of true and false claims for each category (i.e., category
instances), are provided as input. For example, healthy food is an example of a category,
and apple, broccoli and mayonnaise, soda are, respectively, true and false claims provided
for this category. In addition to the labeled instances which are used for training, we
assume that a set of unlabeled instances are also provided, for which ClaimEval calculates
a credibility score. Note that in the rest of this chapter, each claim is simplified by only
showing the category instance, for example, a claim such “apple is a healthy food” is
shown by “apple” as an instance of “healthy food” category. Our goal is to classify the set
of unlabeled claims to either true or false classes, with a confidence value for the assigned
label.

The algorithm for building the CA graph is shown in Algorithm 8. To build the CA
graph, ClaimEval first uses the OpenEval system to extract a set of evidences (i.e., context-
based instances) and learn an evidence classifier for each category of claims, which is later
used to classify evidences for a given claim to either pro or con classes. As we discussed
in Chapter 2, to build the training data for the classifier, OpenEval first searches each
claim on the Web, and extracts a set of evidences (Context-Based Instances) from the
returned webpages. Using the extracted training data, it then learns an evidence classifier
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that assigns each extracted evidence to either the pro or the con class. Given the extracted
evidences, ClaimEval automatically constructs the CA graph (similar to Figure 4.1) for all
the claims.

Algorithm 8 ClaimEval - Building the Credibility Assessment graph
Require: 〈U,L, r〉 /* U is a set of unlabeled claims, L is a set of labeled claims (label is

either true or false), and r is the category that U and L belong to. */
Ensure: CAG← A Credibility Assessment Graph

1: Function: BuildCAGraph (〈U,L, r〉)
2: CAG ← Initiate empty layered-graph CAG with four layers: Domains, Webpages,

Evidences, Claims.
3: R← List of categories of claims in (U ∪ L)
4: for each category r ∈ R do
5: T+

r = T−r = {}. %Initiate empty positive and negative training data set for category r.
6: Cr ← Claims of category r in (U ∪ L)
7: for each claim c ∈ Cr do
8: E ← Extract evidences (CBIs) for claim c using the OpenEval approach
9: if c is labeled then

10: If c is labeled true, then add set E to T+
r , otherwise add it to T−r .

11: end if
12: for each evidence e ∈ E do
13: Add e as a node in the evidence layer of CAG.
14: Add claim c to the claim layer, connect e to c.
15: Add the webpage and the domain, from which e is extracted, to webpage and

domain layers in CAG, respectively. Add an edge between them.
16: end for
17: end for
18: Convert each element of T+

r and T−r to a feature vector
19: hr ← Train classifier hr using training data T+

r and T−r
20: Mark each edge that connects evidence e to claim c as pro if hr(e) ≥ 0, otherwise

mark it as con.
21: For all the labeled claims, label the corresponding node in the CAG.
22: end for
23: return CAG

After training the evidence classifier, ClaimEval iterates over all the labeled and unla-
beled claims, similar to the training process, and extracts a set of evidences for each claim.
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Using the trained evidence classifier, each of the extracted evidences is then assigned to
either the pro or the con classes.

The evidence layer in the CA graph is built using all the evidences extracted from the
Web. Each evidence is connected to the claim for which it is extracted. The edge that
connects an evidence to a claim, is classified as SupportsClaim (solid green line in Fig-
ure 4.1), if the evidence is supporting the claim, and otherwise is classified as DoesNot-
SupportClaim (red dotted line).

The webpage layer is constructed from the webpages that are used by the OpenEval.
Each webpage is connected to the set of evidences extracted from the webpage. For each
webpage, we extract the domain name (e.g., whfoods.org) and create a corresponding node
in the domain layer. Each domain node is connected to its webpages in the webpage layer.

Initially, all the nodes in the graph do not have any value, except for the nodes whose
true labels (i.e., user assessments) are known. Each node in the CA graph takes a value in
the range [0,1]. The semantic of the values assigned to the nodes varies across the layers
in the graph. For example, the value of a node in the webpage layer is interpreted as the
degree of the credibility of the webpage, and the value of a node in the claim layer is
interpreted as the confidence in the truth of a claim. Edges in the graph can be seen as
transforming the meaning of values of nodes between the layers.

Given the CA graph, we can iteratively calculate the credibility of each source by
using the claims that it asserts, and simultaneously calculate the truth of each claim given
the credibility score of the sources that are asserting it. For example, using a simple voting
algorithm, we can calculate the probability of a claim to be either true or false, by simply
dividing the total number of evidences that are in favor of a claim (pro evidences), by the
the total number of evidences that are connected to a claim.

If we treated all evidences as equally credible, then using a simple voting rule, we can
estimate the likelihood of claim C1 in Figure 4.1 being true is 2

4
= 0.50 (only two of the

four evidences are supporting it). Similarly, claim C2 being true has a likelihood of 0.5.
However, we can propagate the information about correctness of claim C1 over the CA
graph to revise the correctness estimates claim C2. Our intuition is that humans naturally
do this type of credibility and correctness propagation based on prior knowledge using a
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set of rules. We explain these rules in the next section.

4.2.2 Joint Source Credibility Estimation & Claim Evaluation

When computing the credibility scores in the CA graph, we propagate the credibility and
the correctness information across the different layers based on some prior knowledge,
which is defined as a set of rules. We first list a set of such rules that specify how the
credibility inference should be performed across the CA graph. We later explain how
these rules are incorporated in our credibility assessment model.

Prior Knowledge for Credibility Assessment

• Evidence ⇒ Claim: Inferring correctness of a claim based on the credibility of an
evidence:

– EC1: Evidence is credible & evidence supports claim⇒ claim is true.

– EC2: Evidence is credible & evidence doesn’t support claim⇒ claim is false.

– EC3: Evidence is not credible, then the evidence has no effect on the correctness of
the claim.

• Claim⇒ Evidence: Inferring credibility of an evidence based on the correctness of a
claim:

– CE1: Claim is true & evidence supports claim⇒ evidence is credible.

– CE2: Claim is true & evidence doesn’t support claim⇒ evidence is not credible.

– CE3: Claim is false & evidence supports claim⇒ evidence is not credible.

– CE4: Claim is false & evidence doesn’t support claim⇒ evidence is credible.

• Webpage⇔ Evidence: Inferring credibility of an evidence based on the credibility of
a webpage, and vice versa:

– WE1: Webpage is credible⇔ evidence is credible.
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– WE2: Webpage is not credible⇔ evidence is not credible.

• Domain⇔Webpage: Inferring credibility of a webpage from the credibility of a do-
main, and vice versa:

– DW1: Domain is credible⇔ webpage is credible.

– DW2: Domain is not credible⇔ webpage is not credible.

Encoding Prior Knowledge using First-Order Logic

We use first-order logic (FOL) to formally define a set of rules, based on the prior knowl-
edge that we defined in Section 4.2.2. Each layer of the CA graph is represented by a
logical predicate, and each node in the graph is an instance of the predicate. For example,
the predicate Domain(x) is used to define different nodes/instances in the first layer of the
graph, where peta.org is an instance of this predicate, represented by Domain(peta.org).
In this case, predicate instance Domain(peta.org) has value 1, since peta.org is a domain
in the Domains layer, otherwise it would have taken the value 0. Similarly, predicates
Webpage(x), Evidence(x), and Claim(x) are defined to represent nodes in the other layers
of the graph.

In addition to the predicates that represent different types of the nodes in the graph,
we use the following predicates to define edges: HasWebpage(Domain, Webpage), Con-
tainsEvidence(Webpage, Evidence), SupportsClaim(Evidence, Claim), DoesNotSupport-
Claim(Evidence, Claim). The edges that connect Evidences to Claims are assigned with ei-
ther the pro or the con label, where are represented using the predicates SupportsClaim(e,c)
and DoesNotSupportClaim(e,c), respectively. If an evidence e supports a claim c, then the
predicate SupportsClaim(e,c) = 1, and if it does not support a claim then DoesNotSup-
portClaim(e,c)=1. In all other cases, including when there is no edge between node e and
c, the values of SupportsClaim and DoesNotSupportClaim are equal to zero. To compute
the value of these two predicates, we give evidence e to the classifier that is trained for the
category that claim c belongs to, and assign value 1 to SupportsClaim(e,c) if e is classi-
fied as a pro argument, assign a value of 1 to predicate DoesNotSupportClaim(e,c) if e is
classified as a con argument, and 0 otherwise.
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Table 4.1 shows the set of rules that define the flow of the information between Evi-
dences and Claims layers. Similarly, Tables 4.2 and 4.3 present the rules that define the
information flow between Domains, Webpages, and Evidences layers.

# Flow Rule
EC1 Evidence⇒ Claim Evidence(e)∧Claim(c)∧Credible(e)

∧SupportsClaim(e,c)⇒Correct(c)
EC2 Evidence⇒ Claim Evidence(e)∧Claim(c)∧Credible(e)

∧DoesNotSupportClaim(e,c)⇒ ¬Correct(c)
CE1 Claim⇒ Evidence Evidence(e)∧Claim(c)∧Correct(c)∧SupportsClaim(e,c)

⇒Credible(e)
CE2 Claim⇒ Evidence Evidence(e)∧Claim(c)∧Correct(c)

∧DoesNotSupportsClaim(e,c)⇒ ¬Credible(e)
CE3 Claim⇒ Evidence Evidence(e)∧Claim(c)∧¬Correct(c)

∧SupportsClaim(e,c)⇒ ¬Credible(e)
CE4 Claim⇒ Evidence Evidence(e)∧Claim(c)∧¬Correct(c)

∧DoesNotSupportClaim(e,c)⇒Credible(e)

Table 4.1: First-order logic rules that define how the information flows between an evi-
dence and a claim.

Table 4.1 contains two sets of rules. Rows 1-2 define the flow of information from
the Evidences layer to the Claims layer, and rows 3-6 define the information flow from
the Claims to the Evidences layer. We explain the first two rules in detail, and the rest
follows similarly. The first two rules define the flow of information from evidences to
the claims, where e is an evidence, c is a claim, and e is connected to c. In the case that
the evidence is credible (Credible(e) has value ‘true’ or 1.0), depending on whether e is
in favor (i.e., SupportsClaim(e,c)=1) or against (i.e., DoesNotSupportClaim(e,c)=1) the
claim, c is labeled true (i.e., Correct(c)=1) or false (i.e., Correct(c)=0). Note that if the
evidence e is not credible, then whether the evidence is a pro or con argument has no effect
on the value of the claim c. This is since a claim made by an evidence that is not credible
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can not be trusted. This case can be represented by the following rule:

(4.1)Evidence(e) ∧ Claim(c) ∧ ¬Credible(e) ∧ SupportsClaim(e, c)
⇒ Correct(c) ∨ ¬ Correct(c)

Since the right side of the Equation 4.1 is always equal to one, we drop it from the list of
rules in Table 4.1.

Similar to Table 4.1, Tables 4.2 and 4.3 define the flow of information for Evidences,
Sources, and Domains layers. These rules are similar to the rules used in SSL semi-
supervised algorithms, that make the values of neighboring nodes in a graph similar. Note
that some of the rules in these tables are simplified through the use of the following logical
rule: if a⇒ b, then ¬b⇒ ¬a.

# Flow Rule
WE1 Source⇒ Evidence Source(s)∧Evidence(e)∧ContainsEvidence(e,c)

∧Credible(s)⇒Credible(e)
WE2 Evidence⇒Source Source(s)∧Evidence(e)∧ContainsEvidence(e,c)

∧Credible(e)⇒Credible(s)

Table 4.2: First-order logic rules that define how information flows between a source and
an evidence.

# Flow Rule
DW1 Domain⇒ Source Domain(d)∧Source(s)∧HasWebpage(d,s)

∧Credible(d)⇒Credible(s)
DW2 Source⇒Domain Domain(d)∧Source(s)∧HasWebpage(d,s)

∧Credible(s)⇒Credible(d)

Table 4.3: First-order logic rules that define how information flows between a domain
and a source.

Although the logical rules precisely define the flow of information in the graph, their
applicability is limited for real world examples, as the nodes in the graph can only take
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values 1 (true) or 0 (false). For example, assume that a claim c is supported by two
evidences a and b, both of which are credible. If a is in favor of c and b is against c,
then we can neither say that c is true nor that c is false. Ideally, the value of claim c is
between 0 and 1 depending on the relative credibility of evidences a and b. In the next
section, we explain how to address this issue by relaxing the binary value constraint and
allowing each node to take any value in the interval [0, 1] using Probabilistic Soft Logic
(PSL) [Broecheler et al., 2010; Kimmig et al., 2012].

Going Beyond Binary Logical Operators using Probabilistic Soft Logic (PSL)

Probabilistic Soft Logic (PSL) is a general purpose logical system that uses First-Order
Logic (FOL) as its underlying logical language. We provide a brief overview of the PSL
technique briefly in this section; for a more detailed exposition of PSL, we refer the reader
to [Bach et al., 2012; Broecheler et al., 2010; Kimmig et al., 2012].

In PSL, the value of each ground atom is relaxed to take a soft truth-value in the
interval [0,1], where 0 is interpreted as absolute false and 1.0 as absolute true. The soft-
truth assignment allows us to define the degree of correctness and credibility for the nodes
in the graph. For example, if we have two sources s1 and s2, where Credible(s1) >

Credible(s2), then we can infer that s1 is more credible compared to s2.

To handle the continuous truth values in the variables, PSL relaxes conjunction, dis-
junction, and negation logical operators by using Luka-siewicz real-valued logic operators,
which are defined as follows:

a ∧̂ b = max{0, a+ b− 1}
a ∨̂ b = max{1, a+ b}
¬̂ a = 1− a

Lukasiewicz t-norm operators, compared to other non-classical logic operators such as
product t-norm, are suitable for our credibility assessment model since they linearly com-
bine the values that they take. For example, consider this rule:

Credible(e) ∧̂ SupportsClaim(e,c)⇒ Correct(c)
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Using the Lukasiewicz disjunction operation, we can write the body of this rule as:

max {0, Credible(e) + SupportsClaim(e, c) - 1}

which evaluates to true when the resulting value is greater than a certain threshold, say
0.5. We can roughly interpret it as: claim c is correct only when e is credible and supports
claim c, each at least by a degree of 0.5 (sum should be greater than 1.5).

Given a set of rules, we first instantiate all the variables in the rules with respect to the
CA graph that is constructed. Given these instantiated rules, our goal is to find values of
the different nodes in the graph such that the total number of satisfied rules is maximized.
For solving this optimization problem, PSL defines the satisfaction distance for each rule
in the domain. Given a ground rule r, such as r := P ⇒ Q, r is satisfied if and only
if V̂ (Q) ≥ V̂ (P ), where V̂ (X) is defined as the value of the ground logical expression
X using Lukasiewicz operators (i.e., Q is at least as truthful as P ). The rule’s distance to
satisfaction (denoted by d(r)) measures the satisfaction degree of each rule r := P ⇒ Q:

(4.2)d(r) = max{0, V̂ (P )− V̂ (Q)}

Given the distance function in Equation 4.2 and a set of ground rules, PSL finds values
for all the ground predicate instances in order to minimize the total satisfaction degrees
of all the ground rules. To do this, assume that I is the assignment of values to predicate
instances, and dI(r) is the satisfaction degree of rule r given assignment I . Thus, given
the set of ground rules R, the optimal assignment I∗ may be obtained as follows,

(4.3)I∗ ← arg max
I

1

Z
exp[−

∑

r∈R
λr(dI(r))

2]

where Z is the normalization factor, and λr is the weight for each ground rule r. The Most
Probable Explanation (MPE) inference algorithm may be used to optimize Equation 4.3.

When optimizing Equation 4.3, we allow only the values of Credible and Correct
predicate instances to change, and the values of the rest of predicate instances remain
fixed. In order to make sure that the labeled claims will preserve their values during the
optimization (i.e., constraints), we define the following rules:
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(4.4)∀ labeled claims c, PosClaim(c)→ Correct(c)

(4.5)∀ labeled claims c, NegClaim(c)→ ¬ Correct(c)

Predicates PosClaims and NegClaims respectively, define the positive and negative set
of labeled claims.

4.2.3 Learning Rules Weights

The rules that are defined for trust in Tables 4.1-4.3 and Equations 4.4 and 4.5 have a
different degree of importance. For example, rules in Table 4.3 are generally correct.
However, different websites that are associated with a domain may have different degrees
of trustworthiness. For example, different webpages in the Elsevier journal website may
have different qualities (papers with different number of citations), or blogs that are hosted
under the same domain name may have a different degree of trustworthy (e.g., a blog of a
University professor compared to a blog of a student). Furthermore, rules that are defined
in Equations 4.4 and 4.5 should have higher weight compared to the other rules defined as
part of the prior knowledge, in order to make sure that during the optimization, the correct
labels are assigned to the labeled data.

The PSL framework gives us the flexibility to assign different weights to rules in the
graph, by using the Maximum Likelihood Estimation (MLE) [Broecheler et al., 2010]. We
use the same training data, which is used to train the classifer, in order to learn the weights
for the rules.

4.2.4 Examples

Figure 4.3 shows five different examples of CA graph with credibility scores assigned to
each node of the graph. Each graph is slightly modified to show how the credibility scores
vary for different scenarios. Each graph contains two claims (nodes 8 and 9), where claim
8 is labeled as correct in our training data. Using the structure of the graph and the labels
provided for different nodes, our goal is to infer the label of claim 9 (wether it is true or
false). We explain the rational behind assigning scores to different graphs below.
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Figure 4.2: Five examples of the Credibility Assessment Graph, with the credibility score
assigned to each node in the graph. Similar to Figure 4.1, the graphs’ layers from the
left are: Domains, Webpages, Evidences, and Claims. A redline connecting an evidence
to a claim is an indicator of a con argument, while a green line is an indicator of a pro
argument. White nodes are the nodes where the credibility value is not known, and a node
with the green color means that it is credible. A double-lined circle indicates the training
data (i.e., nodes which we know the truth value).

1. Graph (a): Since nodes 3 and 4 (evidences) are supporting a correct claim, we
expect them to be credible. Both of these nodes are connected to source 1, where
source 1 is connected to domain 0. There are two factors that affect the credibility
score of source 1. First, we expect the credibility score of source 1 to be high since
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it is providing two credible evidences. However, on the other hand, source 1 is
providing an evidence 5 which supports claim 9. There are two other evidences (6
and 7) which are also connected to claim 9. Unlike evidence 5, evidences 6 and
7 are against claim 9. This contradiction decreases the credibility of evidences 6
and 7. Both of these evidences are connected to domain 0, hence we consecutively
decrease the credibility of node 0. This decrease in the credibility score of source 2
also affects other nodes in the graph. The scores that are assigned by ClaimEval in
graph (a), follow our inference.

2. Graph (b): The main reason that the credibility scores of nodes 1, 3, 4, and 5 have
been decreased in graph (a), is because all of the nodes in the graph are connected
to the domain node 0, where domain 0 is providing contradictory information about
different claims. The fact that source 2 is not credible is also propagated to node
0, which is accordingly affecting the credibility of source 1 and all the evidences
extracted from source 1. Graph (b) shows the scores when we connect the evidences
{4, 5, 6} and {7, 8} to different domain nodes 0 and 1. Since they are connected to
different domains, the contradictory information that comes from evidences 7 and
8 are only affecting nodes 3 and 1. As the result, ClaimEval is assigning the full
credibility score to all the nodes connected to node 0, and credibility scores of nodes
1, 3, 7, and 8 are all set to zero.

3. Graph (c): The credibility score of source 3 and domain 1 are significantly low in
graph (b), since all the evidences that they are providing are in contradiction with
the information that we believe is true (training data). Now assume that we change
the value of evidence 8 from con to pro. In this case, one of the evidences provided
by source 3 is supporting claim 10, and hence more consistent with the value of
evidence 6. This will increase the credibility of evidences 7 and 8, source 3, and
domain 1. However, the fact that source 3 (which is now somewhat credible) is also
providing a con argument for claim 10, decreases the credibility of node 6 and all
the evidences connected to source 2.

4. Graph (d): Since in graph (c), source 3 was providing both a con and pro argu-
ment, the credibility of other sources connected to the claim 10 are decreased. If we
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slightly change this graph by connecting evidences 7 and 8 to two different sources
(graph (d)), we will observe that the contradictory information provided by evidence
9 is only affecting the sources that it is connected to.

5. Graph (e): One of the main advantages of ClaimEval is to give flexibility to users
to assign the true label to any node in the graph. Graph (e) shows an example when
both a domain and a claim are annotated as training data. In this graph, both nodes
1 and 11 are annotated as credible. Annotating both these nodes to be credible leads
to an inconsistency. On one side, source 3 which has gained credibility by correctly
assessing the truth of node 11, is supporting claim 12, and on the other side, source
4 which is directly connected to credible domain 1, is against claim 12. It can be
seen that ClaimEval has correctly assigned the truth value of 0.5 to node 12.
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Figure 4.3: Scores assigned by ClaimEval where we use different values for the weight
of training data (denoted by W ).

Figure 4.3 shows the result of ClaimEval when different weights are used for Equa-
tions 4.4 and 4.5 (training data). The graphs show that as we increase the weight of the
training data, the assigned scores will be more biased toward the labels of training data.
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4.3 Experimental Evaluation

The main hypothesis behind our research is that by using the structure of the CA graph
and considering the information provided by different sources, we are able to (i) measure
the trustworthiness of the different sources of information (i.e., websites), and (ii) assert
the truthfulness of a set of given claims. One way to measure the effectiveness of our
approach in achieving these goals, is to show that incorporating the trust score will improve
the accuracy of ClaimEval in predicting the truth of claims. In order to validate this, we
compare the accuracy of claims made by ClaimEval to different baseline approaches where
they may or may not take the credibility score of sources into the account.

We design our experiments to study three main questions. First, what is the accuracy
of ClaimEval in predicting the truth of a variety of different claims? Second, what is
the accuracy of ClaimEval compared to different baseline approaches? Third, how is the
accuracy of ClaimEval affected for different setting when the structure of the CA graph is
different?

4.3.1 Setup

ClaimEval is tested on nine different sets of categories (predicates with one argument),
althought our approach is general and can be used for predicates with any number of argu-
ments. Table 4.4 lists all the categories in the leftmost column. For each category, about
5-15 seed examples are used to train a SVM-based evidence classifier (used to annotate
evidences with pro or con labels), and about 15-40 examples are used as test data. To train
the evidence classifier, we use the top ten pages returned by Bing, and all the evidences
extracted from the returned search pages. 0.5 is used as the confidence threshold for all
experiments. The methodology used to obtain the train and test data for each category are
as following:

• High Ranked University: To determine if a given university is a high-ranked uni-
versity. The ground truth is obtained from Webometrics Ranking of World Univer-
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sities 1 website, by selecting 55 universities from the top and 55 universities from
the bottom of the ranked list of 11,800 universities. 15 positive and 15 negative in-
stances are used to train the classifier, 40 positive and 40 negative instances are used
as the test data.

• Company with Stock Growth: To determine if a stock price of a company is in-
creasing. The ground truth is obtained from the Barchart website 2, which is a lead-
ing provider of intraday stock and commodities. The list of companies is chosen
by selecting a set of companies whose stock prices have increased at least by 100%
over the past 10 years, and a set of companies whose stock prices have decreased by
100% over the past 10 years. 15 positive and 15 negative instances are used to train
the classifier, 40 positive and 40 negative instances are used as the test data.

• Top Conference In Computer Science: To determine if a given CS conference
is considered as a top conference. The ground truth is obtained from Microsoft
Academic Search Ranking 3, by selecting the top and bottom ranked conferences in
Computer Science (CS) (among 3,523). 15 positive and 15 negative instances are
used to train the classifier, 40 positive and 40 negative instances are used as the test
data.

• Top Journal in Computer Science: To determine if a given CS journal is consid-
ered a top journal. The data for this category is obtained by choosing the top and
bottom CS journals from Microsoft Academic Search Ranking. 15 positive and 15
negative instances are used to train the classifier, as the test data, we use 40 positive
and 40 negative instances.

• Healthy Food: To determine if a given food is healthy or not. The list of foods are
selected from trustworthy websites such as the U.S. Food and Drug Administration 4

and WebMD. 15 positive and 15 negative instances are used to train the classifier,
40 positive and 40 negative instances are used as the test data.

1http://www.webometrics.info/
2http://www.barchart.com/
3http://academic.research.microsoft.com/
4http://www.fda.gov/

99

http://www.webometrics.info/
http://www.barchart.com/
http://academic.research.microsoft.com/
http://www.fda.gov/


• High GDP Growth: To determine if a given country had a high Gross Domestic
Product (GDP) growth. GDP is usually one of the important factors used to deter-
mine how good a country’s economy is. The positive instances are chosen from the
countries with the GDP of higher than 5% between 2006-2010, and the negative
instances are chosen from the countries that have had negative GDP between 2006-
2010. We have used 5 positive and 5 negative training instances, and 10 positive and
10 negative test instances. The instances are extracted from http://worldbank.org.

• High HDI Growth: To determine if a given country has a high Human Development
Index (HDI) growth. Since 1990, the HDI has been used as an important measure of
progress in human development. HDI is a composite index of life expectancy, years
of schooling and income. The report published by United Nations Development
Programme (UNDP) 5, has categorized countries to different groups based on their
HDI score. The positive instances for this predicate are chosen from the countries
that are associated with the “very high human development” group, and the negative
instances are chosen from the “low human development” group. In our experiments,
we have used 10 positive and 10 negative training instances, and 20 positive and 20
negative test instances. All the instances are chosen from the UNDP official report
http://hdr.undp.org/sites/default/files/hdr14-report-en-1.pdf.

• High Crime Rate Cities: To determine if a given U.S. city has a high crime (of-
fenses known to law enforcement) rate. The test and training instances are chosen
from data of all the U.S. cities reported in the FBI report in 2012: http://www.fbi.

gov/about-us/cjis/ucr/crime-in-the-u.s/2012/crime-in-the-u.s.-2012/tables/8tabledatadecpdf/

table˙8˙offenses˙known˙to˙law˙enforcement˙by˙state˙by˙city˙2012.xls The positive
instances are chosen from the cities with the highest crime rate (from the top of the
list, where the crime rate is higher than 1.5%) with more than 10K population. The
negative instances are chosen from the list of lowest crime rate cities which have a
population of more than 10K and a crime rate of less than 0.015%. 15 positive and
15 negative instances are used as training data. 30 positive and 30 negative instances
are used as test data.

5http://hdr.undp.org/sites/default/files/hdr14-report-en-1.pdf
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• Top Soccer Club Teams: To determine if a European club team has a high rank.
The positive and negative instances are chosen from the list of teams ranked by
Union of European Football Associations (UEFA). 12 positive (highest ranked club
teams) and 12 negative (lowest ranked club teams) instances are chosen as training
data, and 50 instances are chosen as the test data (25 positive and 25 negative).

4.3.2 Baseline Approaches

We compare the accuracy of ClaimEval to the following Fact-Finding approaches: Ma-
jority Vote (MV), Generalized Sums (GS) which is based on Hubs and Authorities algo-
rithm [Kleinberg, 1999], Truth Finder (TF) [Yin et al., 2007], Average-Log (AL) [Paster-
nack and Roth, 2011], Generalized Investment (GI) [Pasternack and Roth, 2011], and
Pooled-Investment (PI) [Pasternack and Roth, 2010]. All of these baseline approaches op-
erate over a bipartite graph construction (two layers: sources and claims) instead of CA
graph. In order to compare ClaimEval with these approaches, we construct the equiva-
lent bipartite graph from a CA graph by marginalizing over evidence nodes and dropping
the domain nodes. Apart from MV, all other baselines make use of the available labeled
claims.

The fact-finding algorithms used as the baseline of our comparison can be summarized
as following. Assume that we have set of sources, S, and a set of claims, C. Each claim
c ∈ C is asserted by a set of sources Sc, and each source s ∈ S is asserted a set of
claims Cs. The sources and claims can be viewed as a bipartite graph where an edge exists
between c and s, if s ∈ Cs and c ∈ Cs. At each iteration i of a fact-finding algorithm,
the credibility of a source s, denoted by T i(s) is estimated by our current beliefs about the
truth of claims, denoted by Bi−1. Similarly, the correctness of claim c (i.e., belief in claim
c, denoted by Bi(c)) is estimated using the trustworthiness of sources that assert claim c

(denoted by T i−1). The values of B and T are iteratively updated until convergence or a
stop condition. Initially, the initial values of beliefs B0 are set using our prior knowledge
(i.e., equal to 0.5, if no prior knowledge is available).

In order to compare ClaimEval with iterative fact-finding algorithms, we first need to
convert the CA graph to a bipartite graph with two layers: sources and claims. To convert
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Figure 4.4: Step by step demonstration of how a Credibility Assessment graph is con-
verted to a bipartite graph, which is then used as an input of baseline fact-finding algo-
rithms.

the CA graph, we follow these steps (each step is demonstrated in Figure 4.5):

1. For each evidence e that is connected to K > 1 number of claims, replace it with
K evidences, identical to e, and connect each of the evidences to only one of the
K claims. At the end of this step, the degree of each evidence node is equal to two
(Figure 4.5(b)).

2. For every triple of 〈s, e, c〉, if s is connected to e, and e is connected to c, remove e
and directly connect s to c. The edge from s to c has the same label as the edge from
e to c. The weight of the edge from s to c is equal to the total number of edges that
exist between s and c (Figure 4.5(c)).

3. Replace each claim node c, with two nodes c+ and c−. Connect all the pro evidences
of c to the node c+, and all the con evidences of c to the node c− (Figure 4.5(d)).

4. Remove the domain layer and all the edges connected to it (Figure 4.5(e)).

The input of a fact-finding algorithm is a bipartite graph (e.g., Figure 4.5(e)) and the
output is a set of scores assigned to each claim in the graph (score values can be larger
than 0). The truth value of each claim c is determined by comparing the belief values
Bi(c+) and Bi(c−), if Bi(c+) > Bi(c−) then the claim is true, and otherwise is false. A
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fact-finding algorithm is specified by three main components: (i) the update function for
T , (ii) the update function forB, and (iii) the prior values forB0. For all of the fact-finding
algorithms, the prior value (B0) is set to 0.5. The baseline fact-finding algorithms are:

1. Majority Vote (MV): The truth value of a claim c is calculated by the number of
sources that asserts c to be true, divided by the total number of sources asserting the
value of c as either true or false. More formally,

B(c) =

∑
s∈Sc

w(s, c)∑
s∈Sc−∪Sc+

w(s, c)
(4.6)

where w(s, c) is the weight of edge that connects node s to c.

2. Generalized Sums (GS): The Sums fact-finder is based on the Hubs and Authorities
algorithm [Kleinberg, 1999; Pasternack and Roth, 2011] and is defined as follows:

Similarity Between Claims
Oftentimes a meaningful similarity function exists among the
claims in a mutual exclusion set. For example, when com-
paring two possible birthdays for Obama, we can calculate
their similarity as the inverse of the time between them, e.g.
|days(date1) � days(date2)|�1 (where days measures the
number of days relative to an arbitrary reference date). A
source claiming date1 then also claims date2 with a weight
proportional to this degree of similarity, the idea being that
while date2 is not what he claimed, he will prefer it over
other dates that are even more dissimilar. Given a [0, 1] simi-
larity function �(c1, c2), we can calculate:

!�(s, c) =
X

d2Mc,d 6=c

!u(s, d)!p(s, d)�(c, d)

Notice that a self-consistent source will not as-
sert multiple claims in mutual exclusion set M withP

c2M !u(s, c)!p(s, c) > 1, and thus the addition of
!�(s, c) to !(s, c) will never result in !(s, c) > 1; it is
possible, however, that

P
c2M !(s, c) > 1 for a given source

s. One way to avoid this is to redistribute weight rather than
add it; we introduce the parameter ↵ to control the degree of
redistribution and obtain:

!↵
� (s, c) =

X

d2Mc,d 6=c

 
↵!u(s, d)!p(s, d)�(c, d)P

e2Md,e6=d �(d, e)

!

� ↵!u(s, c)!p(s, c)

This function ensures that only a portion ↵ of the source’s
expected belief in the claim, !u(s, c)!p(s, c), is redistributed
among other claims in Mc (proportional to their similarity
with c), at a cost of ↵!u(s, c)!p(s, c).

[Yin et al., 2008] previously used a form of additive simi-
larity as “Implication” functions in TruthFinder; however, the
our formalization generalizes this idea and allows us to apply
it to other fact-finders as well.

Group Membership via Weighted Assertions
Oftentimes a source belongs to one or more groups; for exam-
ple, a journalist may be a member of professional associations
and an employee of one or more publishers. Our assumption
is that these groups are meaningful, that is, sources belonging
to the same group tend to have similar degrees of trustworthi-
ness. A prestigious, well-known group (e.g. the group of ad-
ministrators in Wikipedia) will presumably have more trust-
worthy members (in general) than a discredited group (e.g.
the group of blocked Wikipedia editors). The approach dis-
cussed in this section encodes these groups using !g; a more
flexible approach, discussed later, is to use additional “layers”
of groups and attributes instead.

Let Gs be the set of groups to which a source s belongs.
If a source s and source u are both members of the same
group g, we interpret this as an implicit assertion by u in Cs,
and by s in Cu—that is, group members mutually assert each
others’ claims to a degree. We use a redistribution parameter
� such that the original weight of a member’s assertion is split
between the member (proportional to 1 � �) and the other
members of the groups to which he belongs (proportional to

�). This gives us:

!�
g (s, c) = �

X

g2Gs

X

u2g

!u(u, c)!p(u, c) + !�(u, c)

|Gu| · |Gs| ·Pv2g |Gv|�1

� �(!u(s, c)!p(s, c) + !�(s, c))
P

v2g |Gv|�1 in the denominator gives greater credence
to “small” groups (where members belonging to many other
groups weigh less heavily), with the intuition that smaller
groups have more similar members. Note that in the worst
case (where all sources belong to a single group and each
assert a unique set of k claims) this can effectively create as
many as (k·|S|)2�k·|S| new assertions, with a corresponding
increase in computational cost when running the fact-finder.

4.2 Rewriting Fact-Finders for Assertion Weights
After calculating the weight functions !(s, c) for all s 2 S
and c 2 C, we need to rewrite each fact-finder’s T (s), B(c)
and B0(c) functions to use these weights in the generalized
fact-finding process by qualifying previously “whole” asser-
tions as “partial”, weighted assertions. We start by redefin-
ing Sc as {s : s 2 S,!(s, c) > 0}, and Cs as {c : c 2
C,!(s, c) > 0}. The basic rewriting rules are:

• Replace |Sc| with
P

s2Sc
!(s, c)

• Replace |Cs| with
P

c2Cs
!(s, c)

• In T i(s), replace Bi�1(c) with !(s, c)Bi�1(c)

• In Bi(c), replace T i(s) with !(s, c)T i(s)

These rules suffice for all the linear fact-finders we encoun-
tered; one, TruthFinder, is instead log-linear, so an exponent
rather than a coefficient is applied, but such exceptions are
straightforward. For brevity, we list only three of the rewrit-
ten fact-finders here as examples.

Generalized Sums (Hubs and Authorities)

T i(s) =
X

c2Cs

!(s, c)Bi�1(c) Bi(c) =
X

s2Sc

!(s, c)T i(s)

Generalized Average·Log
Average·Log employs the same B function as Sums, so we
provide only the trustworthiness function:

T i(s) = log

 X

c2Cs

!(s, c)

!
·
P

c2Cs
!(s, c)Bi�1(c)P

c2Cs
!(s, c)

Generalized Investment
The Investment algorithm requires sources to “invest” their
trust uniformly in their claims; we rewrite this such that these
investments are weighted by !. As per [Pasternack and Roth,
2010], we used the same G(x) = x1.2 in our experiments.

T i(s) =
X

c2Cs

!(s, c)Bi�1(c)T i�1(s)
P

c2Cs
!(s, c) ·Pr2Sc

!(r,c)T i�1(r)P
b2Cr

!(r,b)

Bi(c) = G
 X

s2Sc

!(s, c)T i(s)P
c2Cs

!(s, c)

!

(4.7)

3. Average-Log (AL): AverageLog [Pasternack and Roth, 2011] algorithms use the
same B function as the GS algorithm. The T update function is defined as follows:

Similarity Between Claims
Oftentimes a meaningful similarity function exists among the
claims in a mutual exclusion set. For example, when com-
paring two possible birthdays for Obama, we can calculate
their similarity as the inverse of the time between them, e.g.
|days(date1) � days(date2)|�1 (where days measures the
number of days relative to an arbitrary reference date). A
source claiming date1 then also claims date2 with a weight
proportional to this degree of similarity, the idea being that
while date2 is not what he claimed, he will prefer it over
other dates that are even more dissimilar. Given a [0, 1] simi-
larity function �(c1, c2), we can calculate:

!�(s, c) =
X

d2Mc,d 6=c

!u(s, d)!p(s, d)�(c, d)

Notice that a self-consistent source will not as-
sert multiple claims in mutual exclusion set M withP

c2M !u(s, c)!p(s, c) > 1, and thus the addition of
!�(s, c) to !(s, c) will never result in !(s, c) > 1; it is
possible, however, that

P
c2M !(s, c) > 1 for a given source

s. One way to avoid this is to redistribute weight rather than
add it; we introduce the parameter ↵ to control the degree of
redistribution and obtain:

!↵
� (s, c) =

X

d2Mc,d 6=c

 
↵!u(s, d)!p(s, d)�(c, d)P

e2Md,e6=d �(d, e)

!

� ↵!u(s, c)!p(s, c)

This function ensures that only a portion ↵ of the source’s
expected belief in the claim, !u(s, c)!p(s, c), is redistributed
among other claims in Mc (proportional to their similarity
with c), at a cost of ↵!u(s, c)!p(s, c).

[Yin et al., 2008] previously used a form of additive simi-
larity as “Implication” functions in TruthFinder; however, the
our formalization generalizes this idea and allows us to apply
it to other fact-finders as well.

Group Membership via Weighted Assertions
Oftentimes a source belongs to one or more groups; for exam-
ple, a journalist may be a member of professional associations
and an employee of one or more publishers. Our assumption
is that these groups are meaningful, that is, sources belonging
to the same group tend to have similar degrees of trustworthi-
ness. A prestigious, well-known group (e.g. the group of ad-
ministrators in Wikipedia) will presumably have more trust-
worthy members (in general) than a discredited group (e.g.
the group of blocked Wikipedia editors). The approach dis-
cussed in this section encodes these groups using !g; a more
flexible approach, discussed later, is to use additional “layers”
of groups and attributes instead.

Let Gs be the set of groups to which a source s belongs.
If a source s and source u are both members of the same
group g, we interpret this as an implicit assertion by u in Cs,
and by s in Cu—that is, group members mutually assert each
others’ claims to a degree. We use a redistribution parameter
� such that the original weight of a member’s assertion is split
between the member (proportional to 1 � �) and the other
members of the groups to which he belongs (proportional to

�). This gives us:

!�
g (s, c) = �

X

g2Gs

X

u2g

!u(u, c)!p(u, c) + !�(u, c)

|Gu| · |Gs| ·Pv2g |Gv|�1

� �(!u(s, c)!p(s, c) + !�(s, c))
P

v2g |Gv|�1 in the denominator gives greater credence
to “small” groups (where members belonging to many other
groups weigh less heavily), with the intuition that smaller
groups have more similar members. Note that in the worst
case (where all sources belong to a single group and each
assert a unique set of k claims) this can effectively create as
many as (k·|S|)2�k·|S| new assertions, with a corresponding
increase in computational cost when running the fact-finder.

4.2 Rewriting Fact-Finders for Assertion Weights
After calculating the weight functions !(s, c) for all s 2 S
and c 2 C, we need to rewrite each fact-finder’s T (s), B(c)
and B0(c) functions to use these weights in the generalized
fact-finding process by qualifying previously “whole” asser-
tions as “partial”, weighted assertions. We start by redefin-
ing Sc as {s : s 2 S,!(s, c) > 0}, and Cs as {c : c 2
C,!(s, c) > 0}. The basic rewriting rules are:

• Replace |Sc| with
P

s2Sc
!(s, c)

• Replace |Cs| with
P

c2Cs
!(s, c)

• In T i(s), replace Bi�1(c) with !(s, c)Bi�1(c)

• In Bi(c), replace T i(s) with !(s, c)T i(s)

These rules suffice for all the linear fact-finders we encoun-
tered; one, TruthFinder, is instead log-linear, so an exponent
rather than a coefficient is applied, but such exceptions are
straightforward. For brevity, we list only three of the rewrit-
ten fact-finders here as examples.

Generalized Sums (Hubs and Authorities)

T i(s) =
X

c2Cs

!(s, c)Bi�1(c) Bi(c) =
X

s2Sc

!(s, c)T i(s)

Generalized Average·Log
Average·Log employs the same B function as Sums, so we
provide only the trustworthiness function:

T i(s) = log

 X

c2Cs

!(s, c)

!
·
P

c2Cs
!(s, c)Bi�1(c)P

c2Cs
!(s, c)

Generalized Investment
The Investment algorithm requires sources to “invest” their
trust uniformly in their claims; we rewrite this such that these
investments are weighted by !. As per [Pasternack and Roth,
2010], we used the same G(x) = x1.2 in our experiments.

T i(s) =
X

c2Cs

!(s, c)Bi�1(c)T i�1(s)
P

c2Cs
!(s, c) ·Pr2Sc

!(r,c)T i�1(r)P
b2Cr

!(r,b)

Bi(c) = G
 X

s2Sc

!(s, c)T i(s)P
c2Cs

!(s, c)

!

(4.8)

4. TruthFinder (TF): The update functions for the TruthFinder [Yin et al., 2007] is
defined as follows:
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3.3 TruthFinder
TruthFinder (Yin et al., 2008) is pseudoproba-
bilistic: the basic version of the algorithm be-
low calculates the “probability” of a claim by
assuming that each source’s trustworthiness is
the probability of it being correct and then av-
erages claim beliefs to obtain trustworthiness
scores. We also used the “full”, more complex
TruthFinder, omitted here for brevity. B0

uniform
priors are used for both.

T i(s) =

P
c2Cs

Bi�1(c)

|Cs|
Bi(c) = 1�

Y

s2Sc

�
1� T i(s)

�

3.3.1 3-Estimates
3-Estimates (Galland et al., 2010), also omit-

ted for brevity, differs from the other fact-finders
by adding a third set of parameters to capture
the “difficulty” of a claim, such that correctly as-
serting a difficult claim confers more trustwor-
thiness than asserting an easy one; knowing the
exact population of a city is harder than know-
ing the population of Mars (presumably 0) and
we should not trust a source merely because they
provide what is already common knowledge.

4 The Framework

To apply prior knowledge to a fact-finding al-
gorithm, we translate the user’s prior knowledge
into a linear program. We then iterate the follow-
ing until convergence or other stopping criteria:

1. Compute T i(s) for all s 2 S

2. Compute Bi(c) for all c 2 C

3. “Correct” beliefs Bi(C) with the LP

4.1 Propositional Linear Programming
To translate prior knowledge into a lin-
ear program, we first propositionalize our
first-order formulae into propositional logic
(Russell and Norvig, 2003). For example,
assume we know that Tom is older than
John and a person has exactly one age
(9x,yAge(Tom, x) ^ Age(John, y) ^ x >
y) ^ (8x,y,zAge(x, y) ^ y 6= z ) ¬Age(x, z)),
and our system is considering the follow-
ing claims: Age(Tom, 30), Age(Tom, 40),

Age(John, 25), Age(John, 35). Our proposi-
tional clauses (after removing redundancies) are
then Age(Tom, 30) ) Age(John, 25) ^
(Age(Tom, 30) � Age(Tom, 40)) ^
(Age(John, 25)�Age(John, 35)).

Each claim c will be represented by a propo-
sition, and ultimately a [0, 1] variable in the
linear program corresponding, informally, to
P (c).2 Propositionalized constraints have previ-
ously been used with integer linear programming
(ILP) using binary {0, 1} values correspond-
ing to {false, true}, to find an (exact) con-
sistent truth assignment minimizing some cost
and solve a global inference problem, e.g. (Roth
and Yih, 2004; Roth and Yih, 2007). However,
propositional linear programming has two sig-
nificant advantages:

1. ILP is “winner take all”, shifting all belief
to one claim in each mutual exclusion set
(even when other claims are nearly as plau-
sible) and finding the single most believ-
able consistent binary assignment; we in-
stead wish to find a distribution of belief
over the claims that is consistent with our
prior knowledge and as close as possible to
the distribution produced by the fact-finder.

2. Linear programs can be solved in polyno-
mial time (e.g. by interior point methods
(Karmarkar, 1984)), but ILP is NP-hard.

To create our constraints, we first convert our
propositional formula into conjunctive normal
form. Then, for each disjunctive clause consist-
ing of a set P of positive literals (claims) and a
set N of negations of literals, we add the con-
straint

P
c2P cv +

P
c2N (1� cv) � 1, where

cv denotes the [0, 1] variable corresponding to
each c. The left-hand side is the union bound of
at least one of the claims being true (or false,
in the case of negated literals); if this bound is
at least 1, the constraint is satisfied. This opti-
mism can dilute the strength of our constraints
by ignoring potential dependence among claims:
x ) y, x _ y implies y is true, but since we de-
mand only yv � xv and xv + yv � 1 we accept

2This is a slight mischaracterization, since our linear
constraints only approximate intersections and unions of
events (where each event is “claim c is true”), and we will
be satisfying them subject to a linear cost function.

(4.9)

5. Generalized Investment (GI): The update functions for the Generalized Investment
algorithm [Pasternack and Roth, 2011] is defined as follows, where G = x1.2:

Similarity Between Claims
Oftentimes a meaningful similarity function exists among the
claims in a mutual exclusion set. For example, when com-
paring two possible birthdays for Obama, we can calculate
their similarity as the inverse of the time between them, e.g.
|days(date1) � days(date2)|�1 (where days measures the
number of days relative to an arbitrary reference date). A
source claiming date1 then also claims date2 with a weight
proportional to this degree of similarity, the idea being that
while date2 is not what he claimed, he will prefer it over
other dates that are even more dissimilar. Given a [0, 1] simi-
larity function �(c1, c2), we can calculate:

!�(s, c) =
X

d2Mc,d 6=c

!u(s, d)!p(s, d)�(c, d)

Notice that a self-consistent source will not as-
sert multiple claims in mutual exclusion set M withP

c2M !u(s, c)!p(s, c) > 1, and thus the addition of
!�(s, c) to !(s, c) will never result in !(s, c) > 1; it is
possible, however, that

P
c2M !(s, c) > 1 for a given source

s. One way to avoid this is to redistribute weight rather than
add it; we introduce the parameter ↵ to control the degree of
redistribution and obtain:

!↵
� (s, c) =

X

d2Mc,d 6=c

 
↵!u(s, d)!p(s, d)�(c, d)P

e2Md,e6=d �(d, e)

!

� ↵!u(s, c)!p(s, c)

This function ensures that only a portion ↵ of the source’s
expected belief in the claim, !u(s, c)!p(s, c), is redistributed
among other claims in Mc (proportional to their similarity
with c), at a cost of ↵!u(s, c)!p(s, c).

[Yin et al., 2008] previously used a form of additive simi-
larity as “Implication” functions in TruthFinder; however, the
our formalization generalizes this idea and allows us to apply
it to other fact-finders as well.

Group Membership via Weighted Assertions
Oftentimes a source belongs to one or more groups; for exam-
ple, a journalist may be a member of professional associations
and an employee of one or more publishers. Our assumption
is that these groups are meaningful, that is, sources belonging
to the same group tend to have similar degrees of trustworthi-
ness. A prestigious, well-known group (e.g. the group of ad-
ministrators in Wikipedia) will presumably have more trust-
worthy members (in general) than a discredited group (e.g.
the group of blocked Wikipedia editors). The approach dis-
cussed in this section encodes these groups using !g; a more
flexible approach, discussed later, is to use additional “layers”
of groups and attributes instead.

Let Gs be the set of groups to which a source s belongs.
If a source s and source u are both members of the same
group g, we interpret this as an implicit assertion by u in Cs,
and by s in Cu—that is, group members mutually assert each
others’ claims to a degree. We use a redistribution parameter
� such that the original weight of a member’s assertion is split
between the member (proportional to 1 � �) and the other
members of the groups to which he belongs (proportional to

�). This gives us:

!�
g (s, c) = �

X

g2Gs

X

u2g

!u(u, c)!p(u, c) + !�(u, c)

|Gu| · |Gs| ·Pv2g |Gv|�1

� �(!u(s, c)!p(s, c) + !�(s, c))
P

v2g |Gv|�1 in the denominator gives greater credence
to “small” groups (where members belonging to many other
groups weigh less heavily), with the intuition that smaller
groups have more similar members. Note that in the worst
case (where all sources belong to a single group and each
assert a unique set of k claims) this can effectively create as
many as (k·|S|)2�k·|S| new assertions, with a corresponding
increase in computational cost when running the fact-finder.

4.2 Rewriting Fact-Finders for Assertion Weights
After calculating the weight functions !(s, c) for all s 2 S
and c 2 C, we need to rewrite each fact-finder’s T (s), B(c)
and B0(c) functions to use these weights in the generalized
fact-finding process by qualifying previously “whole” asser-
tions as “partial”, weighted assertions. We start by redefin-
ing Sc as {s : s 2 S,!(s, c) > 0}, and Cs as {c : c 2
C,!(s, c) > 0}. The basic rewriting rules are:

• Replace |Sc| with
P

s2Sc
!(s, c)

• Replace |Cs| with
P

c2Cs
!(s, c)

• In T i(s), replace Bi�1(c) with !(s, c)Bi�1(c)

• In Bi(c), replace T i(s) with !(s, c)T i(s)

These rules suffice for all the linear fact-finders we encoun-
tered; one, TruthFinder, is instead log-linear, so an exponent
rather than a coefficient is applied, but such exceptions are
straightforward. For brevity, we list only three of the rewrit-
ten fact-finders here as examples.

Generalized Sums (Hubs and Authorities)

T i(s) =
X

c2Cs

!(s, c)Bi�1(c) Bi(c) =
X

s2Sc

!(s, c)T i(s)

Generalized Average·Log
Average·Log employs the same B function as Sums, so we
provide only the trustworthiness function:

T i(s) = log

 X

c2Cs

!(s, c)

!
·
P

c2Cs
!(s, c)Bi�1(c)P

c2Cs
!(s, c)

Generalized Investment
The Investment algorithm requires sources to “invest” their
trust uniformly in their claims; we rewrite this such that these
investments are weighted by !. As per [Pasternack and Roth,
2010], we used the same G(x) = x1.2 in our experiments.

T i(s) =
X

c2Cs

!(s, c)Bi�1(c)T i�1(s)
P

c2Cs
!(s, c) ·Pr2Sc

!(r,c)T i�1(r)P
b2Cr

!(r,b)

Bi(c) = G
 X

s2Sc

!(s, c)T i(s)P
c2Cs

!(s, c)

!

(4.10)

6. Pooled Investment (PI): The update functions for the Pooled Investment algo-
rithm [Pasternack and Roth, 2011] is similar to the GI algorithm. The T function
remains the same Given H i(c) =

∑
s∈Sc

T i(s)
|Cs| , the B function is defined as follows:

to any other claims, then Mc = {c}. Assuming
there exists exactly one true claim c in each mu-
tual exclusion set M , our goal is to predict c for
each M , with accuracy measured by the number
of successful predictions divided by the number
of mutual exclusion sets, ignoring trivially cor-
rect claims that are the sole members of their mu-
tual exclusion set. To this end, fact-finding algo-
rithms iterate to find the trustworthiness of each
source T i(s) at iteration i in terms of the belief
in its claims in the previous iteration Bi�1(Cs),
and belief in each claim Bi(c) in terms of T i(Sc),
where Sc = {s : s 2 S, c 2 Cs} is the set of
all sources asserting c. Note that “trustworthiness”
and “belief” as used within a fact-finding algo-
rithm typically do not have meaningful semantics
(i.e. they are not [0, 1] Bayesian probabilities). It-
eration continues until convergence or some pre-
defined stop criteria.

3.1 Priors

Except for 3-Estimates (where the priors are dic-
tated by the algorithm itself), every fact-finder
requires priors for B0(C). For each fact-finder
we chose from B0

voted(c) = |Sc|/
P

d2Mc
|Sd|,

B0
uniform(c) = 1/|Mc|, and B0

fixed(c) = 0.5.

3.2 Algorithms

3.2.1 Sums (Hubs and Authorities)
Hubs and Authorities (Kleinberg, 1999) gives

each page a hub score and an authority score,
where its hub score is the sum of the authority of
linked pages and its authority is the sum of the
hub scores of pages linking to it. This is adapted
to fact-finding by viewing sources as hubs (with
0 authority) and claims as authorities (with 0 hub
score):

T i(s) =
X

c2Cs

Bi�1(c) Bi(c) =
X

s2Sc

T i(s)

We normalize to prevent T i(s) and Bi(c) from
growing unbounded (dividing by maxs T i(s) and
maxc Bi(c), respectively), a technique also used
with the Investment and Average·Log algorithms
(discussed next); this avoids numerical overflow.
B0

fixed priors are used.

3.2.2 Average·Log
Computing T (s) as an average of belief in

its claims overestimates the trustworthiness of
a source with relatively few claims; certainly a
source with 90% accuracy over a hundred ex-
amples is more trustworthy than a source with
90% accuracy over ten. However, summing the
belief in claims allows a source with 10% accu-
racy to obtain a high trustworthiness score by sim-
ply making many claims. Average·Log attempts
a compromise, while still using Sums’ Bi update
rule and B0

fixed priors.

T i(s) = log |Cs| ·
P

c2Cs
Bi�1(c)

|Cs|
3.2.3 Investment

In the Investment algorithm, sources “in-
vest” their trustworthiness uniformly among their
claims. The belief in each claim then grows ac-
cording to a non-linear function G, and a source’s
trustworthiness is calculated as the sum of the be-
liefs in their claims, weighted by the proportion
of trust previously contributed to each (relative to
the other investors). Since claims with higher-trust
sources get higher belief, these claims become rel-
atively more believed and their sources become
more trusted. We used G(x) = xg with g = 1.2 in
our experiments, together with B0

voted priors.

T i(s) =
X

c2Cs

Bi�1(c) · T i�1(s)

|Cs| ·Pr2Sc

T i�1(r)
|Cr|

Bi(c) = G
 X

s2Sc

T i(s)

|Cs|

!

3.2.4 PooledInvestment
Like Investment, sources uniformly invest their

trustworthiness in claims and obtain correspond-
ing returns, so T i(s) remains the same, but now
after the belief in the claims of mutual exclusion
set M have grown according to G, they are lin-
early scaled such that the total belief of the claims
in M remains the same as it was before apply-
ing G(x) = xg, with g = 1.4 and B0

uniform

priors used in our experiments. Given H i(c) =P
s2Sc

T i(s)
|Cs| , we have:

Bi(c) = H i(c) · G(H i(c))P
d2Mc

G(H i(d))

879

(4.11)

4.3.3 Comparison to Baselines: Example

As described in the introduction, one of the main disadvantages of current fact-finding al-
gorithms is their bias toward increasing the credibility of sources that assert many claims.
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Figure 4.5 shows an example of a CA graph where a source (node 2 in the figure) is assert-
ing a claim by providing many evidences. Most of the fact-finding algorithms provide a
biased result toward classifying the value of claim 13 as false (since it is asserted by many
con evidences). In contrast to the current fact-finding algorithms, ClaimEval is able to in-
fer that node 2 has a low credibility score since it is providing a contradictory information
regarding claim 12 (which we know its truth value), and to automatically propagate the
low credibility score of source 2 in order to reduce its affect on claim 13.
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1
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12+

13+

Figure 4.5: (a) An example of a Credibility Assessment graph, (b) and its equivalent
bipartite graph.

Figure 4.6 shows an example of a CA graph (and its equivalent bipartite graphs), where
a domain node 0 (through webpage node 2) is asserting overwhelmingly many evidences
against claim node 13 (negative evidence is marked by red line in the figure). Claim node
12 with concentric circles is known to be correct a-priori. Correctness of the other claim
node 13 needs to be evaluated. Based on these input information, judgments of a human
annotator is shown on top of each node (the same as the scores assigned by ClaimEval).
Most of the fact-finding algorithms (including Majority Vote, AverageLog, and General-
ized Sums) are biased towards favoring domain nodes with many evidences. In this exam-
ple, these algorithms overestimate the credibility of nodes 0 and 2, and incorrectly classify
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claim 13 as incorrect (as all evidences from source node 2 oppose claim 13). In contrast,
ClaimEval is able to infer that nodes 0 and 2 have low credibility since they provide con-
tradictory information regarding claim 12. ClaimEval then uses this reduced credibility to
correctly classify claim 13 as true. This examples provides qualitative evidence of how
ClaimEval is able to overcome bias of many existing fact-finding algorithms. Among all
the baseline approaches, only the Generalized Investment approach has been able to cor-
rectly classify claim 13 as true. However it has still assigned a large value to node 13−

(compared to the value of node 13+). The value of node 13− increases as node 2 asserts
more number of claims.

2 12

3

4

5

6

11

13

0

1

(ClaimEval)

7

8

9

10

12-

13-

2

3

1

5

1

1

(Majority Vote)

0.0

1.0

0.0

1.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

1.0

1.0

1.0

12+

13+

0.5

0.5

0.83

0.17

12-

13-

2

3

1

5

1

1

(Generalized Sums)

1690

6

12+

13+

1690

6

8450

6

12-

13-

2

3

1

5

1

1

(Generalized Investment)

0.31

1.32

12+

13+

0.03

0.61

0.19

0.61

12-

13-

2

3

1

5

1

1

(AverageLog)

45

0.2

12+

13+

45

0.25

225

0.2

Figure 4.6: An example CA graph, with the scores assigned by different approaches
marked on top of each node. While baselines such as Majority Vote, Generalized Sums
and AverageLog overfit by over-trusting domains with many evidences (e.g., node 13),
ClaimEval is able to find the annotator judgments.
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4.3.4 Comparison to Baselines: Experimental Results

Tables 4.4 shows the accuracy of the Majority Vote (MV), Generalized Sums (GS), Average-
Log (AL), Generalized Investment (GI), and ClaimEval approaches, for five different cat-
egories. The experiments are obtained when ClaimEval uses the SVM classifier, and 60
evidences are randomly extracted for each claim from the first 10 pages returned by Bing 6.
The first column of the table shows the categories that are used in the experiments, and the
next columns show the accuracy of each baseline approach.

Category MV GS TF AL GI PI CE
Healthy Food 0.89 0.89 0.69 0.86 0.89 0.89 0.91
Company with Stock Growth 0.62 0.65 0.65 0.62 0.62 0.60 0.72
High Ranked Universities 0.80 0.82 0.73 0.85 0.80 0.80 0.85
Top CS Journals 0.74 0.71 0.82 0.67 0.71 0.71 0.79

Top CS Conferences 0.53 0.55 0.58 0.57 0.53 0.53 0.68
High GDP Growth 0.60 0.70 0.50 0.70 0.6 0.50 0.60

High HDI Growth 0.81 0.53 0.65 0.63 0.81 0.86 0.76

High Crime Rate Cities 0.67 0.63 0.67 0.60 0.80 0.80 0.80
Top Soccer Club Teams 0.65 0.62 0.65 0.65 0.69 0.62 0.69

Average 0.71 0.68 0.66 0.69 0.72 0.71 0.76

Table 4.4: The accuracy of the Majority Vote (MV), Generalized Sums (GS), TruthFinder
(TF), Average-Log (AL), Generalized Investment (GI), Pooled-Investment (PI), and
ClaimEval (CE) techniques in predicting the truth values for different categories of claims.
The maximum value of each row is shown in bold. ClaimEval, the proposed system,
achieves the best overall performance.

Table 4.4 shows that the average accuracy of ClaimEval is higher than all other baseline
approaches. We observe that the performance of fact-finding algorithms may be category-
specific, which is consistent with similar observations in [Pasternack and Roth, 2011].
Overall, ClaimEval, the proposed system, achieves best performance in 6 out of the 9
categories, and on average out-performs all other state-of-the-art baselines.

6www.bing.com
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Change in Performance with Increasing Evidence Size: Figure 4.7 shows accuracy
of different methods when increasing the number of evidences that are used. As we in-
crease the number of evidences, ClaimEval consistently outperforms all other methods.
Among the baselines, Generalized Investment is more successful in making use of the
increased evidence size, which is consistent with prior research [Pasternack and Roth,
2011]. TruthFinder’s performance peaks with 30 evidences, but its performance degrades
with more evidences due to over-fitting.

Figure 4.7: Performance of different systems when increasing amounts of evidence are
available. ClaimEval, the proposed system (top-most plot), is best able to exploit addi-
tional evidence achieving the best overall performance.

4.4 Summary

This chapter introduced ClaimEval, a novel approach for credibility assignment, where
the prior knowledge of credibility inference can be provided in a flexible and principled
approach. In particular, we described in detail how to build the Credibility Assessment
Graph (CAG), represent the credibility propagation rules, and use Probabilistic Soft Logic
(PSL) to represent prior knowledge and find credibility and truthfulness of a set of sources
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and evidences. We experimentally showed the effectiveness of the ClaimEval approach
by outperforming the state-of-the-art fact-finding approaches: majority vote, generalized
sums, truth-finder, average-log, and generalized investment approaches. Comparison of
the average accuracy of ClaimEval and baseline approaches shows that ClaimEval greatly
outperforms all other baselines.

In contrast to previous approaches for claim evaluation, given a set of claims, ClaimEval
identifies a set of relevant sources and evidences within them which might support or refute
the claims, estimates the credibility of those sources, and uses those credibility estimates
to evaluate the correctness of the claims – all in a single integrated system. Unlike other
approaches, in ClaimEval, it is easy to state the prior knowledge, the convergence of the
credibility assignment algorithm is guaranteed, and the assigned credibility scores are in-
terpretable.
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Chapter 5

Using the Web to Interactively Learn to
Find Objects

In the previous chapters, we explained the detail of our information extraction systems.
One of the main motivations behind these approaches was to address information extrac-
tion tasks that are initiated as queries from either automated agents or humans. In this
chapter, we show how our information extraction systems, in particular OpenEval, can be
used to provide knowledge to a real mobile robot (CoBot).

We begin in Section 5.1 with motivating the problem of actively querying the Web to
learn new background knowledge about the physical environment, in particular to learn
the knowledge that is necessary for finding and delivering an arbitrary object in an envi-
ronment. We explain the details of our approach, ObjectEval, in Section 5.2. Section 5.3
presents the detail of our experiments to evaluate ObjectEval system. Finally, Section 5.4
presents the summary of this chapter.
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5.1 Introduction

Our aim in this chapter is to make mobile robots that are able to intelligently perform
tasks by combining the retrieved knowledge by OpenEval and use it in a mobile robot. In
this chapter, we investigate a find and deliver task, where a person specifies an object in
open-ended natural language (e.g., “coffee”) and the robot will find and deliver the object
to a specified destination (e.g., “GHC-8125”). This is a challenging problem because
robots have limited perceptual abilities and people use highly variable language when
specifying a task. For example, since our robot only has access to the type of a room (e.g.,
“office” or “kitchen”), it will need to learn the relationship between a query object (e.g.,
“coffee”) and these room types. In addition, since a person may ask the robot to find any
of thousands of objects, including a “coffee,” “pen,” or “papers,” the robot will need to
learn these relationships over all possible query objects. The find and deliver task is easy
for humans, who have learned a large set of background knowledge from experience with
the environment; for robots, which have limited access to such knowledge, it is much more
challenging.

We introduce an approach, called ObjectEval, which addresses the challenges of the
find and deliver task by querying the Web using the OpenEval approach. In this chapter,
we train OpenEval on a single predicate that describes when an object can be found in a
location: locationHasObject(X, Y). The training data takes the form of a small number of
these predicate instances, which define example object/location pairs. OpenEval uses each
of these training instances to create a search query which is then sent to a search engine.
The results of this query are a set of context-based snippets, which OpenEval uses to train
a model of the types of objects that can be found in each location. Some examples of
documents returned by search queries can be seen in Figure 5.1.

The probability that is computed by OpenEval is then dynamically incorporated into a
utility function, which takes into account the travel distance to a location, the number of
human interactions required to get to a location, and the observation of the object during
previous executions at that location. ObjectEval then infers the maximum-utility plan
corresponding to a sequence of locations it should visit, asks a human to provide it with
the object, and then takes the object to a destination.
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Instances of predicates Probability Search Results

locationHasObject p = 0.89 Hair Dryer Caddy: Clear the clutter off your bathroom
(bathroom,hair dryer) counter and still keep everything you need.

Get your hair dryer off the countertop and add a decorative
note to your bathroom at the same time.

locationHasObject p = 0.92 Everything you need to make your kitchen a functional
(kitchen,food) and fashionable place to cook is here at the food section

Momma’s Soul Food Kitchen serves delicious soul food
lunches and dinners. Located at 3319C Raeford Road,
Fayetteville, NC.

locationHasObject p = 0.81 There is a fax machine in the printer room at work
(printer room,fax machine) that I use about once a year to

Keep the printer room neat! KEEP THE PRINTER
ROOM NEAT! Stop using the fax machine for
personal business!

locationHasObject p = 0.85 Espresso Machines; Coffee Makers French Presses from
(kitchen,coffee) Coffee and Kitchen.

Create your own kitchen bistro with our Coffee House
kitchen collection!

Figure 5.1: Examples of snippets returned by search queries for the predicate location-
HasObject. On the left are some instances of the predicate objectInLocation that we have
queried the system with. In the middle, is the associated probability of this predicate in-
stance according to OpenEval. On the right, are two documents returned by a web search
that are used by OpenEval to evaluate the probability of the predicate.

We evaluate ObjectEval in three ways. First, we show that ObjectEval is able to predict
the location of novel objects against a baseline that is similar to Kollar and Roy [Kollar and
Roy, 2009]. Second, we show that ObjectEval is able to efficiently and automatically find
novel objects in a realistic simulated environment consisting of 290 spaces of an office
building given only a topological map and the space types (e.g., “office,” “bathroom”
etc.). We further show that ObjectEval can improve its performance by learning from
feedback it gets about the location of objects. Third, we demonstrate a find and fetch
task on CoBot (Figure 5.2), a mobile office assistant, showing that our system can enable
CoBot to find objects in a real-world environment. Our system can successfully find a set
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of objects, including the “papers,” “coffee,” “toner,” and “laptop.”

Figure 5.2: A robotic platform that we have used to find and fetch objects.

5.2 ObjectEval

Our approach, called ObjectEval, enables a robot with limited sensing to search for an
object. By using symbiotic autonomy, the robot is able to ask people to help it perform
tasks, including manipulation and object detection [Rosenthal et al., 2010; Biswas and
Veloso, 2012]. To find an object, the robot must therefore (1) receive a command to find
an object (e.g., “coffee”) and take it to a destination (e.g., room 7001), (2) compute a
sequence of locations to visit by maximizing long-term utility, (3) visit a location, (4) ask
a person to retrieve the object and finally (5) if there, deliver the object to the destination
or if not, go to the next location to look for the object. An example of our robot finding a
“coffee” can be seen in Figure 5.3.

114



(a) Receive com-
mand

(b) Go to location (c) Ask for “cof-
fee”

(d) Get “coffee” (e) Deliver object

Figure 5.3: An example of our robot searching for an object. In (a) the system gets a query
to find a “coffee” and take it to room 7001. In (b) it goes to the nearest kitchen. In (c), it
asks a person to place a coffee on it. In (d), it gets the coffee and the person says that the
robot has the object. In (e), the robot delivers the object to its destination.

5.2.1 Model

ObjectEval takes as input an object name (e.g., papers) and a destination room (e.g., room
8120), and returns a plan consisting of locations that the robot should visit. Finding ob-
jects requires trading off different objectives including: the number of interactions with
people, the distance traveled, the existence of objects at previously visited locations, and
the probability of finding an object in a location. ObjectEval combines these objectives
into a utility function that, when maximized, generates a plan that the robot can execute
to find an object effectively. If O is an object name (e.g., “papers”), and U is the utility
function, then the problem can be formulated as finding the plan that maximizes the utility:

arg max
plan

U(plan|O) (5.1)

The plan is broken down into a sequence of steps (plani), each of which visits a location
and asks for an object from a person. The robot receives a reward (R) when it executes ith
step of the plan. The current step in the plan is successful with probability p(plani|O).

U(plan|O) =
N∑

i=1

p(plani|O)×R(plani, O) (5.2)
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In order to capture the objective of finding objects quickly, the reward at each step is
broken down into three components:

R(plani, O) = D(plani)× I(plani)× F (plani, O) (5.3)

Since the robot should consider plans that travel as little as possible, we include the reward
D, which is dependent on the distance the robot travels. D is computed by subtracting the
distance traveled from the maximum distance the robot could travel. Since people are
used as a part of the search process to find and manipulate objects, we include the reward
I , which is dependent on the number of interactions that the robot has with a person. I
is computed by subtracting the number of interactions required to search a location for
an object from the maximum number of interactions the robot will need to search for any
location. Finally, in order to take advantage of feedback from people, we include the
reward F , which uses previous searches to help search for objects. The value of F is
1 if a query object has been seen at the search location, 0.5 if the location has not been
explored, and 0 if it is known not to exist there. Although F is fixed in this paper, learning
a dynamic model for how objects move would enable ObjectEval to handle cases where
the query object moves between different locations in the environment.

The second component of Equation 5.2 requires us to compute the probability of a part
of the plan. As a proxy for the probability of the plan, we use the probability that the
location at the ith step of the plan will contain an object given that the object was not seen
at the previously visited locations in the plan. If lj is multinomial over location types (e.g.,
“office,” “printer room,” “bathroom”) and O is the query object, then the we can compute
this probability as:

p(plani|O) ≈
[
i−1∏

j=1

(1− p(lj|O))

]
× p(li|O) (5.4)

In order to find the plan with a maximum utility, the robot must be able to compute
p(li|O). This term connects a query object O (e.g., “papers”) to a location type in the
environment (e.g., “printer room”). Connecting a query word for an object to a place
where the robot can find the object is challenging because there are thousands of different
object names people might use. We calculate the probability p(li|O) by querying the Web
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using OpenEval approach for the validity of the predicate locationHasObject(l,O) over all
location types l. For example:

p(lj =kitchen|O = coffee)

, p(locationHasObject(kitchen, coffee)) (5.5)

In Chapter 2 we explained the details of the OpenEval approach. In the next section,
we provide a brief overview of how we can use the OpenEval approach to obtain the
probability of instances of the predicate locationHasObject.

5.2.2 Querying the Web using OpenEval

The World Wide Web (WWW) contains an enormous amount of semantic information that
might be useful for robots. In this paper, we investigate the use of the semantic information
on the Web to predict the location of objects in real-world environments. We expect that
objects physically present in a location will be found frequently on the Web. For example,
one of the top search results for the object “paper” and the location “printer room” is,
“There is no more paper in the printer room, where can I find some more?” For objects
unrelated to the location, such as “papers” and “elevator” there are fewer pages which often
describe less sensical events such as, “Call for Papers, The International Space Elevator
Consortium (ISEC) invites you to join us in Washington State.” Therefore, we expect that
the word patterns for related terms will be predictive, while un-related terms will be less
predictive. Figure 5.4 shows example of text snippets that are found on the Web for object
“papers” and locations “printer room” and “bathroom.”

ObjectEval will compute the probability from Equation 5.5 by converting input com-
mands to predicate instances in first-order logic, such as locationHasObject(papers, printer
room). It then uses OpenEval in order to search the Web query and retrieve information
from hundreds or thousands of the most relevant webpages that relate these terms. The
text on the webpages that is most relevant to a predicate instance is then extracted by
OpenEval. Figure 5.4 shows an example of the text snippet that is found in one of the
returned webpages for query {“Papers” “Printer Room”}. Some of the extracted features
include: {documents, printed, office, unfetched}.
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text snippets extracted for  each search query 

classifying text snippets into location types  
(              printer room,             kitchen) 

 “… some documents or to 
receive printed papers from 
the printer room. Then I have 
to lock the console when …” 

“ …Well I plan to put all of the 
unfetched papers from 
the printer room in her office, 
just to see what happens…” 

“...How to Organize a Kitchen & 
Every Day Papers. April 14, 
2011. My Organization Systems: 
Silverware is right next to…” 

#(printer room) = 3 
#(kitchen) = 1 

 
 
 
 
 
 
 
 
 

𝑝 𝑙𝑖 = 𝑝𝑟𝑖𝑛𝑡𝑒𝑟 𝑟𝑜𝑜𝑚 | 𝑂 = 𝑝𝑎𝑝𝑒𝑟𝑠 = 0.75 
𝑝 𝑙𝑖 = 𝑘𝑖𝑡𝑐ℎ𝑒𝑛 | 𝑂 = 𝑝𝑎𝑝𝑒𝑟𝑠 = 0.25 

 

“papers” “printer room” 
•  “… some documents or to receive printed papers from the 

printer room. Then I have to lock the console when …” 
• “ …Well I plan to put all of the unfetched papers from 

the printer room in her office, just to see what happens …” 

“papers” “kitchen” 
• “Buy kitchen tissues or hard roll…. We are the leading 

manufacturer and supplier offer tissue papers ….” 
• “...How to Organize a Kitchen & Every Day Papers. April 14, 

2011. My Organization Systems: Silverware is right next ….” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Buy kitchen tissues or hard 
roll …. We are the leading 
manufacturer and supplier 
offer tissue papers….” 

Figure 5.4: An example of how ObjectEval queries the Web to find the maximum prob-
ability location of “papers.” In this example, two location types exist: printer room and
kitchen. A Web search for “papers,” “printer room” and “papers,” “kitchen” returns a set
of webpages from which text snippets are extracted. The features of these text snippets
are then categorized as one of the location types. The red border indicates that the text
snippet was categorized as a “kitchen” and the green border indicates it was categorized
as a “printer room.” The frequency of the resulting categorization is then used to compute
the maximum likelihood probability of each location given a query object.

Thus, given a query object O, ObjectEval will create a set of predicate instances over
all locations l in the environment (Figure 5.4). If papers is given as an object query and
we have only two location types in the environment, printer room and kitchen, then using
OpenEval, it formulates two search queries: {“papers” “printer room”} and {“papers”
“kitchen”}. Each search query then returns a set of the highest ranked webpages from a
Web search engine1. Text snippets are then extracted for each of the webpages as shown
in the top box of Figure 5.4. The result of classification on all of the text snippets is shown
by two colors: green means that the text snippet is classified to location “kitchen” and
red means that it is classified as “printer room”. In total, three of the text snippets are
classified as “printer room” and one is classified as “kitchen”. This leads to a probability

1such as Bing, www.bing.com
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of 0.75 (3/4) for object “papers” to be found in “printer room” and a probability of 0.25
(1/4) for “papers” to be found in the “kitchen.”

5.2.3 Inferring a Plan

ObjectEval searches over candidate plans to maximize the utility function in Equation 5.1.
We use a beam search with a beam width of 10 and search up to depth N = 10 in the
search tree. At each step of the search, a new plan step plani is added to the overall
plan. Each plan step plani can visit any of the locations in the test environment to find an
object. The beam search disallows loops by preventing plans from revisiting previously
visited locations.

5.3 Evaluation

ObjectEval is evaluated in four primary ways. First, we query OpenEval to predict the
probability distribution p(li|O) described in our model over a set of test objects. Second,
a set of simulated commands are executed for three floors of an office building. Third, we
have demonstrated ObjectEval on our robotic platform. Finally, we explain the detail of
integrating ObjectEval into KnoWDiaL system [Perera et al., 2015], an approach for robot
learning of task-relevant environmental knowledge from human-robot Dialog and access
to the Web.

5.3.1 Predicting the Location of Objects

We have collected a corpus of 134 unique instances for the predicate locationHasObject
for the “kitchen,” “bathroom,” “office,” and “printer room” locations. These instances
were acquired by asking subjects on Amazon’s mechanical Turk to look at pictures of
each location type and describe objects that tend to reside there. The data is split by
randomly choosing 68% of the data for training and 32% for testing. OpenEval is trained
and tested by using the first 20 webpages that are returned by the search engine. Table 5.1
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shows the result for a subset of the test objects. OpenEval is able to correctly determine
the most likely location for most objects. It incorrectly classifies “whiteout” to be found
in “bathroom.” OpenEval also chooses “bathroom” as the most likely location for “cup”.
Although this is correct in some environments (e.g. hotels), we generally expect robot
to find “cup” in either a “kitchen” or an “office”. The results show that by requesting a
more specific query such as “coffee cup,” OpenEval will change its classification to the
“kitchen.”

Object Location Types
Bathroom Printer Room Kitchen Office

coffee 0.08 0.02 0.72 0.18
marker 0.33 0.53 0.08 0.06

pen 0.15 0.27 0.23 0.35
toner 0.05 0.87 0.02 0.06

scissors 0.26 0.01 0.61 0.12
whiteout 0.66 0.02 0.24 0.08

laptop 0.1 0.48 0.08 0.34
papers 0 0.17 0.13 0.7

cup 0.42 0.1 0.36 0.12
coffee cup 0 0.01 0.73 0.27

speakers 0.34 0.06 0.25 0.35

Table 5.1: The probability that ObjectEval assigns to different test objects for each location
type. The location type with the maximum probability is shown as bold.

OpenEval was then evaluated using precision, recall, and F1 (which is a combination
of precision and recall) over this dataset. The ESP baseline replaces web search with a
search over tag documents that contain the search terms [von Ahn and Dabbish, 2004]
in order to provide a comparison to [Kollar and Roy, 2009]. Figure 5.3.1 shows that the
model trained on ESP performs worse than ObjectEval, which likely happens because few
locations are tagged in the ESP dataset.

Finally, the speed at which OpenEval learns was evaluated. Figure 5.3.1 shows the F1-
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Figure 5.5: The precision/recall curve of OpenEval for the 45 test predicate instances for
location types: bathroom, printer room, kitchen, and office.

score of OpenEval when increasing the number of predicate instances used for the training.
The results are obtained by training on a subset of the training instances and evaluating on
all of the test instances. The result, somewhat surprisingly, shows that OpenEval achieves
a high F1 value even when it uses a few training examples. For example, it achieves a F1
score of about 60% when it uses only 6 training examples for the training. OpenEval learns
quickly because a single training instance could return thousands or millions of webpages.
For example, the number of documents referencing “papers” and “printer room” is 61,200
according to Google. This result indicates that OpenEval might be trained even with only
a few predicate instances.

5.3.2 Simulated Experiments

We have created a large simulated environment to evaluate how ObjectEval will search for
objects. Since the simulator uses exactly the same procedures as the physical robot, the
number of interactions (I) will be exactly the same as on the real robot. In general, when
the robot asks for an object, a person must answer two questions and when it is moving
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Figure 5.6: The F1-score for the 45 test predicate instances when training on a subset of
the training dataset. The figure shows that OpenEval achieves a high F1 score even when
it uses a few training examples, and its F1 score significantly increases when more training
examples are provided for training.

between floors (using the elevator) a person must answer five questions.

To simulate the objects present in the building, we have created a semantic map of 290
spaces over three floors of an office building that contain names for objects and locations
present in each space. This was done by asking subjects on Amazon’s Mechanical Turk
to label images of 46 rooms with the location and objects present. These labels were
transferred to spaces for which we were not able to acquire images by sampling from
the data collected from Mechanical Turk. To test the ability of ObjectEval to search for
objects, we have selected 80 object types that were not a part of the training set. ObjectEval
was given only the location types (e.g., “kitchen” or “printer room”) and a map of the
environment. For each query object, a random location is chosen as the object delivery
destination.

We evaluate ObjectEval in two scenarios: offline mode and interactive mode. In the
offline mode, ObjectEval learns the probability from Equation 5.4 by using a small dataset
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of predicate instances consisting of objects and a place where that object can generally
be found. In interactive mode, the robot starts performing the find and deliver task in an
unknown environment without this training data. By interacting with people, ObjectEval
acquires examples of objects and the corresponding place where the object was found.
This is then used to learn a model of p(li|O) in Equation 5.4. When the robot finds an
object in a location, it adds this to the current set of training instances. ObjectEval will
then search the Web and use the resulting webpages as additional training examples that
relate the object to the observed location.

Table 5.2 shows the results of different approaches that have been used to find ob-
jects. The baseline only uses the distance and interaction terms of Equation 5.2 to greedily
generate the next location to visit and uses no semantic information about the environ-
ment. ObjectEval maximizes the expected utility Equation 5.2 in both offline or interactive
modes.

Approach Visited locations Distance Interactions
Mean Standard Mean Standard Mean Standard

Error Error Error

Baseline 35.8 6.1 69.6 7.2 71.5 12.3
ObjectEval (offline) 14.3 4.3 33.9 4.6 28.7 8.6
ObjectEval (interactive) 10.2 3.8 32.5 4.4 20.5 7.7

Table 5.2: Average and standard error for the number of visited locations, distance and
number of interactions for ObjectEval and baseline approaches. The baseline uses only
the terms for interaction I and distance D from Equation 5.2. ObjectEval (offline) uses
batch training and ObjectEval (interactive) is given no training data, but instead uses the
presence of objects in locations to update the probability of a location given the object as
it performs a search (as from Equation 5.2).

There is a clear downward trend in the number of visited locations and the number of
interactions for ObjectEval when compared with this baseline, indicating that the system is
learning about the physical environment. Surprisingly, the interactive mode of ObjectEval
achieves better results then the offline version of ObjectEval. Since the training data from
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Mechanical Turk can be different from the objects and the locations that are found by
the robot, the interactive version of ObjectEval may have an advantage since it learns
the locations of objects directly in the test environment. The offline version starts with a
biased set of data (obtained from Mechanical Turk) that may not accurately reflect the real-
world. For example, people from Mechanical Turk have annotated “cup” or “glasses” as
examples of objects that can be found in a bathroom. However, in our office environment,
these objects are expected to be found in offices. By training on these examples, the
offline version of ObjectEval would be biased toward finding these objects in the bathroom,
whereas the interactive version does not have this problem because it only uses training
data about objects in the environment.

Although the number of visited locations in Table 5.2 may seem high, the interactive
version of ObjectEval finds 80% of the objects within five locations or less, whereas the
baseline finds only 39% in the same five locations. One reason that this term is high is
because of a high penalty for choosing the wrong location. For example, if the robot
incorrectly classifies “soap” as being in an “office”, it will have to search an order of
magnitude more locations because the environment contains hundreds of offices, whereas
it only contains a few bathrooms.

Finally, we have profiled the number of locations visited before finding an object.
Figure 5.7 shows the result when a search for 20 objects is repeated 5 times starting from
different initial location to obtain 100 runs. The figure shows that ObjectEval, after having
gathered only a few facts, has quickly learned to execute efficient plans to find objects
when compared with the baseline approach.

5.3.3 Robot Experiments

We have demonstrated the ability of ObjectEval to find and deliver an object on our mobile
office assistant robot. In order to show this, ObjectEval is integrated into KnoWDiaL [Per-
era et al., 2015], an approach for learning task-relevant environmental knowledge by inter-
acting with humans or processing information on the Web. OpenEval is used as one of the
main five components of the KnoWDiaL approach, which namely are: a frame-semantic
parser, a probabilistic grounding model, a knowledge base, a web-based predicate evalua-
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Figure 5.7: The number of locations visited by the robot before finding the query object
for the interactive mode of ObjectEval (red line) and the baseline (green line). The data is
sorted by the number of visited locations per simulation run.

tor which uses OpenEval, and a dialog manager.

The interaction of a user with the KnoWDiaL system is as follows. The user first pro-
vides a spoken command, e.g., “Get me a coffee”. Then frame-semantic parser processes
the input command and extracts a set of candidate frames containing slots for phrases that
are referring to action types (e.g., get), and phrases that are referring to action parameters
(e.g., the name of object: coffee). The probabilistic grounding model then maps the ex-
tracted set of frames to referents in the knowledge base. For example, it maps the word
“get” to action “transportObject”. In some cases, the information of some of the frames
is not available. For example in the command “get me a coffee”, it is not clear where the
object should be delivered or where the robot should find the object “coffee”. In these
cases, the dial manager fills the missing fields via dialog or via querying OpenEval (e.g.,
by querying OpenEval to determine if “coffee” is likely to be found in the “kitchen”). Fi-
nally, the dialog manager gets the task confirmation from the human, executes the task,
and updates the knowledge base.
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The KnoWDiaL approach is implemented on the CoBot robot, which enables it to
interact with humans through the dialog interface and autonomously navigate in office
buildings. OpenEval improves the efficiency of the KnoWDiaL approach, in terms of
required user interactions, by retrieving part of the knowledge from the Web instead of
interacting with humans. By querying OpenEval (e.g., asking whether the claim “coffee
is likely to be found in a kitchen” is correct), the robot is able to avoid asking the human
about some of the common sense information that it needs in order to perform a task.

KnoWDiaL system is used by ten different people, asking the robot to deliver an object
or to collect an object from a location and deliver it to another location. When the robot is
asked to pick up an object, the location that the object should be picked up can be either
explicitly specified by the input command (e.g., bring me coffee from the kitchen), or not
be specified in the command (e.g., bring me coffee). In the case that the location is not
specified, the robot either finds the location in its knowledge base or queries OpenEval.
The baseline used in the experiment simply asks a question from the user for each of the
parameters needed to execute an action. The experiment is started by an empty knowledge
base, and the robot extends its knowledge base as it interacts with humans. A total of 91
speech-commands are received by the robot. The details of the experiments is published
in [Perera et al., 2015].

Among all 31 commands that the robot receives to pick an object from a specific loca-
tion, 19 times the location of the object could not be extracted either from the command
or from the knowledge base. In this case, OpenEval is queried to extract the most likely
location for an object. OpenEval has been able to come up with a correct object location
11 times. Among these cases, 2 times OpenEval returns a location with a score that is
significantly higher than other candidate locations, 7 times two of the locations have a
high-probability score, and 2 times three of the locations have a high-probability score.
In case more than one location has a high probability score, then the robot clarifies the
correct location by interacting with a human.

Figure 5.8 shows an example of interaction between a user and CoBot. The human
asks the CoBot to bring the object “coffee” without specifying the location where the
object should be picked up from. Since the object is not specified in the input command,
the CoBot queries OpenEval to find out the probability of object “coffee” to be found in
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User: Go to the conference room.
Cobot: I am going to room 7101, is it correct?
User: No.
Cobot: Ok, can you please spell the room number

of my destination?
User: 7-5-0-1
Cobot: I am going to room 7501, is it correct?
User: Yes.

Fig. 14: An example of interaction where the user corrects the
information retrieved from the Knowledge Base.

how after such an interaction, the Knowledge Base has now
multiple groundings for the same expression with different
weights; this does not represent a problem as KnoWDiaL
always selects the more likely grounding.
Next we demonstrate an interaction in which CoBot queries

the Web by using OpenEval (Fig. 15). The user asks for “a
coffee” but does not specify where this object can be found. As
a first attempt, the robot tries to find a match in its Knowledge
Base, but nothing is found. Therefore, CoBot queries the Web
and comes up with two alternatives: the kitchen or the office.
Before executing the task, the robot asks the user to choose
one of these two options.
Finally, we show an interaction in which the robot is able

to correctly ground every part of the command (Fig. 16). The
user asks to bring lunch from the kitchen to the lab; CoBot first
asks for the object that needs to be delivered, and then asks
for confirmation for both of the locations involved in the task.
The robot asks for confirmation to make sure it will execute
the correct task but it is able to ground “lunch”,“kitchen”, and
“lab” autonomously. Once the robot gets to the kitchen, it asks
someone for help in order to put the lunch in its basket, and
finally it goes to the lab and delivers the lunch.
All of the interactions presented in this section are also

available as videos2.

VI. CONCLUSION
We have presented KnoWDiaL, an approach for a robot

to use and learn task-relevant knowledge from human-robot
dialog and access to the World Wide Web. We have introduced
the underlying joint probabilistic model consisting of a speech
model, a parsing model, and a grounding model. We focus
on tasks of a mobile service robot, CoBot, involving actions,
locations, and objects. Our model is used in a dialog system

2http://youtu.be/2LojY9gFK5A

User: Please bring a coffee to the lab.
CoBot: The object is not in my Knowledge Base, I

will search the web using OpenEval to see if
the object is in location “kitchen”, “office”,
“meeting room” or “printer room”.

CoBot: OpenEval returns high probability for object
“coffee” in location “office” and also for object
“coffee” in location “kitchen”. Which location do
you think is the best?

User: Kitchen.
CoBot: I will collect the object “coffee” and deliver

it at the lab. I am going to the kitchen, room
7602.

Fig. 15: CoBot queries the web using OpenEval in order to
retrieve the information it needs to execute the required task.

to learn the correct interpretations of referring expressions the
robot was not familiar with beforehand. Commands involving
different actions, locations and people can be dealt with by
adding new facts to the Knowledge Base and by searching the
Web for general knowledge. KnoWDiaL is an integral of the
continuously operating CoBot robot. We have presented exper-
iments that show the number of questions asked by the robot in
order to understand a command decreases, as it interacts with
more people, and that our KnoWDiaL approach outperforms
the non-learning baseline system. The KnoWDiaL approach is
a general contribution to the challenge of speech interpretation
and knowledge processing for autonomous robots, which we
demonstrate within mobile service robots.
Now that we successfully reached this core KnoWDiaL ap-

proach, our ongoing and future works include addressing sev-
eral upcoming challenges, including handling dynamic knowl-
edge, either temporary, changing, or incorrect knowledge. For
example, currently, if Dana changes her office after users
confirmed Dana’s office to be “room 7008” for some number
of times, it would require an equivalent number of interactions
about the new office to overrule this knowledge. Different
techniques can be investigated, such as time-stamping the
Knowledge Base updates, and asking or searching for clues
on how confident users are. Confidence scores could be used
for non-linear and Bayesian Knowledge Base updates.
We are also interested in searching for additional features

that may be useful in the grounding process, including the
robot’s current position in the building, the time of the day, and
features regarding the person who is interacting with the robot.
For example, if the robot does not recognize the person, such
person is likely to be a visitor, and is more likely to be asking
for a “go to” location command. The nature of our grounding
model makes it straightforward to add such features. Their

Figure 5.8: An example of interaction between a human and CoBot. CoBot queries
OpenEval in order to retrieve the information that it needs to execute the required task
(e.g., determining where it is likely to find object “coffee”).

either “kitchen”, “office”, “meeting room”, and “printer room”. OpenEval then returns
high probability for object “coffee” to be found in both locations “office” and “kitchen”.
Since both of these locations have high probability, CoBot disambiguates the location that
the object should be picked up from by asking a human. Finally, the CoBot goes to the
“kitchen” to get the object “coffee”.

5.4 Summary

In this chapter, we presented an approach, called ObjectEval, which is able to find and
deliver objects in real-world environments. We showed that our system learns to query

127



the Web to evaluate the probability of physical background knowledge that relates objects
and locations. In addition, we present an approach for finding and delivering objects that
integrates information about object locations from the Web, and interactively learns about
the physical environment by getting feedback from humans. We showed promising results
over a baseline approach and have demonstrated our system on a mobile robot navigating
in an indoor environment.
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Chapter 6

Iterative Query-Based Open World
Planning

In the previous chapter, we showed how a real mobile robot (CoBot) can iteratively query
the OpenEval approach to retrieve the information that it needs to execute the required
task. In this chapter, we contribute an automated planning approach that actively queries
the open Web using the OpenEval approach to add needed knowledge until the planner
solves the planning problem.

We begin in Section 6.1 by motivating the open world planning problem, and explain-
ing how to relax the assumption that all the knowledge, in terms of predicate instances, is
provided as an input to the planner. We explain the details of our approach, Open World
Planner (OWP), in Section 6.2. Section 6.3 presents the detail of our experiments to eval-
uate the OWP approach. Finally, Section 6.4 presents the summary of this chapter.
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6.1 Introduction

Most of the current planning techniques assume that the planner has complete information
about the problem. For example, consider a trip planner that plans a trip from an initial city
to a destination city, and also finds hotels and attractions under a set of constraints. This
planner would require the names of the cities, the corresponding hotels and attractions
and properties. For the trip planner to be able to plan a trip from any arbitrary city, it
would probably require several thousands of instances of predicates to define the complete
planning problem. The knowledge of the planner would also need to be updated since
instances and properties can change over time.

Providing all of the relevant knowledge to the planner seems to be impractical. Man-
ually entering the knowledge is infeasible in practice due to the effort that it requires to
gather the information and to keep it updated. Identifying and extracting upfront all of the
relevant knowledge, including instances and relations, for a real planning problem is also
not trivial. Finally, if one were able to retrieve all of the relevant information (e.g., from
the Web), most of the current planners would, in practice, not be able to use such large
amounts of extracted knowledge, since the search space would drastically increase.

These challenges have been addressed by considering the planning problem with in-
complete information, where the knowledge needed for planning is retrieved during plan
execution. Most of the current planning techniques that deal with incomplete knowledge
are designed for gathering information during plan execution by inserting sensing actions
in the plan [Etzioni et al., 1992; Golden et al., 1996; Weld et al., 1998; chi Tuan et al.,
2004]. The output of these planning techniques is a plan conditioned on the information
that will be gathered by the sensing actions during the plan execution. The missing in-
formation is sporadic and can also be handled also in a mixed iterative manner by asking
users to fill it in or through selecting planning choices [Talamadupula et al., 2013]. Other
techniques plan to gather information from Web services about an assumed incomplete
initial state [Kuter et al., 2004; Sohrabi et al., 2006]. The main assumption behind these
techniques is that all of the information relevant to the planning problem is accessible to
the planner through a set of Web services.

In this chapter, we contribute a new general automated approach for planning with
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incomplete information, which we call Open World Planner (OWP). The OWP estimates
the missing relevant knowledge, automatically queries the open Web for it and assigns
confidence given its uncertainty, translates the information for use by a classical planner
while reasoning about its uncertainty, and repeats this process iteratively until a solution
is found or a termination criterion is reached. Briefly comparing OWP with other work
on planning with incomplete information, (i) OWP does not rely on specific knowledge
being provided by a Web service, (ii) does not add sensing or mixed-initiative actions in
the plan, (iii) and also considers the uncertainty that exists in the retrieved information.
OWP could be integrated with any of the other techniques, but its contribution at this time
is its automated functionality.

OWP receives as input a planning domain and a problem expressed in the PDDL lan-
guage. The planner also gets a few seed examples for the predicates that the planner may
need in order to gather information during the planning, e.g., a few names of cities as
predicate instances of the predicate (city ?x). The input seed examples are used by OWP
to learn how to extract new instances of each predicate. OWP then actively queries the
open Web using the OpenEval approach to acquire new predicate instances while solving
the planning problem. To determine which predicate instances need to be acquired, OWP
first estimates the relevant knowledge to the initial state of the planning problem (knowl-
edge in terms of predicate instances), and effectively retrieves this knowledge by querying
OpenEval. Our planner then iteratively adds the retrieved knowledge to the planning prob-
lem based on a knowledge-confidence value computed from the retrieved information and
proceeds to search for a solution to the planning problem. If it fails to solve the problem
given the extracted knowledge, it iteratively continues the process of adding new knowl-
edge and solving the problem, until it finds a solution or reaches its termination criterion,
e.g., time or number of iterations.

We illustrate OWP within the trip planning domain. We show that OWP is able to
plan a trip for a variety of different problems when no knowledge is given as input to the
planner. We run our experiments on three different types of trip planning domains with
different levels of difficulties. For each of these domains, we use 10 different problem
instances with different start and destination cities. OWP proceeds to solve the problems
using the open Web. Our experiments show that our approach is able to decrease the

131



number of queries sent to the Web by a factor of at least two orders of magnitude compared
to the baseline approach.

6.2 OpenWorld Planner

Algorithm 9 shows the pseudocode of our Open World Planner (OWP). OWP consists
of three main parts, namely: constructing a knowledge graph and extracting constraints
(Line 5-6 in Algorithm 9), instantiating the constraints (Lines 7-12), querying the Web
and calling Downward planner [Helmert, 2006a] (Lines 13-22).

In the rest of the chapter, we exemplify our approach using a very simplified version
of a trip-planning domain which consists of booking a hotel, traveling to a city near the
start city, and visiting a museum. Part of a PDDL-like encoding of our domain is shown
in Figure 6.1. In this domain, seed examples to train OWP are examples of cities for the
predicate city, as well as seed examples for predicates city-close-city, hotel, hotel-in-city,
museum, and museum-close-to-hotel.

Init: (in-city Seattle) (city Seattle)
Goal: (exists (?x)(not (=?x Seattle)(visited-city ?x))
Operator Book-Hotel
Pre:(city ?x), (hotel ?y),(hotel-in-city ?y ?x)
Eff:(booked-hotel ?y ?x)

Operator Travel-To-City
Pre:(city ?x),(city ?y),(in-city ?x)
(city-close-city ?x ?y),(booked-hotel ?z ?y)

Eff:(not(in-city ?x)),(in-city ?y),(traveled-to-city ?y)
Operator Visit-Attraction-In-City
Pre:(in-city ?x),(museum ?y),(booked-hotel ?z ?x),
(museum-close-to-hotel ?z ?y),(traveled-to-city ?x)

Eff:(visited-city ?x)

Figure 6.1: Simplified version of trip planning problem (not the actual PDDL format).
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Algorithm 9 Open World Planner
Require: Domain, Problem ← Definition of planning domain and problem in PDDL;

S ← Seed examples for static predicates
Ensure: Return a valid plan or return false if no plan has been found

1: Function OpenWorld Planner
2: Thresh← 1
3: S ← Predicate instances in the initial state of the input problem
4: while no plan has been found do
5: G← Construct knowledge graph starting from initial state I
6: C ← Extract a set of constraints C from G
7: Instances← {}
8: Sort the constraints in C by their priority value
9: for all constraint c ∈ C do

10: Crawl objects for constraint c from the Web
11: Instances← Instances + instantiate predicates using constraint c
12: end for
13: for all instance i ∈ Instances do
14: Call OpenEval to validate correctness of i
15: if i is correct and confidence(i) ≥ Thresh then
16: Add i to I
17: end if
18: end for
19: if no new instance is added to I, then break
20: plan←Call Downward to solve planning problem
21: if plan is not empty, then return plan
22: Thresh← Thresh − ε
23: end while
24: return False

6.2.1 Definitions and Notations

Here we define the notation that we use in this chapter. A PDDL task is denoted by a
5-tuple P = 〈L, I,G,X ,A〉, where L consists of objects (constant symbols), predicates
(relation between objects), and a set of variable symbols. The initial state I is a conjunc-
tion of ground atoms over objects. The goal state G is the conjunction of positive and
negative literals. A literal is either an atom or negation of an atom. A predicate can be ei-
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ther partially- or fully-grounded (i.e. fully-instantiated). A literal is also called a predicate
instance, i.e. where all the arguments of a predicate are grounded. X is a set of schematic
axioms. For simplicity and without loss of generality, we assume that X is empty through-
out the paper. A is a set of action schemas which implicitly define a set of ground actions.
Each action schema consists of an action name, list of variables used in the action schema,
a precondition, and an effect. Precondition and effect of an action are defined by a logical
sentence consisting of conjunctions of literals. A ground action is applicable in state s if
its preconditions are satisfied by s. Similarly, an action schema is applicable in state s,
if there is at least one substitution for its variables that makes the obtained ground action
applicable in s.

In our notations, we also differentiate between static and dynamic predicates. A static
predicate is a predicate whose value of instances (i.e., literals) in the initial state can not
be changed by the effect of any of the actions. A predicate is called dynamic if its in-
stances can be deleted or added by some of the actions. This would help us to differentiate
between the literals that are added by retrieving and processing knowledge from the Web
(called static literals) and the literals that are added by the effect of actions (called dynamic
literals).

6.2.2 Constructing Knowledge Graph

Starting from the initial state, OWP first estimates the relevant knowledge to the initial
state of the planning problem. Our objective is to estimate the positive literals (ground
atoms) that are most likely to be used during the search. For example, if we are finding a
trip between two cities in the United States, adding information about the cities in Europe
is not only irrelevant to the solution but also increases the time complexity (e.g., takes
longer to search) and space complexity (e.g., more grounded operators) of solving the
planning problem.

To estimate the relevant knowledge to the initial state of the planning problem, we first
construct a knowledge graph (Line 5 in Algorithm 9). A knowledge graph is a compact
structure that implicitly encodes all of the literals that are likely to be used during planning.
A knowledge graph is also used to prioritize the ground atoms that should be added to the
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planning problem in order to solve the problem. Note that the structure and some of the
properties of our knowledge-graph is somewhat similar to the Planning Graph [Blum and
Furst, 1997].

Definition 1. Knowledge graph is a layered graph where its vertices are partitioned into
a sequence of layers and its edges connect successive layers. Each layer of knowledge
graph contains a set of partially- or fully-grounded predicates and each edge corresponds
to one of the ground actions in the planning problem. The first level of the graph contains
all of the atoms in the initial state I.

The knowledge graph is constructed layer by layer, starting from the first layer. We
represent each layer of the graph by Li where i is the level number. Each layer Li contains
two sets: Lfi and Lpi . L

f
i is a set of literals and Lpi is a set of partially or fully-grounded

predicates also called constraints.

Definition 2. Constraints are defined by a set of fully or partially-grounded predicates
present in layer i of the knowledge graph (denoted by Lpi ). Each predicate in Lpi defines a
constraint on the values that each argument/variable of a predicate can potentially take.

For example, a constraint such as 〈(hotel-in-city ?x ?y), ?y=Seattle〉 binds the predicate
(hotel-in-city ?x ?y) to only take instances that have city Seattle as the second argument
(i.e., all the hotels in Seattle). This constraint can be simply written as (hotel-in-city ?x
Seattle).

6.2.3 Layer-by-layer construction of knowledge graph:

First layer (L0): For the first layer of the knowledge graph, Lf0 contains all the ground
atoms in the initial state. Lp0 is set to be empty.

Middle layers (Li): Assume that Ai is the set of all the ground actions whose precondi-
tions are a subset of Lfi , i.e. all the actions that are applicable to Lfi . Lfi+1 is constructed
by the union of the effects of all actions in Ai. Note that Lfi could potentially have both an
atom and its negation. We also allow “no-op actions”, so every literal that appears in Lfi
may also appear in Lfi+1.
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For each layer, we also create a set of constraints Lpi+1 that are later used to identify
and bound new atoms that should be added to the planning problem. Each constraint
consists of a partial or full assignment to the arguments of a predicate. The constraints
are created as follows: for each action a ∈ A, we check all of the subsets of Lfi , denoted
by s, that partially or fully satisfy preconditions of action a. Let’s assume that a′ is the
action obtained by applying s on a. Depending on s, the precondition of a′ can be either
fully or partially instantiated. For each predicate p in the precondition of a′ that is either
partially-instantiated or is not part of the Lfi , we add p as one of the constraints in Lpi+1.
For each predicate/constraint p, we also assign an integer value N(p) which indicates the
number of different substitutions s that can result in p. Constraint p tells us that in order
to be able to apply action a′, the planner requires to have instance(s) of p. Adding p, helps
OWP to decide what predicate instances need to be added in in order to solve the planning
problem.

Stopping condition: The iteration of creating the knowledge graph continues until Lfi =

Lfi+1.

Given a planning problem with n objects, |I| number of atoms in the initial state, |A|
number of action schemas where each action schema has a constant number of parameters
and at most m number of distinct predicates in its effect, it can be easily shown that the
size of Lf , Lp, and the time to create a knowledge graph with |L| number of levels, are
polynomial in terms of n, |I|, |A|, m, and |L|. The proof is similar to the proof of theorem
one in [Blum and Furst, 1997].

6.2.4 Example of knowledge graph

Figure 6.2 shows part of the knowledge graph that is built for our trip-planning example.
The first level of the knowledge graph, L0, contains two sets of literals: those that exist in
the initial state of the planning problem and those that are retrieved from the Web in the
previous iterations of our algorithm. We explain in the next section how these literals are
retrieved. Lp0 is empty and is not shown in the figure, therefore L0 = Lf0 . The second layer
of the graph contains a set of literals (Lf1 ) and a set of constraints represented by partially
or fully-instantiated predicates (Lp1).
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Figure 6.2: Part of the knowledge graph built for the simplified version of the trip-planning
domain.

Figure 6.3 shows an example of constraints that are extracted for action Book-Hotel.
For simplification, assume that we only have three atoms in the layer L0 of the knowledge
graph: (city Seattle), (city Vancouver), (in-city Seattle). There are two substitutions of
variables that partially satisfy the precondition of action Book-Hotel, one when ?x =

Seattle and the other one when ?x = V ancouver. Each of these substitutions binds
values of variable ?x. These two bindings give us three different constraints. Note that we
also consider empty substitution which does not bind values of any of the variables in the
precondition of an action.

6.2.5 Prioritizing constraints

OWP next assigns a priority value to each constraint. The priority value is calculated by
multiplying: (i) effectiveness value of each constraint and (ii) the confidence value of OWP
on the correctness of a constraint. The effectiveness value of a constraint approximates the
likelihood of the predicate instances, determined by this constraint, to be used during the
search while solving the planning problem.
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Figure 6.3: Examples of constraints that are extracted for action Book-Hotel.

Definition 3. The effectiveness value of a constraint c is defined as:

e(c) =

|L|−1∑

i=0

1Li
(c)
(
w1
|L|−i
|L| + w2

N(c)

Nmax

+ w3R(c)
)

(6.1)

where |L| is the number of layers in the knowledge graph, 1Li
(c) is an indicator function

which returns 1 if c is in layer Li of the graph and zero otherwise, wi is a constant, N(c)

is the number of times that constraint c appears in the level Li, Nmax is the maximum
value of N(c) over all different constraints in the different levels of the graph, and R(c)

is the ratio of the number of arguments of c that are instantiated to the total number of its
arguments.

Intuitively, the effectiveness value of a constraint depends on three factors: (i) how
early a constraint appears in the knowledge graph; if a constraint appears early, it bounds
the knowledge that we may need in the future layers of the graph, (ii) the frequency of a
constraint that indicates how many different actions require instances of the constraint, and
(iii) the ratio of the arguments that are instantiated to the total number of arguments. The
weights wi indicate the importance of each factor and are set manually in our experiments.
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The confidence value of a constraint is calculated based on how confident OWP is
that an extracted constraint is correct. Assigning a confidence value to each constraint
is an important step since some of the literals in the knowledge graph might have been
extracted incorrectly (e.g., due to an error in retrieving knowledge from the Web). These
incorrect literals may then create incorrect constraints. For example, assume that OWP
adds (city Hilton) as a literal to the knowledge graph which can potentially create an in-
correct constraint such as (hotel-in-city ?y Hilton) (i.e., hotels ?y that are in city Hilton).
To reduce the error of extracting incorrect constraints, a confidence value is calculated for
each constraint. To define the confidence value of a constraint, we first need to define the
confidence value for each literal that exists in Lfi .

Definition 4. The confidence value of a literal l ∈ Lfi , denoted by c̄(l), is defined as:

c̄(l) =





1 l ∈ I
p l is retrieved from the Web

max
∀a∈A&l∈eff(a)

c̄(pre(a)) l is a dynamic literal
(6.2)

where p is the confidence value of retrieving l from the Web, A is the set of all ground
actions, pre(a) is the precondition of action a, and eff(a) is the effect of a.

If literal l is part of the initial state, then its confidence value is equal to 1. If l is
retrieved from the Web, then its confidence value is equal to the confidence value of OWP
on extracting l from the Web. If l is created as an effect of some ground actions applied
on the previous layer of the knowledge graph, then the confidence value of l is calculated
as follows. For each ground action a that results in l as its effect, OWP first calculates the
confidence value of the precondition of a, denoted by c̄(pre(a)), and then sets c̄(l) equal
to the maximum of the confidence values over all the actions a. A precondition of each
ground action a is a logical sentence that consists of a set of literals whose confidence
value is known (calculated in the previous layer of the knowledge graph). To calculate the
confidence value of a logical sentence, we use the same operations that are used in fuzzy
logic [Lee, 1972], for instance, logical operators and and or are respectively represented
by min and max operators.

Proposition 1. If 0 ≤ p ≤ 1, then for all literals l, 0 ≤ c̄(l) ≤ 1.
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The definition of the confidence value of a literal helps us to define the the confidence
value of a constraint.

Definition 5. The confidence value of a constraint c ∈ Lpi , denoted by c̄(c), is defined as:

c̄(c) = max
a∈A(c)

c̄(pre(a)) (6.3)

where A(c) is a set of all actions that created constraint c.

To calculate the confidence value of constraint c, we iterate over all the actions that
created constraint c, and then calculate the confidence value of their preconditions, denoted
by c̄(pre(a)). Since a might be partially-instantiated, c̄(pre(a)) is calculated only for the
predicates in pre(a) that are fully-instantiated.

6.2.6 Instantiating Constraints

Given a set of constraints, OWP first sorts the constraints based on their priority value
and then instantiates each constraint to a set of literals (Lines 8-12 in Algorithm 9). To
instantiate constraint c, OWP first crawls a set of objects from the Web by searching the
English name of the predicate in c and its arguments on Google and crawling the phrases
that appear in the returned webpages. We use ReVerb [Fader et al., 2011a], which is an
information extraction tool that automatically extracts unary and binary relationships from
English sentences, to extract phrases from the returned webpages. For example, given the
constraint hotel-in-city(?x Seattle), OWP searches query “hotel in city Seattle” on Google
and extracts phrases from the returned webpages. To limit the number of retrieved objects,
in each iteration of Algorithm 9 (Line 4), OWP only extracts phrases from one of the
webpages returned by Google.

After extracting objects relevant to a constraint, OWP goes through all of the variables
in the constraints that are not instantiated and substitutes each variable with one of the
objects extracted for the constraint. To decide the number of instances that should be
instantiated for each constraint, OWP first divides the priority value of the constraint by
the sum of the priority values of all the constraints, and then multiplies it by the total
number of instances that should be instantiated.
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6.2.7 Querying OpenEval and Calling Downward Planner

Given all the candidate predicate instances that are obtained by instantiating the con-
straints, OWP then queries the Web using the OpenEval information extraction technique
to validate the correctness of each candidate predicate instance (Lines 13-18 in Algo-
rithm 9). Given the output of OpenEval for each queried instance, OWP then adds to the
planning problem all the predicate instances that have a confidence value greater than
threshold Thresh and are evaluated by OpenEval to be correct (Lines 13-18 in Algo-
rithm 9). Fast Downward [Helmert, 2006a] is then called to find a solution to the planning
problem (Line 20). If no solution has been found, OWP iteratively continues the process
of extracting and instantiating constraints until a solution is found. Note that our algo-
rithm starts by setting the value of threshold Thresh to one and decreases its value in each
iteration.

6.3 Experimental Results

Our experiments investigate how well Open World Planner would perform in solving a set
of trip-planning problems, where we assume that no information is given to the planner
(except input seed examples). We run our experiments on three different types of trip
planning domains with different levels of difficulties. The difficulty of these domains is
determined by the number of actions that are defined in the domain and the number of
predicates used in the precondition of each action. In the first domain, our goal is to travel
to a destination city and book a hotel in the city. In the second domain, we consider
planning a trip to a destination city where the planner should also find a hotel and two
attractions. In the third domain, our goal is to find a trip starting from an initial city to
a destination city where another city is visited in between (the planner should find two
attractions and one hotel in each city). For each of these domains, we use 10 different
problem instances with different start and destination cities. The only objects that are
provided to the planner are the names of the initial city and the goal city. The details of
the domains and the problems used in our experiments are published in Appendix A.

Table 6.1 shows the average number of queries sent to the Web (OpenEval) and the
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Problem Set No. Queries No. Queries Plan Accuracy
(10 problems per set) (Full-Instantiation) (OWP) (OWP)

Mean SE Mean SE Mean SE

One City 7078.2 706.2 28.6 4.8 80% 8%
One City - Two Attractions 53189.3 6661.6 452 72.9 68% 7%

Two Cities - Four Attractions 92483.6 6772.7 655.7 40.4 56% 4%

Table 6.1: Total number of queries sent to the Web (OpenEval) using Open World Planner
and the baseline approach that instantiates all of the predicate instances. The table also
shows the accuracy of plans found by OWP.

accuracy of plans found by OWP. We are reporting the number of queries sent to the
Web because retrieving the information from the Web is the most time consuming part
of the planning process. The first column shows the type of the planning problem. The
second two columns show the average and the standard error for the number of queries
that are sent to the Web for the baseline approach. The baseline approach (called full-
instantiation) is built by iterating over all the possible ways of instantiating predicates in
the domain, calling OpenEval to verify each predicate instance, and adding the instance to
the planning problem if it is evaluated by OpenEval to be correct (with the confidence value
greater than 0.5). To instantiate the predicates, we use the same objects that are retrieved
by OWP from the Web. The next two columns show the number of queries that are sent
to the Web by OWP. The result shows that Open World Planner on average decreases the
number of queries that are sent to OpenEval by at least by a factor of at least two orders
of magnitude compared to the full-instantiation approach. For these experiments, we set
w1 = 1, w2 = 2, and w3 = 5.

Since the output of OpenEval is not completely accurate, some of the steps found by
our planner may be incorrect. For example, we observed that OpenEval returns Science
World as a museum located in Seattle when it is actually located in Vancouver. Table 6.1
also shows the result for the accuracy of plans found by OWP. This result is obtained by
manually checking each step of the plans found by the planners, and counting the number
of the steps that are correct. Figure 6.4 shows one of the plans that is automatically found
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by OWP.

Book-Hotel: Omni Hotel, Austin
Travel-To-City: Boston, Austin
Visit-Museum: Mexic-Arte, Austin
Visit-Museum: Blanton Museum of Art, Austin
Book-Hotel: Omni Chicago, Chicago
Travel-To-City: Austin, Chicago
Visit-Museum: Omni Chicago, Chicago
Visit-Museum: Museum Science, Chicago

Figure 6.4: An example of a plan found by Open World Planner for traveling from Boston
to Chicago while visiting an arbitrary city (Austin) in between.

6.4 Summary

In this chapter, we presented a new planning approach, called Open World Planner, that
actively queries the open Web to acquire instant knowledge about the planning problem.
We presented the details of our technique that estimates the relevant knowledge to the
initial state of a planning problem by constructing the knowledge graph and extracting a
set of constraints. We showed promising results over a baseline approach and have shown
that our technique is able to significantly decrease the amount of time required to solve a
planning problem.
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Chapter 7

Related Work

Our work in this thesis leverages and extends some of the ideas explored by previous work
in open information extraction, machine reading, trust, searching for objects using mobile
robots, budget-sensitive classification, and the integration of robots using the Web. In this
section, we briefly describe salient research from each of these fields.

7.1 Use of Co-Occurrence Statistics in Information Ex-
traction

Co-occurrence statistics computed from a collection of documents such as Web corpus
has been recently widely used for IE. Turney et al. were among the first who realized
that search engines can be used to compute Web-scale co-occurrence statistics [Turney,
2001, 2002; Turney and Littman, 2003]. They presented an unsupervised technique that
uses search engine hit counts to measure the similarity of pairs of words. They used
the Pointwise Mutual Information (PMI) technique to measure the semantic similarity
between two words. Other researchers also have used PMI to validate information extrac-
tion [Soderl et al., July 2004] or to validate a candidate answer in a question answering
system [Magnini et al., 2002]. Soderland et al., for instance, showed different variations
of the PMI technique that was used to assign a correctness probability to the extracted
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facts [Soderl et al., July 2004]. To compute the PMI score, they assumed that a set of dis-
criminator phrases, such as “cities of” for predicate city, are given to the system. These
discriminator phrases can be obtained by IE systems such as KnowItAll [Etzioni et al.,
2004].

Magnini et al. proposed an answer validation approach that uses the redundancy of
Web information to validate a candidate answer for a question [Magnini et al., 2002].
Given an input question and a candidate answer, their technique first extracts a set of
keywords from the input question and the candidate answer. An answer validity score is
then obtained by using the search engine hit counts for the extracted keywords. Other
researchers [Brill et al., 2001] have also studied the usage of redundancy of information
on the Web for answer validation.

Co-occurrence statistics of words has also been also used to classify a hypothesis re-
lation instance. Cimiano and Staab developed a method to use search engine hit counts
to classify a hypothesis relation instance [Cimiano and Staab, 2004]. Their system first
iterates through a set of entities to be classified. It then generates a set of patterns for
each concept that exists in the ontology. These patterns are then searched in Google and
the hit counts for all the results are summed up. The classification is done based on the
number of Google counts for all pattern instances. Similar to this work, Navok et al. also
showed that co-occurrence statistics obtained from Web data can be used to to find names
for noun-noun relations [Nakov and Hearst, 2005b,a,c].

The performance of all of the above techniques depends on the accuracy of the search
engine hit counts. However, the search engine hit counts at best are only a crude estimate
of the number of matching documents. It has been shown that hit count estimates are not
accurate [Rousseau, 1999; Anagnostopoulos et al., 2006; Uyar, 2009]. In fact, researchers
have shown that the hit counts change daily [Rousseau, 1999], are unreliable especially
for disjunctions [Anagnostopoulos et al., 2006], and their accuracy is reduced almost by
the half when going from a one word to two words query [Uyar, 2009]. Our approach
does not rely on the search hit count. Instead, it uses the content of the webpages that are
returned by the search engines for the evaluation.

We are not the first to not to rely on the search engine hit counts; Downey et al. de-
veloped a combinatorial “balls-and-urns” model (Urns model) that computes the impact
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of redundancy on the probability of the correctness [Downey et al., 2005] . Their model is
based on the fact that repeatedly obtaining the same extraction from different independent
sources increases the correctness probability of the extracted instance. They showed that
this model is superior to the PMI method based on both accuracy and time. However, the
main drawback of their system is that the Urns model can not be used independently to
evaluate correctness of a predicate instance and it requires the output of an IE system such
as KnowItAll.

7.2 Extracting Factual Information from Unstructured Web
Text

The main goal of machine reading (i.e., learning by reading) is to automatically extract
knowledge from an unstructured text corpus (e.g., Web) and represent the knowledge in
a structured form that can be used by machines. The main challenge is to scale the ma-
chine reading techniques to a large corpus such as the Web. The Web contains texts with
different levels of heterogeneity, vary in subject matters (health vs. food), writing style
(blog vs. scientific papers), etc. which make the texts difficult to process. As a result,
machine reading techniques must rely on indirect supervision, learning, and improving its
performance as it reads the text [Poon et al., 2010].

The main general approach for indirect supervision in IE is to use meta knowledge
about the domains and extract information based on the data redundancy. Etzioni and
colleagues were among the first researchers who followed this approach and developed
KnowItAll, a web-scaled IE system that is based on indirect supervision to extract lists
of instances of a given category/relation [Etzioni et al., 2004]. KnowItAll is based on
an observation that there exists general patterns that can be used to extract relation in-
stances. KnowItAll combines hyponym patterns [Hearst, 1992] and learns new patterns
for instances of a relation/category. These patterns are then used to identify and ex-
tract named-entities. In addition to the text patterns, KnowItAll also uses wrapper algo-
rithms [Crescenzi and Mecca, 2004] to extract information from structured contents such
as tables in the websites. Downey et al. showed that the accuracy of KnowItAll can be
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improved by post-processing the extracted instances using a combinatorial model based
on the redundancy of information on the Web [Downey et al., 2010, 2005].

Etzioni’s group at the University of Washington continued their work on KnowItAll
and later introduced TextRuuner [Etzioni et al., 2008; Poon et al., 2010], a highly scalable
IE system, that is shown to achieve an error reduction of 33% compared to KnowItAll.
Similar to these works, Carlson et al. [Carlson et al., 2010b,c] developed NELL, a semi-
supervised learning technique that has been developed as part of the Read the Web (RTW)
project at Carnegie Mellon University. NELL extracts structured information from un-
structured webpages. The input of NELL is an initial ontology (e.g. hundreds of predicates
with one or two arguments) and 10 to 15 seed examples for each predicate that is defined
in its ontology. Given this input, NELL extracts new instances of predicates from a collec-
tion of 500 million webpages (the ClueWeb09 corpus [Callan and Hovy, 2009]). NELL
first extracts a set of candidate instances and then filters those that have a low confidence
value.

Etzioni et al. [Etzioni et al., 2011; Fader et al., 2011b; Mausam et al., 2012] later
developed ReVerb, a general verb-based relation extractor, that uses a set of generic syn-
tactic and lexical constraints to identify and extract relation instances. They showed that
approximately 85% of the binary verbal relation phrases in a sample of Web sentences
satisfy their constraints. ReVerb addressed two limitations of previous Open IE systems:
incoherent extractions and uninformative extractions. Incoherent extractions refers to the
cases when the IE system extracts a relation that doesn’t have a meaningful interpreta-
tion and uninformative extractions refers to the cases when the IE system omits critical
information in the relation extraction.

One of the main advantages of approaches like ReVerb [Fader et al., 2011b], TextRun-
ner [Poon et al., 2010], WOEpos [Wu and Weld, 2010], and R2A2 [Etzioni et al., 2011]
is their efficiency since they are using only shallow syntactic parsing (chunking and part-
of-speech tagging) in their extractor. However, the efficiency is obtained in most of these
systems at the cost of accuracy (lower precision at higher points of recall). To achieve
better precision and recall, approaches such as OLLIE [Mausam et al., 2012], Wander-
lust [Akbik and Broß, 2009], parsepos [Wu and Weld, 2010], KrakeN [Akbik and Löser,
2012], ClausIE [Del Corro and Gemulla, 2013], and [Gamallo et al., 2012] take advan-
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tage of using dependency parsing in their extractor. These approaches are usually more
expensive since they tradeoff efficiency for better accuracy and recall.

Inspired by the result of KnowItAll [Etzioni et al., 2004], other researches also con-
sidered extracting factual information from the Web. Matuszek et al. presented a method
to enter new knowledge into Cyc by gathering and verifying facts from the World Wide
Web [Matuszek et al., 2005]. In their approach, called CycL, they first select a query such
as (foundingAgent PalestineIslamicJihad ?WHO) from their knowledge base, convert it
to a search query, and search it on Google. The search engine results are then processed
to extract a set of Ground Atomic Formula (GAF), e.g. (foundingAgent PalestineIslam-
icJihad Terrorist-Nafi). After checking the consistency of the new set of GAFs with the
knowledge already present in the knowledge base, a human volunteer reviews them for
accuracy and adds them to the Cyc’s KB. Similarly, [West et al., 2014a] developed an
approach to complete the data in a knowledge base via search-based question answering.
Their focus in this work is on learning the queries that should be issued to a search engine
or a QA system in order to retrieve the most relevant documents.

Weakly supervised techniques are also used for large-scale IE techniques [Hoffmann
et al., 2010; Mintz et al., 2009] where they used an existing ontology to generate a set
of training data. This set of training data is later used to learn relation specific extractors.
Although these techniques are able to learn relation-specific extractors on a large scale, it is
not clear how easy it is to generalize these techniques since they are still restricted to use an
input ontology. Preemptive IE [Shinyama and Sekine, 2006] and OnDemand IE [Sekine,
2006] are two examples of IE techniques that avoid relation specific extractors and do not
require any input ontology. Instead, they rely on document and entity clustering. These
dependencies make them too costly to be used in anytime applications.

7.3 Generic Relation Extraction

There has been considerable research in the community of information extraction focusing
on supervised techniques to learn relation extractors[Califf and Mooney, 2003; Ciravegna,
2001; Soderland, 1999; Ramshaw et al., 2001]. The weakness of these techniques is
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that they rely on assumptions, such as a large number of manually annotated examples,
which make them unable to scale up to hundreds of relations. To deal with this weakness,
others have developed unsupervised [Poon et al., 2010; Carlson et al., 2010b], weakly-
supervised [Zhang, 2004; Lin et al., 2012], or bootstrap relation learning techniques [Brin,
1999; Agichtein and Gravano, 2000; Ravichandran and Hovy, 2002; Pantel and Pennac-
chiotti, 2006; Freedman et al., 2010] which starting from an initial set of seed examples,
are able to generate a set of surface patterns or a set of rules that are later used to identify
new relations.

Most of these works have been focused on precision. For example, [Ravichandran
and Hovy, 2002] reported the results for the TREC question answering track where it is
enough to only extract one instance of a relation. However, our focus in this thesis will be
also on the recall. Extending some of these works, Freedman et al. [Freedman et al., 2011]
showed that the recall of relation extraction techniques could be improved using bootstrap
relation learning, handwritten patterns over predicate-argument structure, and coreference.
The fact that they are dependent on a set of handwritten patterns limits the applicability of
their techniques to be used for any generic relations.

Relation extractions for a small set of documents have been also studied by other re-
searchers. For example Lin and Pantel developed an unsupervised method which uses
syntactic patterns to discover inference rules from text [Lin and Pantel, 2001]. Steven-
son presented a relation-extraction technique based on existing lexicons in the Word-
net [Stevenson, 2004]. Specia and Motta presented another relation extracting method
that uses techniques such as part-of-speech tagger, named entity recognition, pattern-based
classification, word sense disambiguation models, and resources such as input ontology to
extract relations from the text [Specia and Motta, 2006].

Ontology-driver information extraction is another line of research in open informa-
tion extraction that uses predefined ontologies. PANKOW [Cimiano et al., 2005; VÃlker,
2005] is an ontology-driven technique that queries Google using a set of Heast patterns, ex-
tracted from the input ontology, to annotate a set of named-entities in a document. Similar
to this work, [Matuszek et al., 2005; McDowell and Cafarella, 2006] used ontologies such
as Cyc combined with the search engines to identify semantic instances and relations. In
contrast to these works that use predefined ontologies, Nigam developed a technique that
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first automatically constructs an ontology by using Wikipedia’s info boxes and then trains
a CRF extractor using the extracted ontology [Nigam, 1999]. The fact that these tech-
niques require a pre-defined ontology for information extraction limits their applicability
and scalability to hundreds of relations.

A more general problem of relation extraction and open information extraction is Se-
mantic Role Labeling (SRL). The main goal of SRL approaches is to identify arguments
of verbs and the semantic relationship between them. Christensen et al. [Christensen
et al., 2010] showed that SRL approaches can be used to increase precision and recall
of open information extraction approaches. However, existing SLR approaches require a
large amount of labeled data and are usually computationally expensive.

7.3.1 Relation Extraction Using Wikipedia

Wikipedia has been recently used as an important corpus to extract factual information.
In this section, we briefly summarize different approaches that use Wikipedia, as a corpus
for extracting semantic relations. These approaches is not directly relevant to what we are
doing in this thesis since they are not directly applicable to free texts.

Ruiz-Casado et al. used Wikipedia to extract a set of relation types [Ruiz-casado et al.,
2005; Ruiz-Casado et al., 2007]. Starting from two co-occurring semantically related
WordNet nouns, documents in Wikipedia that contain both of these nouns are extracted.
They then use the text that appears between these two noun phrases in a Wikipedia article
to find the relations missing from WordNet. In later work, Ruiz-casado et al. showed
that the accuracy of their technique could be improved by restricting their approach to
Wikipedia pages that are written for specific categories [Ruiz-casado et al., 2006]. Along
with this direction of research, Herbelot and Copestake used a dependency parser to iden-
tify subject, object, and their relationship in a sentence [Herbelot and Copestake, 2006].
Their experimental results showed that their technique was able to achieve high preci-
sion but at the cost of very low recall. Dependency parsers are also used by other re-
searchers [Nguyen et al., 2007] to extract relation instances from Wikipedia. Suchanek et
al. developed a pattern-based relation extraction technique which uses a context-free gram-
mar for parsing a sentence and finding a set of patterns between two concepts [Suchanek
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et al., 2006]. Machine learning techniques are then used to determine and generalize pat-
terns that describe relations of interest. They showed that their approach outperforms
other techniques, including a shallow pattern-matching resource TextToOnto [Cimiano
and Völker, 2005].

Other researchers have used info boxes of Wikipedia for information extraction. For
example, Wang et al. used positive seeds mentioned in the info boxes of Wikipedia in
addition to using textual patterns that are extracted from the text [Wang et al., 2007b,c].
The same author further extended this work for the case that no negative examples are
provided for training [Wang et al., 2007a]. Wu et al. used relation extraction in order to
improve Wikipedia’s info boxes [Wu and Weld, 2007, 2008]. To do this, they first use the
content of info boxes, parse, and map them to a set of sentences in the text. Given these set
of sentences, they train a classifier that later is used to classify new sentences. Hoffmann
et al. also used a similar approach to create a set of training data by matching Wikipedia
attribute values with corresponding sentences [Hoffmann et al., 2010]. They introduced a
set of dynamic lexicon features which help to improve the accuracy of their system when
learning from sparse data. They showed that their system, called LUCHS, is able to learn
about 5025 relations.

7.4 Credibility of Information Sources

One of the main reasons for the success of the Web is the fact that it is open and decen-
tralized which allows anyone to be able to directly contribute to the content of the Web.
However, for a human or an agent to be able to use the information available on the Web
and make decisions based on its information, they should measure the credibility of each
source of information on the Web and to decide how it should be treated. Computers
also have the challenge of making judgements given the available information on the Web
because of the varying quality and truth that these diverse sources offer.

The wide need of measuring trust has made it a diverse topic [Golbeck, 2006; Artz
and Gil, 2007] that has been studied in different areas of computer science. For exam-
ple, reputation-based systems are based on the notion of transitive trust and are used to
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measure the credibility of entities such as webpages [Page et al.], people [Levien et al.,
1998], and peers in a network [Kamvar et al., 2003]. In computational trust, variations of
probabilistic logic frameworks have been used to present a formal definition of trust and
trust propagation, which can potentially be used in artificial agents to make trust-based
decisions [Marsh, 1994; Manchala, 1998; Jøsang et al., 2006]. For data integration, dif-
ferent approaches are built to integrate the most complete and accurate records from a
diverse set of sources where the data sources are extremely heterogeneous [Zhao et al.,
2012; Dong and Srivastava, 2013; Li et al., 2014]. In crowdsourcing, various techniques
have been developed to automatically validate the quality of crowd answers, by identifying
the faulty workers [Venanzi et al.; Richardson and Domingos; Wang et al., 2013; Nguyen
et al., 2015]. In social networks, Probabilistic Soft Logic (PSL) is used to model the trust
in the social interactions [Huang et al., 2012, 2013]. The truthfulness of deep web data has
been studied by [Li et al., 2013], which surprisingly shows a large amount of inconsistency
between the data provided by different sources. In recommender systems [Abdul-Rahman
and Hailes, 1997], P2P systems [Sherwood et al., 2006], and game theory [McCabe et al.,
2003], the concept of trust is used to model the agent and player interactions [Jonker and
Treur, 1999; Barber and Kim, 2001; Maes, 1994].

Since the scope of this thesis is to focus on measuring the trust of information that is
extracted from an unstructured webpage, we restrict our definition of online trust to the
trust that occurs when a user or a computer is communicating to an informational website
on which we do not have any prior assumption on the type of the website or its topic. We
also assume that to measure the trust score to a website, we do not use any explicit infor-
mation/feedback that has been provided by the user about the trustworthiness/credibility
of a website. This assumption is necessary since our focus in this thesis is to automatically
measure trustworthiness of any unstructured website returned by a search engine.

Modeling the Trust

Since 1990, there has been extensive work conducted to understand what factors encour-
age users to trust a web site. The goal of this research is to determine the criteria that users
consider to trust a website. The initial focus of this research was mostly on analyzing
the criteria that affect trusting any e-commerce website [Falcone and Castelfranchi, 2001;
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Riegelsberger et al., 2003; Salam et al., 2005; Van Slyke et al., 2004; Yang et al., 2005;
Kim et al., 2011; Wang and Benbasat, 2008]. However, later researchers started studying
what factors, in general, affect trust of an online website. For example, Corritore et al.
showed that criteria such as the reputation of the author, ease of navigation, perception of
credibility, and the design of a website affect the decision of users to trust a website [Cor-
ritore et al., 2003]. Similar to this work, Cyr [Cyr, 2008] studied how three factors [infor-
mation design, navigation design, and visual design] affect a website’s trustworthiness. In
addition to this work, Josang et al. showed that trust is built over time [Jsang et al., 2005].
Fogg et al. generalized the concept of trust by studying what it means for a website to be
credible [Fogg et al., 2001]. They defined credibility as measuring how likely a user would
believe in the content of a website. They also showed that factors such as being cited (i.e.,
linked) by another trustworthy website, having a policy statement on the website, social
recommendation (e.g., a friend recommends a website), and business interest (e.g., if it is
a for-profit company) are the major criteria that affect the trustworthiness of a website.

Graph-based Trust Approaches

Unlike most of the approaches above which try to understand how users trust a given web-
site, there has been other research focusing on using the link structure between different
webpages to measure their credibility score. Initially, Page et al. introduced this idea by
making the PageRank score biased to penalize spam websites [Page et al., 1999]. Bian-
chini et al. [Bianchini et al., 2005] and Langville et al. [Langville and Meyer, 2004] did
further analyses on biased PageRank score. Gyongyi et al. were among the first who
contributed a semi-automatic approach based on the link structure of the Web to separate
reputable and good pages from spam webpages [Gyöngyi et al., 2004]. They first selected
a small set of seed pages (i.e., webpages) that are evaluated by an expert. Starting from
this set of reputable seed pages, they use the link structure of the Web to discover other
pages that are likely to be good. The idea of using the link structure of the Web to predict
spam websites has been further explored by other researchers [Castillo et al., 2007; Gan
and Suel, 2007; Wu and Chellapilla, 2007]. In general, all of these approaches are subsets
of Graph-based Semi-Supervised Learning (GSSL) algorithms, which are used to prop-
agate information between different nodes of a graph. Given a few labeled nodes and a
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graph where the edge weight represents the degree of similarity between the two connected
nodes, GSSL algorithms classify the initially unlabeled nodes in the graph [Subramanya
and Talukdar, 2014]. Since these algorithms can handle only a specific edge type (i.e.,
node similarity), they are not applicable to the credibility assessment graph that we have
used in this thesis (Chapter 4) since a credibility assessment graph consists of multiple
edge types with differing semantics.

Fact-finding Approaches

To overcome the limitations of GSSL algorithms (assuming that all the nodes have the
same type), several fact-finding algorithms have been developed which consider a bipar-
tite version of a graph similar to that of our credibility assessment graph, and propagate
information between nodes in a non-symmetric way. Algorithms such as Sums [Klein-
berg, 1999], TruthFinder [Yin et al., 2007], Generalized-Investment [Pasternack and Roth,
2011], Pooled-Investment [Pasternack and Roth, 2010], AccuVote [Dong et al., 2009], Av-
erage.Log [Pasternack and Roth, 2010], and 3-Estimates [Galland et al., 2010] have been
developed that use different propagation update functions which specify how the informa-
tion flows between the nodes in such a graph.

Each of these fact-finding algorithms suffers from at least one of the following main
disadvantages. First, the score assigned to claims are biased toward favoring potentially
(non-credible) sources that assert many evidences. This is primarly because these algo-
rithms use either average or sum functions when aggregating credibility scores of web-
sites containing relevant evidences. Second, the scores assigned to the nodes are not inter-
pretable. For example, knowing that a source has a score of 10 without knowing the range
and the possible distribution of the score is not informative, and therefore hard to interpret.
Interpretability of the result is specially important when the output is used by either a hu-
man or by an application (which is one of the main motivations behind this thesis). Third,
the convergence of these iterative algorithms is not guaranteed. Finally, and most impor-
tantly, incorporating additional prior-knowledge to guide how the credibility information
should flow over the CA-like graph is not intuitive and easy. For example, the majority
voting approach is based on the assumption (i.e., prior knowledge) that the truth score of
each claim is computed by the weighted average of the sources connected to the claim, or
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the Generalized Investment [Pasternack and Roth, 2010] approach assumes that sources
“invest” their credibility uniformly in the claims that they make. These prior assumptions
usually are incorporated through a set of cumbersome and usually non-intuitive update
functions. Any change that needs to be made in these assumptions requires a change in
the model.

Some of these limitations are partially addressed by other previous work. To incorpo-
rate the prior knowledge, Pasternack and Roth [Pasternack and Roth, 2010] introduced a
pipelined approach which takes beliefs output by a fact-finder as an input, and “corrects”
those beliefs based on some prior-knowledge defined by the user. Unlike our ClaimEval
approach, [Pasternack and Roth, 2010] cannot incorporate additional prior-knowledge
such as how credibility should propagate over the graph. The notion of prior-knowledge
used in [Pasternack and Roth, 2010] is different than ours, since in our ClaimEval ap-
proach, prior knowledge can also refer to the way that the trust information propagates
through the credibility graph. Additionally, and in contrast to ClaimEval, the semantics of
belief scores in [Pasternack and Roth, 2010] is specific to the external fact-finder that is it-
eratively used to assign scores to the nodes in the graph, and convergence of the algorithm
is also not guaranteed. To address bias and interpretability limitations of fact-finders,
probabilistic fact-finding approaches are introduced that model the joint probability of the
sources and the claims [Pasternack and Roth, 2013; Zhao et al., 2012; Wang et al., 2011].
In their models, the latent variable is the truth of the claim, and the probability of a claim
being true is calculated using exact or approximate inference in a probabilistic graphical
model. Although these approaches provide a transparent and interpretable model for the
credibility analysis problem, the prior knowledge can be provided only in a node-centric
manner. Incorporating more sophisticated types of prior-knowledge, such as adding differ-
ent types of nodes or how information should propagate over the graph, requires non-trivial
modeling changes. In contrast, ClaimEval offers a flexible framework which makes it pos-
sible to add such prior-knowledge using first-order logic rules and without requiring any
changes in the model.

Moreover, these approaches do not provide an integrated system that asserts the truth-
fulness of claims by extracting evidences from the unstructured sources of information on
the Web. OpenEval [Samadi et al., 2013] addresses this issue but doesn’t take source cred-
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ibility into account. Similarly, Defacto [Lehmann et al., 2012] only uses PageRank as an
estimation for the credibility of source. Nakashole and Mitchell [Nakashole and Mitchell,
2014] introduced a language-aware approach based on NELL, called FactChecker, that
makes use of linguistic feature to compute whether a source objectively states a fact, or if
it is opinionated. In addition to the objectivity score, FactChecker also uses a co-mention
score in order to assign similar credibility scores to fact candidates that are mentioned
in similar sources. The final credibility score that is computed by the FactChecker is a
combination of objectively and co-mention scores. FactChecker is incapable of incorpo-
rating prior credibility information into its model, and also focuses mostly on determin-
ing whether a source contains objective or subjective information. In contrast to these
approaches, our ClaimEval approach identifies relevant sources, extracts evidences from
them, estimates source credibility using the prior credibility knowledge, and uses those
credibility scores for improved claim evaluation, all in an integrated system.

7.5 Searching for Objects

Exploring indoor environments has been studied as a part of the work on Simultaneous
Localization and Mapping. Yamauchi described a search process that would incremen-
tally explore new regions of the map [Yamauchi, 1997]. Our baseline search, which does
not use background knowledge, is similar to this approach. Subsequent work focused on
balancing the trade-off between localization quality and the need to explore new areas of
the environment [Makarenko et al., 2002] [Stachniss et al., 2005].

Searching for objects has received considerable interest in the robotics community.
Extensive research has focused on visual object search that does not leverage the Web
[Sjöö et al., 2009; Aydemir et al., 2011; Velez et al., 2011; Joho et al., 2011]. Sjöö et al.
presented a method for search and localization of objects by using an attention mechanism
as a primary step in the recognition process[Sjöö et al., 2009]. Using a combination of
view planning and visual search, the authors used existing computer vision algorithms to
efficiently detect and localize different objects. Aydemir et al. built on this by using spatial
relations to perform large-scale visual search for objects[Aydemir et al., 2011]. Joho et al.
focused on the problem of finding an object with a mobile robot in an initially unknown,
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structured environment[Joho et al., 2011]. While the primary focus is not on vision, they
presented two methods for object search. The first was a reactive search technique based
on objects in the robot’s immediate vicinity. The second was a global, inference-based
approach that uses the object arrangements of example environments. Finally, Velez et al.
considered the task of autonomously navigating through the environment while mapping
the location of objects [Velez et al., 2011] . The authors described an online any-time
framework where vantage points provide the most informative view of an object given a
noisy object detector. Unlike these approaches, our work uses help from humans to detect
and manipulate objects.

7.6 Integration of Robots with the Web

Researchers have begun to consider how robots might be integrated with the Web. Meger
et al. described an integrated robotic platform that uses web-based training data to train a
visual object detector and then perform exploration, mapping, and active attention [Meger
et al., 2008]. Most similar to this work is Kollar et al., who used the co-occurrences in
the labels from the Flickr photo-sharing website as a prior over where objects are located
in the physical environment [Kollar and Roy, 2009]. Posner et al. demonstrated a system
that queries the Web to help read the visible text in the scene [Posner et al., 2010]. Tenorth
et al. described how information on the World Wide Web, that is intended for human use,
might be useful for robots [Tenorth et al., 2011].

7.7 Retrieving the Information from the Web for Plan-
ning

To the best of our knowledge, no work has been done on designing a general planner
that automatically retrieves the information from the open Web while solving a planning
problem. However, in the AI planning literature, there are several approaches developed
for planning with incomplete-information which we briefly summarize in this section.
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Most of the approaches for planning with incomplete information try to address the
problem of incomplete knowledge by inserting sensing actions in the plan. These tech-
niques usually generate a plan conditioned on the possible pieces of information that can
be gathered by using sensing actions. [Etzioni et al., 1992] were among the first researchers
who presented a planning language called UWL in order to handle incomplete knowledge.
UWL distinguishes between actions that change the state of the world and actions that
change the state of the agent’s knowledge. Similarly, [Golden et al., 1996] developed XII
planner which is an extension of UCPOP [Penberthy and Weld, 1992], and is able to gener-
ate sensing actions for information gathering during the execution. Similar to these works
but using a different approach, [Pryor and Collins, 1996] developed a decision-based plan-
ning technique that uses explicit decision-steps that result in a set of subgoals to acquire
knowledge. [Weld et al., 1998] extended the GraphPlan technique [Blum and Furst, 1997]
to handle sensing actions by distinguishing between actions that sense the value of an
unknown proposition from those that change its value.

In addition to these works, [chi Tuan et al., 2004] used belief states to deal with the
incomplete information problem. Bonet and Geffner [Bonet and Geffner, 2000] presented
a heuristic search approach to search in the belief state. The problem of planning with
incomplete knowledge has been also addressed using logic programming. For example,
[Son et al., 2004b,a] presented a conditional planner which is capable of generating both
conditional plans and conformant plans in the presence of sensing actions. Similarly,
[Rintanen, 1999] developed an approach to translate the conditional planning to quantified
Boolean formulas.

Another line of research focuses on automatic Web Service Composition (WSC), where
most of the information must be acquired from Web services. ENQUIRER [Kuter et al.,
2004] is one of the examples of planners that can solve WSC problems. [Sohrabi et al.,
2006] proposed a technique for WSC using preference-based learning technique [Bien-
venu et al., 2006]. Similar to these approaches, other researchers have also developed
techniques for WSC using approaches such as CSP [Kaldeli et al., 2009], HTN [Lin et al.,
2008], and a combination of both HTN and CSP [Paik and Maruyama, 2007].

Our work differs from previous approaches in that it (i) assumes that the knowledge
provided from the Web is uncertain and therefore should find a plan that has the highest
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confidence value, (ii) iteratively adds knowledge to the planning problem as new instances
are needed to solve the problem, (iii) does not rely on any specific Web services and is
designed to query the Web for any type of knowledge that can be encoded as instances of
predicates.

7.8 Budget-Sensitive Query Evaluation

Method
Is it test-time

budget sensitive?

Can it handle
multiple test-time

budget without
retraining?

Cascades [Raykar et al., 2010; Saberian and Vascon-
celos, 2010; Chen et al., 2012]

No No

CSTC [Xu et al., 2013] No No
AskMSR [Azari et al., 2004, 2012] No No
Kanani & McCallum [Kanani and McCallum, 2012] No No
GreedyMiser [Xu et al., 2012] Yes No
Karayev et al. [Karayev et al., 2013] Yes No
Weiss & Taskar [Weiss and Taskar, 2013b] Yes No
AskWorld [our approach] Yes Yes

Table 7.1: Comparison of characteristics of recently proposed feature-cost sensitive learn-
ing methods. The method presented in this thesis is the only one which is both test-time
budget sensitive, and is flexible enough to handle multiple test-time budgets without re-
training.

Our work in Chapter 3 leverages and extends some of the ideas explored by the pre-
vious work such as stacked classification [Wolpert, 1992b], learning classifier cascades
[Saberian and Vasconcelos, 2010], active sensing and classification, learning under test-
time budget, and dynamic feature selection. To explain the relationship between our
AskWorld system and the previous work, we can think of KI as a classifier, with each
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predicate-specific confidence from an expert becoming a feature in this classifier. Please
note that overall, we can think of this as a classification problem with cost incurred during
feature computation, and the cumulative cost upper bounded by a user specified limit. In
this setting, the test-time budget may vary from one query to another, and hence the sys-
tem should be flexible enough to handle such varying test-time budget constraints. In this
section, we briefly describe related research on cost-sensitive feature acquisition and draw
their connection to AskWorld.

Stacked classifiers aim at integrating classification scores from multiple baseline clas-
sifiers to produce the final classification [Wolpert, 1992b]. Even though this is very rele-
vant for AskWorld, prior research in stacked classification has ignored any budget consid-
erations, and hence they are not directly applicable to AskWorld. There is considerable
previous work in the literature focusing on cascaded classifiers [Saberian and Vasconce-
los, 2010]. The main idea behind these works is the fact that instead of acquiring all the
features at once, one can acquire the inexpensive features at a very early stage and reject
a set of test samples for which the classifier has a high confidence classification using
only those inexpensive features. These algorithms iteratively acquire new features at each
stage and reject some of the input test examples. This mechanism enables us not to ac-
quire the most expensive features for the majority of test examples, and therefore reduces
the effective average test cost. Early work on the cascaded classifiers focused on real-
time object detection systems and assumed that all of the features have the same feature
cost [Viola and Jones, 2001; Bourdev and Brandt, 2005; Zhang and Viola, 2007]. Raykar
et al. [Raykar et al., 2010] extended the cascaded algorithms by jointly training different
stages (i.e., classifiers) and reflecting the tradeoff between cost and accuracy during train-
ing. Saberian and Nuno extended Raykar et al.’s work by providing a precise mathematical
model for cascade [Saberian and Vasconcelos, 2010]. Different from Raykar’s work that
pre-assigns features to cascade stages, Chen et al. proposed an algorithm that make the
order of the feature extraction part of the training process [Chen et al., 2012]. However,
none of these methods guarantee test classification within a pre-defined time budget and
can not be directly applied to AskWorld.

Similar to the work on the cascaded classifiers, an approach that builds a rich family
of classifiers during training which may vary in the computational cost (including cost
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of computing feature values) is presented in [Gao and Koller, 2011]. During test time,
the algorithm uses a myopic “value-of-information” computation to iteratively select base
classifiers whose opinions should be integrated to classify the input test instance. Part of
this model is learned during test time which introduces an additional cost during the test
time. Unfortunately, this can be prohibitively expensive in the setting in which AskWorld
operates.

Different from the above work, that stages feature extraction into linear cascades, Xu
et al. [Xu et al., 2013] proposed a cost-sensitive tree of classifiers [Tan, 1993] which is a
set of classifiers represented as a decision tree (each node is a classifier). During training,
a decision tree is constructed to reduce the average test time of classification (including
feature acquisition cost) while maximizing the accuracy. During the test, each node in the
decision tree has a threshold which is used to send the input instance to different parts
of the tree. A weight vector is also assigned to each node used for class prediction. The
decision tree is constructed in a way that allocates higher feature budgets to infrequently
traveled tree-paths. Unfortunately, this method is also not test-time budget sensitive.

To overcome this limitation, Xu et al. [Xu et al., 2012] proposed an algorithm that
optimizes the cost-accuracy tradeoff by assuming that the test-time budget is known in
advance during the training. Instead of the “early exit” assumption that lies behind most
of the techniques on the classifier cascades, Xu et al. proposed an approach that builds a
set of weak classifiers that uses the exact input test budget to classify a test instance (it is
guaranteed that they provide an answer within the fixed test time budget). Similar to this
work, Karayev et al. [Karayev et al., 2013] proposed a reinforcement learning approach
that dynamically selects features which maximize the reward function. The reward is
defined as the function of the information gain and the cost of each feature. Both of these
techniques need to know the specific test-time budget in advance for training. Therefore,
their applicability is limited when a different time budget is given as an input during the
test. AskWorld aims to overcome this shortcoming by being flexible enough to handle
varying test-time budgets without model retraining.

Similar to these works but applied in a question answering framework, Azari et al. [Azari
et al., 2004, 2012] studied how to efficiently learn querying policies in a Web-based ques-
tion answering system. Their system, AskMSR, first generates a set of Bayesian models
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that can predict the accuracy of answers that are extracted for a given question. They then
deploy a system which is able to dynamically control the number of queries that should be
issued to the search engine. Their model is based on optimizing the net expected value of
queries, computed as the difference of the expect value and cost. The AskMSR has many
limitations: (i) all of the queries should have the same cost, (ii) only the optimal num-
ber of queries is computed in the model, without specifying the list of queries, and (iii)
the learning algorithm optimizes the expected cost without considering the input budget
constraint.

The prior research most relevant to ours is the method presented in [Weiss and Taskar,
2013b], where reinforcement learning techniques are used to learn a policy for feature
selection under a specific test-time budgets. Even though a relaxation to handle varying
test-time budget is presented in the same paper, it is not clear if any test-time budget can be
complied with in the relaxed version of their model. It is worth mentioning that Kanani and
McCallum [Kanani and McCallum, 2012] also presented a similar reinforcement learning
approach to automatically correct the uncertain or missing content in a database. In their
MDP formulation, the state of the database is represented by the states in the MDP where
the actions determine how to extract information from the Web in order to fill missing slots
in the database. Learning a policy without considering the budget constraint is the main
drawback of this approach (the budget is used only during the plan execution). AskWorld
aims to overcome these shortcomings by being able to handle in a principled manner vary-
ing test-time budget constraints without the need for retraining. It is worth mentioning that
our work is also (loosely) related to some other work in task allocation in crowdsourcing
systems [Karger et al., 2011; Chen et al., 2013a], information retrieval systems [Arnt et al.,
2004], and timed zero-sum games [McMillen and Veloso, 2007].

7.9 How Our Work Fits

This thesis builds upon and deviates from several concepts in this array of related work:

• We study the problem of extracting information from the Web while a limited amount
of time is given to our IE system.
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• We assume that no ontology is provided as an input to our IE technique.

• We study how to make our IE techniques flexible enough to handle varying test-time
budget constraints.

• We study the problem of integrating knowledge from different knowledge harvesting
systems.

• We assume sources that are used for information extraction have different levels of
credibility which affect the correctness of the information that they provide.

• We study how we can easily incorporate prior credibility knowledge into our IE
system, and how to assign interpretable credibility scores to sources.

• We assume that our IE technique receives a feedback from an agent about the knowl-
edge that it has provided. Our ClaimEval approach provides a flexible framework to
incorporate this feedback to improve the accuracy of our IE technique.

• We study how our technique can be used in anytime applications. We measure the
accuracy of our technique not only by testing it on a set of benchmarks, but also on
how it performs on the applications.

• We study the problem of planning with incomplete information, and how to estimate
and retrieve the missing relevant knowledge.

• We study how to learn background knowledge about the environment for a mobile
robot by querying the Web.
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Chapter 8

Conclusion

This dissertation seeks to answer the following question:
How can we build budget-sensitive, knowledge-on-demand models for jointly estimat-

ing the credibility of sources and the validity of queried claims using unstructured web
information?

In this concluding chapter, we summarize the contributions that we have presented to
answer this question, and to identify some future directions for research.

8.1 Thesis Contributions

• Chapter 2: Anytime Approach for Web Information Query Evaluation

– A novel and fully automated technique, called OpenEval, that learns to eval-
uate the correctness of an input predicate instance using the Web. OpenEval
requires a limited number of training data, in terms of seed examples and input
ontology.

– An approach for automatically enriching the input training data by extracting
context words from the Web for the initial input seed examples. We present
a new algorithm for the automatic detection of the main content block of any
unstructured webpage.
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– A learning approach that iteratively re-trains a set of classifiers in order to
minimize the error of OpenEval. We formally define the entropy value of each
trained classifier, and show that the iterative minimization of entropy values
can help to improve the accuracy of the OpenEval approach. Our model also
demonstrates that the accuracy of responses from OpenEval increases as more
time is given for evaluation.

– An approach for automatically exploring information on the Web in order to
disambiguate the input query instance (i.e., word sense disambiguation) during
the test time.

– Experimental results showing that performance (F1 score) of the OpenEval
approach is 2-4 times better than related techniques, in particular PMI and
weakly-supervised classification approach [Zhang, 2004].

– The use of OpenEval in three different domains: robotics, drug discovery, and
password-generation programs, and experimental results showing that OpenEval
is able to correctly validate the correctness of new predicate instances for each
of these domains.

– The use of OpenEval for the DrugBank, which is a comprehensive database
containing information on drugs and drug targets. We show that by using
OpenEval, errors in the database can be quickly identified and fixed. In par-
ticular, we show that OpenEval is able to detect the drug entries that were
FDA-approved upon entry creation, but were never updated to reflect subse-
quent FDA withdrawls.

– The use of OpenEval in the Never-Ending Language Learning (NELL) system,
and experimental results showing that OpenEval greatly improves the accuracy
of NELL.

• Chapter 3: Knowledge Integration and On-Demand Time-Budgeted Query
Answering

– A novel Knowledge-on-Demand (KoD) service, called AskWorld, that aggre-
gates opinions from multiple knowledge resources to return the most accurate
response to a query.
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– A budget-sensitive approach that is designed to provide a best-effort response
within the time-budget specified by the user or the application. To the best of
our knowledge, AskWorld is the first KoD system of its kind that is flexible
enough to handle varying test-time budget constraints without model retrain-
ing. AskWorld achieves this by posing the problem as learning a policy in a
Markov Decision Process (MDP).

– Experimental results showing that the accuracy of AskWorld improves when
the system is allowed to issue queries corresponding to the non-query predi-
cates in the Ontology, that is, predicates other than the one given in its input
query.

– Extensive experiments on real-world datasets demonstrate the effectiveness of
the AskWorld approach by outperforming the state-of-the-art approaches.

• Chapter 4: Measuring Credibility of Sources and Extracting Reasons

– A novel and fully-integrated technique, called ClaimEval. Input to ClaimEval
is the prior credibility assessment knowledge, and a set of claims, where the
truth values of a few of them, is known. ClaimEval then evaluates the truth of
a set of unlabeled claims by automatically crawling the relevant information
from the Web (using the OpenEval approach), building the CA graph, calcu-
lating the credibility of sources, and incorporating the calculated credibility
scores to validate the truth of the claims. ClaimEval is an extension of the
OpenEval approach where it jointly estimates the credibility of sources and the
correctness of claims. The accuracy of OpenEval significantly improves by
incorporating the credibility score of information sources using the ClaimEval
approach.

– The use of Probabilistic Soft Logic (PSL) [Kimmig et al., 2012; Broecheler
et al., 2010] in the ClaimEval approach, resulting in a flexible and principled
framework for joint credibility estimation and claim evaluation. In contrast to
previous approaches, ClaimEval has the following three properties: (1) ease of
incorporation of prior knowledge, (2) guaranteed convergence, and (3) inter-
pretable credibility scores. To the best of our knowledge, ClaimEval is the first
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such integrated system of its kind.

– The experimental results on real-world data demonstrating the effectiveness of
ClaimEval compared to the state-of-the-art approaches.

• Chapter 5: Using the Web to Interactively Learn to Find Objects

– The use of OpenEval to learn background knowledge about the environment
by querying the Web, and in particular to evaluate the probability of predicate
locationHasObject.

– An approach for finding and delivering objects that dynamically instantiates a
utility function using the results of a Web query, and which interactively learns
about the physical environment by getting feedback from humans.

– A demonstration of our system, enabling CoBot to find and fetch objects in a
real-world environment.

• Chapter 6: Iterative Query-Based Open World Planning

– An automated planning approach, called Open World Planner, that actively
queries the Web to add needed knowledge until the planner solves the planning
problem. Our open-world planning algorithm estimates the relevant knowledge
to the state of a planning problem, retrieves it from the Web, and iteratively
adds it to a classical planner.

– Experimental results on a trip planning domain show that our technique is able
to plan a trip for a variety of different problems, when no knowledge is given
as input to the planner.

8.2 Future Research Directions

There are many promising directions for future research that are identified in this thesis.
Some of them are discussed briefly below:
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• Sampling negative examples: To train a classifier for predicate p, OpenEval needs to
extract a set of positive and negative Context-Based Instances (CBI). Positive CBIs are
obtained from the input seed examples of predicate p by searching the Web and pro-
cessing the retrieved unstructured web pages. Negative CBIs are obtained by randomly
sampling a set of CBIs for predicates that are mutually-exclusive to predicate p. There
is a trade-off on the number of negative examples that should be used. If the negative
examples heavily outnumber the positive examples, then the classifier will have a bi-
ased classification toward the negative class. On the other hand, by sampling a small
portion of CBIs from all other mutually-exclusive predicates, we may lose some of the
important negative examples that are needed to reduce the error of the classifier on an
unseen test example. Drawing on different concepts that have been used in the machine
learning community to sample a subset of negative examples [Robert et al., 1997; Kubat
and Matwin, 1997; Akbani et al., 2004; Hong et al., 2007], it can be studied whether the
accuracy of OpenEval will be improved by using a smarter strategy to select negative
examples.

• Detecting duplicated predicates: To be able to scale up OpenEval, we also need to
consider whether a new input predicate already exists in the current list of predicates
that OpenEval is trained on. This is especially important since different names can be
used to refer to the same concept. For example, predicates such as located-at or place-
of may both refer to the same concept. Detecting similarity between predicates can be
performed by considering ideas such as measuring the cosine similarity of CBIs that are
extracted for different predicates.

• Anytime aspect: We have shown how OpenEval can effectively formulate several
search queries to explore/exploit available information on the Web within a given time
frame. We envision the anytime aspect of OpenEval to be further extended by using
other factors such as the credibility of sources. Given a limited amount of time that
is provided to OpenEval, we propose that it is more efficient to start processing the
webpages which we trust the most. For example, given a limited time to measure the
correctness of an input proposition, it may make more sense to start processing the
wikipedia webpages compared to blogs since wikipedia is considered in general to be
more trustworthy. One area for future research is to use our credibility assessment ap-

169



proach to decide the order of webpages that should be crawled and processed.

• Incorporating feedback: One of the main purposes of designing OpenEval is to pro-
vide knowledge for an agent. In Chapter 5, we showed a scenario when CoBot starts
performing a task in an unknown environment where it does not have any information
about the location types in the environment. We showed that CoBot is able to learn
the location of objects by randomly moving in the environment, getting feedback from
humans, and providing feedback to OpenEval. We further showed that our flexible
ClaimEval approach is able to incorporate feedback in a principled way. Our approach
can be extended by studying the type of feedback OpenEval can get from an agent and
how to use this feedback. In particular, the following ideas can be explored: (i) Enabling
OpenEval to self-recognize the predicates that need more training examples and to ask
the agent to get feedback and provide new examples for such predicate (e.g., OpenEval
can ask CoBot to go to the kitchen and check if coffee exists in the kitchen), (ii) feedback
that is provided by humans might be noisy (e.g., error of speech-to-text component) or
useful only in a specific environment (e.g., cooking pan is not expected to be found in
kitchens in Gates Hillman Center, but is expected to be found in a kitchen in a restau-
rant). A flexible approach should assign a weight to each feedback that it receives, e.g.,
weights can be assigned based on the confidence of the agent on the feedback that it has
provided.

• Extending Open World Planner: In Chapter 6, we developed a novel approach that
automatically solves a planning problem by iteratively sending queries to OpenEval
and acquiring knowledge that is relevant to the planning problem from the Web. Our
experimental results show that our approach is able to plan a trip, when no knowledge is
given as an input to the planner. In future work, a set of intensive experiments could be
performed to show how our planner performs on different problems and domains. The
Open World Planner approach can be further extended to include the knowledge that is
relevant to both the initial and goal state.

• Extending the credibility assessment approach: In Chapter 4, we explained the de-
tails of our credibility assessment graph. Our approach can be further extended to esti-
mate the trust score of a given website by considering a set of criterion that are defined
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by users, e.g., researchers [Corritore et al., 2003; Cyr, 2008] have shown that the rep-
utation of the author and design of the website can be used to measure the trust score
of a website. Future work can study which factors should be used in OpenEval given
the design principle of OpenEval which is to provide knowledge in anytime aspect. The
value of the criteria that are used to measure the trust should be efficiently computable
to be used in anytime applications.

• Improving credibility assessment algorithm: In Chapter 4, we explained the detail
of our credibility assessment algorithm for jointly estimating credibility of sources and
correctness of claims. ClaimEval uses Probabilistic Soft Logic (PSL), resulting in a
flexible and principled framework which makes it easy to state and incorporate different
forms of prior-knowledge. Although it is shown that the inference using probabilistic
soft logic can be done in the polynomial time, the inference algorithm is still inefficient
to be applied on large graphs. Future work should improve the efficiency of our credi-
bility assessment algorithm and study properties of the algorithm such as convergence
speed.

8.3 Concluding Remarks

In this thesis, we have introduced several information extraction models and approaches
for learning to respond to the truth of facts using unstructured web information. We have
focused on information extraction tasks initiated as queries from either automated agents
or humans. We have evaluated our algorithms on a wide range of predicates chosen ran-
domly from sources such as Freebase, NELL, and Wikipedia. We have also demonstrated
that our information extraction techniques can be used to provide knowledge to anytime
intelligent agents, in particular, for a find-deliver task in a real mobile robot (CoBot) and
for a trip planner agent.

171



172



Appendix A

Domains used in the Open World
Planner

This appendix contains the domains that we have used in our experiment for Open World
Planner in Chapter 6. The experiments are run on three different types of trip planning do-
mains with different levels of difficulties, which we present in the next. For each domain,
ten different problem instances, with different start and destination locations, are used in
our experiments.

A.1 Domain 1

In the first domain, our goal is to travel to a destination city and book a hotel in the city.

(define (domain trip-planning)
(:requirements :strips)
(:predicates
(city ?x) (in-city ?x) (hotel ?x) (hotel-in-city ?x ?y) (booked-hotel ?x ?y))

(:action book-hotel
:parameters (?x ?y)
:precondition (and
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(in-city ?x)
(hotel ?y)
(hotel-in-city ?y ?x))

:effect (and (booked-hotel ?y ?x)))

(:action travel-city
:parameters (?x ?y)
:precondition (and

(in-city ?x)
(city ?y))

:effect (and
(in-city ?y)
(not (in-city ?x))

)))

A.2 Domain 2

In the second domain, we consider planning a trip to a destination city where the planner
should also find a hotel and two attractions.

(define (domain trip-planning)
(:requirements :strips)
(:predicates
(trip-planned ?x ?y) (city ?x) (in-city ?x) (hotel ?x)
(hotel-in-city ?x ?y) (booked-hotel-in-city ?x ?y)
(museum-in-city ?x ?y) (museum ?x) (visited-attraction-in-city ?x ?y)
(zoo-in-city ?x ?y) (zoo ?x) (city-has-beach ?x))

(:action Visit˙Museum
:parameters (?museum ?city)
:precondition
(and
(museum-in-city ?museum ?city)
(museum ?museum)
(in-city ?city)
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(city ?city))
:effect
(and (visited-attraction-in-city ?museum ?city)))

(:action Visit-Zoo
:parameters (?zoo ?city)
:precondition
(and
(in-city ?city)
(city ?city)
(zoo ?zoo)
(zoo-in-city ?zoo ?city))

:effect
(and (visited-attraction-in-city ?zoo ?city) ))

(:action Go-to-Beach
:parameters (?city)
:precondition
(and
(city ?city)
(in-city ?city)
(city-has-beach ?city))

:effect
(and (visited-attraction-in-city Beach ?city)))

(:action Book-Hotel
:parameters (?city ?hotel)
:precondition
(and
(hotel ?hotel)
(city ?city)
(hotel-in-city ?hotel ?city))

:effect
(and (booked-hotel-in-city ?hotel ?city)))

(:action Travel-To-City
:parameters (?x ?y)
:precondition
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(and
(in-city ?x)
(city ?y))

:effect
(and
(in-city ?y)
(not (in-city ?x))

))

(:action Plan-A-Trip
:parameters (?srcCity ?destCity ?attrA ?attrB ?hotel)
:precondition
(and
(city ?srcCity)
(city ?destCity)
(in-city ?destCity)
(visited-attraction-in-city ?attrA ?destCity)
(visited-attraction-in-city ?attrB ?destCity)
(booked-hotel-in-city ?hotel ?destCity)
(not (= ?attrA ?attrB)))

:effect

(and (trip-planned ?srcCity ?destCity))))

A.3 Domain 3

In the third domain, our goal is to find a trip starting from an initial city to a destination
city where another city is visited in between (the planner should find two attractions and
one hotel in each city).

(define (domain trip-planning)
(:requirements :strips)
(:predicates
(trip-planned ?x ?y) (city ?x) (in-city ?x) (hotel ?x)
(hotel-in-city ?x ?y) (booked-hotel-in-city ?x ?y)
(museum-in-city ?x ?y) (museum ?x) (visited-attraction-in-city ?x ?y)
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(visited-city ?x) (zoo-in-city ?x ?y) (zoo ?x) (city-has-beach ?x))

(:action Visit˙Museum
:parameters (?museum ?city)
:precondition
(and
(museum-in-city ?museum ?city)
(museum ?museum)
(in-city ?city))

:effect
(and
(visited-attraction-in-city ?museum ?city)))

(:action Visit-Zoo
:parameters (?zoo ?city)
:precondition
(and
(in-city ?city)
(zoo ?zoo)
(zoo-in-city ?zoo ?city))

:effect
(and
(visited-attraction-in-city ?zoo ?city)))

(:action Go-to-Beach
:parameters (?city)
:precondition
(and
(in-city ?city)
(city-has-beach ?city))

:effect
(and
(visited-attraction-in-city Beach ?city)))

(:action Book-Hotel
:parameters (?city ?hotel)
:precondition
(and
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(hotel ?hotel)
(city ?city)
(hotel-in-city ?hotel ?city))

:effect
(and
(booked-hotel-in-city ?hotel ?city)))

(:action Travel-To-City
:parameters (?x ?y ?z)
:precondition
(and
(in-city ?x)
(city ?y)
(booked-hotel-in-city ?z ?y))

:effect
(and
(in-city ?y)
(not (in-city ?x))))

(:action Visit-Attractions-City
:parameters (?city ?attrA ?attrB)
:precondition
(and
(in-city ?city)
(visited-attraction-in-city ?attrA ?city)
(visited-attraction-in-city ?attrB ?city)
(not (= ?attrA ?attrB)))

:effect
(and
(visited-city ?city)))

(:action Plan-Trip
:parameters (?srcCity ?destCity1 ?destCity2)
:precondition
(and
(visited-city ?destCity1)
(visited-city ?destCity2)
(in-city ?destCity2)
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(not (= ?destCity1 ?destCity2))
(not (= ?destCity1 ?srcCity))
(not (= ?destCity2 ?srcCity)))

:effect
(and
(trip-planned ?srcCity ?destCity2)))

)
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