Beating a Defender in Robotic Soccer: Memory-Based
Learning of a Continuous Function

Peter Stone and Manuela Veloso

December 11, 1995
CMU-CS-95-222

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Learning how to adjust to an opponent’s position is critical to the success of having intelligent agents
collaborating towards the achievement of specific tasks in unfriendly environments. This paper describes
our work on developing methods to learn to choose an action based on a continuous-valued state attribute
indicating the position of an opponent. We use a framework in which teams of agents compete in a simulator
of a game of robotic soccer. We introduce a memory-based supervised learning strategy which enables an
agent to choose to pass or shoot in the presence of a defender. In our memory model, training examples affect
neighboring generalized learned instances with different weights. We conduct experiments in which the agent
incrementally learns to approximate a function with a continuous domain. Then we investigate the question
of how the agent performs in nondeterministic variations of the training situations. Our experiments indicate
that when the random variations fall within some bound of the initial training, the agent performs better
with some initial training rather than from a tabula-rasa.

This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command,
USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330. The views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Wright Laboratory or the U. S.
Government.

Keywords: Robotic Soccer, Memory-Based Learning, Incremental Learning, Adaptive Learning, Continuous-
function Learning

1 Introduction

One of the ultimate goals subjacent to the development of intelligent agents is to have multiple agents
collaborating in the achievement of specific tasks in the presence of hostile opponents. Our research works
towards this broad goal from a Machine Learning perspective. We are particularly interested in investigating
how an individual intelligent agent can choose an action in an adversarial environment. We assume that the
agent has a specific goal to achieve. We conduct this investigation in a framework where teams of agents
compete in a game of robotic soccer. The real system of model cars remotely controlled from off-board
computers is under development. Our research is currently conducted in a simulator of the physical system.

Both the simulator and the real-world system are based closely on systems designed by the Laboratory
for Computational Intelligence at the University of British Columbia [5]. In particular, our simulator’s
code is adapted from their own code, for which we thank Michael Sahota whose work [8] and personal
correspondence [7] has been motivating and invaluable. The simulator facilitates the control of any number
of cars and a ball within a designated playing area. Care has been taken to ensure that the simulator models
real-world responses (friction, conservation of momentum, etc.) as closely as possible. A graphic display
allows the researcher to watch the action in progress, or the graphics can be toggled off to speed up the rate
of the experiments. Figure 1 shows the simulator graphics.

We have focused on the question of learning to choose among actions in the presence of an adversary.
This paper describes our work on applying memory-based supervised learning techniques to acquire strategy
knowledge that enables an agent to decide how to achieve a goal. For other work in the same domain, please
see [12, 13].

The input to the learning task includes a continuous-valued range of the position of the adversary. This
raises the question of how to discretize the space of values into a set of learned features. We present our
empirical studies and results on learning an appropriate generalization degree in this continuous-valued space.
Due to the cost of learning and reusing a large set of specialized instances, we notice a clear advantage to
having an appropriate degree of generalization.

Next, we address the issue of the effect of differences between past episodes and the current situation. We
performed extensive experiments, training the system under particular conditions and then testing it (with
training continuing incrementally) in nondeterministic variations of the training situation. Our results show
that when the random variations fall within some bound of the initial training, the agent performs better
with some initial training rather than from a tabula-rasa. This intuitive fact is interestingly well- supported
by our empirical results.

The paper is organized in five sections. Section 2 describes the memory-based learning method and the
experimental setup. Section 3 presents and discusses the results obtained. Section 4 discusses related work
and our own directions for future work. Section 5 summarizes our conclusions.

2 Learning Method

The learning method we develop here applies to an agent trying to learn a function with a continuous
domain. We situate the method in the game of robotic soccer.

2.1 Motivation

Imagine yourself on a soccer field with the ball at your feet, 25 yards from the opponents’ goal. There is a
single defender (the goalie) between you and the goal, and a teammate of yours is off to one side, unmarked,
and ready to receive a pass. Imagine also, if you must, that you are a skilled soccer player, and that you
enjoy playing the game immensely. You would like nothing more than to help your team score a goal.

In this situation, you have two options: shoot the ball directly at the goal or pass the ball to your
teammate so that she can take a shot. The first time you find yourself in this situation, you do not know
what to do. You randomly decide to shoot or to pass and you take note of the result. As you continue to
play, however, you find yourself back in the same position repeatedly. You are in the same position with
the ball, and you have a teammate in the same position ready to receive a pass. The only difference is
that the defender’s starting position is never quite the same. Furthermore, since you and your teammate

> Q
&

Figure 1: On the left is the graphic view of our simulator. On the right is the initial position for all of the
experiments in this paper. The teammate (black) remains stationary, the defender (white) moves in a small
circle at different speeds, and the ball can move either directly towards the goal or towards the teammate.
The position of the ball represents the position of the learning agent.

are remarkably consistent in your abilities, the ball travels along the same path every time you shoot; even
when you pass the ball, your teammate redirects it in the same way every time. That is, the ball’s motion
is completely deterministic once you have either shot or passed it.

In contrast, the defender is continuously moving in front of the goal, and his motion may or may not
be deterministic. At first you shoot or pass randomly, but after a few successful attempts, you begin to
learn, based on the defender’s position, whether to shoot or to pass. Even if the defender’s motion is in
fact deterministic, you can never be entirely sure of scoring unless you have scored before when the defender
started in ezactly the same position.

2.2 Experimental Setup

We simulate this situation by placing a ball and a stationary car acting as the “teammate” in specific places
on the field. Then we place another car, the “defender,” in front of the goal. The defender moves in a small
circle in front of the goal at some speed and begins at some random point along this circle. The learning
agent (“you”) must take one of two possible actions: shoot straight towards the goal, or pass to the teammate
so that the ball will rebound towards the goal. A snapshot of the experimental setup is shown graphically
in Figure 1.

The task is essentially to learn two functions, each with one continuous input variable, namely the
defender’s position. Based on this position, which can be represented unambiguously as the angle at which
it is facing, ¢, the agent tries to learn the probability of scoring when shooting, P*(¢), and the probability of
scoring when passing, P, (¢).1 If these functions were learned completely, which would only be possible if the
defender’s motion were deterministic, then both functions would be binary partitions: P, Py : [0.0,360.0) —
{—1,1}.2 That is, the agent would know without doubt for any given ¢ whether a shot, a pass, both, or
neither would achieve its goal. However, since the agent cannot have had experience for every possible ¢, and
since the defender may not move at the same speed each time, the learned functions must be approximations:
P,,P,: [0.0,360.0) — [—1.0,1.0].

In order to enable the agent to learn approximations to the functions P and P, we gave it a memory
in which it could store its experiences and from which it could retrieve its current approximations Ps(¢) and
P,(¢). We explored and developed appropriate methods of storing to and retrieving from memory and an
algorithm for deciding what action to take based on the retrieved values.

1 As per convention, P* represents the target (optimal) function.

2 Although we think of P¥ and P} as functions from angles to probabilities, we will use -1 rather than 0 as the lower bound

of the range. This representation simplifies many of our illustrative calculations.

2.3 Memory Model

Storing every individual experience in memory would be inefficient both in terms of amount of memory
required and in terms of generalization time. Therefore, we store Py and P, only at discrete, evenly-spaced
values of ¢. That is, for a memory of size M (with M dividing evenly into 360 for simplicity), we keep
values of P,(0) and P, () for § € {360n/M | 0 < n < M}. We store memory as an array “Mem” of size M
such that Mem{[n] has values for both P,(360n/M) and P,(360n/M). Using a fixed memory size precludes
using memory-based techniques such as K-Nearest-Neighbors (kNN) and kernel regression which require that
every experience be stored, choosing the most relevant only at decision time. Most of our experiments were
conducted with memories of size 360 (low generalization) or of size 18 (high generalization), i.e. M = 18 or
M = 360. As will be seen from our results, the memory size had a large effect on the rate of learning.

2.3.1 Storing to Memory

With M discrete memory storage slots, the problem then arises as to how a specific training example should
be generalized. Training examples are represented here as Fy , -, consisting of an angle ¢, an action a, and
a result r where ¢ is the initial position of the defender, a is “s” or “p” for “shoot” or “pass,” and r is “1”
or “1” for “goal” or “ miss” respectively. For instance, 73 3451 Tepresents a pass resulting in a goal for
which the defender started at position 72.345° on its circle.

The most straightforward technique would be to store the result at the single memory slot whose index
is closest to ¢, i.e., round ¢ to the nearest # for which Mem/[f] is defined, and then set P,(f) = r. However,
this technique does not provide for the case in which we have two training examples Fg, 1 and Fg, o 1,
where ¢, and ¢3 both round to the same . In particular, there is no way of scaling how indicative Fy , , is
of P,(0).

In order to combat this problem, we scale the value stored to P,(6#) by the inverse of the distance between

[¢—6]
360/M
before being stored to Mem[6]. In this way, training examples with ¢’s that are closer to 6 can affect

Mem|[6] more strongly. For example, with M = 18 (so Mem[f] is defined for § = 20n), E116.5,p,—1 causes
P,(120) to be updated by a value of —1 % (1 — 22) = —.825. Call this our basic memory storage technique:

¢ and 6 relative to the distance between memory indices. A result 7 at a given ¢ is multiplied by 1 —

20
Basic Memory Storage of E¢ 4, in Mem[d]
-6
or' =rx(l- 3@0/1\11)'

o If |r'| > | Pu(6)] Then Pu(8) =1’

Using this generalization function, the “update” of P,(120) would only have an effect at all if | P,(120)] <
.825 prior to this training example. Consequently, only the past training example for action a with ¢ closest
to 0 is reflected in P,(f): presumably, this training example is most likely to accurately predict P} (0).
Notice that this basic memory storage technique is appropriate when the defender’s motion is deterministic.

In order to handle variations in the defender’s speed, we introduce later a more complex memory storage
technique. The method of scaling a result based on the difference between ¢ and # will remain unchanged.

In our example above, E1165p —1 would not only affect Mem[120]: as long as |P,(100)| was not already
larger, its value would be set to —1 % (1 — %) = —.175. Notice that any training example Ey ,, with
83.5 < ¢ < 116.5 could override this value. Since 116.5 is so much closer to 120 than it is to 100, it
makes sense that E1165 4, affects Mem[120] more strongly than it affects Mem[100]. However, E11g4,r
would affect both memory values equally. This memory storage technique is similar to the kNN and kernel
regression function approximation techniques which estimate f(¢) based on f(f) possibly scaled by the
distance from @ to ¢ for the k nearest values of f. In our linear continuum of defender position, our memory
generalizes training examples to the 2 nearest memory locations.3

3 For particularly large values of M it is useful to generalize training examples to more memory locations, particularly at the
early stages of learning. However for the values of M considered in this paper, we always generalize to the 2 nearest memory
locations.

2.3.2 Retrieving from Memory

Since individual training examples affect multiple memory locations, we use a simple technique for retrieving
P,(¢) from memory when deciding whether to shoot or to pass. We round ¢ to the nearest ¢ for which
Meml|f] is defined, and then take P,(f) as the value of P,(¢). Thus, each Mem[f] represents P,(¢) for
6 —360/2M < ¢ < 0+ 360/2M. Notice that retrieval is much simpler when using this technique than when
using kNN or kernel regression: we look directly to the closest fixed memory position, thus eliminating the
indexing and weighting problems involved in finding the k closest training examples and (possibly) scaling
their results. We used this retrieval technique throughout our experiments, concentrating the trickiness of
our function learning at storage time.

2.4 Choosing an Action

The action selection method is designed to make use of memory to select the action most probable to succeed,
and to fill memory when no useful memories were available. For example, when the defender is at position
¢, the agent begins by retrieving P,(¢) and Py(¢) as described in Section 2.3.2. Then, it acts according to
the following function:

If Py(¢) = Ps(¢) (no basis for a decision), shoot or pass randomly.
else If P,(¢) > 0 and Pp(¢) > P.(¢), pass.
else If P.(¢) > 0 and Ps(¢) > Py(¢), shoot.
else If P,(¢) =0, (no previous passes) pass.
else If P.(¢) =0, (no previous shots) shoot.
else (Py(¢), Ps(¢) < 0) shoot or pass randomly.

An action is only selected based on the memory values if these values indicate that one action is likely to
succeed and that it is better than the other. If, on the other hand, neither value P,(¢) nor Ps(¢) indicate
a positive likelihood of success, then an action is chosen randomly. The only exception to this last rule is
when one of the values is zero,* suggesting that there has not yet been any training examples for that action
at that memory location. In this case, there is a bias towards exploring the untried action in order to fill
out memory.

3 Experiments and Results

In this section, we present the results of our experiments. We begin by finding an appropriate memory size
to use for this task. Then we explore our agent’s ability to learn time-varying and nondeterministic defender
behavior, introducing a more sophisticated memory storage technique.

While examining the results, keep in mind that even if the agent used the functions Pfand P, to decide
whether to shoot or to pass, the success rate would be significantly less than 100% (it would differ for different
defender speeds): there were many defender starting positions for which neither shooting nor passing led to
a goal (see Figure 2). For example, from our experiments with the defender moving at a constant speed of

= - -
'>74"\\
N
A\ ~ \
N ~ \
AN \\\ \
N < \
N SN el
< ~ o
(@ © e (d

Figure 2: For different defender starting positions (solid rectangle), the agent can score when a) shooting,
b) passing, ¢) neither, or d) both.

“Recall that a memory value of 0 is equivalent to a probability of .5, representing no reason to believe that the action will
succeed or fail.

50,% we found that an agent acting optimally scores 73.6% of the time; an agent acting randomly scores only
41.3% of the time. These values set good reference points for evaluating our learning agent’s performance.
We indicate the scoring rate of an optimally acting agent on our graphs.

In order to increase the optimal success rate, we also experimented with allowing the agent not to act
when F,, P, < 0 for a given defender position, i.e. when neither shooting nor passing was likely to work.
The agent then scored 100% of the time by waiting until the defender moved into a position in which scoring
was possible. In this setup, however, we had a difficult time collecting meaningful results, since the agent
learned how to score when the defender was in a single position and then only acted when it was near that
position. Therefore, we required the agent to act immediately.

3.1 Memory Size

Our first endeavor was to find an appropriate memory size for our task. Memory size corresponds to degree
of generalization of training data. We ran experiments with the defender moving at two different speeds and
with the agent having various memory sizes. Table 1 presents the results.

Success Rate Trials To Reach 70% Success Rate Trials To Reach 70%
M Spd. 10 Spd. 50 Spd. 10 Spd. 50 M Spd. 10 Spd. 50 Spd. 10 Spd. 50
1 44.1 35.7 - - 18 69.7 74.9 126 100
2 53.2 57.4 - - 20 71.9 71.1 297 139
3 70.6 66.1 155 - 24 67.3 74.7 219 100
4 60.8 68.7 - 100 30 72.9 74.5 166 319
5 65.2 69.3 - 100 36 73.7 75.1 153 189
6 61.4 75.5 - 100 40 74.4 74.4 319 315
8 67.5 74.1 - 100 45 72.8 76.0 465 362
9 68.8 72.2 - 448 60 71.4 76.2 461 100
10 64.4 69.0 - 100 180 75.8 74.3 655 821
12 68.5 72.0 100 100 360 73.5 74.0 1034 1080

Table 1: This table shows success rate during 1000 test trials after 1000 trials of training as well as the
number of training trials it took to reach a success rate of 70% overall (after at least 100 trials). Trials that
never reached the 70% mark are marked as “-”. The ideal memory size would exhibit a speed-independent
high success rate and quick learning rate (low number of trials to reach 70% success). The smaller memories
tend to learn quicker but not as well, while the larger memories learn better but more slowly.

These numbers show the tradeoff between better performance in the long run (larger memory), and
quicker learning (smaller memory). Smaller memories enable quicker learning due to the fact that the
retrieval slots are fixed. Notice that there is no memory size that is absolutely better than all others, but
there are certainly some sizes that are worse. From these trials we determined that, for this particular task,
a memory of size 18 is dense enough to give good performance and sparse enough to learn relatively quickly.
For the remainder of our experiments, we ran trials both with memories of size 18 and memories of size 360
in order to further compare the results. Repeatedly, we found that the smaller, more generalized memory
gave faster learning without sacrificing much long-term performance.

3.2 Adaptive Memory

Imagine yourself again as the agent in this setup. Suppose that you have a very important match to play
tomorrow and in your diligent way, you decide to learn for a single ball position whether it is best to pass
or to shoot. You convince your teammate to come and stand in the place where you plan to pass, and then
you convince your goalie to start in several different positions for two attempts: one shot and one pass. Of
course the goalie will move to try to block the ball, but being a consistent goalie, you know that she will
always move in the same way. Therefore you need only try shooting and passing once for each starting
position. After a short amount of time, you have learned perfectly whether you should shoot or pass when
the goalie is in a given position (with only a little error due to the necessity of rounding the goalie’s position
to the nearest position used for training).

5In the simulator, “50” represents 50 cm/s. We omit the units in the remainder of the paper.

The next day you turn up at the big game confident that if the ball is in your chosen spot, you will be
able to choose correctly whether to shoot or to pass. You know that the opposing goalie is just as consistent
as your own, so you believe that everything you learned yesterday should apply. But alas, your first attempt
at a shot—one that you were sure would score—is blocked by the opposing goalie. What happened? The
goalie’s behavior is still deterministic, but it has changed completely: the new goalie is slower than your
own. If you keep acting based on your experiences in practice, you are not going to score much, so you had
better start adapting your memory to the current situation.

The memory-based technique we have been using so far works well when the defender’s motion is deter-
ministic and remains unchanged over time. However, if some noise is added to the defender’s motion or if
the defender changes its speed over time, then we need to use a more powerful technique. The technique we
have used to this point converges monotonically since it assumes that once P;(f) has been learned perfectly
at a memory location, then P, need never change. If there is a training example £y , _1, then no number of
nearby conflicting examples Egpy oo01,4,1 Will alter the value in Mem[f].

In our current scenario, memory needs to be able to adapt in response to new conflicting examples.

In order to accommodate this requirement, we change our method of storing experiences to memory. We
[¢—8]
360/M°

storing the result of the experience with ¢ closest to 6, we now let each experience with § — 360/2M < ¢ <
6+ 360/2M affect Mem[0] in proportion to the distance |6 — ¢|. In particular, Mem([f] keeps running sums
of the magnitudes of scaled results, Mem[f].total-a-results, and of scaled positive results, Meml[].positive-
a-results, affecting P,(0), where “a” stands for “s” “p”

continue to scale the result of an experience Ey o, stored to Memlf] by 1 — but rather than only

fe or “p” as before. Then at any given time, P,(f) =
—14+2% I%(ﬁf;—m. The “-1” is for the lower bound of our probability range, and the “2%” is to scale
the result to this range. Call this our adaptive memory storage technique:

Adaptive Memory Storage of Ey 4, in Meml[6]

o7 =rx(1- Slgo_/ilf).

o Mem|[d].total-a-results += r’.

o If 7' > 0 Then Mem/[6].positive-a-resulis += r'.

o Pal0) = —1 42« BECATERE

For example, E110,,1 would set both total-p-results and positive-p-results for Mem[120] (and Mem[100]) to

0.5 and consequently P,(120) (and P,(100)) to 1.0. But then Ejs5, _1 would increment total-p-results for

Mem[120] by .75, while leaving positive-p-results unchanged. Thus P,(120) becomes —1 + 2 * % = —.2.
This method of storing to memory is effective both for time-varying concepts and for concepts involving

random noise. It performs better than the basic memory storage technique described earlier because it is

able to deal with conflicting examples within the range of the same memory slot.

Figure 3 demonstrates the effectiveness of adaptive memory when the defender’s speed changes. In all

Success Rate vs. Defender Speed: Memory Size = 360 Success Rate vs. Defender Speed: Memory Size = 18
T T T T T T 80 T T T T T

50 | R

; " 40 - First 1000 trials--adaptive —— =
40 ¢ First 1000 trials--adaptive —— . Next 1000 trials--adaptive --+-- .
35 | -~ Next1000 trials--adaptive -+ .] 1000 trials--basic = 5.
1000 trials--basic =~ S 30 - Theoretical optimum -
30 F Theoretical optimum -
25 L L L L L L L L 20 L L L L L L L L
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Defender Speed Defender Speed

Figure 3: For all trials shown in these graphs, the agent began with a memory trained for a defender moving
at constant speed 50. Adaptive memory outperforms basic memory for memories of size both 360 (left) and
18 (right). Since the basic memory does not change over time, the next 1000 trials produced the same results
as the first 1000, and therefore are not plotted.

of the experiments represented in these graphs, the agent started with a memory trained by attempting a

single pass and a single shot with the defender starting at each position # for which Mem[f] is defined and
moving in its circle at speed 50. We tested the agent’s performance with the defender moving at various
(constant) speeds.

Notice that in both graphs of Figure 3, basic memory causes performance to degrade as the defender’s
speed moves farther from 50. At the extremes, performance even becomes worse than random action, which
leads to roughly a 40% success rate. In contrast, with adaptive memory, the agent is able to unlearn the
training that no longer applies and approach optimal behavior: it re-learns the new setup. During the first
1000 trials the agent suffers from having practiced in a different situation (especially for the less generalized
memory, M = 360), but then it is able to approach optimal behavior over the next 1000 trials. Remember
that optimal behavior, represented in the graph, leads to roughly a 70% success rate, since at many starting
positions, neither passing nor shooting is successful. As in Table 1, we can see that the smaller memory
converges to Py more quickly than does the larger memory.

From these results we conclude that our adaptive memory can effectively deal with time-varying concepts.
It can also perform well when the defender’s motion is nondeterministic, as we show next.

3.3 Coping with Noise

To model nondeterministic motion by the defender, we set the defender’s speed randomly within a range.
For each attempt this speed is constant, but it varies from attempt to attempt. Since the agent observes only
the defender’s initial position, from the point of view of the agent, the defender’s motion is nondeterministic.

First, observe that this nondeterminism makes the task more difficult. The following table shows that
with either type of memory scheme, the agent performs significantly worse when the defender’s speed varies
than when it remaing constant.

Speed 50 (2000 trials) Speed 30-70 (4000 trials)

Memory Size Basic Memory Basic Memory | Adaptive Memory
18 70.3% 60.1% 64.0%
360 73.5% 60.9% 61.2%

Even with the advantages of twice as many trials in which to learn and of an adaptive memory, the agent
does not score as often when the defender’s speed varies nondeterministically.

This set of experiments was designed to test the effectiveness of adaptive memory when the defender’s
speed was both nondeterministic and different from the speed used to train the existing memory. The
memory was initialized in the same way as in Section 3.2 (for defender speed 50). We ran experiments using
both types of memory in which the defender’s speed varied between 10 and 50 or between 60 and 100. We
compared agents with trained memories against agents with initially empty memories as shown in Figure 4.

Success Rate vs. Trial #: M=18, Defender speed 10-50 Success Rate vs. Trial #: M=18, Defender speed 60-100

70 T T T T 70 T T T

65 [/« 65 1

60 60

55 55

50 10050 | (N 4

45 1 45 ¢ 4

407 4 407 g oo I il ==t 5g5—g&

No initial memory--basic —— No initial memory-basic ——

35 ¢ No initial memory--adaptive ——] 35 No initial memory--adaptive ——]

30 + Full initial memory--basic =—| 3 Full initial memory--basic —=—|
Full initial memory--adaptive —— Full initial memory--adaptive ——

25 : : 25
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Trial Number Trial Number

Figure 4: A comparison of the effectiveness of starting with an empty memory versus starting with a memory
trained for a constant defender speed (50) different from the defender speed during testing. The performances
of both adaptive and basic memories are plotted. Success rate is measured as goal percentage thus far.

Notice in both cases, the agents with full initial memories outperformed the agents with initially empty
memories in the short run. The agents learning from scratch did better over time since they didn’t have
any training examples from when the defender was moving at a fixed speed of 50 affecting their memories;

but at first, the training examples for speed 50 were better than no training examples. Adaptive memory
outperformed basic memory in both graphs.

Going back to the soccer scenario, practicing against a particular goalie is better than not practicing at
all, even if the opposing goalie moves randomly and differently from the training goalie. When you would
like to be successful immediately upon entering a novel setting, adaptive memory allows training in related
situations to be effective without permanently reducing learning capacity.

4 Related and Future Works

This work was inspired in large part by the Dynamo project at the University of British Columbia. In
particular, Kanazawa worked within this framework to learn when to shoot and when to pass using purely
analytical methods [3]. However, since there was no learning involved, the routines had to all be hand-coded.

Christiansen has done extensive work examining the difference between analytical and learning meth-
ods [2]. His recent work relates to learning actions in a single-player, continuous-valued environment with
static obstacles [16].

Aha and Salzberg use a memory-based approach to learn a continuous function without modelling the
physics of the system [1]. Their task, catching a ball, differs from ours in that it has more inputs, a continuous
output, and sharp nonlinearities, but they don’t attempt to adapt to changes in the environment or contend
with an adversary.

Sutton and Whitehead discuss the distinction between off-line and online learning [14]. As they point out,
online learning has the advantage of being able to cope with changing concepts. However online techniques
must be incremental so that they need not reprocess the entire training set every time a new example
is added. Sutton and Whitehead distinguish between “weakly incremental” and “strictly incremental”
techniques: the former require a limited amount of increased memory and computation for additional training
examples, while the latter need no increase. Like their examples of STAGGER, [10] and connectionist learning
methods, our adaptive memory is strictly incremental. Furthermore, unlike many memory-based algorithms
(as pointed out by Moore [6]) our adaptive memory is able to learn changing concepts to a certain extent.
However, it also captures the notion of resiliency as discussed by Schlimmer [11]: the more training examples
it has supporting a concept, the harder it is to unlearn that concept.

Previous work relating to learning changing concepts is reported in [4, 6, 9, 11]. Salganicoff’s work is
particularly interesting in that it introduces the notion of forgetting training examples based not on how
long ago they were introduced, but instead on how closely they correlate with recent examples [9]. We will
investigate using Salganicoff’s ideas in our future work. Complementary to algorithms that handle changing
concepts, there has been some research on adaptive algorithms that change the number of “neighbors” that
are used to predict the value of an unseen instance [15]. Notice that our adaptive memory automatically
captures this notion of locally adaptive algorithms by incorporating varying numbers of training examples
in the different memory slots based on the number of past examples in that region.

Future work on our research agenda includes simultaneous learning of the defender and the controlling
agent in an adversarial context. We will also explore learning methods with several agents where teams
are guided by planning strategies. In this way we will simultaneously study cooperative and adversarial
situations using reactive and deliberative reasoning.

5 Conclusion

Our experiments demonstrated that online, incremental, supervised learning can be effective at learning
functions with continuous domains. We found that the degree of generalization in memory affected the
speed of learning. Using a memory size appropriate to our task, we then saw that adaptive memory made
it possible to learn both time-varying and nondeterministic concepts. Finally, we demonstrated that short-
term performance was better when acting with a memory trained on a concept related to but different from
the testing concept, than when starting from scratch. This paper reports extensive experimental results on
our work towards multiple learning agents, both cooperative and adversarial, in a continuous environment.

Acknowledgements

We thank Justin Boyan for his helpful suggestions. This research is sponsored by the Wright Laboratory, Aeronautical
Systems Center, Air Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under
grant number F33615-93-1-1330. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of Wright Laboratory or the U. S. Government.

References

[1]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

David W. Aha and Steven L. Salzberg. Learning to catch: Applying nearest neighbor algorithms to dynamic
control tasks. In P. Cheeseman and R. W. Oldford, editors, Selecting Models from Data: Artificial Intelligence
and Statistics I'V. Springler-Verlag, New York, NY, 1994.

A. D. Christiansen, M. T. Mason, and T. M. Mitchell. Learning reliable manipulation strategies without initial
physical models. Robotics and Autonomous Systems, 8:7-18, 1991.

Keiji Kanazawa. Sensible decisions: Toward a theory of decision-theoretic information invariants. In Proceedings
of the Twelfth National Conference on Artificial Intelligence, pages 973-978, 1994.

A. Kuh, T. Petsche, and R.L. Rivest. Learning time-varying concepts. In Advances in Neural Information
Processing Systems 3, pages 183-189. Morgan Kaufman, December 1991.

Rod A. Barman Michael K. Sahota, Alan K. Mackworth and Stewart J. Kingdon. Real-time control of soccer-
playing robots using off-board vision: the dynamite testbed. In IEFE International Conference on Systems,
Man, and Cybernetics, pages 3690-3663, 1995.

A.W. Moore. Fast, robust adaptive control by learning only forward models. In Advances in Neural Information
Processing Systems 3. Morgan Kaufman, December 1991.

Michael Sahota. Personal correspondence, August 1994.

Michael K. Sahota. Real-time intelligent behaviour in dynamic environments: Soccer-playing robots. Master’s
thesis, University of British Columbia, August 1993.

Marcos Salganicoff. Density-adaptive learning and forgetting. In Proceedings of the Tenth International Con-
ference on Machine Learning, pages 276-283, 1993.

J.C. Schlimmer and R.H. Granger. Incremental learning from noisy data. Machine Learning, 1:317-354, 1986.

J.C. Schlimmer and R.H. Granger Jr. Beyond incremental processing: Tracking concept drift. In Proceedings
of the Fiffth National Conference on Artificial Intelligence, pages 502-507. Morgan Kaufman, Philadelphia, PA,
1986.

Peter Stone and Manuela Veloso. Broad learning from narrow training: A case study in robotic soccer. Technical
Report CMU-CS-95-207, Computer Science Department, Carnegie Mellon University, 1995.

Peter Stone and Manuela Veloso. Beating a defender in robotic soccer: Memory-based learning of a continuous
function. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural
Information Processing Systems 8, Cambridge, MA, 1996. MIT press.

Richard S. Sutton and Steven D. Whitehead. Online learning with random representations. In Proceedings of
the Tenth International Conference on Machine Learning, pages 314-321, 1993.

Dietrich Wettschereck and Thomas Dietterich. Locally adaptive nearest neighbor algorithms. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages 184-191,
San Mateo, CA, 1994. Morgan Kaufmann.

Nathaniel S. Winstead and Alan D. Christiansen. Pinball: Planning and learning in a dynamic real-time
environment. In AAAI-94 Fall Symposium on Control of the Physical World by Intelligent Agents, pages 153—
157, New Orleans, LA, November 1994.

