Robot Planning for Achieving Multiple
Independent Tasks with Discrepancies through
Model Decomposition and Augmentation

Anahita Mohseni Kabir
CMU-RI-TR-21-66

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

August 26, 2021

Thesis Committee:
Manuela Veloso, co-chair
Maxim Likhachev, co-chair
Henny Admoni
Sonia Chernova, Georgia Institute of Technology

Copyright © 2021 Anahita Mohseni Kabir. All rights reserved.






To my family, especially my brother, Arman.






Abstract

This thesis focuses on robotics applications where a robot is required to accomplish
a set of tasks that are partially observable and evolve independently of each other
according to their dynamics. One such domain is decision-making for a robot waiter
waiting tables at a restaurant. The robot waiter should take care of an ongoing stream
of requests, namely serving a number of tables, including delivering food to the
tables and checking on customers. An action that the robot should take next at any
point of time depends on the duration of possible actions, the state of each table,
and how these tables evolve over time, e.g., the food becomes cold after a few time
steps. A conventional approach to deal with this problem is to combine all the tasks’
states and robot actions into one large model and compute an optimal policy for this
combined model. For the problems that we are interested in, the number of tasks,
e.g., the number of tables in the restaurant domain, can be large making this planning
approach computationally impractical and challenging.

This thesis introduces the class of problems that include multiple tasks that evolve
independently of each other and presents algorithms to enable a robot to achieve
the multiple tasks while expediting robot planning and execution. We develop a
class of algorithms that take advantage of the structure in this class of problems,
namely the independence between the tasks, to speed up planning and execution.
Our key idea is to decompose the combined model of all tasks into a series of much
smaller planning problems. We provide a theoretical and experimental analysis of
the algorithms. We discuss how we formalize the restaurant domain and define the
assumptions under which the restaurant domain can be an instance of this class of
problems. We demonstrate the effectiveness of our solutions in a simulated restaurant
setting and exemplify it on a real robot in a mock-up restaurant setting.

This thesis then focuses on the real-world applications of our algorithms on domains
such as the restaurant setting where having an exact and comprehensive model that
works for all the tables is infeasible. Given the nuances of a real-world restaurant
setting, a robot might not have access to a complete and accurate model for each
table, or the planning model might be an approximation of the complete exhaustive
model for computational tractability reasons or due to early deployment of the robot.
For example, going to the tables frequently to double-check if the customers have
everything that they need might be rewarded by the model and might work for
most of the customers; however, the customers on a certain table might be having
a lunch business meeting in which people don’t want to be interrupted frequently.
This scenario might happen very rarely and might not be addressed in a particular
restaurant model. Most planning or replanning algorithms are effective and efficient
where the planning model is defined accurately, but they might fail to achieve the
tasks in situations where the robot’s planning model is an approximation of the
true model. The remainder of this thesis focuses on formulating these unexpected
situations where there is a discrepancy between the robot’s observation and what is



expected to be observed given the robot’s model as a robot planning problem. We
tackle the discrepancies by augmenting the planning problem’s state and action space
with a set of hypotheses and questions regarding the discrepancies that aim at finding
where the potential inaccuracies in the original planning model lie. Our formulation
guarantees that the final goals of the tasks will be achieved eventually despite the
existing discrepancy, e.g., the robot will get the customers successfully out of the
restaurant.

Solving the augmented planning problem with a larger action and state space intro-
duces computational challenges. We provide planning algorithms that efficiently
solve this much larger planning problem in both single-task and multi-task settings.
We provide algorithms to solve the augmented planning problem more efficiently for
single-task problems by leveraging the structure in the augmented model, namely the
independent hypotheses. We then discuss how our approaches can be integrated with
the efficient planning and execution algorithms that we developed for the multi-task
settings. We provide comparisons on the performance of our approaches compared to
the state-of-art approaches in both a single-task grid-world domain and a multi-task
restaurant setting and show their effectiveness in various scenarios.



Acknowledgments

This thesis would not have been possible without the help of many. First and foremost,
I would like to thank my advisors, Manuela Veloso and Maxim Likhacheyv, for their
guidance over the years that [ worked towards my PhD. I would like to thank Manuela
for always believing in me, supporting me, and pushing me to think about the
application of my work on the robots. I would like to thank Max for also supporting
me and making sure that I think about the theoretical contributions of my work. It
has been an honor to work with both of you.

I would also like to thank the members of my thesis committee: Henny Admoni and
Sonia Chernova. I would like to thank Henny for meeting with me regularly and
giving me advice regarding my work and how to better present it. Sonia and Charles
Rich were my co-advisors for my master’s degree, and I learned so much from both
of them. I am beyond happy that I could have Sonia’s guidance in my PhD as well. It
was a pleasure for me to work with Reid Simmons shortly during my PhD. I learned
a lot about POMDPs from Reid.

This work would not exist without the CoBot robots. I want to give special thanks
to the past members of the CORAL group who made the CoBot robots a reality,
including Mike Licitra, who physically built the robots; Joydeep Biswas, Brian
Coltin, and Stephanie Rosenthal, who laid the foundation for the complete navigation,
task execution, and symbiotic autonomy of the robots; and, finally, everyone else
who worked on and contributed to the robots. I would like to thank Sony Group
Corporation for partially funding this thesis.

During the years I spent at CMU, the members of the CORAL and SBPL groups
have been a constant source of inspiration. I learned a lot from many of my labmates,
and some of them became my close friends. I would like to recognize the help and
friendship of my CORAL colleagues: Vittorio Perera, Rui Silva, Devin Schwab, Kim
Baraka, Philip Cooksey, Ashwin Khadke, Travers Rhodes, Arpit Agarwal and Kevin
Zhang. I would like to also recognize the help and friendship of my SBPL colleagues:
Ramkumar Natarajan and Muhammad Suhail Saleem.

Last but not least, I would like to thank my friends and family for their support. 1
would like to thank my lifelong friends Behnoush Golchifar and Sareh Yousefzadeh
for all the good times we have spent together. I would like to thank my mom and dad
for their support, love and energy. This dissertation would not have been possible
without them. I would like to thank my brother and my sister-in-law for always being
there for me when I needed them. My brother has been my biggest supporter and
believer throughout all stages of my life. This thesis would not be possible without
his constant inspiration and love.






Contents

1 Introduction 1
1.1 Motivation and Formulation . . . . . . . ... . ... .. ... .. ...... 1

1.2 Planning and Execution for Multiple Independent Tasks . . . . . . . . ... ... 3
1.2.1 Expediting Task Execution . . . . . .. ... ... ... .. ....... 3

1.2.2 Expediting Task Planning . . . . . .. ... ... ... .. ....... 4

1.3  Efficient Robot Planning and Execution in Presence of Discrepancies . . . . . . . 6

1.4 Contributions . . . . . . . . . . .. e e e e 7

1.5 ThesisOutline . . . . . . . . . . . . . . e e 7

2 Background 9
2.1 Markov Decision Processes (MDPs) . . . . . . ... ... ... . . ... ... 9

2.2 Partially Observable Markov Decision Processes (POMDPs) . . . . . ... ... 11
2.2.1 Discounted Reward POMDPs . . . . .. .. ... ... .. ....... 11

222 Goal POMDPs . . . . . . . . . . . 12

3 Formalization of the Restaurant Domain 15
3.1 Motivation . . . . . . .. e e e e e e e 15

3.2 Formulation . . . . . . . . . . .. 16

3.3 ASSUMPLONS . . . . . . e e e e e e e e e e e 22

3.4 Conclusion and Discussion . . . . . . . . . . . ... 24

4 Efficient Task Execution by Using Interruptions to Switch Among Multiple MDP

Models 25
4.1 Motivation . . . . . .. e e 25
42 Approach . . . . . .. 27
4.2.1 Learning Task SelectionPolicy . . . . . ... ... ... .. ....... 27
4.2.2 Identifying Task-Switching Stimuli . . . . . . ... ... ... ..... 30
4.3 EXperiments . . . . . . . . ... e e e e 32
4.3.1 Neural Network Structure . . . . .. . ... ... ... ... 32
4.3.2 Feature Importance Computation . . . . . .. .. ... ... .. .... 32
433 SimulationSetup . . . . . ... 33
4.3.4 Results of Task-Switching Behavior . . . . . . ... ... ... ..... 33
4.3.5 Results of Identifying Task-Switching Stimuli . . . . . . . ... ... .. 36
4.4 Application on the Restaurant Domain . . . . . . . ... ... ... ... .... 38

1X



4.5 Conclusion and Discussion . . . . . . . . . ... 39

Optimal Short-Horizon Planning for Achieving Multiple Independent POMDPs 40

5.1 Motivation . . . . . .. e e 40
5.2 Problem Formulation . . . . . .. ... ... ... ... ... ... .. .. .. 41
52.1 ClientPOMDP . . . . .. .. ... ... e 41
522 AgentPOMDP . . . . .. ... 43
5.3 Approach . . . . . e 44
5.3.1 ProposedMethod . . . . . ... ... ... ... 45
5.3.2 Optimality Proofs . . . . . ... ... .. .. .. .. 47
54 EXperiments . . . . . . ... e e e e 51
54.1 RestaurantModel . . . . . .. ... ... o 52
542 Results . . .. .. 52
5.4.3 Further Analysis . . . . . . . . ... .. ... 55
5.4.4 Robot Experiments . . . ... .. .. ... .. 57
5.5 Conclusionand Discussion . . . . . . . .. .. ... Lo 59

Optimal Long-Horizon Planning for Achieving Multiple Independent POMDPs 60

6.1 Motivation . . . . . . . . . e e 60
6.2 Approach . . . . . . .. 61
6.2.1 Agent POMDP with Adaptive Horizon . . .. ... .. ......... 62
6.2.2 Multi-task POMDP with Adaptive Horizon . . . . ... ... ... ... 63
6.3 Optimality Proofs . . . . . . . . . . .. .. 65
6.3.1 SummaryoftheProofs . . . . . ... ... ... ... ... ..., 65
6.3.2 Complete Proofs . . . .. ... ... ... ... ... 66
6.4 EXperiments . . . . . . . . . .. e e e e 75
6.4.1 RestaurantModel . . . . . . .. ... ... ... 76
6.4.2 Quantitative Results . . . . . . . . . . ... 76
6.4.3 Qualitative Results . . . . . . . . . ... .. 79
6.5 Conclusionand Discussion . . . . . . . . . ... ... ... 81

Robot Planning and Execution in Presence of Discrepancy between Robot’s Obser-

vations and the POMDP Model 83
7.1 Motivation . . . . . . .. e e e e e e 83
7.2 Formulation of Discrepancy Recovery as a Planning Problem . . . . . . .. . .. 89
7.2.1 Discrepancy POMDP Model . . . . . . ... ... ... .. ....... 92
7.2.2  How to Compute the Hypotheses Set and the Clarification Actions? . . . 94
7.2.3 Example Formulations . . . . . . ... ... ... .00 96
7.3 Efficient Planning on the Discrepancy Model . . . . . .. ... ... ... ... 104
7.3.1 Background on ILAO* Algorithm . . . . ... ... ... ........ 105
7.3.2 ILAO* on Discrepancy Model . . . . . ... ... ... .. ....... 106
7.3.3 ILAO* with Hypothesis Decomposition on Discrepancy Model . . . . . 107
7.4 Efficient Planning for Achieving Multiple Independents POMDPs . . . . . . .. 109
7.4.1 Multi-task Goal POMDP with Adaptive Horizon . . . . . ... ... .. 110



7.4.2  Solving the Augmented Agent POMDP model . . . . . ... ... ... 113

7.5 Evaluation . . . . . .. L e 113
7.5.1 Properties of Planning on the Discrepancy Model . . . . . . . ... ... 114

7.5.2 Efficiency Analysis . . . . . . .. ... 120

7.6 Conclusion and Discussion . . . . . . . . . .. ... ... ... ... 134

8 Related Work 135
8.1 Formalization of the Restaurant Domain . . . . . . . .. ... ... ... .... 136
8.1.1 Task Representation for Planning . . . . ... .. ... ... ...... 136

8.1.2  Formalization of the Waiting Tables Task . . . . . . .. ... ... ... 138

8.2 Robot Planning for Achieving Multiple Tasks . . . . . .. ... ... ... ... 139
8.2.1 Combining the Tasks and Solving Large Models Efficiently . . . . . .. 139

8.2.2  Merging the Solutions to the Individual Tasks . . . . . . . ... ... .. 142

8.2.3 Discussion on How to Decompose a Large Model Into Multiple Tasks . . 144

8.3 Discrepancy between Observations and Planning Model . . . . . . . ... .. .. 145
8.3.1 State Estimation, Plan Repair and Replanning . . . . . . ... ... ... 147

8.3.2 Learning and Refining the Model Parameters . . . . . . ... ... ... 151

8.3.3 Solving the Models in Presence of Model Uncertainty . . . .. ... .. 152

8.3.4 Learning and Planning Using Human Input . . . . . . . ... ... ... 153

9 Conclusion and Future Work 155
9.1 Contributions . . . . . . . ... L 155
0.2 DiscuSsSiOn . . . . . . ... e e e e 157
9.2.1 Going Beyond the Assumptions . . . . . . .. ... .. ... ...... 157

9.22 SimulationtoReal World . . . . . . .. .. ... ... o0 159

9.3 Future Work . . . . . . .. 160
9.4 Summary . . . ... e e 164

A Robot Experiments 165
A.1 RestaurantModel . . . . .. .. ... Lo 166
A2 Perception . . . . . . . .. e 167
A3 TaskPlanning . . . . . .. .. L 169
A4 Execution . . . . . . ... 169
A5 Example Scenario . . . . . ... Lo 170
Bibliography 175

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

X1



List of Figures

3.1
3.2

4.1
4.2

4.3

4.4

4.5

4.6

5.1
5.2
53

54

5.5
5.6

6.1

6.2

6.3

6.4
6.5

A restaurant setting with 3 tables and onerobot. . . . . . . . ... L.
The robot operates in a restaurant with 3 tables, 7/, 72, and 73. . . . . . . . ..

Overview of the task selectionmodule. . . . . . . ... ... .. ... .. ....
11x11-grid environment with the robot (R), the navigation goal (G), and 5 humans
goals (H’s). . . . . . . . o e
Performance of the switching MDP during the training phase for 1 delivery task
and 1 to4 trash cleaning tasks. . . . . . . . .. ... ... oL
Difference between the performance of the exact MDP (e,.) and the switching
MDP (s,) when there is an observation cost (oc) for processing each sensory
variable. . . . . L
Average reward that the robot gains for 3 tasks as we increase the observation
costby 0.01. . . . . . . oL
Feature importances for the HRItask. . . . . . .. ... ... ... .......

Planning times for different horizons and number of tables. . . . . . .. .. ..
Difference between the average reward of our method and the other methods.
Performance comparison between our approach and other baselines when £ =
2, 3. We run the algorithms on a simpler version of the restaurant model. . . . . .
Example output policy for =4 and 5tables. . . .. ... ... ........
CoBot mobile servicerobots. . . . . . .. ... Lo
A restaurant setting with 3 tables (7°0, 7’1 and 7'2) and one robot. The top-
view configuration of the restaurant is shown on the left and is explained in the
EXPeriments SECtON. . . . . . . . . v v v vt e e e e e e e e e

Planning times of the optimal algorithms for different horizons /7 and number of
tables. . . . . L
Planning time comparisons between the performance of our algorithm and the
sub-optimal algorithms in natural logarithmic scale on the left. The average
reward comparisons for all the algorithms on the right. . . . . . ... ... ...
Final horizon at which Alg. 7 terminates. . . . . . . . . .. ... .. ......
Two different configurations of the domain with Stables. . . . . . ... ... ..
A plot illustrating the distribution over the termination length of the horizon (final
horizon) for different number of tables with prespecified maximum horizon .

Xii

35

80



7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8

7.9

A.l
A2
A3
A4

A5

A 3 x 4 grid with the goal located at state 3, and the robot located at state 4. . . . 86
There is a thick carpet between the states 4 and 0, so the robot cannot transition

from4to0anymore. . . . . . .. ... 88
A 3 x 4 grid with the robot located at state 0. . . . . . ... ... ... ..... 88

A 9 x 11 grid with the goal shown with a star, and the robot located at the state 4. 121
Difference between the average cost of our method and the baselines for different

time-limits and different heuristic time-limits. . . . . . . . . ... ... ..... 125
Difference between the suboptimality of the different algorithms in the first
planning step after the discrepancy. . . . . . . . . ... ... ... ... ... 127
Difference between the suboptimality of the different algorithms in the second
planning step after the discrepancy. . . . . . . . .. ... 129
Difference between the average cost of the different algorithms in a restaurant
with different number of tables. . . . . . . ... ... oo 132
Difference between the average cost of the different multi-task algorithms in a
restaurant with 1, 3and 7tables. . . . . . . . . . . . .. ... ... .. 133
CoBot mobile servicerobots. . . . . . . . ... L Lo 166
A restaurant setting with 3 tables (70, 7'1 and 7'2) and one robot. . . . . . . .. 167
The Navigation Map of the Gates Hillman Center’s 3rd floor used by the CoBot
robots. . . . L 168
The Navigation Map of the room where we set up the restaurant setting with the
tables and the kitchen overlaidonit. . . . . . . .. ... ... ... .. 170
Snapshots of the robot video. . . . . . . . . . .. ... ... oL, 174

X1il



List of Tables

4.1 Feature importances for the trash cleaning task.

6.1 The percentage of the runs where the algorithm terminates when the bounds are

equal versus when the full horizon H is reached.

X1V



Chapter 1

Introduction

1.1 Motivation and Formulation

Many robotics applications, for instance a mobile robot performing multiple tasks such as
delivering objects/messages to offices and escorting people to offices, an assistive robot executing
multiple tasks such as cooking and vacuuming in a home setting, a robot in search and rescue
helping out multiple human rescuers in their tasks, a robot helping out multiple factory workers
by providing tools, and a robot waiting tables in a restaurant, involve a robot acting in a stochastic
environment under partial observability while completing multiple tasks. In this thesis, we focus
on formalizing these multi-task domains as domains with one robot and multiple independent
partially observable tasks that evolve over time. We then develop efficient planning and execution
algorithms that switch between the multiple tasks to achieve them all while effectively addressing
the unexpected situations that arise due to having an imperfect model for some tasks.

One such multi-task domain that we focus on is a restaurant setting where a robot is waiting
multiple tables. The robot waiter should take care of an ongoing stream of requests, including
delivering food, taking food orders, and checking on customers. The tasks are partially observable
as the robot cannot directly observe what people want and their degree of satisfaction. To service
all tables, an action that the robot takes next at any point of time depends on the duration of
possible actions, the state of each table, and how these tables evolve over time, e.g., the food
becomes cold after a few time steps or the people become dissatisfied after a few time steps. In
this thesis, the restaurant setting has one robot and multiple tables which go through the dining
process independently of each other. The customers at each table have multiple requests that
require service from the robot at different points in time until they successfully leave the restaurant.
The whole process that each table goes through is referred to as a task that should successfully be

accomplished. We formalize the waiting tables for a restaurant as a planning problem with one

1



CHAPTER 1. INTRODUCTION

robot, and N independent models for the )V tables in the restaurant (or N tasks). To enable the
robot to perform the waiting tables task, we model each table, the state of the robot and the actions
that can be applied to this particular table as a Partially Observable Markov Decision Process
(POMDP). The restaurant has N POMDP models for the /N tables in the restaurant.

We identify and formalize the class of problems with multiple independent tasks that are
partially observable and evolve over time and provide the assumptions under which the restaurant
domain can be an instance of such class of problems. A conventional approach to perform
planning for these multi-task problems is to combine all the tasks’ states and actions into one
large model and compute the optimal policy for the combined global model. This combined
model includes all possible combinations of the states of the tasks and a union over all their
actions. For the problems that we are interested in, the number of tasks, e.g., the number of tables
in the restaurant, can be large making this planning approach computationally impractical and
challenging. More specifically, solving the combined global model is infeasible in domains where
the robot should be able to switch between multiple tasks in a real-time and scalable fashion. The
combined model approach does not take advantage of the independence structure in such class of

problems.

The first question that we address in this work is how can we leverage the independence
structure to expedite task planning and execution for the class of problems with multiple inde-
pendent tasks? We provide three algorithms to expedite task planning and execution for the class
of problems with multiple tasks. One algorithm speeds up the task execution by solving the
combined model less often, rather than after each action execution. We evaluate this approach on
a mobile robot domain where planning infrequently is sufficient. We then focus on the restaurant
setting where the robot is required to plan after each action execution. We provide two algorithms
that leverage the independence between the tasks to expedite task planning. We evaluate these

two algorithms on the restaurant setting.

The second question targets the aforementioned multi-task problems, but with a focus on the
goal achievement aspect of real-world multi-task applications. In a real-world application such as
the restaurant setting, there are differences in terms of the types of the restaurant, e.g., fine dining,
casual dining, cafes and diners, and the customers they target, e.g., families with children, college
students, and seniors. In these applications, coming up with a perfect and accurate model that
works for everyone is very challenging. Even if a certain model works for most of the tables in
a specific restaurant, it might not work for a particular table that might not belong to the target
group that the restaurant model is designed for. Other reasons such as 1) learning the model
from insufficient data, 2) making approximations to the true model for computational tractability,

and 3) deploying the robot early on before having a comprehensive model can also be the cause

2



CHAPTER 1. INTRODUCTION

of the inaccuracies in the model. Without an exact planning model, the robot will encounter
unexpected situations and should have a way to address these situations to guarantee achieving
the goals of all tasks. For example, going to the tables frequently to double-check if the customers
have everything that they need might be rewarded by the model and might work for most of the
customers; however, the customers on a certain table might be having a lunch business meeting in
which people don’t want to be interrupted frequently. In another example, delivering bread to the
customers before serving the food might be a part of the robot’s process to keep the customers
satisfied; however, a certain table might have allergies to wheat. These are a few examples of the
unexpected situations that the robot might encounter and should be able to tackle. The second
question that we address in this work is how can we guarantee that the robot will successfully
achieve the goals of all tasks, e.g., getting the customers successfully out of the restaurant, even
if the model for a particular task differs from its true model? Specifically, given the multi-task
context of the problem, we are interested in methods that address the unexpected situations for
that particular inaccurate task while effectively responding to the other tasks.

The remainder of this thesis focuses on formulating these unexpected situations where there
is a discrepancy between the robot’s observation and what is expected to be observed given the
robot’s model as a robot planning problem. We build a new planning problem which includes
both the original planning problem and the robot’s hypotheses regarding where the potential
inaccuracies in the original planning model lie. We provide planning algorithms that efficiently
solve this much larger planning problem in both single-task and multi-task settings. We provide
comparisons on the performance of our approaches compared to the state-of-art approaches in both
a single-task grid-world domain and a multi-task restaurant setting and show their effectiveness in

various scenarios.

1.2 Planning and Execution for Multiple Independent Tasks

We address the challenges associated with the computational complexity of solving the combined
model. We provide algorithms that speed up task planning and execution for domains with

multiple tasks.

1.2.1 Expediting Task Execution

The first algorithm for efficient planning and execution looks into speeding up the task execution
by deciding how often the robot should perform planning. To plan in presence of multiple tasks, a

robot has to build a large model with all the tasks’ states and actions and at each time step decide

3



CHAPTER 1. INTRODUCTION

what action should be executed on which task. In a lot of robotics applications, both processing
all the sensory input variables for all the tasks and solving the large model are impractical. We
provide an algorithm that speeds ups the task execution by deciding how often the robot should
perform planning. The robot only focuses on one task at a time and switches to another task when
it is triggered. We call the signals that trigger the task-switching, "stimuli". When a stimulus is
triggered, the robot builds the large model with all the tasks to decide if a switch is more rewarding
than continuing with the current task. We provide an approach to identify the “stimuli” that trigger
the task-switching. This approach is applied on a mobile robot domain where the robot is executing
a user-requested task, e.g., object delivery, and is also alert for multiple external tasks that might
come up. For example, if the robot is scheduled to deliver an object to an office, and on the way to
the office it sees a person asking for help, we might want the robot to first assist the person and then
finish its delivery. We exploit the assumption that external tasks such as a human-interaction task
or a trash cleaning task are optional and happen infrequently. We show that our solution using the
switching stimuli compares favorably to the naive approach of building the large combined model.
Moreover, leveraging the stimuli significantly decreases the amount of sensory input processing
during the execution of the tasks. We explain this algorithm and its results in Chapter 4. For
these type of problems, many works have proposed approaches to address multiple task models
by using hierarchical planning [10, 15, 103, 105], goal management approaches [89, 128, 187],
and behavior-based control systems [117, 118, 146, 151]. We introduce an approach that learns
a switching policy, identifies the stimuli, and then uses both the policy and stimuli to switch
between multiple task models. Different from the above approaches, our approach learns when to
interrupt the task execution to decrease the amount of sensory computations.

This approach drastically improves the task execution compared to solving the combined
model at each time step and is effective in domains where responding reactively to the environment
is sufficient, but it does not extend to domains with more complex structure such as the restaurant
domain. For a domain such as the restaurant domain, the robot has to switch between the tasks
frequently and cannot stick to one task and only switch to another task when triggered. For these
more complex problems, we focus on providing algorithms that solve the large combined model

faster rather than solving it less often.

1.2.2 [Expediting Task Planning

The next two algorithms focus on expediting task planning for the class of problems with multiple
independent tasks. The algorithms target domains where the robot is required to accomplish
multiple tasks and address the computational infeasibility of solving large models. The tasks

are represented as Partially Observable Markov Decision Processes (POMDPs). We propose

4



CHAPTER 1. INTRODUCTION

algorithms that expedite planning for multiple partially observable tasks by leveraging the structure
of the problem, namely the independence between the tasks. More specifically, we target the
class of problems with multiple independent tasks that evolve over time and present algorithms to
solve this class of problems by decomposing the problem into a series of much smaller planning
problems, the solution to which gives us an optimal solution. In particular, a robot attending a
single task can be represented as a standalone smaller planning problem. Using these insights, we
develop an algorithm that searches over possible subsets of /V tasks, solving each optimally until
a provably globally optimal solution is found. Our methods exploit 1) the structure that the tasks
are independent and 2) an observation that in many domains the number of tasks that the robot
can accomplish within a horizon—determines how far into the future the robot will look to select
the optimal action—is very limited. We introduce an approach that optimally and efficiently plans

for a short fixed planning horizon.

We then recognize that selecting the right planning horizon can be challenging since an overly
short horizon may result in a low-quality solution while supporting a longer horizon quickly
becomes computationally impractical. Specifically, in POMDP planning, the complexity of
planning grows exponentially with the horizon so a long horizon may easily preclude online
planning. We extend the previous algorithm to provide efficient planning over long fixed-length
horizons without discounting and infinite-length horizons with discounting. We enable the robot to
efficiently plan for long horizons by terminating the search early before reaching the full planning
horizon while guaranteeing optimality. Similar to the previous approach, in this algorithm, we
leverage the independent tasks structure to decompose the problem into smaller pieces, but we
use it in a different fashion than the previous algorithm to provide efficient planning for long
and discounted infinite-horizon problems. Our key idea is to compute lower and upper-bounds
on the value of an optimal solution for variable horizons. We combine the solutions to multiple
individual tasks to compute the bounds rather than solving larger models built from subsets of

tasks as done in the previous algorithm.

We test the two approaches on a simplified restaurant environment in simulation and show
their effectiveness compared to the state-of-the-art approaches. We provide the theoretical analysis
and the assumptions under which the approaches are optimal. We explain these algorithms in
Chapters 5 and 6. Many works have proposed approaches to speed up POMDP solvers by using
point-based methods [169], hierarchical planning [181], clustering and compression of belief
space [160, 175], factored representation [168], and online POMDP approaches [158]. We are
interested in domains in which a robot has to attend to multiple independent tasks whereas the
above approaches do not make the independence assumption and address the combined model

directly.



CHAPTER 1. INTRODUCTION

1.3 Efficient Robot Planning and Execution in Presence of

Discrepancies

In dynamic and changing environments with semantically rich tasks and human interactions such
as the restaurant domain, unexpected situations that are not predicted by the robot’s model might
arise. These unexpected situations might prevent the robot from proceeding with a particular
task (or table). We enable the robot to address the unexpected situations to effectively attend
to the particular table and the other tables. We detect these unexpected situations by checking
if the robot’s current observation belongs to the set of possible observations expected by the
robot’s model. We refer to these unexpected situations as discrepancies between the robot’s
observations and its model. The objective of this work is to enable the robot to still achieve the
tasks at hand, e.g., getting the restaurant customers successfully out of the restaurant, in presence

of the discrepancies.

We address the discrepancies by building a new augmented model from the discrepancy and
the original planning model. In the augmented planning problem, the robot has a set of hypotheses
regarding the discrepancy and can ask questions from an oracle to find the hypothesis that best
explains the discrepancy. This formulation aims at guaranteeing that the robot will be able to
eventually achieve the final goals of all the tasks, e.g., the robot will get the customers successfully
out of the restaurant. Some works have been proposed to address the inaccurate models by
learning and refining the model’s parameters [90, 119, 156], state estimation and replanning
approaches [111, 192], planning using model uncertainty [47, 111, 132, 199], and using human
input to learn or solve the POMDPs faster [8, 41, 61], or as state information providers [153].
Different from the state estimation and replanning approaches, our formulation addresses the
discrepancies even when the discrepancy is due to a fundamental change in the environment and
thus repeats itself. Different from the learning approaches, we focus on the multi-task settings
where the robot should attend to all the tasks rather than exploring the environment to learn the

true planning model for a particular task.

The augmented planning model which includes the hypotheses and questions can become very
large and hence challenging to solve. To address its computational complexity challenges, we
provide an approach to more efficiently solve the augmented planning problem by leveraging the
independent hypotheses. We then integrate this approach with the efficient planning algorithms
that we proposed previously for the multi-task settings to expedite task planning and execution for
the combined model built from the augmented model and the other original models. We discuss

these algorithms in Chapter 7.



CHAPTER 1. INTRODUCTION

1.4 Contributions

The contributions of our work are to:
1. identify and formalize the class of problems with multiple independent tasks that evolve

over time.

2. mathematically formalize robot waiting in a restaurant and provide the assumptions under

which our algorithms can be applied to it.
3. develop efficient algorithms to expedite task execution in multi-task problems.

4. develop scalable and efficient planning algorithms for solving the class of problems with

multiple independent tasks.

5. develop a novel algorithmic framework for robot planning and execution to address the

discrepancy between the robot’s observations and its model.

6. develop efficient algorithms to expedite task planning in presence of discrepancies in

single-task and multi-task problems.

7. implement and test our algorithms on a simulated restaurant setting with large number of

tables and exemplify it on a real robot in a mock-up restaurant setting with a few tables.

1.5 Thesis Outline

The following outline summarizes each chapter of the thesis.

Chapter 2 We review the background on two formalisms for sequential decision making,
namely Markov Decision Processes (MDPs) and Partially Observable Markov Decision Processes
(POMDPs).

Chapter 3 We formalize the waiting tables for a restaurant as a planning problem with one
robot, and NV independent models for the N tables in the restaurant. We discuss how each table
is modeled as a POMDP and under what assumptions the POMDP models associated with the

tables are independent of one another.

Chapter 4 We present an algorithm that expedites task execution in problems where the robot
should accomplish a user-requested task and is also alert for multiple external tasks that might

come up. Even though some of the tasks are optional, the robot should plan over a large combined

7



CHAPTER 1. INTRODUCTION

model associated with all the tasks. The algorithm speeds up the task execution by only focusing

on one task at a time and only performing planning over the large combined model when necessary.

Chapter 5 We identify and formalize the class of problems with multiple independent tasks
that are partially observable and evolve over time such as the restaurant domain. We introduce
an approach that optimally and efficiently plans for a short fixed planning horizon. We expedite
task planning for the aforementioned class of problems by leveraging the independence structure
between the tasks and the observation that the number of tasks that the robot can address within a
short horizon is limited. Our key idea is to decompose the problem into a series of much smaller
planning problems.

Chapter 6 We extend the previous approach to long fixed-length horizons without discounting
and infinite-length horizons with discounting problems. In addition to decomposing the problem
into smaller problems, to enable planning for longer horizons, we compute lower and upper-bounds

on the value of an optimal solution for variable horizons.

Chapter 7 We discuss how we formulate the discrepancy between the robot’s observation and
its model as a planning problem over an augmented model. We then leverage the structure in the
augmented model, namely the independent hypotheses, to solve it more efficiently. Finally, we
discuss how the previous approaches of efficient planning for multi-task settings can be integrated

with the approach of planning for the augmented model.

Chapter 8 We review the relevant literature.

Chapter 9 We conclude the thesis with a summary of its contributions and present potential

directions for future work.



Chapter 2
Background

In this section, we provide the MDP and POMDP formalisms. We will use the MDP formalism in
Chapter 4 and the POMDP formalism in Chapters 3, 5, 6 and 7.

2.1 Markov Decision Processes (MDPs)

The most common representations for sequential decision models in decision-theoretic planning
under uncertainty are Markov decision processes (MDPs). MDPs are represented by a tuple
M = (S, A, R,T,v), where S is a set of states, A is a set of actions, R(s,a) is the reward
the agent receives when executing action «a in state s, 7'(s, a, s') is the probability of the agent
finding itself in state s’ having executed action « in state s, and v € (0, 1] is a discount factor
which specifies how much immediate reward is favored over more distant reward. The agent
objective is to choose actions at each time step to maximize its expected future discounted reward:
E Y727, where r, is the reward gained at time ¢. Actions are taken at fixed decision epochs
in the continuous time case or time steps in the discrete case which will be the focus on this thesis.
The solution to an MDP is a policy 7 : S — A which is a mapping from states to actions for every
state in the model at which an agent may act.

This model takes advantage of the Markov property as a way of limiting the complexity of the
planning problem. The Markov property says that the environment’s response, given by the state
transition and reward functions at time ¢ 4 1 depends only on the state and actions at time ¢ and

the rest of the history can be ignored. The Markov property is defined as:

Pr(sip1 = 8 mep1 = 7S, ag, rey ooy 71, S0, a0) = Pr(sepr = 8, rey = 7se, ay) 2.1



CHAPTER 2. BACKGROUND

Given a policy 7 and a state s, the return that the agent expects to obtain by following 7 from s
can be defined by the following a recursive function, known as the value function (or V' function).
The value function (denoted by V') represents what the expected overall value of a state s under
the policy 7 is, i.e., how good it is to be in any given state. The () function (action-value function)
states what the value of a state s and an action a is under policy T, i.e., how good it is to take a
certain action given a certain state. The V' function and the () function (updated by Q-learning
method) are defined below.

V™(s) = Ex{Ri|s = s} = E-{) 7" re]s, = s} 2.2)

=0

QW(S7G) - Eﬂ”{Rt"St =S5,0; = CL}

= E,,{Z ATy sy = 5,00 = a} (2.3)

7=0

The value for each state for the planning horizon ¢ can be computed from the state values for
the ¢ — 1 horizon, along with the reward and state transition function for the problem by following
the Bellman’s Equation [17, 148]:

Qf (s,a) = R(s,a) +~ Z T(s'|s,a)V(s") (2.4)
s'€S

If the transition function is known, the agent can use one of the model-based Reinforcement
Learning (RL) approaches such as value-iteration [178] to compute the exact solution for the
MDP. However, in most RL applications the dynamics of the environment is not known, i.e., the
agent does not know how the world will change in response of its actions, nor what reward it
will receive for executing an action. The class of RL algorithms that learn the policy without
using a model of the environment and only by trial-and-error are called model-free algorithms,
e.g., Q-learning method. When the state space is large, e.g. when the state space is continuous,
it is not feasible to keep a separate value for each state in the memory. In such cases, function

approximation methods such as neural networks are used to solve the MDP.

Our work in Chapter 4 leverages the MDP representation. The MDP’s state space is continuous,
therefore we use a neural network to approximate the () function. Reinforcement learning is
known to be unstable when a nonlinear function approximator such as neural networks is used to
represent the () function [125, 184]. In [125], the authors provide a variant of Q-learning called
Deep Q-Network (DQN) that stabilizes reinforcement learning. The deep Q-network method

stabilizes the learning by utilizing an experience replay mechanism and a second fixed target

10



CHAPTER 2. BACKGROUND

network. In addition to utilizing these two improvements of the DQN approach, we leverage the
dueling architecture [195] which compared to DQN provides a more robust estimate of the )
function and have shown better performance in domains with many similar-valued actions. Thus,

we leverage the dueling architecture in Chapter 4.

2.2 Partially Observable Markov Decision Processes (POMDPs)

2.2.1 Discounted Reward POMDPs

The partially observable MDP model (POMDP) generalizes the MDP model to allow for even
more forms of uncertainty to be accounted for in the process. In POMDPs the true state of the
system is not directly observable by the decision-maker. Instead, the decision-maker receives
observations from the environment. Formally, a POMDP is a tuple (S, A, Z, T, O, R, ), where
S denotes the agent’s state space, A denotes the agent’s action space, and Z denotes the agent’s
observation space. At each time step, the agent takes an action a € A and transitions from a
state s € S'to s’ € S with probability 7'(s, a, s') = p(s'|s, a), makes an observation z € Z, and
receives a reward equal to R(s, a). The conditional probability function O(s', a, z) = p(z|s’, a)
models noisy sensor observations. The discount factor v specifies how much immediate reward is
favored over more distant reward. The agent objective is to choose actions at each time step to
maximize its expected future discounted reward: E [y~ ~'r;], where r; is the reward gained at

time .

Planning in a POMDP can be thought of as planning over the continuous belief space of the
underlying MDP. A belief state is the probability distribution over which state the agent is actually
in when it receives an observation. The Markov property holds for POMDPs in the sense that the
belief state is a sufficient statistic of the history of the system. The belief over the states can be
computed from an existing belief distribution over states and a new action a and observation z as

follows.

O(z|s',a) > T(s|s,a)b(s)

b(s) = seS
) Pr(z]b, a) (2.5)
Pr(z|b,a) = Z O(z|¢, a) Z T(s|s,a)b(s)
s'eS s€S

The optimal return at stage ¢, V;*(b), can be iteratively computed by Eq. 2.6.

11



CHAPTER 2. BACKGROUND

Qi (b,a) =Y _b(s)R(s,a) +7 Y Pr(z[b,a)V; (b2)

ses z2€Z (2.6)
Vi (b) = max | Q7 (b, 0)]

ac

Offline algorithms to solve POMDP problems have been proposed in [80, 144]. These
algorithms specify, prior to the execution, the best action to execute for all possible situations.
While these approximate algorithms can achieve very good performance, they often take significant
time to solve large problems, where there are too many possible situations to enumerate. On
the other hand, online approaches [158] plan only for the current information state and a small
horizon of contingency plans. One drawback of online planning is that it generally needs to
meet real-time constraints, thus greatly reducing the available planning time, compared to offline
approaches. There are works on unifying approximate offline and online solving approaches to
address large POMDPs by using offline learning as a heuristic function to guide the online search
algorithm [157]. These approaches preserve the theoretical properties of the offline planning and
exploits the scalability of the online planning. We use the online POMDP planning where the

robot interleaves planning and execution in our work (Chapters 5, 6, and 7).

2.2.2 Goal POMDPs

Formally, a Goal POMDP (or shortest path POMDP) is a tuple given by (S,G, A, Z,T,0,C),
where S denotes the agent’s state space, G C S denotes a non-empty set of goal states, A denotes
the agent’s action space, and Z denotes the agent’s observation space. At each time step, the
agent takes an action a € A and transitions from a state s € S to s’ € S with probability
T(s,a,s") = p(s'|s,a), makes an observation z € Z, and receives a positive cost equal to C'(s, a).
The conditional probability function O(s’, a, z) = p(z|s’, a) models noisy sensor observations.
The goal states g € G are cost-free C(g,a) = 0, absorbing T'(g, a, g) = 1, and fully observable
g € Z,sothat O(s',a,9) = 1if s =t and O(s, a,g) = 0 otherwise. The agent objective is to

choose actions at each time step to minimize the expected cost to a goal as below.

Qi (b,a) =) b(s)C(s,a) +v ) Pr(z|b,a)Vie, (b2)

seS z€Z 2.7)

Vy' () = min (@ (v, a)]
Goal POMDPs have a similar formulation as discounted reward POMDPs. Differently, goal
POMDPs have a set of goal states (that are absorbing and cost-free), and instead of the reward

12



CHAPTER 2. BACKGROUND

function, the robot has access to a cost function (all positive costs). The agent minimizes the cost
to reach a goal. It has been proven that any discounted reward POMDPs can be converted to a
goal POMDP [26].

Similar to the shortest path MDP assumption [18, 55], when we talk about a policy or a
solution to the POMDP p, we refer to a proper policy. A policy is said to be proper if, for any
possible initial state, it ensures that a goal state is reached with probability 1.0. We assume that
our problems have at least one proper policy, and that every improper policy has infinite expected

cost for at least one state.

Different from the traditional offline search methods that first plan a path from start to goal
state and then move the agent along the path, real-time search methods have been proposed
to interleave planning and execution and select actions in a limited amount of time. Since the
agent does not plan all the way to the goal, these approaches do not find the optimal solution
to a planning problem, but they are guaranteed to achieve the goal of a task. More specifically,
real-time heuristic search agents select actions using a limited lookahead search and evaluating the
frontier states with a heuristic function. The key idea here is to utilize available domain-knowledge
to guide the search and find a solution faster. Over repeated experiences, they refine the heuristic
values of the states to avoid infinite loops and to converge to better solutions. This framework
can be implemented in different ways, e.g., with a best-first search, as in AO*, LAO* [79] and
their extensions, with a depth-first iterative deepening search, as in LDFS [25], or with a random
walk search, as in RTDP [16], LRTDP [26] and their extensions. Here, we discuss two popular
heuristic search approaches, namely LRTDP-bel and LAO*, that solve goal POMDPs [26, 79].
LRTDP-Bel is an adaptation of the Real-Time Dynamic Programming (RTDP) to goal POMDPs.
LAO* is the generalization of A* on And-Or graphs that can be used to solve goal POMDPs and

find solutions with loops [79]. We discuss these two approaches in details below.

RTDP-Bel is a generalization of the LRTA* algorithm [81, 104] for non-deterministic set-
tings [26]. RTDP-Bel runs a forward simulation from the start to the goal called a trial. At
each node the algorithm uses a greedy approach to select an action and then randomly selects
an observation. A hash table with the discretized belief state as its key keeps track of the value
function. The algorithm keeps updating the value function for the nodes visited on the path over
the iterative trials. A variant of RTDP-Bel called Labeled RTDP-Bel presents an approach to label
the states with converged values as solved, so that the value function can converge faster [26].
The algorithm has a good anytime behavior by producing a solution fast and improving it with
time. A drawback of this algorithm is that unlikely paths are ignored and RTDP-Bel converges

slowly in those cases.

AO* is the generalization of A* on the And-Or graphs (without loops). A POMDP also

13



CHAPTER 2. BACKGROUND

includes the And edges to represent the observations and the Or edges to represents the actions.
AO* algorithm repeats forward expansion of the best node in the current belief tree and backward
induction from the leaf node back to its predecessors. Forward expansion is guided by an
admissible heuristic that helps to explore a region where the optimal solution is likely to reside.
LAO* represents AO* algorithm for MDPs or belief MDPs with Loops [79]. LAO* generalizes
the backward induction process to value iteration or policy iteration. Thus, it requires more
computation compared to AO* but can handle AND-OR graphs with loops. Once it reaches the
goal node for the first time, then it returns the solution. If the robot plans all the way to the goal
rather than interleaving planning and execution, it is proven that the LAO* algorithm converges
to the optimal solution. Different from the RTDB-Bel approach which performs the search in a
depth-first fashion. LAO* uses a best-first search approach.

14



Chapter 3

Formalization of the Restaurant Domain

3.1 Motivation

A robot waitress working in a restaurant should take care of an ongoing stream of tasks, including
delivering hot food, taking drink orders, taking food orders, checking on customers who have
just received their meal, and finally, cashing out a table about to leave. Attending the customers’
needs in a timely and efficient manner is very challenging. One approach to address this problem
would be to attend the customers on a first come, first served basis, i.e., based on the amount of
time each customer was waiting. This approach might be practical in some domains, but is not
effective in a restaurant domain where the customers’ satisfaction does not only depend on the
wait time, but it also depends on the task’s features, and how important the task is. In this chapter,
we explain how we formalize the dining process as a robot planning problem.

The restaurant domain has the following two main challenges. First, the robot waitress
should be able to effectively multi-task by keeping track of everything that needs to be done and
prioritizing them so the most important tasks get done quickly. For example, a robot who has
just received an order from a table should send that order to the kitchen as soon as possible so
things don’t get backed up down the line. Second, the robot waitress should plan routes around
the restaurant, taking into account the tasks that needs to be done at each station. The fewer trips
the robot makes between the bar and the kitchen, the sooner the customers get their food. For
example, if the robot needs to pass a table of customers on the way to the bar, it should stop by
the table briefly to check on the customers before proceeding to the bar.

Restaurant waiters are capable of addressing these two challenges (and many more challenges)
by 1) leveraging an internal model of how the customers needs and satisfaction evolve throughout
the dining process, and 2) multitasking and navigating in the restaurant to serve as many people as

possible. By using these models the waiter is able to make decisions on what actions she should

15



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

perform to gain the maximum final tip. We model the waiting table task as a planning problem to
enable a robot to address the same challenges as a restaurant waiter.

There has been work on robot localization and navigation in a restaurant [149, 206]. Different
from these works, we assume the robot is capable of localizing within the restaurant, and we focus
on how the customers’ satisfaction of the service, which is not directly observable, is affected by
the robot’s actions. Task planning is another area of research that has been studied in the service
robot domain [94, 129]. These works either do not model the customers’ satisfaction or model it
as an observable variable and use it to prioritize the next task. Differently, we are interested in how
the robot’s sequence of actions maximizes the customers’ long-term satisfaction. Furthermore,
these works consider each task as an indivisible task. We allow the robot to diverge from its
current task to service more customers and make fewer trips. There has been work on predicting
customer’s state in a restaurant or a bar [39]. They focus on inferring the customers internal state
and using that to select a robot behavior. In contrast, we focus on how the robot’s sequence of
actions impacts the customers’ long-term satisfaction.

We enable the robot to reason about the unknown customers’ satisfaction so that it can
effectively prioritize the tasks to keep all the customers satisfied. The robot should also reason
about its long-term effects of immediate actions to foresee what will happen in the future so
it can plan ahead. Partially observable markov decision processes (POMDPs) [36] provide a
mathematical tool to achieve these objectives. A POMDP is capable of modeling a robot’s
sequential decision making process, while also being able to represent uncertainty in the robot’s
execution and perception. POMDPs have been applied to many real-world problems in the context
of human-robot interaction [12, 135]. However, we are not aware of any approaches that leverage

multiple POMDP models to formalize the restaurant domain.

3.2 Formulation

As illustrated in Fig. 3.1, we consider a restaurant setting where one robot services N tables.
We do not model each customer in the restaurant individually and only assume one model for
each table in the restaurant. We assume that the states of the humans on a particular table are
aggregated to have one estimate for the table. We formalize the waiting tables for a restaurant as a
planning problem with one robot and N independent models for the N tables in the restaurant.
We consider each table from when the customers sit at the table to when they leave as one task.
The robot keeps a distribution over the state of the tasks and updates them as it executes actions.
At each time step, the robot decides what action should be executed with respect to which task.

This enables the robot to consider switching between the tasks after each action execution. The

16



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

@

Figure 3.1: A restaurant setting with 3 tables and one robot.

robot can only execute one action at each time that depends on the duration of possible actions,
the state of each table, and how these tables evolve, e.g., the table becomes unsatisfied if it is not
served soon or the food becomes cold after a few time steps. While the robot services one table,
the other tables evolve according to their underlying Hidden Markov Model (HMM).

To enable the robot to perform the waiting tables task, we model each table, the state of the
robot and the actions that can be applied to this particular table as a POMDP. Thus, there are NV
POMDPs in the restaurant that share the robot between themselves as shown in Fig. 3.2. This
POMDP representation enables the robot to reason about the uncertainty in the table’s internal
state and its own actions and how the dining process for that specific table evolves after a sequence
of action executions.

We provide the general representation of the POMDP model for a table below. We also discuss
an example implementation of each element of the POMDP model for the restaurant setting that

we used in the experiments of Chapters 5, 6 and 7.

* State space S: For one table, the full state of its POMDP is S = SR x SC where SR is
the robot’s state space and SC' is the human’s state space. If we represent an element of
the robot’s state sr € SR and an element of the human’s state sc € SC in vector form,
an element of the table’s state s € S is a concatenation of the robot’s and human’s state
s = (sr, sc). The robot’s state variables include robot’s state information that will be shared
between the tables, and it does not include any human specific information. The rest of the

state variables sc are specific to each table.

17



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

------------- | Table 1’s POMDP / Table 2’s POMDP

! Human's state: |
+ Satisfaction (hidden) |
* Current request |
* Wait time :

|

« Satisfaction (hidden)
* Current request
* Wait time

_————————

Table 3’s POMDP

Figure 3.2: The robot operates in a restaurant with 3 tables, 71, T2, and 73.

= Robot’s state variables sr € SR (e.g., position)

* Human'’s state variables sc € SC' (e.g., satisfaction level, wait time, cooking status

and current request)

Example S: We enumerate what state variables we use with their range in brackets in front
of each variable. The state variables can take any integer values from the first number in the
bracket to the last number inclusive. We also mention what each integer value represents.
The time related variables have values from 0 to time,,,, = # tables X sat,,,. where
satq. 18 the highest value for the satisfaction variable. This accounts for having more time

to service the customers when there are more tables.

* Robot’s state s contains x and y (11 x 11 grid).
* Human’s state sc contains

— Satisfaction [0, 5]: very unsatisfied (0), unsatisfied (1), slightly unsatisfied (2),
neutral (3), satisfied (4), very satisfied (sat,,qo. = 5)

— Food [0, 3]: not served (0), plate-full (1), plate-half (2), plate-empty (3)
— Water [0, 3]: not served (0), glass-full (1), glass-half (2), glass-empty (3)
— Cooking status [0, 2]: cooking-started (0), food-half-ready (1), food-ready (2)

— Current request [1, 8]: want-menu (1), ready-to-order (2), want-food (3), want-
drinks (4), want-bill (5), cash-ready (6), cash-collected (7), table-needs-to-be-
cleaned (8)

18



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

Hand raise [0, 1]: no-hand-raise (0), hand-raise (1). This variable represents if the
customers have a request or not. This variable is always 1. After the customers

leave, it becomes 0.

Time since food or water has been served [0, time,,,.|: this variable represents
the number of time steps since the customers started eating or drinking. It affects

the value of food and water. We provide more details below.

Time since food is ready [0, time,q.|: this variable represents for how many time
steps the food (or drinks) has been ready to be delivered to the customers. We

provide more details below.

Time since request [0, time,,q.|: this variable represents for how many time steps

the customers at the table have been waiting to be serviced.

* Action space A: The full action space is a set with all the following actions A =
{AN, AC, AS, AI,no op}.

= Navigation actions AN (e.g., go to the table and go to the kitchen)

Communication actions AC' (e.g., food is not ready and I'll be back to serivce your
table)

Service actions AS (e.g., serve food and give the bill)
Information gathering actions A (e.g., ask if the customers are ready for the bill)

A special no operation action

Example A: A = {AN, AC, AS,no op}.

Navigation actions AN: go to the table.
Communication actions AC": food is not ready and I'll be back to your table later.

Service actions AS: One serve action. Depending on the table’s current request, the
appropriate service action gets executed. For example, if the table’s current request
1s want-menu, executing the serve action when the robot is at the table represents

handing over the menu.

The special no operation action.

In this instance of the restaurant model, we do not include information gathering actions.

* Transition function 7: We assume the robot’s next state sr’ is independent of the human’s

current and next states, sc and sc/, and only depends on its own current state sr and action

a. Similarly, the human’s next state sc’ is independent of the robot’s current and next states,

19



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

sr and sr’, and only depends on human’s state sc and action a. Thus, we can decouple the

transition function as follows 7'(s, a, s") = Pr(sc|sc, a) Pr(sr’|sr, a).

Example 7: We assume that the robot’s actions with respect to its own state are determinis-
tic (i.e., robot’s position changes deterministically). Each table goes through a consecutive
sequence of 8 requests that we mentioned above (the 8 values for the current request
variable). The table gets served if the robot performs the serve action at the table. After
each serve action, the value of the current request is updated to the next value (current
request+1). The time since request variable resets to 0 when a table is served, otherwise it
goes up till it reaches its maximum value. The actions increase the relevant time-related
variables of the state by 1 except the navigation actions which can take 1, 2, or 3 time steps

depending on where the robot is with respect to the tables.

If a table is waiting for the food, the cooking status variable increases by 1 after %
time steps until the food is fully cooked and ready to be served, i.e., cooking status = 2.
This means the kitchen takes % time steps to prepare the food. When the food is
ready to be served, the time since food is ready variable keeps increasing until the robot
serves the table, i.e., the robot goes to the table and executes the serve action, or it reaches
its maximum value. If the value of the current request is want-food or want-drinks and
the robot serves food or drinks, the table starts its eating or drinking process. We assume
each table takes % time steps to finish eating (or drinking). The time since request
variable does not go up when the people are eating or drinking. The time since served
variable resets to 0 when the food or drinks are served and goes up till the customers finish
their food (food = 3) or water (water = 3). The time since served variable is used to keep
track of time while the customers are eating or drinking and affects the value of food and
water. The food and water variables represent the table’s eating and drinking process and

increase after % time steps until they reach their maximum value.

All the variables except satisfaction transition deterministically. The satisfaction variable
goes down by 1 after “%¢mex time steps; if a customer is very satisfied at the beginning
satmazx

and does not get served within time,,,., she becomes very unsatisfied. When the table is

timeémax
satmaz+1

the assumption is that if the people are waiting for food, their satisfaction level decreases

waiting for food, the satisfaction variable goes down by 1 after time steps. Here
faster than when they are waiting for other reasons. When a table is served its satisfaction
level changes stochastically. If they are very unsatisfied, their satisfaction level increases by
1, 30% of the times, and stays the same, 70% of the times. If they are very satisfied, their

satisfaction level does not change. Otherwise, their satisfaction level increases by 1, 60% of

20



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

the times, and stays the same, 40% of the times. This means that it is much harder to make

the very unsatisfied tables a bit more satisfied than making the satisfied tables very satisfied.

Observation space Z: We assume that the robot’s state is fully observable. The human’s
state sc may be partially observable. For example, the robot may execute an action and
observe the human’s neediness which might give information regarding the human’s satis-
faction level. For the part of the human’s state that is observable, the model has the same
number of observation variables as the number of state variables. The model can have any

number of observation variables for the partially observable part of the state sc.

Example Z: In an instance of the restaurant model that we consider, we assume that we
have one observation variable per each state variable except for the satisfaction level that
is hidden. As the robot’s state is fully observable and the actions of the robot with respect
to its own state are deterministic, we do not consider any observations associated with the
robot’s state. This means we have 8 observation variables for the following state variables:
food, water, cooking status, current request, hand raise, time since food or water has been

served, time since food is ready, and time since request.

Observation function O: The model does not have observations for the robot’s state. The
human’s state can be partially observable, thus the observation function only depends on
the human’s state sc/, action a and the observation of the human’s state z, O(¢',a, z) =

Pr(z|sc, a).

Example O: We only consider satisfaction level, sat, as a hidden variable, and the other
variables, let’s call them zh, are observable. This means that Pr(z,; = zh|sat, zh,a) = 1
and Pr(z;11 = zh/|sat, zh,a) = 0 where zh' # zh. Since satisfaction level is the only
hidden variable, the belief state of the POMDP keeps a distribution over this variable.

Reward function R: The reward function specifies how the robot should service the table.

Example R: In an instance of the restaurant model that we consider, we consider servicing
a table has a positive reward inversely proportional to the table’s satisfaction. If the table is
unsatisfied and waiting to be served, a negative reward is given. Navigation actions incur a
negative reward. This reward function encourages the robot to service the table sooner if it

is unsatisfied. The reward function is as follows:

21



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

time = min(time since request, 10)

R(s,serve) = 5 x (satyae — sat’ + 1)

R(s,goto) = —1
—2time  gqt! =0
—1.7%me  sat’ =1
R(s, other actions) = ¢ —1.4tme g/ = 2
1 sat’ = 3,4, 5; sat’ > sat
0 otherwise

\

This concludes the representation of the POMDP model for a single table. In the next section, we
provide a discussion on what assumptions we made regarding the restaurant model and how that
would relate to a real restaurant setting. We add a subscript ¢ to the elements of table :’s POMDP

model when we refer to them.

3.3 Assumptions

We assume each table goes through the dining process independently of each other. More

specifically, our formulation makes the following assumptions regarding the POMDPs:

* We make the following assumptions regarding the state, action and observation space of the
tables. The models’ state space only share the robot’s state sr between themselves. The
rest of the state variables sc are specific to each table. Other than the no operation action,
the models’ action space do not share any other actions. The models’ observation space
do not share any observation variables. We believe that these assumptions can be valid in
real-world restaurants unless the customers on two different tables booked a reservation
together and are going through the dining process together, in which case they should be

considered as one table.

* Table i’s transition probabilities are a function of the human’s (sc, s¢’ € SC;) and robot’s
current and next state (sr, s7’ € SR), and the robot’s action (a € A;). The transition
probabilities do not depend on the state of the other tables. When an action gets executed by
the robot, if the action belongs to table i, a € A;, all other tables other than table 7 transition

as if no operation has been executed on them for the duration of a.

In reality this assumption might be invalid, and 7; might depend on the state of table j or the

specific action that is being executed on table j (@ € A;). For example, if table i perceives

22



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

that the customers at table j that have been waiting less than them got served before them,

their level of satisfaction might decrease.

* Table ¢’s observation probabilities are a function of the human’s state (sc € SCj), the
robot’s action (a € A;), and the robot’s observations of the table i (z € Z;). The observation

function does not depend on the state or robot’s observations of the other tables.

In reality this assumption might be invalid, e.g., if a table’s observed neediness changes

based on a nearby table’s status, e.g., if the nearby table is eating.

* The tip or the reward that the robot receives from a table only depends on the human’s
(sc, s¢ € SC;) and robot’s current and next state (sr, s’ € SR), and the robot’s action
(a € A;). The total tip or the reward the robot gets is a sum of all the tips or rewards from

all the tables in the restaurant.

In reality this assumption might be invalid. For example, if the reward that is given to the

robot is based on being served after a nearby table.

Although some of the assumptions that we made regarding the restaurant domain might not
always hold in a real-world restaurant setting, we believe they provide a good approximation of a
real-world restaurant setting. Relevant works on the restaurant domain also implicitly make these
assumptions. Our work extends the previous works by looking at the outcome of robot decisions
in the long-run and modeling the internal state of the humans. This section focused on formalizing

the restaurant domain and discussing what assumptions we make regarding its model.

One way to approach the waiting tables task could be to solve each POMDP separately and
compute the average reward that the robot gets to service each table. The robot can then select the
table with the highest reward to attend to (Strategy 1). This strategy does not take into account
sequencing the tasks to achieve the maximum total tip or reward from all the tables. Below, we
provide an example that illustrates why the robot should combine all the POMDP models to build
a model with all the tasks’ states, all possible actions, and robot’s state, and consider all possible

sequences of servicing the tables (Strategy 2).

Let’s assume that T3 in Fig. 3.2, is currently extremely unsatisfied and needs to be serviced,
and on the other side of the restaurant T1 and T2 are moderately unsatisfied. If the reward function
is inversely proportional to the table’s satisfaction, Strategy 1 leads the robot to attend to T3 first.
In this case by the time the robot services T1 and T2, the tables might be extremely unsatisfied.
However, in Strategy 2, the robot services T1, T2 and then T3, rather than servicing T3 first
and then coming back all the way to service T1 and T2. Thus, even though we make the above
assumptions and assume that the tables are independent, the optimal policy must consider all

incomplete tables at each step since they share the robot among themselves. Instead of solving the

23



CHAPTER 3. FORMALIZATION OF THE RESTAURANT DOMAIN

huge model of the restaurant domain, our algorithms in Chapters 5 and 6 use the assumptions that

we mentioned above to speed up planning.

3.4 Conclusion and Discussion

We focus on planning for a robot waiter that operates in a restaurant and is presented with an
ongoing stream of tasks. A typical restaurant waiter has an internal model of how the customers’
satisfaction evolve during the dining experience, and how her actions impact them. We present
our first steps to enable a robot to take on the waiting tables task. We formalize the task of waiting
tables as a robot planning problem to enable a robot waiter to leverage an internal model of the
customers’ satisfaction to guide its decision making. We discuss why our formalization of the NV
tables as NV independent POMDP models is suitable for the task of waiting tables and expand on
the computational challenges of planning for the restaurant setting.

The assumption that the N tables are independent helps us in addressing some of the com-
putational challenges for such domains; however, in a real restaurant setting, the independence
assumption might not hold. If the independence assumption does not hold for certain tables, one
can combine the POMDPs associated with those dependent tables. Note that although we consider
the same POMDP implementation for the different tables, one could have different POMDP
implementations depending on different types of customers. The focus of this work is mostly on
the algorithmic challenges of solving these multi-task models rather than designing a restaurant
model that perfectly matches a real restaurant. We will discuss some of the improvements that

can be made on the restaurant model in Chapter 9.

24



Chapter 4

Efficient Task Execution by Using
Interruptions to Switch Among Multiple
MDP Models

Our work in this section focuses on a multi-task domain where a service robot is executing a
user-requested task, e.g., object delivery, and is also alert for multiple external tasks that might
come up. Different from the restaurant domain where the robot should attend to all the tables (or
tasks), in this domain the robot is required to accomplish the user-requested task, but the other
external tasks are optional. Since the external tasks are optional (and independent), the robot does
not need to solve the large combined model associated with all the tasks at all times and can speed
up the task execution by solving the large combined model only occasionally. This chapter targets

the service robot domain and provides an approach to expedite the task execution.

4.1 Motivation

Our service robot can successfully perform user-requested tasks by executing a single planned task
at a time [188]. Our goal is to make the robot more responsiveness to its environment by equipping
it with additional optional tasks and enabling it to interrupt the execution of the user-requested task
to achieve the additional tasks. For example, if the robot is scheduled to deliver a document to an
office, and on the way to the office it sees a person asking for help, we might want the robot to first
assist the person and then finish its delivery. In the service robot domain, the tasks have internal
states, e.g., the document is really needed when the user finishes her lunch, so task-scheduling
approaches that only consider temporal constraints are not applicable. The robot should leverage

the requested task’s model to decide if achieving a few additional tasks before addressing the

25



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

requested task will risk the accomplishment of the task or not. This domain is different from the
restaurant domain since the robot has one task that it needs to accomplish and the rest of the tasks
are optional. The tasks are represented as Markov Decision Processes (MDPs) in which there is

uncertainty over the outcomes of actions, but the states of the tasks are fully observable.

We provide an approach that enables a robot to increase its responsiveness to its environment
by interrupting its task execution and switching to an optional task when appropriate. We take
on a reinforcement learning (RL) approach to learn the task-switching behavior. One way to
learn this behavior is to encode all the details of the tasks’ structure and environment in one
combined model and use an RL algorithm (or a planning approach) to find an optimal policy [178].
Notice that although except one task the other tasks are optional, the robot has to consider all
the existing tasks, namely the user-requested task and all the current optional tasks, in one large
model to decide what task to execute next. This is because the robot should consider all possible
sequences of achieving the tasks to make a decision. This approach has a large number of state
variables with the potential of high computational complexity. Another drawback of the combined
model approach is that the robot should process all the sensory state variables for all the task
models during the execution of the combined model. In most robotics applications, there is a cost
associated with processing the sensory state variables, e.g., cost for human pose estimation and

speech recognition, and it is often not feasible to process all sensory inputs.

To address the computational impracticality of using the large model, we provide an algorithm
that speeds up task execution by deciding how often the robot should solve the large model, rather
than solving the large model at each time step. The robot only focuses on one task at a time
and uses the large model when it is triggered. We call the signals that trigger the task-switching,
"stimuli". When a stimulus is triggered, the robot builds the large model with all the tasks to decide
if a switch is more rewarding than continuing with the current task. There are ways to hard-code
the switching response for a specific problem. However, we target service robot domains in which
the tasks have a lot of state variables (e.g., human’s distance and speed, human gaze, distance to
obstacles) and hard-coding the switching response is not feasible. We provide an algorithm that
speeds up the execution of the tasks by identifying the stimuli that trigger the task-switching. We
identify these stimuli by identifying the sensory inputs that have a higher impact on task switching
and show that our solution using the switching stimuli compares favorably to the naive approach
of considering all the tasks. Moreover, leveraging the stimuli significantly decreases the amount

of sensory input processing during the execution of tasks.

We propose a two-step solution. In the first step, learning, the robot learns a task selection
policy that specifies which task should be executed at each world state. We formulate the task-

switching problem as a Markov Decision Process (MDP) and leverage a Dueling Deep Q-Network

26



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

architecture to solve it [195]. In the second step, identification, we speed up the execution of
the task models by identifying the stimuli that trigger the task-switching. Leveraging the stimuli
enables the robot to focus on only one task at a time.

In summary, we make the following contributions: 1) a novel approach that learns a mapping
from world states to task models (learning step), 2) a novel algorithm that identifies the stimuli
that trigger the switch between task models (identification step), 3) our approach enables a robot
to be more responsive to its surrounding environment, and 4) our two-step algorithm significantly

decreases the amount of sensory input processing during the execution of the tasks.

4.2 Approach

In this section, we explain how we formalize the task-switching problem as an MDP. We then
discuss how we identify the stimuli that trigger the task-switching behavior.

We consider a scenario in which the robot is executing a user-requested task, e.g., object
delivery, and is also alert for other observations like humans and objects (e.g., trash) around it.
These observations may lead the robot to interrupt the current task execution if the switch to a

human interaction or trash cleaning task results in a higher future utility.

4.2.1 Learning Task Selection Policy

Our task selection algorithm is provided with a set of n task models; each task model in this set
achieves one goal. This set includes the user-requested task and all the optional tasks. The output
of the algorithm is a policy, denoted by Tgeiect—task, that specifies which task model should be
executed given an observation of the environment. Each task model, denoted by 7; for the ith task
model, is represented as an MDP [99]. Solving the i** task model’s MDP by a value-function
based approach provides a policy 7; and a value function V;. The policy 7; specifies the best
action that should be taken in each of the task model’s states. The value function V; specifies
how good each state is from the perspective of the i*" task model. The ultimate goal of the task

selection algorithm is to use 7;’s and V;’s, and learn when to switch between the task models.

Problem formulation:

We formalize the task-switching problem as an MDP, and we refer to it as “switching MDP”. The

MDP’s representation’ is as follows:

"We assume a discount factor of 0.99 in all our experiments.

27



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

* States: In a domain with n task models, the switching MDP’s state is [V/(S1), V2(S2), ...
,Vi(S,)]. State S; represents the state of the i task model, and V;(.S;) represents the
expected reward when starting in S; for the i** task model.

* Actions: In a domain with n task models, the actions are execute m,, execute mo, ..., and

execute m,. Each call to execute 7; executes an action based on policy 7; of task model 7.

* Transition function: This is a model-free approach, so the robot directly learns the policy

by trial-and- error interactions with the environment.

* Reward function: The reward function specifies the relative utility of the tasks to each

other. Thus, it determines the multi-task behavior of the robot.

Lear ning T select—task

Our MDP’s state space is continuous, therefore we use a neural network to approximate the
@ function. Some work provides a variant of Q-learning called Deep Q-Network (DQN) that
stabilizes RL by utilizing an experience replay mechanism and a second fixed target network
[125]. In addition to utilizing these two improvements of DQN approach, we leverage the dueling
architecture which compared to DQN provides a more robust estimate of the () function and has
shown better performance in domains with many similar-valued actions [195].

We use our MDP formulation of the task-switching problem and apply the deep Q-network
method to approximate the task-switching policy. To learn the task-switching policy for n task
models, our deep model gets [V;(.S1), Va(S2), .., V,.(S,)] as an input. The output of our network
specifies which 7; should be executed given the input to the network. Fig. 4.1 shows what happens
in one step of learning if our domain consists of n task models. If n = 3 the robot observes
the environment, updates S1, Sz, and S3, and computes the corresponding V3 (S7), V5(S2), and
V5(.S3). The robot picks one of the task models (e.g., 77) and executes one step of its policy (e.g.,
if a3 = m1(S), the robot executes action a3). The robot observes the new state and the reward of
the action execution, and updates the parameters of the network. The robot keeps updating the
parameters by applying the DQN approach until the loss converges to 0. Each learning episode

terminates when the robot accomplishes the user-requested task.

Executing Teerect—task:

We explain how the robot uses the trained network at execution time to perform the following
task: the robot is scheduled to deliver an object to a location (main task), while interacting with
the people around it. The robot starts going to the goal location to deliver the object. At each

step during execution, the robot computes an array of V;’s and passes it to the network. The

28



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

External observations
based on TT; Environment

executes an action

reward

Policy

Exechjtlon v )

o
A

14(5)

selects Task

th Selection :
] taSk (T[select—task) ‘Vn (Sn)

.
N
A

53
7'y

reward

Figure 4.1: Overview of the task selection module.

network then selects a task, and the robot executes an action from the task’s policy. In our example
scenario, the robot might see multiple people in the scene. Interacting with each person is a
different task. The robot might choose to interact with a person, and then decide to interact with

another person or return to the object delivery task.

The Q-values and V-values have been used in other work to address the action (model)
selection problem [83, 96, 179]. Their algorithms use heuristic values calculated from Q-values
and V-values to select actions from different modules. Similar to their approach, our tasks are
learned with different reward functions, but our approach trains a model based on the global
reward function that specifies the relative utility of the tasks to each other. The robot learns a
behavior that specifies how it should switch between its multiple tasks to gain the highest utility.
Notice that just getting the maximum of V-values does not work for the following reasons: 1) each
task is learned separately with a different reward function, and 2) the robot might greedily select a
task that is closer and miss a dense group of rewarding tasks further away. Our task-switching

formulation has the following characteristics:

* The structure of our task selection algorithm is independent of the number of state variables
and actions in each task model’s MDP, and the size of the input to the deep network increases
linearly as the number of task models increases. This is because each task model is learned
separately using its own reward function, and the high-level task selection module only

learns how to switch between the tasks to get the highest utility.

* The task selection module might not learn the combined model’s optimal solution in some
cases since it only uses the individual task models’ policy and value function. However,
training the task selection module is faster than solving the combined model. The task

selection algorithm favors computational feasibility over optimality.

29



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

* Although the task selection algorithm enables the robot to switch between multiple task
models, the robot is still processing the same amount of sensory input as the combined
model during the execution phase. More specifically, the robot should first update all the
state variables and then use them to calculate V;’s. That is to say, in a real scenario, while
the robot is executing a navigation task, it should also process all the state variables of a
Human-Robot Interaction task to decide if a switch to a different task is appropriate. We
introduce the notion of task-switching stimuli in the next section to decrease the amount of

sensory computations at the execution time.

4.2.2 Identifying Task-Switching Stimuli

On one end of the spectrum, we have approaches like our task selection algorithm that process
all the sensory information for decision making. These approaches work if the total time of
processing the sensory information is less than the desired response time of the robot. However,
as we increase the number of sensors on robots and the tasks become more complex, these
approaches become infeasible. On the other end of the spectrum, we have approaches that only
focus on one task at a time. These approaches are not responsive to their external environment
which makes them less effective in real-world applications. We are interested in a method that
trades-off between the amount of sensory input computations and responsiveness of robots. We
introduce another algorithm that leverages stimuli to address this trade-off.

A “stimulus” (plural stimuli) is a detectable change in the internal or external environment
of a robot that causes a reaction in the robot. These stimuli, when triggered, interrupt the robot
to assess if switching to another task model is beneficial. The information that a robot requires
to execute actions and achieve a task model’s goal is already provided in the task model’s state
variables (features). We introduce an algorithm that takes as input the state variables of each task
model and selects the most informative state variable as the stimulus that triggers the reevaluations
of the task selection policy Tejecr—task- FOr each task model, our algorithm computes a sorted list
of the task model’s features with their associated importance percentage.

Our key idea is to gather examples of observations where the robot switched to another task or
did not switch to another task and then use this labeled data to find out what features have the
biggest impact on the task-switching. Alg. 1 presents the stimuli identification algorithm. The
stimuli identification algorithm takes as an input a list of target task models U, the task selection
policy Tseiect—task, and the main robot task c¢,,.:n, and computes U’s features’ importances. We
run /N simulations (line 2) with different goal locations and random initial values for the features
(line 3) and evaluate the task selection policy at each step of the simulation (line 5). To find the

features that have the most impact on the task-switching policy, the algorithm gathers examples

30



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

of observations where the robot decides to switch to another task or continue with the current
task. For each target task model, the algorithm considers an empty positive and negative example
sets. At each simulation step, if we switch from the task model A to the task model B, we add
the current state of the task models U — B to their negative example set (line 8) and the current
state of the task model B to its positive example set (line 7); otherwise if we do not switch from
the task model A to the task model B, we add the current state of the task model A to its positive
example set, and the current state of the other task models U — A to their negative example set.
Notice that if the robot does not switch from A to another task model, we still consider the state
as a positive example for A, since A is preferred to the other task models in that state. We keep

updating the positive and negative example sets for the tasks until all the simulations terminate.

Algorithm 1: Task-Switching Stimuli Identification. The algorithm takes the task
selection policy Tgeject—task, the number of simulations N, the main robot task ¢;,4in,
and a list of target task models U as input.

1 Stimulildentification (7 .cct—tasks Cmains N, U)

for 1 7o N do

Randomly reset all task models

while ¢,,,,;,, not done do

Cstate — ComputeTaskmodel Values() // computes state of the switching MDP (V;’s)
Ctask < Wselect—task<cstate) // selects a task model
Add the state of ¢y, to its positive set

Add the state of U — ¢4 to their negative sets
Execute(c;qsz) // executes one step of ciqsk

for task € U do

data, label <— GetSensoryData(task)

clf < FitClassifier(data,label)

task.importances <— FeatureImportances(clf)

O N A R W N

—
W N =2

Algorithm 2: Task-switching behavior. The algorithm takes the task selection policy
T select—task and the main robot task c¢,,4;, as input.

1 MultiTaskMDPPlanner (7.ciect—task Cmain)

Ctask < Cmain
while ¢,,,,;,, not done do

2
3
4 while stimuli not triggered & c;451 not done do
5 ‘ Execute(ciqsr)

6 Cstate < ComputeTaskmodel Values()

7

Ctask < Wselect—task(cstate)

We formalize the identification problem as a classification problem. The stimuli identification

31



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

algorithm first filters out all nonsensory features since they cannot be used as a stimulus to interrupt
the task execution (line 11). The sensory feature vectors with their labels are then provided to the
classification algorithm (line 12), and the feature importances are computed (line 13). The feature
with the highest importance is selected as the stimulus for the target task.

Alg. 2 describes how the learning and identification steps of our approach are integrated and
executed by the robot. The robot starts with the main robot task, e.g., object delivery task, and
keeps executing it (line 5) until a stimulus is triggered, e.g., the robot sees a person, or the current
task is done (line 4). The robot then computes all the sensory variables and selects a task model to
execute (lines 6-7). Notice that while executing the current task ¢, s, the robot only processes the

sensory variables of ¢, and the stimuli.

4.3 Experiments

In this section, we discuss the results of our task selection and stimuli identification algorithms in
a scenario with 1 to 6 tasks (e.g., the object delivery and human interaction tasks) that our service

robot encounters everyday in our building.

4.3.1 Neural Network Structure

The network gets as input an array with size equal to the number of task models. This is followed
by 3 hidden layers, each with 60 neurons and ReLU activation functions. The output layer has
size equal to the number of task models. We sample uniformly a batch of size 32 from the replay
memory of size 50, 000 to perform each update. We use a linear decay epsilon greedy policy with
maximum value 1 and minimum value 0.1 and the Adam stochastic gradient descent method as
the optimizer with learning rate 0.001 [98]. We use the same network structure and parameters
in all our experiments. Instead of applying a hard update on the network, we use a soft update
method with smoothing parameter @ = ¢~2 to update the model. The parameters of the DQN
approach, e.g., minibatch and replay memory size, are equivalent to the ones used by other works
in deep RL [125].

4.3.2 Feature Importance Computation

In order to compute the feature importances, we apply the Extra-trees algorithm on the positive
and negative example sets? [73]. We used the extra-trees algorithm with 1000 estimators, i.e.,

1000 trees in the ensemble, gini criterion and maximum depth of 4. Features with higher ranks,

2We used the scikit-learn implementation of the algorithm [141].

32



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

i.e., at the top of the tree, contribute more to the final classification decision of a larger fraction of
the examples. The expected fraction of the examples that each feature contributes to is used as an
estimate of the relative importance of the feature. Averaging the relative importances over several

randomized trees produces the feature importances for each target task model.

4.3.3 Simulation Setup

We tested our task-switching behavior in an 11 x11-grid environment (Fig. 4.2) with three types
of tasks: an object delivery task with 3 features and 3 actions, a trash cleaning task with 4 features
and 5 actions, and a Human-Robot Interaction task (HRI) with 7 features and 7 actions. When
an action gets executed, the tasks that do not include the action in their action space transition
as no operation has been executed on them. Except for the x and y position of the robot, all
other features are binary. The robot’s position and the robot’s navigation actions are only shared
between the tasks. In all experiments, the robot is performing an object delivery task while
interacting with 0 to n people or executing 0 to n trash cleaning tasks. Thus, the number of tasks
ranges from 1 ton + 1.

We build a huge MDP with the n + 1 tasks, and we call it “exact MDP” since it computes the
exact solution to our problem. The exact MDP would have 5n + 3 state variables, 121 x 2°7+1
states, and 8 actions if we use the HRI task and 2n + 3 state variables, 121 x 22"*! states, and
6 actions if we use the trash cleaning task. We compare our switching MDP’s solution to the
solution of the value-iteration algorithm on the exact MDP. In both MDPs, the robot gets —0.1
reward for each action execution. The reward of interacting with a human goal, cleaning trash, and
delivering an object is 1, 1, and 0 respectively. The episode terminates when the robot achieves
the delivery task regardless of whether it interacts with the humans or performs the trash cleaning
tasks. We consider the same setup for our switching MDP. With n + 1 tasks, our switching MDP

has n + 1 state variables and n + 1 actions.

4.3.4 Results of Task-Switching Behavior

We evaluate our task-switching behavior in different setups and show its benefits over the exact
MDP. Here, we assume that the switching stimulus is detected by the stimuli identification
algorithm, and we provide the results of the identification step in the next section. We report the

final results of our task-switching approach in three evaluations:

1. In the first evaluation, we used one object delivery task and 1 to 4 different trash cleaning

tasks and compared the switching MDP and the exact MDP’s performance during training. While

33



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

-_-I

Figure 4.2: 11 x11-grid environment with the robot (R), the navigation goal (G), and 5 humans
goals (H’s).

executing the object delivery task, the robot observes 1 to 4 different trash goals, and it should
decide if it should switch to another task. Fig. 4.3 shows the performance of our switching MDP
compared to the exact MDP (dashed lines). To compute the performance, we average the final
reward of running 120 simulations with random initial values for the state variables. The final
reward of a simulation is the total reward of its episode until it terminates or the robot reaches
the maximum number of steps, which is set to 150. Fig. 4.3 shows our dueling Q-network

performance is very close to the exact solution at the end of the training process.

As the number of tasks increases, the neural network requires more training steps to converge
to the optimal solution. For two, three, four, and five tasks, the network required 25, 000, 30, 000,
60, 000, and 70, 000 training steps respectively. Due to space constraints, here we briefly highlight
the advantages of our approach, in terms of time complexity of the learning phase, compared
to the naive approach. To better illustrate the computational complexity of the combined model
when the state space is just slightly bigger, we introduce a new task HRI-13 that has the same 7

variables as the HRI task, and we add 6 more binary variables to it.

The value-iteration algorithm computes the optimal solutions of the object delivery and HRI-
13 tasks in 0.08 and 66.04 seconds (s) respectively. For 2 tasks, object delivery and HRI-13, the
naive approach takes 137.01 s to solve the MDP, and our approach takes 183.03 s to learn the
switching policy. The time complexity of our approach, in total 249.15 s (183.03 + 0.08 4 66.04),
is almost twice as much as the complexity of the naive approach. If we add one more task with 13
variables (total 25 variables), value-iteration was not able to compute the solution even after hours

of waiting, but our approach in total took 336.98 s to compute the solution.

34



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

2,
, 2tasks _3tasks __ 4tasks
- 72
g
v 79
[@)]
o -8
Q
@ -101
-12 ---- value iteration on exact MDP
_14] —— dueling DQN on switching MDP

0 50000 100000 150000 200000 250000 300000 350000
number of training steps

Figure 4.3: Performance of the switching MDP during the training phase for 1 delivery task and 1
to 4 trash cleaning tasks.

2. In the second evaluation, we compared the performance of our switching MDP with the exact
MDP when the robot executes the final learned network. In addition to the cost of each action
execution, the robot receives a negative reward for updating each sensory variable, we call this
cost “observation cost” (oc). For example, the cost of detecting a person in the scene is 0.01
(oc = 0.01). In the exact MDP, all the task models’ state variables are being computed. However,
in the switching MDP, only the state variables of the current task model and one stimulus for
each one of the other task models are being computed. We used the same setup as before and
included the observation cost. Fig. 4.4 shows how the difference between the performance, in
terms of average reward, of the exact MDP, denoted by e,., and the switching MDP, denoted by s,.,
increases as the number of task models increases. Notice the difference in performance of the
MDPs is 0 when the robot is only scheduled to execute the delivery task. Although adding each
trash cleaning task to the task models only increases the number of state variables by 2, with 6

task models the exact MDP on average processes 89 more state variables than the switching MDP.

3. In the third evaluation, we incorporated the observation cost into the training phase. In
addition to the positive reward for achieving the goals and negative reward for each action
execution, the robot gets a negative reward equal to # sensory variables X oc in each state. This
ensures that the robot considers the cost of observations during training, and if the observation and
execution cost of achieving another goal exceeds its reward, the robot will not switch to the other
task. Fig. 4.5 shows the results of the task-switching behavior with different observations costs.
The performance is computed as before for 3 tasks, 1 object delivery task and 2 trash cleaning
tasks. As the observation cost increases by 0.01, the exact MDP’s average reward decreases by

almost 0.8, but the switching MDP’s average reward only decreases by 0.3.

35



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

—— oc = 0.005
25 oc = 0.01
—-+ oc = 0.02
204 "= oc =0.03 o
f 1.5
o

num of tasks

Figure 4.4: Difference between the performance of the exact MDP (e,.) and the switching MDP
(s,) when there is an observation cost (oc) for processing each sensory variable.

07 =— switching MDP
=== axact MDP
_2 B
©
©
2 S
g RS
v —4 \s
o -~
L S
[} s
e ~
— .~
~\
~
~
\\
-84 ~

000 002 004 006 008 010
observation cost

Figure 4.5: Average reward that the robot gains for 3 tasks as we increase the observation cost by
0.01.

Discussion We tested different versions of neural networks with a different number of layers and
neurons, but all other network structures degraded our results or didn’t improve them. Whether
a deep network is needed or just a linear network suffices depends on the target domain. We
attempted to use the linear combination of basis functions [19, 178], but this approach did not

achieve satisfactory results.

4.3.5 Results of Identifying Task-Switching Stimuli

To evaluate our stimuli identification algorithm, we ran multiple simulations of the task selection
policy for 2 tasks (a delivery task and a trash cleaning, or a delivery task and an HRI task) with
random initial values for the state variables. The sensory state variables (features) of the trash

36



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

feature present X y
mean +std % || 69 +31 | 27+29 | 4+ 8

Table 4.1: Feature importances for the trash cleaning task.

70 [40 + 27]

[31 = 25]

[11 + 14]
[10 £ 12]

[4 +10]

present willing stopped X looking y
feature

Figure 4.6: Feature importances for the HRI task.

cleaning and HRI tasks are shown in Table 4.1 and Fig. 4.6. The algorithm randomly selects
the value of the willing, looking, and stopped variables. The value of the present variable is
initially set to 0, and it becomes 1 when the robot is 5 steps away from a human goal or a trash
goal, i.e., we assume that the sensor range is 5. We applied our proposed algorithm on our data
and calculated the feature importances. Table 4.1 and Fig. 4.6 show the feature importances for
the trash cleaning and HRI tasks respectively for 40 simulation runs. Feature importances for
each task model sum to 100. We evaluated the performance of the extra-trees classifier by 5-fold
cross-validation technique. The classifier’s accuracy is 89% on the HRI and 76% on the trash
cleaning task.

Table 4.1 shows that the present feature is more important than the x and y features, so the
algorithm selects it as the stimulus for the trash cleaning task. The importance of the present
feature is not close to 100% since the robot will only switch to another task if the switch is
beneficial. We observed similar results for the HRI task. The present and willing features are the
most important features, and their sum of importances (71%) is almost the same as the importance
of the present feature in the trash cleaning task (69%). Although the looking and stopped features
are involved in the termination conditions of the HRI task, the robot can execute actions to
change their value, so they do not affect the task-switching behavior. The present feature is more
important than the other features, so it is selected as the stimulus for the HRI task.

We decreased the sensor range from 5 to 3 and observed that the importance of the present and
willing features is 46% and 24% respectively. We increased the sensor range from 5 to 8, and we
observed that the importance of the present and willing features is 26% and 43% respectively. As
the sensor range increases, the present feature becomes less important since the robot can see the

person from most places, and the present feature does not significantly affect the task-switching

37



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

behavior. However, if we decrease the sensor range, the present feature becomes more important

for the task-switching behavior.

Discussion We tested different ensemble approaches (averaging and boosting) on our problem.
In summary, averaging methods, which use a set of strong classifiers, such as extra-trees and
random forest performed quite well on our dataset. However, boosting methods, which use a set
of weak classifiers, such as gradient boosting and adaptive boosting (AdaBoost) performed poorly.

We select one feature from each task to serve as the stimulus to interrupt the task execution;
however, an information theory-based approach that can select a subset of features that are the
most informative while also considering their computation cost would be required in order to
apply our approach to tasks with a lot more features. Our current approach is not efficient for
a continuous stimulus if its value changes constantly, e.g., constant changes in battery level. In
tasks with multiple features as the stimuli or in presence of continuous features, we can train a

classifier that detects when the stimuli get triggered.

4.4 Application on the Restaurant Domain

Consider the restaurant formalization from Chapter 3. If we were to apply the approach in this

chapter on the restaurant setting:

* The state of the tables (or tasks) would need to be fully observable. This would mean that
rather than keeping track of the internal state of the customers, e.g., their satisfaction level,
the robot would only consider their external observable state. The interaction between the
customers on a table and the robot is more long-term compared to the interaction between a
service robot and a person asking for directions in an office building, thus the customers’
satisfaction level in a restaurant is not just limited to their current external state and depends

on the history of actions performed for them and the observations received as a response.

* The robot would focus on the current table and only switch to another table when a signal is
triggered. The restaurant domain is very dynamic and the requests are added and removed
frequently, e.g., the customers ask for more water or the customers ask questions about
the menu. This would mean that the robot should solve the combined model frequently to
decide what table it should attend to. Solving the combined model frequently hinders the
benefits of our approach to expedite task execution, i.e., solving the combined model less

often.

* The robot could select one stimulus such as the hand raise or the satisfaction level as the

signal to trigger the task-switching. In a restaurant setting, there are many other variables

38



CHAPTER 4. EFFICIENT TASK EXECUTION BY USING INTERRUPTIONS TO SWITCH
AMONG MULTIPLE MDP MODELS

such as food ready to be served and customers have finished their food that can be important
for the task-switching behavior. Considering all these stimuli would results in processing
most of the sensory inputs and hinders the benefits of our approach, i.e., decreasing the
amount of sensory input computations. If we only consider variables such as the hand raise
or the satisfaction level for the task-switching, the robot would wait until the customers are
unsatisfied or needy to address them. In a restaurant setting were the reward or tip depends

on the customers’ satisfaction, this strategy would be very ineffective.

Therefore, our approach of expediting task execution can be applied to the restaurant setting, but

it will require simplifications that prevent it from being effective.

4.5 Conclusion and Discussion

We contribute a novel approach for switching among multiple task models. We explain how we
leverage the stimuli to interrupt the robot’s task execution and reevaluate the task selection policy.
We evaluate our algorithms in a scenario with 1 to 6 service tasks and show that our approach
requires less sensory computations compared to the combined model approach. Our method
drastically improves task execution compared to the combined model method and is effective in
domains where responding reactively to the environment is sufficient; however, it does not extend
to domains with more complex structure such as the restaurant setting where the state of the tasks
are partially observable, and all the tasks are required to be accomplished by the robot.

This approach does not extend to domains with more complex structure for the following
reasons. First, this approach is not suitable for the domains where the robot has to accomplish all
the tasks. The approach only processes the stimuli (i.e., a subset of state variables) to decide when
to solve the large combined planning model. If achieving the external tasks was necessary, the
robot would need to process all the variables associated with all the tasks to ensure that it will not
miss a feasible task. Second, for a domain such as the restaurant domain, the robot has to switch
between the tasks frequently. In the restaurant domain, the robot cannot stick to one task and only
switch to another task when triggered; the robot should decide what table should be attended to
at each time step. Hence, the robot should build and solve the large model with all the tasks at
each time step. This will be impractical for a restaurant with a large number of tasks. Third, we
used a representation in this work that does not generalize to tasks with partially observability.
Although less often, our approach still solves the large planning model with all the tasks when
the stimuli are triggered; solving the large combined planning model is infeasible for tasks with
partially observable states. For these more complex problems, in Chapters 5 and 6 we focus on

providing algorithms that solve the large combined model faster rather than less frequently.

39



Chapter 5

Optimal Short-Horizon Planning for
Achieving Multiple Independent POMDPs

5.1 Motivation

Many robotics applications, such as waiting tables in a restaurant and robots in search and rescue,
involve a robot acting in a stochastic environment under partial observability while completing
multiple independent tasks. Although in such domains the dynamics of each task is independent
of one another, they all share a single robot, and an optimal policy for the robot should consider
all tasks at each step. Many of these multi-task domains can be very dynamic with requests being
added and removed at each time step, e.g., a customer leaves or a table wants to order an extra
dish. Thus, the robot only needs to plan for a short horizon of actions as any long-term plan
quickly becomes sub-optimal or even infeasible after a few time steps.

A conventional planning approach for such domains is to combine all the tasks’ states and
actions into one large model and compute the h-step optimal policy for the combined model at
each time step. However, this approach is impractical if the number of tasks are large. We leverage
the structure of the problem, namely the independence between the tasks, and the observation that
given a short horizon only a subset of tasks can be accomplished within this horizon to expedite
planning and prove the optimality of our approach.

We utilize Partially Observable Markov Decision Process (POMDP) representation. POMDP
is a powerful mathematical tool to model the robot’s sequential decision making under uncer-
tainty [36]. However, planning algorithms for POMDPs can only handle small state and action
spaces and consequently do not scale well as the number of tasks increase. The combined model
of the robot and all tasks grow as the number of tasks grow.

Many works have proposed approaches to speed up POMDP solvers by using point-based

40



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

methods [169], hierarchical planning [181], clustering and compression of belief space [160, 175],
factored representation [168], and online POMDP approaches [158]. We leverage online POMDP
approaches which only compute the optimal policy for the current information state and a small
horizon of contingency plans. We are interested in domains in which a robot has to attend
to multiple independent tasks whereas the above approaches do not make the independency
assumption and address the combined model directly.

Our algorithm decomposes the problem into a series of smaller planning problems. In
particular, a robot attending to a single task can be represented as a standalone smaller POMDP.
We show how to compute lower and upper-bounds on the cost of an optimal solution involving
N tasks. Using these insights, we develop an algorithm that searches over possible subsets of
N tasks, solving each optimally until a provably globally optimal solution is found. We test
our approach on a simplified restaurant environment in simulation. We present how we model
the waiting table task as a robot planning problem and show the effectiveness of our approach
compared to the combined model, a hierarchical POMDP approach, and a related paper [166].

In the next sections, we describe our notation, provide a pseudo code for the algorithm, and
prove the optimality of the approach. We then discuss the performance of the algorithm compared

to the existing approaches.

5.2 Problem Formulation

We focus on domains where one robot is addressing a set of /V independent tasks. At each time
step the robot decides what action should be executed with respect to which task. We model
each task, the robot’s state and the actions that can be applied to the task as a POMDP and call
it client POMDP. In this section, we first explain how we represent the client POMDP. We then
discuss how the N client POMDPs are combined into one large POMDP model called an agent
POMDP. Finally, we discuss how we use the independence property among the /V client POMDPs
to compute the agent POMDP’s solution.

5.2.1 Client POMDP

The client POMDP for task i is represented as a tuple (S;, A;, Z;, T;, O;, R;, v, H), where S; =
SR x SC; denotes the state space, sr € SR denotes the robot’s state (it is shared between the
client POMDPs), and sc; € SC; represents the other state variables that are specific to task .
For example, in our restaurant domain, sr contains the robot’s position, and sc¢; contains state

variables such as level of satisfaction. A; denotes the robot’s action space which contains a special

41



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

action called no operation (no op). Z; denotes the robot’s observation space which assumes there
is no partial observability on the robot’s state and only contains task i’s observation space ZCj,
Z; = ZC;. For example, zc; contains table 7’s neediness. The robot takes an action a € A; and
transitions from a state s € S; to s’ € \S; with probability 7;(s, a, s") = Pr(sc|sc;, a) Pr(sr’|sr, a)
where s = (sr, s¢;) and s’ = (s17, sc}). The robot makes an observation z € Z;, and receives a
reward equal to R;(sr, sc¢;, a). The probability function O;(s', a, z) = Pr(z|sc}, a) models noisy
sensor observations. The discount factor v specifies how much immediate reward is favored over
more distant reward, and / denotes the robot’s horizon. The planning horizon is the number of

time steps a robot will look into the future when coming up with a plan.

The robot’s objective is to choose actions at each time step to maximize its expected future
discounted reward: £ [Zf{: 0 fytn’t] , where 7; ; is the reward gained at time ¢ from POMDP :. In
POMDP planning, the robot keeps a probability distribution over the states S;, which is called a
belief state B;. POMDP planning searches for a policy 7 : B; — A that maximize the expected
future discounted reward at each belief b € B;. After executing an action, the robot’s belief is
updated by Eq. 5.1, where Pr(z|b;, a), the probability of observing z after doing action a in belief

b;, is a normalizing constant.

Oi(zls, G)GZST( s'ls, a)bi(s) 50
bi(s') = Pr(z|bi,a) ‘

The optimal return at stage ¢, V%, (b), can be iteratively computed by Eq. 5.2.

Zt bha Zb 5 CL —|—’)/ZPI‘ ‘bua) i, t— l(bg,z)

seS; 2€Z; (52)

The value of following a deterministic trajectory 7 at belief state b; and continuing according

to the rest of 7 for the remaining ¢ — 1 steps is computed by Eq. 5.3.

=Y bi(s)Ri(s,m) +v > Pr(zlbs, ) Vi1 (b]L) (5.3)

s€S; 2€Z;

For the no op action, the reward function only depends on the state variables that are specific
to the client POMDP R;(sr, s¢;,no op) = R;(sc;, no op).

42



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

5.2.2 Agent POMDP

We call a POMDP created from multiple client POMDPs agent POMDP (or robot POMDP). For-
mally, the agent POMDP for a domain with N tasks is represented by (N, S, A, Z,T,0,R,~, H)
where S = SR x SC; x §Cy x ... x SCy, s € S represents the agent POMDP’s state. Let
P ={i € N:i < N}. The robot’s action set A (Eq. 5.4) contains vectors of length NV in which
except one element, all other elements are no op. The observation space is Z = Z; X Zy X ... X Zy.
The robot’s probability distribution over the states S'is b € B where B = By X By X ... X By.

We assume that the agent POMDP’s reward function is additive in terms of its underlying tasks

N H
E [Z > vtr@t} , where 7 ; is the reward gained at time ¢ from task .
i=11=0

length N
A= U U [noop...noo a no op...no O (5.4)
iePaeAi[ p P, , ,noop p]
ith element

The properties in Def. 1 should hold for a set of N client POMDPs to be independent. The
N client POMDPs can only share robot’s state space and the no op action. The transition and

observation functions of different client POMDP models are independent of one another.

Definition 1 We call a set of /V client POMDPs independent iff Vi, j € P, a € A; and i # j,
the following holds:

1. SC;NSC; =0

3. (Ai\ {no op}) N (A; \ {no op}) =0
4. Pr(sc|scy, sca, ..., scn,a) = Pr(sd|sc;, a)
5. Pr(zi|scy, scy, ..., scy,a) = Pr(z|sc,a)

Given that the tasks are independent and the reward is additive, R(s,a) = >, p Ri(si, ali]),

the optimal return at stage ¢, V,*(b), can be iteratively computed as follows:

Pr(z[b,a) = | ] Pr(zk|b, alk]) (5.5)
keP

43



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Vi (6) = max | 37 D bils) Ruls, alil)
ieP seS; (56)

+9 > Pr(zlb, a) Vi (62)]
2€Z

To compute the value of the current belief state of the robot for a fixed horizon H, the planner
starts with the robot’s current belief as the root of a tree and builds the tree of all reachable beliefs
by considering all possible actions and observations. For each action and observation, a new
belief node is added to the tree as a child node of its immediate previous belief. To solve the agent
POMDP, a combined belief tree of all tasks is built till horizon H. The value of the robot’s current
belief is computed by propagating value estimates up from the fringe nodes, to their ancestors,
all the way to the root, according to Eq. 5.6. We call this approach agent POMDP with a fixed
horizon or agent-POMDP-FH.

Note that the agent POMDP approach is impractical if the number of tasks are large. If each client
POMDP has | S| states and | A| actions (excluding the no op action), and there are NV tables in the
restaurant, the robot should plan over an agent POMDP with |S|" states and N x |A| + 1 actions

which is infeasible.

Definition 2 We introduce a parameter £* which represents the maximum number of tasks that
the robot can potentially attend to within H steps. For example, £* can be set to f%l where
Vi,j7 € Pandi # j, [ is the minimum number of time steps that the robot takes to transition from
task ¢ to task 7 and affect the task j’s state variables sc;.

Considering the restaurant setting in Fig. 5.6, within H = 4, the robot can only attend to 2
tables as it should navigate to one table and serve it (e.g., give the menu to 7'2), and then navigate
to another table and attend to it (e.g., take the cash from 7°0).

In the next section, we provide a pseudocode for the algorithm by assuming an arbitrary k.
We then show that our approach is optimal for £ > k* and discuss its performance with different

values for £ compared to the other methods.

5.3 Approach

We exploit the observation that in some domains the number of tasks that the robot can accomplish
within h-steps is limited. We present an algorithm that exploits this observation and decomposes
the problem into a series of much smaller planning problems, the solution to which gives us

an optimal solution. We denote a subset of % tasks out of P as tpl or k-tuple, tpl C P. We

44



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

refer to a set including all combinations of k out of N tasks, (],Z ) tasks, as tpls or k-tuples
tpls = {tpl € P(P) : |tpl| = k}. The issue is the planner does not know apriori which & tasks it
should consider.

Algorithm 3: Online Planner with Fixed Horizon
1 MultiTaskFixedHorizonPlanner (env, P, H, k)
2 while not AllTasksDone() do

3 a < SelectAction(P, H, k)
4
5

observations <— Step(env, a)
UpdateBeliefs(P,observations)

5.3.1 Proposed Method

Alg. 3 provides a pseudo code of the main loop of our approach. We follow the online POMDP
planning framework where the planning and execution steps are interleaved until all the tasks are
terminated (line 2). P represents a set of POMDPs. During the planning phase, the algorithm
computes the best action to execute given the POMDPs’ belief state (line 3). The execution step
executes the selected action (line 4) and updates the belief state of the POMDPs based on the
obtained observation (line 5). The robot replans after each action execution. All the baseline

algorithms that we compare against modify SelectAction in some way.

Overview of the algorithm (Alg. 4)

We first solve each client POMDP separately (lines 4-5). We use the solutions of the client
POMDPs to compute a lower-bound on the optimal value of the agent POMDP with N tasks
(Function Lower Bound, line 6). We consider a set with all possible combinations of k tasks
(k-tuples). We use the solutions of the client POMDPs to compute an upper-bound on the value
of an agent POMDP created from a k-tuple and use the lower-bound to remove the ineffective
candidate k-tuples (Function Best K'T'uples). For each remaining candidate k-tuple (line 8), we
build and solve the agent POMDP model created from the k-tuple optimally to get an action and
the Q-value associated with it (line 9). The action from the k-tuple with the maximum Q-value is
selected (lines 10-11) by the robot.

Compute lower-bound

To compute a lower-bound on the optimal value of the agent POMDP with N tasks (Function
Lower Bound), the robot only considers one client POMDP in its horizon H and will perform no

45



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

op on the other POMDPs. For a client POMDP p out of N POMDPs, the algorithm sums up the
optimal V-value of the pth POMDP (V) and the value of performing o op on the other POMDPs
oo V[, line 21). The sum with the maximum value is returned. This calculation provides a
lower-bound on the value of the agent POMDP since it does not take into account that 1) the
optimal policy might involve switching from one task to another, or 2) an action other than a

table’s optimal action might be optimal in the agent POMDP.

Algorithm 4: Short-horizon Multi-task POMDP Planner

1 SelectAction (P, H,k)
T < array [1..H| filled with no op; Qpest < —00
V* V7, Q* < empty array [1..|P|]
forp € Pdo
| V*[pl.V7[pl.Q*[p] < SolvePomdp(p,H)
LB < LowerBound(V*,VV7)
tpls < BestKTuples(P,V",Q*,LB,k)
for tpl € tpls do
Umazs Qmaz < SolveAgentPOMDP(tpl,H)
if Qmax > Qbest then
Qpest <~ Amazs Qbest A\ Qmaz
return apeq;
BestKTuples (P, V7, Q*, LB, k)
tpls < a set with all combinations of k out of P
for tpl € tpls do

16 U B,y < max Z Q*[p, alp]]) + Z V7lg]

acA tpl

e X N A A WN

— e e —
n R e R ==

pEtpl geP\tpl
17 if UBy, < LB then
18 ‘ remove tpl from tpls
19 return tpls
20 LowerBound (V* VT)
21 return max p| + Z V7lgq
a€P\{p}

Find best k-tuples

To remove the ineffective POMDP tuples, we compute an upper-bound on the value of each
k-tuple. We start with all (]Z ) k-tuples (line 14). For each k-tuple (line 15) if its computed
upper-bound U By, is lower than the lower-bound (line 17), we remove it from the candidate
k-tuples set (line 18).

To compute a k-tuple’s upper-bound, we assume that the robot only considers the selected k

46



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

tasks and performs no op on the other POMDPs (3 | V[, line 16). For the selected k-tuple, the
robot executes one of the actions from the k-tuples’ set of valid actions A;,; which only considers
the actions associated with the POMDPs in ¢pl (Eq. 5.7). We assume that after executing the
first action, each of the k¥ POMDPs follow their optimal policies Q5 (b, a[p]). This breaks the
assumption that the robot cannot address all the tasks in parallel and gives an upper-bound on the

value of the k-tuple.

5.3.2 Optimality Proofs

Given Def. 1 and an assumption that we define later in this section, we prove that Alg. 4 computes
an optimal solution for the agent POMDP with N tasks.

Some notation:

* V,;: the optimal value of the client POMDP p at time ¢.
* Vjp,: the optimal value of the agent POMDP created from the N tasks at time ¢ (Eq. 5.6).

* Ay only considers the actions associated with the POMDPs in a given k-tuple and performs

no op on the other POMDPs, Eq. 5.7. In this equation, the union is only over tpl C P, so

Atpl - A.
length N
Ay = U U [noop...noo a no op...no O (5.7)
w= aeAi[ p P, , ,noop p]
ith element

* Vi the optimal value of the agent POMDP created from only the client POMDPs in ¢pl

at time ¢.

t;l,t (bipr) = aréli}; Q:pl,t (bipi, @)

immediate reward
7\

— max [2 Zbi(s)Ri(s,a[i];—k (5.8)

aEAt 1
PE " ietpl ses;

’yz Pr(z|btpl7 CL) V;Zl,tfl (b?pl,z)]

ZGthl

* Upy 4 the optimal value of the agent POMDP created from the client POMDPs in P at time

¢ with action set Ayy. Intuitively, V7, , considers the value of the client POMDPs in ¢pl, but

47



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

U1+ also considers the utility of performing no op on the POMDPs that are not in ¢pl.

i) = oy [T T o
tpl i€P s€S; (5.9)

+9 > Pr(zlb, a)Utzl,t,1<bz>}
z2€Z

Assumption 1 The robot has a short horizon H and can only consider k* tasks in its horizon
(Def. 2). Under this assumption, the optimal value for the agent POMDP is called \71;“

As mentioned earlier, Uy, , considers the action sets of all the POMDPs that are in ¢pl and
performs no op on the POMDPs that are not in ¢pl (Eq. 5.9). Given Def. 1 and Ass. 1, to compute
Vjﬁvt, the robot can take a maximum over U}, , where [tpl| = k, k > k* for all possible tpl € tpls.

VEi(b) = max Uy (b) (5.10)

Lemma 1 Egq. 5.11 provides a lower-bound on the value of the agent POMDP created from set
P.

< *
max(Vy bp) + D V(b)) < Vi, (0) .11
v

Proof: We compute Uf‘p}’ . (or U, ,) by using Eq. 5.9 where the robot only considers POMDP
p for horizon H, tpl = {p}, and performs no op on the other POMDPs over that horizon. In
Eq. 5.9, the maximum is taken over A,, whereas in Eq. 5.6, the maximum is taken over A. We
know A, C A as it follows from Eq 5.7, thus U, *t is a lower-bound on V;}t, and Eq. 5.12 holds.

We will show that U, is in fact V] )+ Z
q€P\{p}
¥p € P Uy (b) < Vi, (b) = (max Uy, (b)) < Vi,(b) (5.12)

peP pit

48



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Using Eq. 5.5, we expand Eq. 5.9 as follows:

U, +(b) = max [Z Z bi(s)Ri(s, ali])

i€P seS;
+ Z Pr(z|b1,noop) ... Z Pr(zn|bn,no op)
Z21€771 ZNEZN (513)

~
does not include 3

z2p€Zp

> Pr(zplby, alp) Uy, (62)]
zp€EZp
The proof goes by mathematical induction. If H = 1 and assuming that U};,(b) = 0, the following

equation holds.

U, (b) = max [Z S bi(s) Rils.ali])] =

acA
P " ieP ses;

vlfl(bl) + ...+ V;’jl(bp) +.o Vi (bn)

It H =1t — 1, we assume Eq. 5.14 where 7 is a trajectory consisting of only no ops, 7 =
no op[l..H], and show that Eq. 5.14 also holds for H = t. Intuitively, Eq. 5.14 holds since the
reward is additive, the POMDPs are independent, and the no op actions are executed in parallel
while the robot addresses POMDP p.

pi—1(0) = Via(br) + .+ V1 (bp) + . + V1 (0n) (5.14)

We substitute Eq. 5.14 in Eq. 5.13. Given Def. 1, for a specific Z;, we can marginalize out the

sum over Z;s (j # ) to obtain:

U;,t(b) = ‘/;z:t(bp) + VlT,t(bl) +...+ VJ\TI,t(bN)

does not include V}, (5.15)

= V;t(bp) + Z VqT,t(bq)
qeP\{p}

Thus, Eq. 5.15 holds for every H = t.

Lemma 2 Under Ass. 1, the optimal value of the agent POMDP created from the set P can be
computed by Eq. 5.16.

49



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

V;,t(b) = t;%%;{ls Utpl +(b)

(5.16)
= tglré%;(l V;fplt bpt) Z
geP\tpl

Proof: If we show Eq. 5.17 holds, under Ass. 1, Eq. 5.16 follows from Eq. 5.10 and Eq. 5.17.

Ut?l,t(b) = V;t;l,t(btpl) + Z V;;t(bq) (5.17)
geP\tpl

We consider an agent POMDP with the set of tasks ¢pl and call it P,,;. We then build a new
set of client POMDPs as follows: A = {P,,;} U {q|lq € P\ tpl}. Since all the members of P
follow Def. 1, the POMDPs in the set A also follow Def. 1 and are independent; thus, Eq. 5.17
follows from Eq. 5.15.

Lemma 3 For a given tpl, Eq. 5.18 provides an upper-bound on the value of U}, ,.

Uppe(b) < max (3~ Qp (b, alp))) + > Vi (5.18)
aeAtpl :

pEtpl qeP\tpl

Proof: Substituting Ui

from Eq. 5.17 in Eq. 5.18:

Vi i (bip) < max (O~ Q5 (b, alp])) (5.19)

Thus, we only need to show that Eq. 5.19 holds. We use Eq. 5.2 to compute the )* of POMDP p

and take a sum of the ()*s over all members of ¢pl:

immediate reward (IR)

™~

S Qb)) = 33 by(s) Ry, alp)

pEtpl pEtpl sES, (5.20)

+'YZ ZPr z|bp, alp]) V- 1(ba[p)

pELpl z€2Z)p

The immediate reward I R operand in Eq. 5.20 and Eq. 5.8 are equal, so we only need to show

the inequality for the second operand. For time step ¢t — 1, if the robot could address all the k

50



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

tasks in parallel, we could compute an upper-bound on the value of V7, , (b, .) by summing
over the optimal value of each POMDP in tpl, (m,n, o, ...) € tpl, Eq. 5.21. This can be proved

using a similar induction procedure that we used earlier.

Vistm1 () < Vi a (O ) 4+ Vi oy (0 )+
* alo * a 5.21
St Vo,t—l(bo,[zl) - Z ‘/q,t—l(bq,[g}]) ( )

q€Etpl

Substituting Eq. 5.21 in Eq. 5.8:

Qipta byt @) STR+ Y > Pr(zlby, alp)) Ve (2)
pEtpl z€Zy

=D Qpalbpalp])

pEtpl

(5.22)

Thus, Vi, (b)) < maxaea,, Z @y (bp, alp]).
pELpl
Therefore, Alg. 4 computes an optimal solution for the agent POMDP created from set P.

The proof should follow from Lemma 1, 2 and 3.

5.4 Experiments

We call our approach method-k, method-2 (A) or method-3 (F), as we evaluate it for different

values for £ (2 or 3). We compare our method against the following baselines.

* Agent POMDP (B): We use the agent POMDP model that we described in the approach

section.

* N-samples-k (C,G): We use the approach by [166] where they select N k-tuples from
all possible combinations of k-tuples and solve them optimally. They iterate over the set
P; for each task they randomly select k£ — 1 additional tasks from set . We refer to the
N-samples-2 method as C and the N-samples-3 method as G.

* Hierarchical POMDP or HPOMDP (D): We represent each task as a macro action; in
total there are N macro actions for all the /V tasks. We use the agent POMDP model and
replace its action set with the set of macro actions. During planning when a macro action i,
m;, gets selected, the agent POMDP evolves according to the POMDP i’s action set, while
the other POMDPs evolve as no op has been executed on them. Each macro action takes

min(horizon, # time steps left till m; terminates) time steps to get executed and is atomic.

51



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

* Greedy (E): The robot solves each client POMDP separately and selects an action according
to Eq. 5.23. This approach assumes that after the first action execution, for the remaining

horizon, the tasks can be executed at the same time in parallel.

argmax (Y Qn(bp, alp))) (5.23)

a€A peP

5.4.1 Restaurant Model

We run experiments in the restaurant scenarios with 2 to 12 tables. We used the POMDP models
from Chapter 3 to run the experiments. Given this model description, if horizon < 4, the robot
can only address two tasks in its 4-step limited horizon, so our algorithm computes an optimal
solution if it considers all the 2-tuples. If horizon = 5, the robot can address 3 tasks, so the

algorithm should consider all the 3-tuples.

5.4.2 Results

For each algorithm, we run 30 episodes each for 20 actions. Each episode starts with a random
initialization of the state variables with its belief probability set to 1. The random initialization for

each episode is the same across all algorithms.

Quantitative Results We compare our method in terms of planning time and average reward
against the baselines. For each episode, we compute the average time that the planner takes to
plan over 20 actions. The reward for each action execution is the expected reward over the belief

state distribution (b, a) = Y __¢b(s)R(s,a). We report the average reward over 20 actions. To

s€S
remove the variations that results from the initial randomization, for each episode we take the
difference between the average reward of method-2 and other approaches.

Fig. 5.1 shows a comparison of the mean and standard deviation of the planning time for
method-2 against the baselines. We could only run the agent POMDP for 30 episodes up to a
certain number of tables < 6 (shown by the orange label on the x-axis). Beyond that we run the
agent POMDP approach for one episode and report the results in a table on each figure. As the
number of tables increase, the agent POMDP approach has a higher positive slope than other
approaches. The planning time for different approaches mostly follow B > A > C > D > E.

Fig. 5.2 shows the mean and standard deviation of the difference between the average reward
of method-2 and that of other approaches. We compare all the baselines against a zero line which
represents our approach. We proved earlier that our approach is optimal, but an optimal action

for horizon H might not result in higher average return for an episode because 1) an action

52



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE

INDEPENDENT POMDPS
horizon: 2 horizon: 3 horizon: 4
8 algorithm B B
7 — A:Method-2 80 50
-»- B:Agent POMDP
56 « C:N-samples-2 tables = 7 1775.3s 0 tables = 6 852.4s
- —.. D:HPOMDP 60
g 5 - E:Greedy
S, 30
@ B 40
€3 [tables=7| 116.8s 20
32 tables = 8 | 3134.4 A 20
[o X aples = .4s /.{. 10
1 = -
e e D. R £
0 .__.d:ﬁ:“-_-.r-;—;-.-:-;:.:-::./—o——ka 0 T r 0 .
2 3 4 5 7 8 9 10 11 12 2 3 45 7 8 9 101112 2 3 4 6 7 8 9 1011 12
tables tables tables
horizon: 5 horizon: 6
100 B 120 B
tables = 5| 420.08' tables = 4. 503.9s
go{tables = 6| 8789/0s 100 ftables = 5| 3476.6s
/ 3 80 A/
60 ’y . /C
/' ¢ 60 »
40 /5
/i 401 /4
20 ya /
7 D 20 D
./ ,,,,,,,, e 1 PO s —
O E 01" - E
2345678910 2 4 5 6 7 8
tables tables

Figure 5.1: Planning times for different horizons and number of tables.

that is optimal for a short horizon might not be optimal for a longer horizon, and 2) different
approaches have different tie-breaking strategies; i.e., actions with equal average returns for a
short horizon would have different average returns for a longer horizon. This is why for horizon 2
our approach performs exactly the same as the agent POMDP approach, but other methods can
perform better. For the horizons other than 2, the average reward for different approaches mostly
follow B~ A > C.

We also compare the reward for each episode with the same initialization across multiple
algorithms. We report the results in terms of the percentage of the episodes (out of 30) that the
rewards are equal or one is better. For different horizons, our approach’s reward is exactly the
same as the agent POMDP’s reward for 2,4,5, and 6 tables. For 3 tables and horizons 3 and 6,
the agent POMDP is better in 3% of the episodes (one episode) because of having a different
tie-breaking strategy. For 5 tables and horizon 3, our approach is better in 3% of the episodes.

Comparing the reward of method-2 against N-samples-2 for each episode, we observe that
for 2 and 3 tables and for different horizons, the rewards are exactly the same. For horizon
2, if tables = 7, the rewards are exactly the same in 87% of the episodes and N-samples-2 is
better in 10% of the episodes. For 11 tables, the rewards are exactly the same in 77% of the
episodes and our approach performs better in 13% of the episodes. For a longer horizon 3, if

53



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

horizon: 2 horizon: 3 p horizon: 4 A
100 L o ¥
0 X —_— S
A - e
0 = g — Cc O -100{ /
) ~1001 « N f
p / -200
-100 C \ p
° —200 \ -300
2 \ A VLW
H -200 -400 \E y
= algorithm —300 ”f”\ ¢
-300{_, A:Method-2 \_/ E —500 |
~.. B:Agent POMDP +° —400 ¢ ?
_400/ = C:N-samples-2 E —600
. D:HPOMDP
+ E:Greedy —-500 ~700
2345 78 9101112 2 345 7 8 9101112 2 3 4 6 7 8 9101112
tables tables tables
horizon: 5 A _p horizon: 6
0l _,.,.7:7:7.‘7. 0ot
G - C,.
=200+ | WL -250{ "%
-4001 . b
Sy —500 WA
-600 \ i\ VY\E
PP D | -750 }
-1000 ~1000
-1200 —-1250 D’ 1
—1400 _1500
—1600
2345678910 2 4 56 7 8
tables tables

Figure 5.2: Difference between the average reward of our method and the other methods.

tables = 8, the rewards of method-2 and N-samples-2 are exactly the same 50% of the times and
method-2 is better 27% of the times. Thus, for horizon 2, our approach has a similar performance
as N-samples-2. Our algorithm mostly performs better than N-samples-2 for horizons > 3. For
horizon 2, our method does not benefit from considering 2-tuples, so the HPOMDP approach
provides similar average reward as our algorithm. The HPOMDP approach performs better than
our approach when horizon is 2 and tables > 8 in 3% of the episodes because of the tie-breaking

strategy.

We run the algorithms on a simpler version of the restaurant that includes satisfaction level,
current request, hand raise, and time since request as the human’s state SC', and has all the actions
except food is not ready yet and compare its performance with different k£ values against other
methods. As can be seen in Fig. 5.3, given horizon 5, the planning time for different approaches
mostly follow B > F' > G > A > (C. Comparing method-2 and method-3, for horizon 5, if
tables = 4, the rewards are exactly the same. If tables = 6, 7, the rewards are exactly the same in
67% of the cases and method-3 is better in 23% of the episodes. If tables = 8, the rewards are
exactly the same in 77% of the cases and merhod-2 is better in 13% of the cases. Both method-2
and method-3 perform better that the other baselines.

In summary, we observe that our approach results in a similar average reward compared to

54



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE

INDEPENDENT POMDPS
horizon: 5 horizon: 5
5 A 140 algorithm
0 et e ) - A:Method-2
""""" i B:Agent POMDP
G 1201 , c:N-samples-2 B/
501 * ~J — -+ F:Method-3 /
. Y 1001 + G:N-samples-3
» ’ ()]
T-100 C £ s B
g o tables = 6 478.7s
v £ tables = 7 11475.4s
=150 < 6o 7
algorithm © i
200/~ A:Method-2 e 40 G
B:Agent POMDP
= C:N-samples-2 20 I A,
—2501 -+ F:Method-3 ’,‘,—s‘:f'——'*':"/’/J=/;/-
-+ G:N-samples-3 of — c
4 6 7 8 4 6 7 8
tables tables

Figure 5.3: Performance comparison between our approach and other baselines when k£ = 2, 3.
We run the algorithms on a simpler version of the restaurant model.

the agent POMDP approach while being significantly faster. Although our approach has a higher

planning time compared to some of the baselines, it has a higher average reward than them.

Qualitative Results Fig. 5.4 shows a sample output policy for 5 tables. The histograms show
the belief over satisfaction for different tables. The leftmost bar is 0 (very unsatisfied) and the
rightmost is 5 (very satisfied). The robot’s action is shown on top of each figure. Each table’s
request and the amount of time they have been waiting is shown above it. The leftmost figure
shows the restaurant configuration at time step 11 after Table O is served. Table 3 has been waiting
for 8 time steps and compared to others is less satisfied, so the robot services it to increase the
table’s satisfaction. The robot then goes to Table 4 since it soon becomes very unsatisfied. The
robot then services Table 1 as their food is ready before going to Table 2 to update them that their
food is not ready. The greedy approach selects the no op action at time step 11 as it assumes
that after 1 time step, it can service all tasks in parallel. Two consecutive go fo actions appear
frequently in the output policy of the greedy approach, e.g., greedy selects go to T4 at time step 12

instead of serving T3.

5.4.3 Further Analysis

Here, we provide a discussion on how much the effectiveness of our approach depends on the
parameters of the model. In general if we apply the approach on a different planning problem of
similar complexity, the planning time would still be similar to the planning time that we computed
for the restaurant model, and the optimality guarantees of our approach would still hold. The
HPOMDP, N-samples-k, and greedy approaches do not have any optimality guarantees. On a
different application domain which requires switching among the tasks, we expect our method

55



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE

INDEPENDENT POMDPS

all: going to T3

table done

4 N
TO

ssssss
..

N
T2
v

000000

zzzzzz

t=8

A4
\
u
cash collected want food

T3

t=0 !
food being
cooked
want food

oooooo

t=18
want bill

4 N
T4
AN 4

t=0
food half
cooked

Tl

oooooo

al4: here is your bill_

table done

zzzzzz

s N
TO
.Nv

oooooo

t=3

clean table

s

7 t=0%
casp ready,
A s N

T4

AN 4

t=3
food ready
want food

T1

N
T2
AN 4

zzzzzz

t=0
food being

cooked
want food

zzzzzz

oooooo

al2: here is your receipt

al3: going to T4

table done

4 N
TO
A4

zzzzzz

t=0
food being
cooked
want food

4 N
T2
AN 4

012

~~
/ t=0
clehin tabl

e

T3

zzzzzz

345

t=19
want bill

food ready
want food

T1

oooooo

t=21

table done want bill
s N ~- G
TO T4
P Nne
/7 ® -

t=24  food ready

clean table want food

zzzzzz

T3

T1

t=0
food being
cooked
want food

4N
T2
AN 4

aaaaaa

oooooo

oooooo

al5: going to T1

t=1
table done cash ready
o N 4 N
T0 Il T4
S U | 85
t=4
t=4 food ready
000000 clean table  waht food
T3 '
t=0
food half
cooked
Want fOOd zzzzzzzzzzzz
s N
T2
AN 4

012

335

Figure 5.4: Example output policy for /7 = 4 and 5 tables.

to perform better in terms of average reward than the HPOMDP approach since the HPOMDP

approach does not consider switching between the tasks in each planning step. We also expect

our approach to perform better than N-samples-k since N-samples-k samples from the subset of

tasks whereas our method finds an optimal solution by computing upper and lower optimal value

bounds for subsets of tasks to prune the subsets.

The parameters of the reward function does not affect our approach’s planning time and the

optimality of our approach. However, the parameters will change the output policy of the robot,

and how much better our approach is compared to the other baseline approaches. For example,

if the negative reward for going from one table to another table is high, the robot would prefer

to stay as much as it can at the current table, even if the other tables are very unsatisfied. This

way of defining the reward function would make our approach just a bit better than the HPOMDP

approach in terms of the average reward. The parameters are engineered such that we can get

a sensible and interesting output policy as shown in Fig. 5.4 where the robot switches among

multiple tables instead of just servicing one table mostly.

The greedy approach sometimes outperforms the HPOMDP approach since the domain

requires the robot to switch between the tables to keep the customers satisfied. The HPOMDP

approach assumes that only one table can be serviced in the given horizon. When this assumption

is valid, for example for horizon 2, the HPOMDP approach performs much better than the greedy

56




CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

approach. For longer horizons (and more tables), this assumption becomes less valid and the
HPOMDP approach performs poorly. The greedy approach does not provide an accurate estimate,
but can consider more than one task in the short horizon since it assumes that the tasks can be

executed at the same time in parallel after the first action execution.

5.4.4 Robot Experiments

In this section, we illustrate an example run of the planner and the restaurant model that we

discussed earlier on the robot. The exact details of the experiments are in Appendix A.

CoBot Robot

We have developed the CoBot robots (Fig. 5.5), which navigate autonomously in an office building
performing tasks for users. The CoBot has an omnidirectional base. They have LIDAR and Kinect
sensors to localize and detect obstacles, a touchscreen to interact with humans, and speakers for
voice interactions. They can successfully deliver messages, transport items, escort people, and
interact with humans in our indoor environment. To fulfill these tasks, CoBot localizes in the
building using Episodic non-Markov localization [23]. It navigates on a graph of the environment,
and autonomously avoids obstacles. Since CoBot does not have arms to manipulate the world
with, it relies on human help for some of its capabilities, utilizing the idea of symbiotic autonomy,
where robots and humans cooperate to accomplish tasks. CoBot asks humans to place items in its
basket and to help it press elevator buttons [190]. CoBot has completed hundreds of tasks and
travelled hundreds of kilometers [190]. To drive to a destination office, the robot first retrieves the
(x,y,0) coordinates of the location. Next, the robot needs to plan its route through the building.
The robot computes its path to the destination using a Navigation Graph [22]. The robot
then follows the path computed, updating its position on the map using Episodic non-Markov
localization [23]. As the robot drives to its destination, it may find obstacles on its path (e.g.,
people talking in the hallways). When the robot finds an obstacle on its path, the robot stops, and
requests passage, saying “Please excuse me.”. Upon arrival at its destination, the robot announces
that it has completed its task and waits for a user to confirm the execution. Here are some of the

core abilities of the CoBot:

* detects obstacles
* localizes and navigates in office buildings
* schedules and executes tasks

* speaks to human users and uses a user interface to get the users’ input

57



CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Figure 5.5: CoBot mobile service robots.

We use the main functionalities on the robot and adapt them to our restaurant setting. Specifi-
cally, we use the obstacle detection, localization and navigation, and speaking to human users

modules.

Restaurant Setup

Our restaurant setup has three tables with one person on each table as shown in Fig. 5.6 and one
robot. In our restaurant setting, the positions that the robot navigates to, the kitchen and the tables,
are hard-coded. The restaurant follows the same model description that we explained earlier. We
added two new actions to each POMDP model, go to the kitchen and pick up food for a table. The
kitchen is shown with k in Fig. 5.6a. We also added a new state variable food_pickedup to each
POMDP model that shows if the food or drink is picked up by the robot. While attending the
customers, the robot runs the simulator in the background to get the observations after each action
execution.

Since CoBot does not have arms to manipulate the world with, it relies on human help for
some of its capabilities, e.g., placing the food in its basket or handing over the menu. The robot

uses a speaker to ask for help and inform the customers about its planning and execution status.

Example Scenario on the Robot

Here! is a video of one example scenario using our setup. The restaurant has 3 tables and a kitchen

area. The robot is running a robot simulator in the background that produces all the observations.

"https://youtu.be/cq2TpFoPc60

58


https://youtu.be/cq2TpFoPc60
https://youtu.be/cq2TpFoPc60

CHAPTER 5. OPTIMAL SHORT-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

a0: navigating to T2

t=1
want menu

4N t=1
E 12 want food

T1
012345

0‘5

t=1
cash ready

4 N
TO
A 4

012345

(a) Simulation (b) Real-world

Figure 5.6: A restaurant setting with 3 tables (7'0, 71 and 7'2) and one robot. The top-view
configuration of the restaurant is shown on the left and is explained in the experiments section.

The status of the tables, wait time, current request and the belief over the satisfaction level, is

shown in the top-left corner of the video. A detailed explanation of the video is in Appendix A.

5.5 Conclusion and Discussion

We propose an algorithm to speed up POMDP planning for domains where a robot is required
to accomplish a set of tasks that are partially observable and evolve independently of each other.
We exploit the observation that the number of tasks that the robot can accomplish within a short
horizon is limited and present an algorithm that leverages the solutions to much smaller POMDP
models to optimally solve the combined model with all the tasks. We prove the optimality of our
approach and evaluate it on a restaurant setting.

The proof for the optimality of the approach exploits 1) an assumption that the tasks are
independent and 2) an observation that in many domains the number of tasks that the robot can
accomplish within a horizon is very limited. In some domains, these two assumptions might serve
as the limitations of our approach. Our approach in this chapter is limited to domains where short
horizon planning is sufficient. Specifically, short horizon planning works well in domains where
the long-term plan quickly becomes sub-optimal or even infeasible after a few time steps. In the
next chapter, we extend this approach to provide efficient planning over long fixed-length horizons

without discounting and infinite-length horizons with discounting.

59



Chapter 6

Optimal Long-Horizon Planning for
Achieving Multiple Independent POMDPs

6.1 Motivation

In this chapter, we focus on long-sighted planning for a class of problems with multiple indepen-
dent tasks that are partially observable and evolve over time. In the previous chapter, we exploited
the structure found in these problems, namely the independence between the tasks, to optimally
and efficiently plan for a short fixed planning horizon. Selecting the right planning horizon can be
challenging since an overly short horizon may result in a low-quality solution while supporting a
longer horizon quickly becomes computationally impractical. Specifically, in POMDP planning,
the complexity of planning grows exponentially with the horizon so a long horizon may easily
preclude online planning. In this chapter, we address this challenge. In particular, we extend
the previous algorithm to provide efficient planning over long fixed-length horizons without
discounting and infinite-length horizons with discounting. The key idea we exploit to achieve
efficiency is to compute lower and upper-bounds on the value of an optimal solution for variable
horizons which allow us to terminate the search early while guaranteeing optimality. We present
the algorithm, analyze its theoretical properties, and demonstrate its efficiency on the waiting
tables domain. Before getting into the details of our algorithm, we briefly discuss the previous

algorithm and the key ideas we use to extend and apply it on long-horizon problems.

Review of Short-horizon Multi-task Planner In the previous chapter, we exploited the obser-
vation that in some domains the number of tasks, k*, that the robot can attend to within the horizon
H is limited. Given this observation, if the robot optimally solves all possible sub-problems of

size k* with different combinations of tasks, it can find the optimal solution to the agent POMDP.

60



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

We proved that decomposing the agent POMDP into a series of sub-problems of size £* and
solving all combinations of k* out of N tasks', tpls = {tpl € P(P) : |tpl| = k*}, and returning
the action with the highest value from them is the optimal solution to the agent POMDP. Note
that each member ¢pl (tuple of size £*) of the set ¢pls is a sub-problem that can be solved by
building a combined POMDP from the POMDPs in ¢pl. The robot assumes that a trajectory of no
op actions is being executed on the POMDPs that are not in ¢pl. We call this approach multi-task
fixed-horizon planner or Multi-task-FH.

This algorithm used the solutions to the individual client POMDPs to compute lower and
upper-bounds on the optimal value of the agent POMDP to prune the ¢pls set. Different from
this algorithm that only uses the solutions to the single tasks to prune the low-quality tasks, e.g.,
in the restaurant domain, tasks that do not need immediate attention from the robot and can be
ignored momentarily, we take a more gradual approach and monotonically improve the bounds
to prune the low-quality tasks. We start with single tasks (k = 1), but gradually increase k£ and
solve sub-problems of size k (< k*) to prune the tasks. Since our algorithm gradually improves
the bounds to prune as many tasks as possible, it eventually solves less number of sub-problems
of size k* compared to the algorithm in Chapter 5. We first use the single tasks to prune, then
pairs, then triplets, and so on. In addition, we use a truncated horizon h (h < H) to compute
the solutions to the sub-problems of size k rather than the full horizon H which is needed to
solve the sub-problems of size k*. This gradual and monotonic improvement of the bounds and
planning until a truncated horizon A enables the robot to efficiently and optimally plan over long
fixed-length horizons without discounting and infinite-length horizons with discounting rather

than planning for a short fixed horizon as done previously.

6.2 Approach

In this section, we first explain the main ideas that we use to extend the agent POMDP planner
(explained in section 5.2.2) to be applied on long-horizon problems. We call this new approach
agent POMDP with adaptive horizon or agent-POMDP-AH. We then explain how agent-POMDP-
AH is extended to include the key insights and the efficiency of the short-horizon planner explained
in Chapter 5. We call our approach multi-task POMDP with adaptive horizon or multi-task-AH
since in addition to leveraging the multiple independent tasks structure, we adapt the horizon
(specifically, iteratively increase it) to improve the solution’s quality.

Similar to the previous algorithm, we use an online planning framework which interleaves

planning and execution. Its main loop is in Alg. 5. During the planning phase, the algorithm

'Symbol P represents the power set.

61



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

computes the best action to execute given the robot’s current belief (lines 3-7). In the execution
phase, the robot executes the selected action (line 8), updates the belief state (line 9), and replans

after each action execution.

Algorithm 5: Online Planner with Adaptive Horizon

1 MultiTaskAdaptiveHorizonPlanner (env, P, h, H)
while not AllTasksDone() do
tpls <— InitializeTuples(P,h,H)
while V # V or h # H do
a,tpls,l/,l_/ + SelectAction(P,h,H,tpls)
h < h+1
tpls <— RecomputeTuples(h,tpls) / this function is only needed in the muiti-task-AH approach
observations <— Step(env, a)
UpdateBeliefs(P,observations)

o X N R W N

6.2.1 Agent POMDP with Adaptive Horizon

We adapt the agent-POMDP-FH approach for the class of problems with multiple independent
tasks to enable the robot to efficiently plan for long horizons. This approach uses a similar
procedure to solve the agent POMDP as agent-POMDP-FH, but modifies it with two main ideas.
The key ideas are that instead of expanding the belief tree of all the tasks for the full horizon
H, the robot 1) builds the belief tree until a truncated but gradually increasing horizon h and 2)
computes the lower and upper-bounds on the value of the fringe nodes at the truncated horizon.
To compute the bounds for the fringe nodes, the robot only solves the individual tasks for the
remaining horizon H — h (or oo in the infinite-horizon case) and combines their solutions. It
then computes the lower and upper-bounds for the non-fringe nodes by propagating the bound
values up from the fringe nodes by following the Bellman equation (Eq. 5.6). Note that when
planning with a truncated horizon h, the planner expands the combined model of all the tasks only

till the truncated horizon h, but the individual tasks are solved till the full horizon H to compute

the bounds. When the lower and upper-bounds on the value of the robot’s belief become equal,
the optimal solution is found and the search is terminated. This enables the robot to terminate
the search before reaching the full planning horizon H. We call the agent POMDP solver that
follows this process TruncatedAgent POMDP. For long horizons, solving the individual tasks
(to compute the bounds) is much faster than expanding the belief tree of the combined model;
thus, this approach is efficient compared to agent-POMDP-FH.

Instead of planning for a fixed horizon H, this algorithm (Alg. 5) performs planning for
increasing values of horizon £ until one of the following conditions are satisfied: 1) the horizon

62



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

limit H is reached, or 2) the lower-bound V' on the value of the robot’s belief is equal to its
upper-bound V' (line 4). The first condition assures that the algorithm is terminated when it
reaches the maximum horizon A and outputs the same solution as planning for a fixed horizon H.
The second condition enables the robot to terminate planning before reaching the full planning
horizon, thus being more efficient than the agent POMDP approach with a fixed horizon H.

Alg. 6 provides the implementation of some of the functions in Alg. 5 for the agent-POMDP-
AH approach. The TruncatedAgent POMDP solver builds a combined model with all the client
POMDPs in P. It finds the bounds for the fringe nodes using the ComputeBounds function
and propagates the bounds up to compute the bounds for the non-fringe nodes. We refer to all
the POMDPs in tpl as tpl,,; for the agent POMDP, ¢pl,, = P (all possible tasks). The intuition
behind the lower-bound computation (line 7) is to only consider the best client POMDP from ¢pl
and perform no ops on the other POMDPs. This is similar to taking a greedy approach of always
selecting the best task to attend to rather than interleaving the tasks. This is indeed a possible
solution, hence it is the lower-bound. The intuition behind the upper-bound computation is to
assume that the robot can address all the client POMDPs (tasks) in ¢pl in parallel. We only have
one robot so this is an upper-bound.

Since the client POMDPs are solved over and over for different beliefs and horizons during

planning to compute the bounds, their solutions are cached and reused in the process.

Algorithm 6: Agent POMDP with Adaptive Horizon
InitializeTuples (P,h,H) return tpls < {(P,})}

2 SelectAction (P,h,H,tpls)

3 (Vp,Vp) + TruncatedAgentPOMDP(h,H ,tpls)
4 Qpest < action with highest Vp
5

6

—

return ay.;,tpls,Vp,Vp

ComputeBounds (b, tpl ) // for the remaining horizon H — h

7| Ve max(Vi(b, )+ Vb)) V> V(b
qetpl \{p} pEtpl,

8 return V.,V

6.2.2 Multi-task POMDP with Adaptive Horizon

We exploit the two key ideas from the previous section and extend multi-task-FH to address
long horizon planning. Multi-task-FH is able to leverage the independent tasks structure in
the problem to efficiently solve the agent POMDP, and agent-POMDP-AH speeds up planning
for long horizons by terminating the search earlier through the truncated horizon and bound

63



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

computations. We combine the benefits of the two approaches in multi-task-AH.

Multi-task-FH exploits the observation that within a fixed horizon H, the robot can only
consider a limited number of tasks £*. Similarly here, we also consider all possible subsets of size
k* as it is needed to ensure optimality. However, in addition to this, we leverage the observation
that within the truncated horizon h, h < H, the robot can only consider k£ tasks (k < k), and
it performs no ops on the other tasks. Intuitively, we use the key idea from the multi-task-FH
planner twice, once to divide the agent POMDP of size P into smaller problems of size k*, and
the second time to divide the smaller problems of size £* into sub-problems of size k, k£ < k¥,
that can be solved more efficiently. Leveraging the truncated horizon to further limit the number
of tasks that the robot can attend to enables us to significantly speed up planning. The robot
only considers combined models of size k till horizon h, rather than combined models of size
k*, but computes the lower and upper-bounds on £* individual tasks for the remaining horizon
H — h. Note that the lower and upper-bound computations are done on the individual tasks till
the full horizon H; so their computations should consider all £* tasks to ensure similar optimality
guarantees as the previous algorithm (as the agent can attend to k£* tasks within horizon H). Our
approach is powerful in the infinite-horizon problems with /V tasks. In such problems the number
of tasks that the robot can attend to within H = co is N, k* = N;; thus, if k£ < N, the algorithm
significantly expedites planning by solving multiple sub-problems of smaller sizes rather than
solving the agent POMDP with all the N tasks. As we increase the truncated horizon h, we might
need to increase the size of the subsets, i.e., increase k. We explain how we address this important

aspect of the problem later.

Alg. 7 shows the multi-task-AH algorithm. The function InitializeTuples considers
all possible subsets of P with size k* (line 2) and further divides it into subsets of size k (line
3). Each subset of size k* (tpl € tpls) is divided into two sets, ¢pl. with size k and tpl; with
size k* — k. The truncated agent POMDP is built from the POMDPs in ¢pl,. while executing no
ops on the POMDPs in tpl;, but the bound computations for the fringe nodes are done on all
POMDPs in tpl,, = tpl. Utpl; to assure valid lower and upper-bounds on the value of the tuple ¢pl
(TruncatedAgentPOMDP function). The SelectAction function solves a truncated agent
POMDP for each tpl (line 7) to compute its bounds while executing no ops on other POMDPs that
are not in ¢pl (line 8). It then updates the bounds on the value of the full agent POMDP (line 9).
The algorithm then removes the tuples for which the upper-bounds are less than the lower-bound
of the agent POMDP and returns the action from the ¢pl with the highest upper-bound (lines
10-11).

The size of the sub-problems and their bounds gets updated as the truncated horizon h

increases. Function RecomputeTuples updates the ¢pls set as the number of tasks that the

64



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

robot can attend to within the horizon increases from k to &/ = k + 1. For each tpl € tpls, a
member of ¢pl; is removed and added to its ¢pl. set. We consider removing any element from the
tpl; set to generate all possible new tuples. This is to ensure that the optimality guarantees hold as

we increase the truncated horizon h.

Algorithm 7: Multi-task POMDP with Adaptive Horizon

1 InitializeTuples (P,h,H)
2 k,k* < the maximum # tasks the robot can attend to within » and H;
T « {tpl : tpl € P(P), |tpl| = k*}
tpls' < {(tpl., tply) : tpl, € T, tpl. € P(tply), |tple| = k,tpl; = tpl, \ tpl.}
return (pls’
electAction (P,h,H,tpls)
for tpl € tpls do
(Ytpl,thl) <— TruncatedAgentPOMDP(h, H ,tpl)
(Utpla Utpl) A (Ytplv thl) + ZqEP\tplu an
Vp = max(Vp, Uy ); Vp = max(Vp, Uyy)
10 tpls < {tpl : tpl € tpls, Uy > Vp}
11 apest <— action from the ¢pl with highest Utpl
12 | return ayeq.tpls,Vp,Vp
13 RecomputeTuples (h,tpls)
14 k,k’ < the maximum # tasks the robot can attend to within h — 1 and h; tpls’ < tpls
15 if £ # k' then
16 | | tpls’ < {(tple U{p}, tpli \ {p}) : tpl € tpls,p € tpl;}
17 return tpls’

wn

e e N St AW

6.3 Optimality Proofs

We first provide the intuition on why our algorithm is optimal and discuss the details of the proofs

later for the interested reader.

6.3.1 Summary of the Proofs

Lemma Alg. 7 converges to the optimal solution of the agent POMDP with a fixed horizon H.

Intuition behind proof: We first prove the optimality of agent-POMDP-AH by discussing
why the lower and upper-bounds are valid and monotone. We then prove that multi-task-AH finds
the same solution as agent-POMDP-AH.

65



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

The lower-bound is computed by selecting the best task to attend to and performing no ops
on the other tasks. This is indeed a possible solution, hence it is a valid lower-bound. The
upper-bound is computed by assuming that the robot can address all the tasks in parallel. Since
we only have one robot, this is a valid upper-bound. The monotonicity property assures that
the lower and upper-bounds on the value of a belief node do not change or improve after each
iteration of the algorithm (improve as the truncated horizon h increases). The intuition behind
the proof is that as we increase the horizon (h to i + 1) more of the belief tree is expanded, and
the bounds are computed for the remaining horizon H — h — 1 which gives a better estimate of
the values compared to when the bounds are computed before the expansion for the remaining
horizon H — h. Since the bounds are valid and monotone, and we compute the bounds for a given
tpl using all the k£* tasks in ¢pl till the full horizon H (or all the P tasks in the agent-POMDP-AH

algorithm), the bound computations for ¢pl is also valid and monotone.

We use the key idea from Chapter 5 twice, once to divide the agent POMDP into multiple small
problems of size £*, and the second time to divide the small problems into smaller sub-problems
of size k. In Chapter 5, it is shown that the former maintains the optimality; the optimality proofs
of the latter follows the same procedure as the former to prove that the multi-task-AH approach is

optimal.

6.3.2 Complete Proofs

In this section, we provide the details of the proofs. We first prove that agent-POMDP-AH
computes an optimal solution. We then prove that multi-task-AH finds the same solution as
agent-POMDP-AH. We discuss both the proofs and the intuition behind them. The proofs use the
independent tasks definition, as stated in [127].

Notation required for understanding the intuition behind the proofs (mostly borrowed from
Chapter 5):

* V. the optimal value of the client POMDP p at time ¢.
* V.4 the value of following a trajectory of no ops for the client POMDP p at time ¢.

* V§,: the optimal value of the agent POMDP created from the POMDPs in P at time ¢
(Eq. 5.6).

* Vi the optimal value of the agent POMDP created from only the client POMDPs in ¢pl
at time ¢.

66



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

* V2 (bip) V2 (bt ): the lower and upper-bound on the value of a belief node by, in the
belief tree of a truncated agent POMDP created only from the members of ¢pl till h. The
bounds on the values of the fringe nodes of the truncated belief tree are computed using
Eq. 6.1 and Eq. 6.8.

More notation required for understanding the proofs (mostly borrowed from Chapter 5)
* B*: this refers to the Bellman operator.

* Ay only considers the actions associated with the POMDPs in ¢pl and performs no op on

the other POMDPs (same as Eq. 5.4, but the union is over ¢pl, not P).
* @, (b, a): the optimal value of the client POMDP p at time ¢ for belief b and action a.
* U}t the optimal value of the agent POMDP built from P with the action set Ay In-
tuitively, Uy, , considers both the value of the POMDPs in ipl (V) and the value of

executing no ops on the ones that are not in ¢pl.

Lower and upper-bound

We show that the bound computations are valid (Lem. 1 and 2) and monotone (Lem. 3 and 4). The
monotonicity property assures that the lower and upper-bounds on the value of a belief node does
not change or improves after each iteration of the algorithm (increase in the truncated horizon h).
The bounds on the value of the fringe nodes are computed for the remaining horizon H — h (or
o0 in the infinite-horizon case) using Eq. 6.1 and Eq. 6.8. The bounds for the non-fringe nodes
are computed by propagating the bound computations of the fringe nodes up to the root belief
node. We do not make any assumptions regarding the maximum possible horizon in the bound
computations, thus the lemmas also hold for the infinite-horizon problems with discounting. We

use mathematical induction to prove Lem. 1 to 4.

Lemma 1 Egq. 6.1 provides a lower-bound on the value of a tuple tpl = (tpl.,tpl;) where
tpl,, = tpl, Utpl,.

Kﬁpl,t@tpl) - pfggf [V;t(bp) + Z Vqrft(bq)] < Vt;l,t(btpl) (6.1)
“ q€tplu\{p}

Intuition behind proof: Let us consider that only one task from tpl,, p € tpl,, can be executed
till the full horizon (V’), and we perform no ops on the other tasks (ZVQ"). The best task will

67



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

then be selected as the lower-bound on V7, meax Vo+ 22V

Proof: The proof goes by mathematical induction. For &’ = 1, if Vp € P,V,(b,) = 0, Eq. 6.2
follows from Eq. 5.6:

maXee Ay,

Vi () = mas [ max | D7 3 bu(s) R, afi]) |

tply,
PEtp ic€tply s€S; (6.2)

— max [%fl(bp) +)° q’h(bq)}

pEtpl
“ qetply\{p}

If B’ =t —1, we assume Eq. 6.3 and consequently Eq. 6.4 and show that they both hold for b’ = .

thlt 1(bpr) = max |V, 1(by) + Z gri—1( } (6.3)
pEtply
qetplu\{p}
Vp € tply : Vi p—1(bept) > Viip—1(bp) + Z Viii—1(bg) (6.4)
qetplu\{p}

We expand Eq. 5.6 as follows (b, or b):

Vipr+(b) = max {ZZZ)

acA tply

i€tply s€S; (6.5)
+ Z Pr(zq|bg, aq) - ZPT zr|br, ar) Vi 41 (b2)
2q€Z4 z2r €4y

We substitute Eq. 6.4 in Eq. 6.5. Given the independence assumption, for a specific Z;, we can

marginalize out the sum over Z;s (j # 7). Vp € tpl,, we obtain:

Qnoop

Vina(®) 2 mmax [Q11(bp,alpl) + 32 Qo1 (b ala) |
qetply\{p} (6.6)

> e (@ -1 (s 0lp]) + Qroop| > Via(by) + S Vi(by)

acA
P q€tply\{p}

Thus, Eq. 6.7 holds for every h' = t.

68



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Vipre(b) = maX[ o(bp) + D V! } (6.7)
€tply
qétpl \{p}

Lemma 2 Egq. 6.8 provides an upper-bound on the value of a tuple tpl = (tpl., tpl,).

‘/tplt btpl Z > ‘/tpl t(btpl) (6.8)
pEtply

Intuition behind proof: The idea behind the upper-bound computation is to assume that the
robot can attend to all the tasks in ¢pl, p € tpl,, in parallel (3 V,’). We only have one robot, so

this is an upper-bound on V7.

Proof: Similar to Lem. 1, the proof goes by mathematical induction. For A’ = 1, the following

equation holds.

Vit (bpt) = max [ >~ 37 bi(s) Ruls, i)

gax[z bi(s)Ri(s,a[z’])] =3 Vi)

i€tply, SES; 1E€tply,

(6.9)

We assume Eq. 6.10 holds for b’ =t — 1 (p,q,r, ... € tpl,) and show that it also holds for A’ = t.

Vipri—1(0) < Vo1 (bp) + -+ Vo1 (bg) + -+ Vi1 (br) (6.10)

Similar to Lem. 1, Eq. 6.10 is substituted in Eq. 6.5, and simplified to obtain Eq. 6.11. Thus,
Eq. 6.8 holds for every h' = t.

Vipr1(b) < max [Z Q7 +(bi, ald] }

a€Atpty i€tpl
u

S 2y, o) =31

i€tply, PELPly

6.11)

Lemma 3 The lower-bound computation is monotone.

69



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

KfZl,t(btpl) < Ytzz,t(btpl) 6.12)
where h < h/ and h,h' < H

In both V%, , and V} ,’s computations, the belief tree is built till horizon /. To compute V%, ,, the

lower-bound on the value of the fringe belief nodes at horizon A are computed using Eq. 6.1 and

h
P

steps, b/ = h + d, and then uses Eq. 6.1 to compute the lower-bound for the fringe nodes at depth

are propagated up the belief tree. To compute V) Z’t, the algorithm expands the tree for d more
h + d and propagates the bounds up the belief tree. In both cases the lower-bound on the value
of the fringe nodes are computed using Eq. 6.1 till the full horizon H. This property guarantees
that as the truncated horizon increases, from h to h' (h < h'), the lower-bound on the value of a

certain fringe node at horizon h and consequently the non-fringe nodes are non-decreasing.

Intuition behind proof: The main difference between V"(¥') and V' (V) for a certain belief
node b’ at depth A (or horizon h) is that the former uses the trivial lower-bound estimate for the
node, but the latter does more computation to expand the belief tree further before using a similar
trivial lower-bound estimate for the nodes at depth /» + d. To compute the lower-bound for a
fringe node at depth h, V" (1), the algorithm assumes that from there on till H, only one task can
be executed and no ops are executed on the other tasks (one possible solution). So, expanding
the belief tree (exhaustive search) for d more steps till horizon  + d to compute V" (') will
only find the same or a better solution than achieving a single task. I.e., the lower-bound on ¢’ is

non-decreasing as we increase the horizon.

Proof: For a certain leaf node b at horizon A, we compare its lower-bound when the truncated
agent POMDP is built till » against when it is built till 4’. The proof goes by mathematical
induction. First, we show that V,; g, < B*V}y m—p—1 holds for d = 1. We proved this previously
when we substitute Eq. 6.4 in Eq. 6.5 to get Eq. 6.6, thus:

* * Y 7k *
Vib—n =B Vi g—n—1 2 B Viprm—n—1

> s [V + 37 Vi) = Vit
qetply\{p}

(6.13)

Now, we assume that for i’ = h+d, the following holds for the belief node b: Vi i, < B Vi r—h—ds
and we prove that the same equation also holds if A’ = h 4+ d + 1. For a certain belief b, both
Vipl,i—n < B*Vipig—n—1 and Vi g—p < B Vi mr—n—q hold, thus the following equation holds for

70



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

h=h+d+1:

ViplH—n > B [B*Y;pl,Hfhfdfl} > By Vil H—h—d

¥ n 6.14
> max [‘/;J,H—h + Z Vq,H—h] = Vipi,-n (6.14)
PELPly
q€tplu\{p}
Lemma 4 The upper-bound computation is monotone.
Vtgl,t(btpl) > ‘Z&Zl,t(btpl) (6.15)

where h < b/ and h,h' < H

This property guarantees that as the horizon increases, from h to i/, the upper-bound on the value

of a certain fringe node and consequently the non-fringe nodes are non-increasing.

Intuition behind proof: Similar to the intuition we gave for the lower-bound’s monotonicity,
for a certain belief node b’ at depth h, V(1) estimates the upper-bound by assuming that all the
tasks can be performed in parallel. However, V' (1) expands the belief tree for d more steps
before assuming that all the tasks can be performed in parallel. Thus, given that V"' (V') uses
the Bellman equation during the d steps, it has a better estimate of the upper-bound than the
assumption that all the tasks can be attended to in parallel during that d steps as assumed in V" (b').
Le., as the horizon increases and more of the belief tree is expanded, the upper-bound on the value

of b’ improves (i.e., is non-increasing).
Proof: Similar to Lem. 3’s proof, the proof goes by mathematical induction. First, we show that

IB%*thl? Hoho1 < ‘7th, 11— holds for d = 1. We proved this previously when we substitute Eq. 6.10
in Eq. 6.5 to get Eq. 6.11, thus:

* Y *
Vi —n =B Vi g—p—1 < max [ E Qi,H—h—J

CLEAtplu
i€tpl
. (6.16)
* *
< nax Qir-h1= E it —h = Vipl, H-h
i€tply tplu i€tply

We assume that for the belief node b and A’ = h + d, BZ‘_/tpl, Hehed < 1_/,5,,51 g—p, holds, and we
prove it also holds if 2’ = h+d + 1. We know both B*V;yy 57,1 < Vigrr—n and BiVip g na <
V}pl, H—p hold, thus,

71



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Virm—n < BB Vipri—h-a-1 < ByViprg—n-a < Vipi,—n (6.17)

In summary, we proved that the bound computations are valid and monotone; thus if tpl = (P, (),
Lem. 1 to 4 prove the optimality of agent-POMDP-AH. Given the iterative nature of the horizon,
in the worst case, the agent-POMDP-AH approach reaches the full horizon / and obtains the
same solution as the agent-POMDP-FH approach.

Multi-task-AH

We prove Alg. 7 is optimal. We assume £* and £ are the maximum number of tasks that the robot
can attend to within H and the truncated horizon h respectively. Vp denotes the value of the agent

POMDP under such assumptions, referred to as limited tasks assumption.

Lemma S The lower and upper-bounds on the value of the agent POMDP created from the set P,
1% p and Vp, can be computed by Eq. 6.18 and Eq. 6.19 respectively where tpls = {tpl € P(P) :
[tpl| = k*}, and the bounds are monotone. (proof of SelectAction function in Alg. 7)

Vpy(b) = X (Vapte (bept) + D V(b)) < Vi, (0) (6.18)
qeP\tply,

Vpi(b) = max (Vipt,(bept) + Z ) = Vp,(b) (6.19)
qu\tplu

Intuition behind proof: In [127], we proved that finding the optimal values of all ipl € tpls
(Vt;z) while performing no ops on the other POMDPs (> V") and selecting the best V-value,
MaXplctpls (Vt;l +> Vq”), provides the optimal solution to the agent POMDP. We proved in
Lem. 1 to 4 that the lower and upper-bounds on V7, are valid and monotone. The validity and
monotonicity of 1% p and f/p then simply follow from the validity and monotonicity of V;,; and
Vipt-

Proof: We show that the bounds are valid and then argue why they are also monotone.
From [127], we know:

Ve (b) = max Up(0) (6.20)

72



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Uppi£(0) = Vigi 1 (bept) + Z V' (bg) 6.21)
qeP\tpl

We proved in Lem. 1 and 2 that Vi +(by) < V5, (bipr) and Vit (bipt) > Vi1 (bipt) Tespectively.
Thus, Uy (b) and Uy +(b) computed by substituting Vt;‘;u(btpl) by Vipri(bip) and Vi s (byy) in
Eq. 6.21 are lower and upper-bounds on U*,; +(b). We substitute Uy, ¢(b) and Uy, 4(b) in Eq. 6.20

*
P

Z V.".(bq) does not change for a given tuple as we increases the horizon, and the maz operator

to prove Eq. 6.18 and Eq. 6.19. Given that the bound computations for V;;, , are monotone,

does not change the monotonicity of Uy, and Uy ¢, V p, and Vp, are monotone.

Lemma 6 Alg. 7 converges to the optimal solution of the agent POMDP in both finite horizon

problems without discounting and infinite horizon problems with discounting.

Intuition behind proof: InLem. 1to 5, we proved that dividing the agent POMDP into subtasks
(tpl € tpls) and computing the lower and upper-bounds for all the tuples in ¢pls provide valid and
monotone bounds on the value of the agent POMDP. In those lemmas, we assumed that k£ = k*,
i.e., a combined model of all the k* tasks is expanded till the truncated horizon h even though
we know that the robot can only attend to k tasks within h. Differently, in Alg. 7, to efficiently
solve each tpl for a small truncated horizon h, we only consider subsets of size &, but compute
the bounds on all the £* POMDPs in tpl, so k < k*. Both cases k = k* and k < k* use the same
lower and upper-bound computations and have the same / as their truncated horizon. However, in
the former we perform the tree expansion on a combined model built from all the POMDPs in the
tpl set, but in the latter we consider all combinations of the tasks with size &k out of the POMDPs
in tpl and perform the tree expansion on those only. The proof uses the same idea as [127]. It uses
the assumption that within a certain horizon A, only £ tasks can be attended to, so if we consider
all combinations of k tasks out of the members of the tpl (tpl,), we will get the same solution
as the combined model of all the tasks in ¢pl. Given that the bound computations are the same
in both cases, when k < k*, we get the same solution as when £ = k* (proof for line 3 in Alg. 7
and the RecomputeTuples function), and Alg. 7 computes valid and monotone bounds on the
value of the agent POMDP.

Proof: InLem. 1 to 5, we proved that dividing the agent POMDP into subtasks (¢pl € tpls) and
computing the lower and upper-bounds for all the members of ¢pls provide valid and monotone

bounds on the value of the agent POMDP. In these lemmas, we assumed that £ = £*, so line

73



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

3 of Alg. 7 would become tpls’ = {(tpl.,tpl;) : tpl € tpls,tpl. = tpl,tpl, = 0}, and the
RecomputeTuples function would not change the ¢pls set. However, the benefits of our
approach are manifested when the truncated horizon h is smaller than the full planning horizon H,
and consequently k£ < £*. In Alg. 7, we divide each tpl into two sets, tpl. with k tasks and ¢pl;
with k* — k tasks (all possible combinations of k tasks out of k* tasks), perform the tree expansion
for the POMDPs in tpl. while executing no ops on the members of ¢pl;, and compute the bounds
on all members of tpl, = tpl. Utpl;. When k < k*, if we prove that by using this approach, we
get the same solution as when k = k*, we prove that Alg. 7 computes valid and monotone bounds
on the value of the agent POMDP.

Notice that the only difference between £ = k* and k£ < k™ is that in the former we perform
the tree expansion on all POMDPs in the ¢pl set, but in the latter we consider all combinations of
tasks with size k for the ¢pl.. set and perform the tree expansion on the POMDPs in ¢pl. only. The

lower and upper-bound computations are the same in both cases.

We use the same idea as [127], Lem. 2 and Asm. 1 in [127]. For a set of tasks called ¢p/ and
the maximum number of tasks that the robot can attend to within the horizon & (k), the robot can
optimally solve the combined model of all tasks by considering all subsets of tasks of size k (tpl.
with size k). Given the independence between the tasks and the limited tasks assumption, Eq. 6.22
was proved in [127] for tpl = P and h = H (k* tasks). Same deductions also apply here to prove
Eq. 6.22.

‘Z&;l,t(b) = max V;t;lg,t(btpl’c) + Z Vq?t(bq) (6.22)

tpl’ etpls’
prEP qEtpl)
tpls’ = {(tple, tply) : tple € P(tpl), |tplc| = k,tpl; = tply \ tplc}

This explains why dividing ¢pl further into subsets of size £ (line 3 in Alg. 7) does not change
the validity and monotonicity of the bounds and gives us the same bounds as if we were to build a
combined model of all the POMDPs in tpl,,.

As we increase h, k should also increase to ensure that Eq. 6.22 is still valid. More specifically,
we have to update each tuple in the tpls’ set (tpl’ € tpls’) to have k + 1 POMDPs in tpl. and
k* — k — 1 POMDPs in tpl;. This is done by the RecomputeTuples function. The algorithm
simply removes a POMDP from ¢pl; and adds it to the POMDPs in tpl. to create a new tpl.. set
of size k + 1 and a new tpl; set of size k* — k — 1, tpl’ = (tpl., tpl)). The algorithm considers
removing any POMDP from ¢pl;, to create all possible new tuples. Since the new ¢pls’ set satisfies

the limited tasks assumption as we increase the horizon, Eq. 6.22 holds.

Therefore, all parts of the algorithm preserve the optimality guarantees, and Alg. 7 computes

74



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

an optimal solution for the agent POMDP. In the worst case, the multi-task-AH approach reaches
the full horizon A and obtains the same solution as the multi-task-FH approach. In infinite-horizon
problems with discounting, when i — oo, Alg. 7 converges to the optimal solution of the agent
POMDP with H = oc.

6.4 Experiments

The multi-task-AH approach (Alg. 7) caches and reuses the solutions to the client POMDPs during
each episode while the multi-task-AH wo reuse approach does not reuse. In both, the agent starts
with i = 2. We compare these two versions of our algorithm against the alternatives listed below.

* Multi-task-FH: We compare against the multi-task approach with a fixed horizon as
proposed in [127].

* Agent POMDP: We use the agent POMDP model that we described in the approach
section. We compare against 2 versions of this algorithm: 1) agent-POMDP-FH and 2)
agent-POMDP-AH.

* N-samples: This approach was proposed by [166]. They select N tuples randomly from
tpls = {tpl € P(P) : |tpl| = k*}. They show that solving subsets of tasks by using a
sampling-based method is faster than using the same method to solve the combined model.

* HPOMDP: Each task is represented as a macro action, so there are N atomic macro actions.
While one task is getting executed, no ops are executed on the other tasks. This approach

greedily selects a task to attend to.

We first compare against the approaches that provide optimality guarantees, some of which exploit
the independent tasks structure and some of which do not. In all the algorithms, we use the
same optimal POMDP solver to solve each task or subsets of tasks. It is possible to expedite the
planning further by changing the system’s specifications® and the specifics of the implementation,
e.g., using a different programming language, or changing the underlying POMDP planner that
solves each task or subsets, but the algorithms should still perform similarly in relation to one
another. Note that the contributions of this work is not on what POMDP algorithm we use for
solving each task or subsets of tasks, but rather on how to leverage the multi-task structure to

expedite long horizon planning.

2We use python 3 with the seed 100 for randomly initializing the episodes. The CPU time for all the experiments
have been calculated on a cluster with Intel Xeon E5-2609 processors (2.40GHz) with a memory per CPU of 500MB,
128GB RAM and CentOS Linux 7 compared to Intel Core i7-8700K processor (3.70GHz), 64GB RAM and Ubuntu
16.04 in [127]. Different from [127], in our restaurant domain = is 1, not 0.95.

75



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

We also compare against sub-optimal methods such as HPOMDP and N-samples that leverage

the independent tasks but do not consider all combinations of interleaving the tasks.

6.4.1 Restaurant Model

We use the same restaurant model as discussed in Chapter 3 with 3 to 12 tables. For this restaurant
model, if H < 4, the robot should solve pairs of tasks (£* = 2) to find the optimal solution.
If H=5,6,or H= 17,8, the robot should consider triplets (k* = 3) or quadruplets (k* = 4),
respectively. We run each algorithm for 10 episodes, each for 20 actions. In each episode, the
state of the restaurant is randomly initialized with the belief probability of 1. We use the same
random initialization for the episodes across all the algorithms to remove the variations that result

from the random initialization in our comparisons.

6.4.2 Quantitative Results

We report on the performance of our method using three metrics. For each episode, we average
each metric over 20 actions (by adding #actions < 20 to the while loop on line 2 of Alg. 5).
For all the metrics, we report the mean and variance for 10 episodes (if available) for different
number of tables and maximum horizons. First, we compare the algorithms in terms of average
rewards (Fig. 6.2). For each episode with the same initialization, we take the difference between
the average reward of multi-task-AH and other approaches. The average reward for an algorithm
in one episode is computed as follows r,,, = Zfio i\io 2es; bi’ﬁ')Ri’t(s’at)

length of the selected action at time ¢. Second, we compute the average planning time over 20

where |a4| is the

actions by running the algorithms until they terminate (Fig. 6.1 and Fig. 6.2). Le.,, we run the
algorithms till they reach H for the fixed horizon ones, and until Alg. 5 terminates for the adaptive
horizon ones. Third, we plot the maximum /% (final horizon) that multi-task-AH reaches before
terminating the planning while loop in Alg. 5. We compute the final horizon for one episode by
averaging the final horizons of 20 action selections. We plot the mean and standard deviation of
the final horizon for 10 episodes (Fig. 6.3). Lastly, we report on the percentage of the runs (out
of 200 action selection runs) where the algorithm terminates before reaching the full planning
horizon H in Tab. 6.1.

In terms of average reward in Fig. 6.2 (on the right), all the optimal approaches are mostly
a constant zero line as we take the difference between the (optimal) multi-task-AH’s average
reward and other algorithms’ average reward, and the sub-optimal approaches mostly perform
worse than the optimal ones (are below the line). This is especially the case for higher number of

tables and longer horizons. The HPOMDP approach has a very low average reward and hence

76



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE

tables: 3 . . . .
80.0k - F 80.0k tables: 5 0.0k tables: 7 0.0k tables: 9 80.0k tables: 11
algorithm
0.0k] — A Multi-task-AH
] == B: Multi-task-AH wo reuse 70.0k 70.0k 70.0k 70.0k
- C: Multi-task-FH
60.0k D: Agent-POMDP-AH 60.0k 60.0k 60.0k 60.0k
E: Agent-POMDP-FH
50.0k 50.0k 50.0k 50.0k 50.0k
d
B /
40.0k 40.0k 40.0k

40.0k /| a0.0k

30.0k /| 300k 30.0k

planning time (s)
8
2

20.0k 20.0k / 20.0k 20.0k

10.0k 10.0k 10.0k 10.0k

0.0k 0.0k 0.0k

0.0k

3 y 5 6 7 3 4 4 5 4
max horizon (H) max horizon (H) max horizon (H) max horizon (H) max horizon (H)

Figure 6.1: Planning times of the optimal algorithms for different horizons /' and number of
tables.

tables: 5 tables: 7 tables: 9
tables: 5 tables: 7 tables: 9
" 00| __E/D/C/BJA_ —__E/D/C/B/A___|___C/B/A
igorithm N ——— — ]
—— A: Multi-task-AH A N N N
10.0{ = P: HPOMDP -5.0k
= N: N-samples P
= A -10.0k P
£
= -15.0k
°©
2 A g
£ 3 -20.0k algorithm P
R 9
S R = —— A: Multi-task-AH
2 -25.0k{ —— B: Multi-task-AH wo reuse
:n C: Multi-task-FH
o 30,0k D: Agent-POMDP-AH
E: Agent-POMDP-FH
-35.0k
00/ P: HPOMDP
—— N: N-samples
3 4 5 6 73 4 § 6 3 4 5 400
. . . 3 4 5 6 73 4 5 6 3 4 5 6
max horizon (H max horizon (H) max horizon (H) max horizon (H) max horizon (H) max horizon (H)

Figure 6.2: Planning time comparisons between the performance of our algorithm and the sub-
optimal algorithms in natural logarithmic scale on the left. The average reward comparisons for
all the algorithms on the right.

is highly sub-optimal. This is because it only considers the solutions to the individual tasks to
select an action to execute, rather than interleaving the tasks. This highlights the significance of
interleaving the tasks to compute an optimal solution. The very low average reward indicates the
customers’ highly dissatisfaction with the service.

We plot the planning time in Fig. 6.1 and Fig. 6.2 (on the left). The lines and the shadows
around each line show the mean and variance of each algorithm over 10 episodes. For some
horizons and number of tables, some algorithms take a long time to finish the 10 episodes. For
those, we only report the results of one episode (shown with a small circle). In most cases, the
variance on the planning time computed over multiple episodes is very small. Our approach
has a much better planning time than all the optimal approaches, especially as the number of
tables increases, since it is able to terminate the search before reaching the full planning horizon.
We evaluated the impact of having an adaptive horizon by comparing it against the algorithm

in Chapter 5 (multi-task-FH) which uses the independent tasks structure but does not have an

7



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

adaptive horizon. We observed that both approaches are scalable as the number of tables increase,
but our approach is more than 5 times faster for longer horizons. Even for a few tables, e.g.,
the 3 tables shown in Fig. 5.6, for the maximum horizons of 4, 5, 6, 7 and 8, our algorithm is
2.7,6.1, 8.2, 6.5, and 8.1 times better than multi-task-FH, respectively. We evaluated the impact
of leveraging the independent tasks structure by comparing it against agent-POMDP-AH. We
observed that agent-POMDP-AH is not scalable to a large number of tables (does not even finish
in a reasonable amount of time for more than 7 tables), and our approach has a much better

planning time even for a small number of tables.

The sub-optimal algorithms leverage the multi-task structure of the problem, so they are
more scalable that the optimal approaches. The sub-optimal HPOMDP approach has the lowest
planning time, but at the cost of optimality as its average reward is much worse than that of the
optimal approaches. Even the N-samples approach (fixed horizon) which gives a sub-optimal
solution has a higher planning time than our (provably optimal) approach. Considering all possible
combinations of interleaving the tasks (computing an optimal solution) significantly improves the

customers’ satisfaction.

We analyze why our algorithm is faster than the approaches with a fixed horizon by plotting
the final horizon h that the multi-task-AH algorithm reaches before terminating in Fig. 6.3. For
most horizons and number of tables, we provide the mean and variance on 10 episodes. For others
we only provide the average final horizon for one episode (e.g., H = 7 and 5 tables, and H = 6
and more than 8 tables). We observe that on average our algorithm is much more efficient than
the baselines since it mostly expands the belief tree until a horizon that is smaller than the full
planning horizon. Within each episode, the final horizon at which the search terminates ranges
from the minimum /2 = 2 to the maximum £/, as planning for the full horizon is occasionally
needed to guarantee optimality; however, all episodes on average have smaller horizons than the
maximum horizon H. For a specific value of H, when the number of tables is small, the number
of tasks that need immediate attention is also small, consequently the algorithm can terminate at
shorter horizons more often than when the number of tables is large. For the curves associated
with different values of H, this is why we observe an increase in the final horizon as the number
of tables increases (at the beginning of each graph), and each graph becomes almost flat for large
number of tables. On a different note, given a fixed number of tables and for increasing values of
H, the final horizon is also increasing. This is because as H increases, the algorithm searches for

a better solution and terminates at higher final horizons.

We further evaluate our algorithm (Alg. 5 and Alg. 7) by analyzing how often the runs
terminate with the condition V = V versus h = H (line 4 in Alg. 5). We average the results

over different number of tables (if available) as shown in Tab. 6.1. As an example, for H = 4,

78



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

Table 6.1: The percentage of the runs where the algorithm terminates when the bounds are equal
versus when the full horizon H is reached.

V =V | h=H | num of tables
56.7% | 43.3% 3to 12
39.2% | 60.8% 3to 12

=
OO\]&O_‘Q

60.1% | 39.9% 3t08
= 91.5% 8.5% 3to4
= 100% 0% 3

7 H

3

6 4

5

g 6

— —%- 7

.§5 T:8,1H=7A H=6 e
= H=5

E

3 H=4
9 H=3

345678 9101112
tables

Figure 6.3: Final horizon at which Alg. 7 terminates.

in 56.7% of the runs the algorithm finished before reaching the final horizon H (V' = V) and in
43.3% of the runs, it finished when h = H (aggregated over 3 to 12 tables). As discussed above,
the percentages are different for different number of tables, and with fewer number of tables, the
algorithm mostly terminates when V' = V. Overall, our algorithm is more efficient than the fixed

horizon approaches as it is able to terminate the search before reaching the full horizon.

6.4.3 Qualitative Results

We discuss why two different final horizons are determined by the algorithm in the two restaurant
configurations in Fig. 6.4. Each histogram shows the belief over satisfaction (partially observable)
for a particular table. The leftmost bar is 0 (very unsatisfied) and the rightmost is 5 (very satisfied).
E.g., in the right figure, the robot believes that 71 is 40% slightly unsatisfied and 60% neutral.
Variable ¢ represents the tables’ wait time. The robot’s goal is to increase the tables’ satisfaction
by attending to their requests (above each table) as soon as possible. Each table might need service

at different points in time, e.g., collecting cash. In the left, the robot goes to 72 to perform the

79



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

=1 =1 =12 ] 7 5=2N
want menu cash ready want menu mcashlready ¥
LY o N P - QU8
TO T4 _To T4
000000 o ' ol — uz 3: — ‘ "
t=1 t=1 t=0 A t=0
want drinks want drinks drinking rinking

zzzzzzzzzzzz

4 N s N

/’\ T3 T1 e T

1t=0 Y t=0
food being food half

cooked cooked
want food rerEr il s PEDs: wantfood = A i
g gl:

o123

Figure 6.4: Two different configurations of the domain with 5 tables.

-
[=3
o

final horizon final horizon
"~ -2 -
€ gol ™= 3 -3
9 [ . 4
=)
° )
1y
Q. 60
L
o
80
20 a0
o
c
Q
2 20
o
=%
0_
3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8
tables tables
(a) Maximum horizon H =5 (b) Maximum horizon H = 6

Figure 6.5: A plot illustrating the distribution over the termination length of the horizon (final
horizon) for different number of tables with prespecified maximum horizon H.

action “your food is not ready". In the right, the robot goes to 7'4 to execute “take cash" and then
goes to service 7°0. The maximum horizon in both cases is /1 = 6. The final horizon in the left
is h = 5 (solves triplets) while it is h = 3 in the right (solves pairs only). In the left, although
T2 and T'3 have lower satisfaction levels, all the tables are in need of immediate attention; thus
solving only pairs of tasks (h < 4) is not sufficient to make a decision (V' # V). For h = 5, the
robot builds and solves triplets, and obtains V' = V. In the right belief state, only 7°0 and 7'4 are
in need of immediate attention (and servicing 72 does not worth it since 7'2 is far away from 74
and 7°0). For h = 3, the robot solves pairs of tasks and obtains V' = V.

The reduction in computation time depends on how busy the restaurant is and at what point the
tables are in the dining process. The following characteristics of the restaurant domain contribute

to the reduction in computation time 1) the multiple tasks do not depend on one another, and 2)

80



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

the tasks should be interleaved and attended to at different points during the dining process. The
robot reasons about what tasks require immediate attention and what tasks can be pruned early on
during planning (deferred to the next action-selection). In the extreme case, if all the tasks should
be attended to immediately at all action-selection steps, there is no reduction in computation as
the tasks cannot be pruned and should be considered to find the optimal solution. As we move
towards less number of tasks in need of immediate attention, the reduction in computation is
higher.

In Fig. 6.3, we showed the mean and variance of the final horizon for different values of H
and number of tables. In this section, we look into the percentage distribution of the final horizon
associated with / = 5 and H = 6. Fig. 6.5 illustrates why our algorithm expedites planning
for H = 5 and H = 6. Note that for long horizons and large number of tables, if even a small
percentage of the problems are solved faster, this will have a significant effect on reducing the
planning time.

A total of 200 problems (10 episodes, each 20 action selections) are considered for this
evaluation. To give an example, for 3 tables and a maximum horizon H = 5, around 50% of
the problems terminate at h = 2 and the other 50% terminate at h = 3. For H = 5, as the
number of tables increases, the percentage of the problems that terminate at final horizon h = 4
also increases and the percentage of the problems that terminate at final horizons A~ = 2 and
h = 3 decreases. Similarly, when H = 6, as the number of tables increases the percentage of
the problems with final horizon / = 5 increases. As we discussed before, when the number of
tables is small, the number of tasks that need immediate attention is also small, consequently the
algorithm can terminate at shorter horizons more often than when the number of tables is large. In
conclusion, depending on the configuration of the restaurant and how needy the tables are, the

termination horizon varies.

6.5 Conclusion and Discussion

We propose an approach that uses the structure in the class of problems with multiple indepen-
dent tasks that are partially observable and evolve over time to perform efficient planning for
long-horizon problems and infinite-horizon problems with discounting. Leveraging both the
independent tasks structure and having an adaptive horizon enable the robot to optimally solve
long horizon problems more efficiently than other optimal approaches. We prove that our approach
is optimal and demonstrate its efficiency on the restaurant domain. We evaluate the performance of
our algorithm compared to the state-of-the-art algorithms in a restaurant with 2 to 12 tables and a

maximum horizon of 8, H = 8. We observe that our optimal planner performs significantly better

81



CHAPTER 6. OPTIMAL LONG-HORIZON PLANNING FOR ACHIEVING MULTIPLE
INDEPENDENT POMDPS

than the other approaches as the number of tables increases. Nevertheless, our optimal approach
is still impractical for large number of tables and a maximum planning horizon greater than 8,
H > 8. In future work, we will focus on real-time planning approaches where optimal planning is
impossible. We plan to provide practical anytime algorithms that use both the independent tasks
and the adaptive horizon (which inherently is anytime) and integrate them with the practicality of
anytime sampling-based approaches such as [176] which randomly samples a subset of scenarios
to speed up planning. Furthermore, future work involves running the multi-task-AH planner on
the real robot as was demonstrated in Chapter 5 and analyzing the complexity of the problems

that our robotic system can address (including the planning, perception, and execution modules).

82



Chapter 7

Robot Planning and Execution in Presence

of Discrepancy between Robot’s
Observations and the POMDP Model

7.1 Motivation

Autonomous robots that face a diversity of environments, a variety of tasks and a range of
interactions cannot be pre-programmed by foreseeing at the design stage all possible courses of
actions they may require. Especially, in dynamic and changing environments with semantically
rich tasks and human interactions such as the restaurant domain, unexpected situations that are
not predicted by the robot’s model might arise. In a real-world application such as the restaurant
setting, there are differences in terms of the types of the restaurant, e.g., fine dining, casual dining,
cafes and diners, and the customers they target, e.g., families with children, college students,
and seniors. In these applications, coming up with a perfect and accurate model that works for
everyone is very challenging. Even if a certain model works for most of the tables in a specific
restaurant, it might not work for a particular table that might not belong to the target group that
the restaurant model is designed for. For example, in a restaurant setting similar to the one we
described before, going to the tables frequently to double-check if the customers have everything
that they need might be rewarded by the model and might work for most of the customers; however,
the customers on a certain table might be having a lunch business meeting in which people don’t
want to be interrupted frequently. In another example, delivering bread to the customers before
serving the food might be a part of the robot’s process to keep the customers satisfied; however, a
certain table might have allergies to wheat. These are a few examples of the unexpected situations

that the robot might encounter and should be able to tackle.

83



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Two very common ways of designing a robot model are 1) asking an expert in both robotics
and the domain to design a model, or 2) learning the model from data. In the first approach, an
expert would require considerable expertise in both robotics and the domain in order to design
a perfect model of a real-world application such as the restaurant domain. For a restaurant
domain, including all possible customer preferences and constraints is error-prone and time-
consuming. Even if possible, in a lot of domains, approximations such as removing the rare
events or considering the majority vote from all experts are often introduced for computational
tractability, thereby resulting in unexpected situations. In the second category, learning approaches
have been introduced to learn a model through supervised learning or trial-and-error interactions
with the environment. The performance of these methods heavily depend on the amount of data
that they have access to, i.e., a model learned in a few instances of the environment might not
generalize well to other instances. In some of these cases, the data might have been gathered
with a different robot or learned from human demonstrations of the behaviors, e.g., the waiting
tables task. Identifying the mapping between the human and the robot or the two different robots
that allows the transfer of information from one to the other is known as the correspondence
problem in the Learning from Demonstration (LfD) literature [6] and can result in learning an
approximation of the robot’s exact planning model. More specifically, in the restaurant domain,
the capabilities of the human waiters differ from that of the robot waiters; thus, learning a model

from real restaurant settings with human waiters will introduce approximations and errors.

Even for applications in well-structured environments with a reduced range of tasks, where
engineered robotics operations are feasible, deployment and adaptation costs can be reduced if
the robot is equipped with monitoring and replanning capabilities. For a real-world application
such as the restaurant setting, deploying the robot in the real-world early on before having a
complete model is a key step to figuring out what needs to be added to the model or if more
data needs to be gathered. However, given that the model has inaccuracies, the robot should
be able to handle the unexpected situations gracefully and should not cause interruption in the
restaurant’s service procedures when the unexpected situations arise. Thus, no matter what
approach we use to come up with the model, without an exact planning model, the robot will
encounter unexpected situations where its observations do not match its expectations and should
have a way to resolve these situations to eventually achieve the goal of the task. Although being
theoretically well-founded, our planning algorithms and many other planning algorithms depend
heavily on the accuracy of the domain model. In this chapter, we present algorithms that address

the unexpected situations that arise as a result of planning over inaccurate models.

There are two categories of approaches that could be used to address the unexpected situa-

tion, namely replanning and learning approaches. Replanning, plan repair, and state estimation

84



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

approaches are able to address the unexpected situations if they are not due to a fundamental
change in the environment [72, 111, 164, 192]. In these approaches the premise is that planning
from scratch in the new, unexpected situation would produce a plan that is valid. However, these
approaches fail if the unexpected situation is due to a fundamental change in the environment and
thus repeats itself. This is for instance the case when the agent applies an incorrect model of its
own actions during planning. In such situations, preceding replanning with a model-adjustment
step to alter the planning operators might be required. Learning approaches enable a robot to
explore the environment in order to improve its planning model [61, 90, 119, 156]. Differently, we
focus on a multi-task setting where the robot should be able to tackle the unexpected situations for
a particular inaccurate task while effectively responding to the other tasks, and there is no time for
learning the exact probabilities through exploration. In addition, learning the true parameters of
the model might not be useful beyond interactions with specific customers, thus making learning
exact parameters for future customers not useful. The objective of this work is to enable the
robot to still achieve the task at hand, e.g., getting the restaurant customers successfully out of the
restaurant, when an unexpected situation arises rather than how to update the model with the new
information from the unexpected situation. We will discuss the existing approaches that could be
used to update a model in Chapter 8.3.

In this work, an unexpected situation is due to a discrepancy between the robot’s observation
and what is expected to be observed based on the robot’s planning model. We address the
discrepancies by integrating them into the original planning problem and then provide algorithms
to efficiently solve the new augmented planning problem. We will use a simple navigation domain
similar to the one proposed in [161] and available in [35] to explain the ideas in this chapter
and then discuss how the ideas are applied to the restaurant domain. In the rest of this chapter,
we follow an online POMDP planning framework where the planning and execution steps are
interleaved until the robot reaches a goal (goal is observable). During the planning phase, the
algorithm computes the best action to execute given the POMDP’s belief state. The execution
step executes the selected action and updates the belief state of the POMDP by using the obtained
observation. The robot replans after each action execution. When a discrepancy happens, the

robot should plan its next action by using the unexpected observation.

Example - Navigation Domain

Let’s consider the 2D navigation domain shown in Fig. 7.1 where the robot should reach the star
goal (state 3). The agent’s true initial state is 4, but the initial belief state of the robot is that the
robot can be in any state other than the goal uniformly (all states O to 10 except 3). The 2D domain
has 11 states. The only actions available to the robot are "north", "south", "east" and "west". With

85



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Figure 7.1: A 3 x 4 grid with the goal located at state 3, and the robot located at state 4.

any of these actions, the agent will take a step in that direction with probability 0.8 and with 0.1
probability in the states that are adjacent to the robot in that direction. For example if the robot
goes north from the state 9, with probability 0.8 it will end up in the state 5 and with probability
0.1 in the states 8 and 10. If any of these transitions are not possible because of an obstacle, the
robot stays in its place with that probability. For example if the robot goes east from the state 8,
with probability 0.8 it ends up in 9 and with probability 0.2 it stays in 8. The only exception is
that if the robot is in the state 4 and executes north, with probability 1.0 it ends up in the state
0. The robot has two sensors on its sides. The robot gets the following observations regarding
where the obstacles are: "left" (obstacle on the left), "right" (obstacle on the right), "neither" (both
adjacent cells empty), "both" (obstacles in both of the adjacent cells), and "goal". The goal is
fully observable. The observation function does not depend on the action (only depends on the
state) and has a probability of 1.0 for the true observation. For example, in the state 8, the robot
observes "neither", and in the state 4, it observes "both" (assumes that the robot is pointing to the
north always). The robot receives a negative cost of 0.4 with any action execution except if it

executes an action in the goal state.

In our navigation example, the planner goes through the scenario below. The belief state
comes in the form of a list of states and their probabilities (state, prob). The robot has a uniform
distribution over the states as shown below. In the planning phase the robot selects the action east
and observes "both". Given the observation, the robot can only be in the state 4. The planner then
selects the action north as it is parts of the optimal route to the goal. The robot then observes
"both". If the robot is in the state 4 and executes action north, with 1.0 probability it should end
up in the state 0. In the state 0, the robot can only observe "left". The observation "both" does not

match what is expected by the model, so a discrepancy happens.

86



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Grid-world domain - the first two planning steps before a discrepancy occurs

Robot’s initial belief: uniform  probability over states other than the goal,
(0,0.1),(1,0.1),(2,0.1),(3,0.0),(4,0.1),(5,0.1),(6,0.1),(7,0.1),(8,0.1),(9,0.1),(10,0.1)

Robot’s action: cast

Robot’s observation: both

Robot’s updated belief: (4,1.0)

Robot’s action: north

Robot’s observation: both

Robot’s updated belief: discrepancy happens as the expectation was that the robot ends up in the

state 0 and observes "left".

We say a discrepancy has happened when the robot’s observation of the world does not belong
to the set of observations that the robot could receive from the environment by reasoning on its
planning model. Under the assumption that the robot’s sensors are not defective, the planning
model should be the reason for erroneous expectation, and the different elements of the POMDP
model should be examined for their inaccuracies. Similar to many other planning and execution
monitoring approaches (even learning), we assume that the state and observations spaces of the
planning model are complete. Thus, the transition and observation functions of the POMDP are
the main cause of the discrepancy.

In the previous example, the truth is that there is a thick carpet between the state 4 and 0,
and the robot actually did not move at all and will not be able to move if it keeps executing the
north action (Fig. 7.2). However, it could also be possible that the carpet is traversable with some
probability (the carpet is thin), and the robot would be able to go to the state 0 after multiple
executions of the north action. Both of these explanations of the discrepancy are concerned with
the accuracy of the POMDP’s transition model (dynamics). Differently, it could also be the case
that the robot is in the state 0 (Fig. 7.3), but because of an incorrect heading it observes "both"
(although it should observe "left"). This last explanation is concerned with the accuracy of the
robot’s observation function.

The discrepancy problem sounds very similar to a popular problem called the kidnapped-robot
problem where a robot is unable to estimate its own position via the localization process [64].
Some approaches address the discrepancies by resetting the belief state of the robot when a
discrepancy is detected, or specifically in the localization domain, when the robot is lost due
to an inaccurate model [47, 111]. A prominent approach within this body of literature called
Sensor Resetting Localization (SRL) is an extension of Monte Carlo Localization and addresses
the kidnapped-robot problem by inserting additional hypotheses generated from sensing in the
belief state when the robot is uncertain of its position. These approaches provide promising

87



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Figure 7.2: There is a thick carpet between the states 4 and 0, so the robot cannot transition from
4 to 0 anymore.

Figure 7.3: A 3 x 4 grid with the robot located at state 0.

results in domains such as robot soccer where external disturbances are the main reason for the
discrepancy [47, 111]. However, in some cases, a discrepancy might not be a result of having a
wrong estimate of the robot’s state and might be due to systematic changes in the environment
that would require changes to the model. In these cases, if the model is used as it is, the robot
might never be able to achieve its goal. For example, in the navigation domain above, if we do not
reason about the change to the model that the robot cannot transition from the state 4 to 0, and
only reset the belief state to a uniform distribution over all states (similar to the initial belief state
of this problem), the robot would still try to go north rather than realizing that route is infeasible
now and taking an alternative route of going south. The robot will get into a loop of detecting a
discrepancy and resetting the belief state after each execution of the north action which prevents it

from reaching its goal. Please see below a scenario where the robot only resets the belief state.

88



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Resetting the belief state to address the discrepancy

Robot’s initial belief: uniform  probability over states other than the goal,
(0,0.1),(1,0.1),(2,0.1),(3,0.0),(4,0.1),(5,0.1),(6,0.1),(7,0.1),(8,0.1),(9,0.1),(10,0.1)

Robot’s action: east

Robot’s observation: both

Robot’s updated belief: (4,1.0)

Robot’s action: north

Robot’s observation: both

Robot’s updated belief: discrepancy happens as the expectation was that the robot ends up in the
state 0 and observes "left".

*¥*We reset the belief state to a uniform distribution over all the states except the goal.

Robot’s updated belief: uniform probability over states other than the goal,
(0,0.1),(1,0.1),(2,0.1),(3,0.0),(4,0.1),(5,0.1),(6,0.1),(7,0.1),(8,0.1),(9,0.1),(10,0.1)

Robot’s action: east

Robot’s observation: both

Robot’s updated belief: (4,1.0)

Robot’s action: north

Robot’s observation: both

Robot’s updated belief: the same discrepancy happens again.

7.2 Formulation of Discrepancy Recovery as a Planning Prob-

lem

We address the discrepancies by integrating them into the original planning problem. Our

algorithm follows the following three steps to handle the discrepancy:

* Discrepancy detection: we say a discrepancy has occurred when Pr(z;|b;, a;) = 0. This
says that the probability of perceiving the current observation z; given the current belief b;
and action a, is zero. The robot does not know how to update the belief state and proceed
from that point on as none of the states have a nonzero probability. Following the example,
Pr(both|(4,1.0), north) = 0.

* Discrepancy diagnosis: in this step we find a set of hypotheses that can explain the
discrepancy. For each hypothesis, we come up with a query targeted at an oracle regarding
the hypothesis. We call these queries clarification actions. Each clarification action can

invalidate a given hypothesis.

* Discrepancy reasoning and recovery: using the set of hypotheses and their associated

89



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

clarification actions, this step decides what the robot should do at each step to achieve the
goal of the task. The need for discrepancy recovery is situation-dependent. If, for instance,
discrepancy diagnosis is able to specify a subset of hypotheses in all of which the current
plan should be continued, then there is no need to disambiguate between two candidate

hypotheses right away when both candidates belong to this subset.

Hypotheses and Clarifications This section assumes that the discrepancy diagnosis step is
done beforehand, and the robot has access to a set of hypotheses on why the discrepancy has
happened. The main focus will be on discrepancy reasoning and recovery, and more specifically
using the set of hypotheses to enable the robot to still achieve the goal of the task. The robot has
access to a set of explanations which we call a hypotheses set and denote it by M H, and a set
of clarification actions denoted by A.;. Each hypothesis h € M H is a potential explanation for
the discrepancy that states what changes to the model could explain the discrepancy. We assume
that at least one of the hypothesis in M H truly explains the discrepancy. If a hypothesis is valid,
we can apply its associated changes to the original model and use it in the rest of the planning
episode. For each h € M H, we have a corresponding clarification action with a cost associated

with it. Each clarification action a € A can invalidate a certain explanation or hypothesis.

Formally, a hypothesis h is represented as a set consisting of tuples [type, elements, values],
h={[t,e,v],...,[t/,e,v']}. Each tuple enumerates what changes should be made to the original
planning model; we call each tuple, a modification tuple. The set of all the modification tuples
applied to the original planning model explains the current discrepancy without introducing
discrepancies in the previous planning steps. The type (t) specifies if the tuple is associated with
the transition function 1" or the observation function O. In the case of the transition function,
elements (e) = (s, a, s') specifies the state s, action a and next state s that the transition function
operates on. The s, a and s’ variables can also take * as their values meaning that they can be
replaced with any state, any action and any state, respectively. We also refer to these elements
of type 1" as the parameters of the transition function. In the case of the observation function,
elements = (s, a, z) specifies the next state s, action a and observation z that the observation
function operates on. The s, a and z variables can also take * as their values meaning that they
can be replaced with any state, any action and any observation, respectively. We also refer to
these elements of type O as the parameters of the observation function. The elements variable
basically describes how the parameters of the transition or observation functions should change.
The values (v) specifies if the probability for that transition or observation should change from
nonzero to zero or change from zero to nonzero (binary variable). If the changes associated with

all the elements members of the modification tuples of h are applied to the original planning

90



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

model, the discrepancy would get resolved. The robot might have multiple hypotheses that explain

the discrepancy, but it does not know which hypothesis is valid.

The objective of our planner is to achieve the goal of the task, e.g., reaching the state 3,
rather than figuring out which hypothesis is valid. Thus, instead of investigating the validity of
the hypotheses, we include the hypotheses and the clarification actions associated with them
in the original planning model. We let the planner to decide if a hypothesis actually affects
the planning outcome and should be validated or not. For example, in the simple navigation
domain above, let’s assume that there is no chance that the robot can go from the state 4 to
the state 0; let’s call this hypothesis i1, h1 = {[T (4, *,0),0], [T, (4, *,4), 1]}. Now if we only
have hl in the hypotheses set, M H = {hl}, the robot should for sure take the alternative
route of going south as Al is the only valid hypothesis. However, if M H = {h1, h2} where
h2 ={[T, (4,%,0),1],[T, (4, %,4), 1]}, which states that there is a good chance that the robot can
still go north (the carpet is thin), the robot might decide to validate /11 versus h2 before deciding
on a direction. This decision would depend on the cost of asking a clarification action compared
to the cost of taking an alternative route of going south. If the former is small, it is worth to ask a
clarification action rather than directly taking the alternative route of going south. If A1 is valid

and h2 is invalid, only going south can take the robot to its navigation goal.

For each h € M H, we have a corresponding clarification action with a cost associated with
it. If a hypothesis is valid, we can apply its associated changes (i.e., the modification tuples) to
the original model and use the new model in the rest of the planning episode. Each clarification
action asks questions regarding the tuples in the hypothesis’ modification tuples set to invalidate
it. Even if one modification tuple from a hypothesis’ modification tuples set is invalid, the whole
hypothesis is invalid. The clarification action cost is finite if it has not been asked before, and it
becomes infinite when it is asked. We keep track of if a clarification action has been asked before
by using a binary variable and including it in the augmented model’s state, but for simplicity
of notation, we do not enumerate it when we talk about the augmented model’s state. If the
validity or invalidity of a hypothesis is not verified yet, we have to consider its potential invalidity
while planning. This is done by including a large cost associated with using the transitions or
observations from the hypotheses’ modification tuples (elements) in the cost function of the

original planning model.

We will enable the robot to decide if and when a clarification action should be asked to
invalidate a specific hypothesis. The robot will also decide which clarification action should
be asked. The objective of our planner is to achieve the goal of the task, and the validity of a
hypothesis or the invalidity of certain hypotheses might help with achieving the goal. We will
explain how we come up with the M H and A, sets later, but it will not be the main focus of

91



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

this thesis. We augment the original POMDP model with the hypotheses set and the clarification
actions and reformulate it such that the robot stays away from the regions of the state space where
the discrepancy happened and the model is inaccurate. If staying away from these regions is
inevitable or not preferred (i.e., costly), the robot asks clarification questions to figure out where

the actual inaccuracy lies and which explanation or hypothesis can address the discrepancy.

7.2.1 Discrepancy POMDP Model

Please see below how the original POMDP model is augmented to include the hypotheses and
clarification actions. We use a goal POMDP representation described in Chapter 2.2.2 for both the
original and the augmented POMDPs. It has been proven that any discounted reward POMDP can
be converted to a goal POMDP [26]. Thus, one can convert the discounted reward POMDP from
the previous chapters to a goal POMDP before augmenting it. The original POMDP model is
represented with the tuple (S, G, A, Z, T, O, C'), and the augmented POMDP model is represented
with the tuple (S, G, A", Z', T", O', C").

* State space (S’): we augment the state space of the original POMDP to include the possible
hypotheses as follows S’ = S x M H. The belief state is a distribution over the potential
hypotheses and their associated states. This enables the robot to keep track of which
hypotheses have been invalidated and which ones could potentially be valid. Each hypothesis
h € M H specifies what changes in the parameters of the transition or observation function
resolves the discrepancy. We call the parameters associated with each hypothesis unreliable

parameters as they can be the reason for the discrepancy, unless the hypothesis is invalidated.

* Goal states (G”): any member of G irrespective of its associated hypothesis is a goal state,
Vg€ GAVhe MH, g = [g,h] € G'.

* Action space (A’): we augment the action space of the robot to include the clarification

actions, A" = AU A,. These actions enable the robot to invalidate the hypotheses.

* Observation space (Z'): we augment the observation space of the robot with "yes" and "no"

answers to the clarification questions Z' = Z U {yes, no}.

* Transition function (77(][s, h|, a, [s’, #'])): the transition function is as follows. If h says
that a certain hypothesis is valid, after applying any action, we still believe that the same
hypothesis is valid (i.e., h = h'). If a € A, a is treated as a no op action. T} (s, a, s") refers
to the original transition function and includes the changes suggested by the hypothesis
h. In Tj(s,a, s), the robot considers a uniform distribution over the transition function
parameters from the hypothesis / that are type T', type = T', and have a nonzero value of 1,

values = 1.

92



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

T'([s,h],noop, [s',h]) a€ Ay
T'([s, k], a,[s', h']) = Th(s,a,s") a¢ Agand h = h'

0 otherwise

* Observation function (O'([s', I'], a, 2)): if we believe in the hypothesis &’ and a clarification
action asks about its validity, the answer should be "yes" with the probability 1. If the
robot asks about the validity of a different hypothesis, and we believe in the hypothesis
I, the answer should be "no" with the probability 1. Otherwise, the observation should
be according to the original observation function including the changes suggested by
the hypothesis i’ denoted by Oy (', a, z). In Oy (5, a, z), the robot considers a uniform
distribution over the observation parameters from the hypothesis /' that are type O, type =

O, and have a nonzero value of 1, values = 1.

1(z =yes) a € A, and a asks about the hypothesis b’/
O'([s',h],a,2) = 1(z =no) a € Ay and a asks about another hypothesis

O (s',a,z) otherwise

* Cost function C’([s, h|, a, [s', h]): we modify the original objective function and include
the cost for the unreliable parameters. The actions and states that have unreliable transitions
and observations are penalized through the cost function. In 77, it is always the case that
h = I, so we only consider the case where h = h/. We use the following cost function
C'([s,h],a,[s', h]) = C(s,a,s") +wU(s,a,s") where C is the original cost function. For
a list of modification tuples in the hypothesis h of form [type, elements, value], Uy, is equal
to 0 if neither the transition associated with (s, a, s') nor any observations z associated
with (s, a) are unreliable, [T, (s,a, s'),*] &€ h A [O, (s, a,),*] ¢ h, and 1 otherwise. The
parameter w specifies how much we want to avoid the unreliable parameters. A large w
encourages the robot to find alternative paths that achieve the goal of the task without using
the unreliable parts of the transition and observation functions. If not possible, the robot
minimizes the use of unreliable parameters as much as possible. Clarification actions reduce
the number of hypotheses, thus reducing the number of unreliable parameters that the robot

might use along its route to the goal.

We can then solve this augmented POMDP model by using the goal POMDP approaches that we
described in Chapter 2.2.2.

93



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

7.2.2 How to Compute the Hypotheses Set and the Clarification Actions?

When a discrepancy is detected, our algorithm investigates the model to compute a set of hypothe-
ses that explain the discrepancy and a set of clarification actions associated with the hypotheses.
We call this step discrepancy diagnosis. The hypotheses and the clarification actions are then
given to the discrepancy reasoning step to be included in the augmented POMDP model.

In this step we look at the model and reason how the model can change so that the discrepancy
can be accounted for. Similar to many other planning and execution monitoring approaches (even
learning approaches), we assume that the state and observations spaces of the planning model
are complete. The discrepancy could come up for the following reasons or a combination of the

following reasons:

1. The robot has an imprecise model for the dynamics of the domain, i.e., T'(s,a,s’) is

incorrect.

2. The robot has an imprecise model for how the robot’s sensory observation correspond to its

state, i.e., O(s', a, z) is incorrect.

If the current action a, is not the reason for the discrepancy. The discrepancy can be the result
of a previous action, a; through a;_;. Given that the initial belief state b, that the robot started
with is correct, this can happen because the transition model 7" and/or the observation model O
associated with the actions taken in the previous steps are not accurate which lead to not having

the current state in the belief state b;_(s), i.e., b;—1(s) was incorrect.

Hypotheses Set We reason about the model and find the modified transitions and observations
(parameters) that when are nonzero result in a nonzero probability for the robot’s history of
actions and observations, i.e., Pr(z1, 22, . . ., 2|bo, a1, as, . . ., a;) > 0. We mark these parameters
as unreliable, and call them discrepancy parameters.

Imagine a matrix representation for the transition and observation functions where each row
in this matrix should sum to one. Modifying the value of the discrepancy parameters from
zero to nonzero will also affect some other parameters that share the same row in the transition
and observation functions. We mark the nonzero probabilities in the rows associated with the
discrepancy parameters as also unreliable since the values for those would change when the
zero parameters become nonzero. We call these parameters unknown parameters. We make a
distinction between the discrepancy parameters and the unknown parameters as they are treated
differently when we define the clarification action set. The unknown parameters can become
zero as the result of the discrepancy. We call each potential set of the parameters, including

both the discrepancy parameters and the unknown parameters, that can explain the discrepancy,

94



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

a hypothesis. At least one of these hypotheses explains the discrepancy. The set with both
the discrepancy parameters and the unknown parameters is called unreliable parameters and is
assigned a high cost in the cost function C' that we discussed above.

The brute-force algorithm to generate the hypotheses set should consider making any of the
zero-valued parameters or combinations of them nonzero and evaluating if it results in a nonzero
probability for the robot’s history of actions and observations, i.e., if Pr(zy, 2o, . . ., 2¢|bo, a1, as, . . .
,a;) > 0. Note that in general coming up with the hypotheses set can be very challenging as it
depends on the whole history of actions and observations, and the number of the parameters in
the planning model; however, certain assumptions and knowledge in the domain can decrease
the number of hypotheses. We assume 1) the discrepancy is only associated with the current
execution step, and 2) only a minimum number of changes should be applied to the planning
model. Thus, our algorithm to generate the hypotheses set starts with making one change to the
transition or observation functions associated with the current belief state, action and observation.
The modifications that result in Pr(z;|b;_1,a;) > 0 are all valid hypotheses. If the algorithm
cannot find any valid hypothesis, the algorithm considers changing all possible combinations of
pairs of zero-valued parameters to nonzero and evaluating if Pr(z;|b;_1,a;) > 0. The goal is fully
observable, so if the agent receives a discrepancy observation that it is at the goal, the execution

can terminate as we are in a goal state.

Clarification Actions We augment the action space of the robot to include the clarification
actions, A’ = AU A,. To invalidate a particular hypothesis, the robot can ask the clarification
questions that are associated with the hypothesis’ unreliable parameters. The clarification actions
help with invalidating a hypothesis, e.g., if a parameter that was zero-valued in the original model
and hypothesized to be nonzero in the augmented model is verified to be zero, or validating a
hypothesis, e.g., a parameter that was nonzero in the original model became zero and is verified to
be zero.

A specific clarification action could ask if the unreliable parameters of a hypothesis are zero
or nonzero. Alternatively, it could also ask about each and every unreliable parameter separately.
In the latter case, a sequence of clarification actions can invalidate a given hypothesis. The former
approach can only invalidate 1 hypothesis at a time, but the latter approach can invalidate 0 or
multiple hypotheses at the same time. In our domains, since only one change to the transition
function or the observation function is enough to address the discrepancy, the two approaches
work in the same way. Here, we focus on the latter approach. There are two types of clarification

actions:

* A zero-valued parameter from the original model should be nonzero.

95



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

The robot asks about the discrepancy parameters and if their value is nonzero. In the case
of asking about the transition function, the robot asks the following question: "Is it possible
to transition from x to y with the action a?". In the case of asking about the observation
function, the robot asks the following question: "Is it possible to observe z in y with the

action a?"

* Yes: all the hypotheses for which this transition or observation is impossible become

invalid.

= No: all the hypotheses for which this transition or observation is possible become

invalid.
* A nonzero-valued parameter from the original model should be set to zero.

We ask about the unknown parameters. In the case of asking about the transition function,
we ask the following question: "Is it still possible to transition from x to y with the action
a?". In the case of asking about the observation function, we ask the following question:

"Is it still possible to observe z in y with the action a?"

* Yes: all the hypotheses for which the transition or observation is impossible become

invalid.

* No: all the hypotheses for which this transition or observation is possible become

invalid.

7.2.3 Example Formulations

In this section, we describe how the discrepancy model is formulated for both the navigation
and the restaurant domain. In these domains, to come up with a list of potential hypotheses, we
assume that the discrepancy is only associated with the current execution step. Thus, the robot
should only consider modifications to the transition and observation functions that are relevant to
the current belief state, action and observation. We also assume that only minimum number of

changes should be applied to the planning model.

Navigation Domain

Recall the example navigation domain from Section 7.1 where the robot observed "both" after

executing the action north in the state 4 even though it expected to observe "left".

Discrepancy Diagnosis If we were making only one change to the transition function, changing

the transition function such that 7'(s'|s, a) = Pr(4|4, north) > 0 would explain the discrepancy.

96



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

This says that the robot might actually be able to transition to the state 4 by executing north from
the state 4. The original transition function stated that if the robot is in the state 4, and it executes
north, with 100% probability, it ends up in the state 0. If Pr(4|4, north) > 0, then Pr(0|4, north)
is either greater than O or equal to 0. Note that we make a distinction between the two cases as the
latter makes the 4 to 0 transition untraversable and can invalidate a previously known feasible and

optimal path.

We create two hypotheses, i1 and h2, associated with the cases that we mentioned above. The
hypotheses h1 and h2 say that if we are in the state 4, and we execute north with 5% probability,
we end up in 0 and with % probability we end up in the state 4 (5 + o = 100 and 3, o < 100).
The parameter « is the discrepancy parameter, and [ is the unknown parameter. Hypothesis h1
considers that 5 = 0, and h2 considers that 5 > 0. If « = 0 (discrepancy parameter), both of
these hypotheses are invalid as both hypotheses rely on the discrepancy parameter; if 5 = 0,
then only h2 is invalid. Two clarification actions are associated with these hypotheses. The first
clarification action asks if « is nonzero, and the second clarification action asks if [ is nonzero to

invalidate the hypotheses.

Let’s assume that in the domain that we illustrated in Fig. 7.1, the truth is that there is a thick
carpet from the state 4 to 0 as shown in Fig. 7.2, and the robot did not move at all and will not
be able to move if it keeps executing the action north (41 is correct). The robot should take an
alternative path to reach the goal by going south. However, it could also be possible that the carpet
is thin and hence traversable with some probability, and the robot would be able to go to the state
0 after multiple executions of north (h2). Notice that in /1, going north will not in any way take
the robot to the goal. However, in h2, after multiple executions of the north action (probabilistic
transition), the robot will be able to reach state 0 and eventually reach the goal (although might
not be optimal). Both of the hypotheses have doubts regarding the transition from 4 to 0. One
says that it is not possible to transition from 4 to 0, and the robot stays in 4 (the route through
the state O is infeasible). The second says that the robot can stay in 4 with some probability and

transition to 0 with some other probability (the route through the state O is feasible).

If we were only modifying the observation function, changing the observation function such
that Pr(both|0, north) > 0 would explain the discrepancy. This claims that the robot might be
able to observe "both" in the state 0. The observation function for the original model says that
if the robot ends up in the state 0, with 100% probability it observes 1eft. The hypotheses h3
and h4 say that if we end up in the state 0, with 7% probability we observe "left", and with 6%
probability we observe "both" (7 + ¢ = 100). The parameter J is the discrepancy parameter, and

~v is the unknown parameter.

If 6 = 0, it means that h3 and h4 are invalid (h1 or h2 is valid). If v = 0, h4 is valid, and if

97



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

both § > 0 and v > 0, h3 is valid. We have two hypotheses regarding the observation function.
One states that the robot ended up in the state 0, and it is possible to observe both "left" and "both"
in the state 0. Another possible hypothesis is that the robot can observe only "both" in the state
0. These are the only two hypotheses associated with the observation function that can explain
the discrepancy (h3 and h4). Two clarification actions are associated with these two hypotheses.
The first clarification action asks if  is nonzero, and the second clarification action asks if - is
nonzero to invalidate the hypotheses.

For this simple example, we have 4 hypotheses that might explain the discrepancy with only
one change to the planning model (i.e., one discrepancy parameter per hypothesis). There are
4 clarification actions associated with the 4 hypotheses. Each clarification action might be able
to invalidate more than one hypothesis. We assume a uniform distribution over the possible
hypotheses. Note that our goal is to achieve the goal of the task rather than learning the model
parameters. Thus, rather than going for the exact values for the uncertain parameters to find an
optimal path to the goal, we look for paths that avoid using those parameters by associating a
high cost to using them. The robot can also take clarification actions to find the most plausible
hypothesis. Given that the parameters will not match the parameters of the true model, optimality
is not guaranteed, but achieving the goal is. We will prove the soundness and completeness

guarantees of this formulation later.

Discrepancy Reasoning and Recovery Now that we have the hypotheses set and the clari-
fication actions, let’s see what the augmented POMDP model looks like. Originally the state
space only included the position of the robot. We add the hypotheses to the state space, so
the state vector becomes: [pos, hl — correct, h2 — correct, h3 — correct, h4 — correct]. The
hl — correct , h2 — correct, h3 — correct, and h4 — correct state variables specify which
model is valid. Only one of these state variables could be 1. For example, if we believe that
the robot is located in the state 4 and /1 is valid, then we believe we are in the following state
[4,1,0,0,0] with the probability 1. When a discrepancy happens, the robot does not know which
of the 4 hypotheses is valid; thus, the belief state of the robot after the discrepancy becomes
([4,1,0,0,0],0.25),([4,0,1,0,0],0.25),(]0, 0,0, 1,0],0.25), ([0, 0, 0,0, 1], 0.25) as we have a uni-
form distribution over the hypotheses. The first two hypotheses (h1 and h2) claim that the robot
is located in the state 4 after executing the action north, and the second two hypotheses (h3 and

h4) say that the robot is located in the state 0 after executing the action north.

Regarding h1 and h2, there are two questions that the robot can ask. One question asks if it is
possible to go from the state 4 to the state 4 with the action north. If the answer is "yes", either i1

or h2 is valid. Hypotheses 13 and R4 still believe in the original transition function. They assume

98



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

that the agent ends up in the state O with the action north, so the answer "yes" to the question
invalidates them. If the answer is "no" then either /3 or h4 is valid. The second question asks
if it is still possible to get to the state 0 from the state 4 with the action north. If the answer is
"yes", either h2, h3 or h4 can be valid, otherwise if the answer is "no", only A1 is valid. Similarly,
we have 2 questions associated with the hypotheses 13 and h4. In total we have 4 clarification

actions that can invalidate the hypotheses if necessary.

In addition to the above changes to the model, the robot changes the cost function to assign
a high cost to the unreliable parameters (unreliable action and state pairs in the transition or
observation function) if they are used during planning. In this cost function, if there is an
alternative route that can take the robot to the goal, the robot might take that instead of taking any
of the clarification actions. The robot’s policy depends on the trade-off between the cost of taking
the clarification actions or trying an alternative route. If there is no alternative route, the robot
will try to determine the valid hypothesis by asking the clarification questions. This explanation
concludes how we formulate the augmented POMDP model for the navigation domain. The
augmented planning model can then be solved using the ILAO* algorithm [79] to compute a

policy.

In the navigation example, we assign a cost of 100 to using the unreliable parameters (the
unreliable action and state pairs) during planning. If the cost of each clarification action is 1,
and in the ground-truth grid-world the robot cannot transition from the state 4 to 0, the robot
follows the scenario below. The robot asks "is it still possible to go from the state 4 to 0 with
the action north?". The oracle responds "no" and the belief state becomes ([4, 1,0, 0, 0], 1.0).
The robot realizes that hl is valid, and it should go south as a result. In a different ground-
truth grid-world, if the answer was "yes", the robot would have realized that A1 is invalid and
any of the other hypotheses are a viable hypothesis, so the belief state would have become
[([4,0,1,0,0],0.2), (]0,0,0,1,0],0.4),([0,0,0,0,1],0.4)] . In this case, the robot might have
asked another clarification action, namely "is it still possible to observe left in the state 0 with the

action north?".

Given the ground-truth environment in Fig. 7.2, the human answered "no" to the first question.
If the cost of a clarification action was 4 rather than 1, the robot would have not taken a clarification
action and would have taken the alternative route to reach the goal by going south. Since there is
an alternative route that takes the robot to the goal, it doesn’t even worth it to ask a question when

the clarification actions are costly.

99



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Grid-world domain - the first two planning steps after the discrepancy

Robot’s initial belief: ([4,1,0,0,0],0.25), ([4,0,1,0,0],0.25), ([0,0,0,1,0],0.25)
,([0,0,0,0,1],0.25)

Robot’s action: is it still possible to go from the state 4 to the state O with the action north?
Robot’s observation: no

Robot’s updated belief: ([4,1,0,0,0],1.0)

Robot’s action: south

Robot’s observation: left

Restaurant Domain

Let’s consider a slightly modified restaurant domain than the one we described in Chapter 3.
Each table goes through a sequence of states from wanting the menu to paying for the meal and
leaving. The customers level of satisfaction is not observable, and there are 2 satisfaction
levels, namely unsatisfied and satisfied. There are 3 observations associated with the
satisfaction level, happy, unhappy and neutral. If the customers are unsatisfied, the
robot observes unhappy and neut ral with probability 70% and 30%, respectively. Similarly,
if the customers are sat i s fied, the robot observes happy and neut ral with probability 70%
and 30%, respectively. After each timely service (action execution), the customers’ satisfaction
level increases, but if the customers wait time is high, the customers’ satisfaction decreases. In
our examples, we assume that all the services are done within a time frame that does not decrease

the customers’ satisfaction level.

Now, let’s consider the following examples. In both of these examples, the customers enter
the restaurant and sit at a table. The robot brings the menu to the customers and get their orders.

After both the action executions, the robot observes that the customers are happy.

Example 1 While the customers are waiting for their food, the robot brings them bread if it
does not see bread on their table to keep them satisfied (and busy) while waiting. Given that the
customers in our scenario have switched to the waiting for food state, the robot performs
the bring bread action. The robot expects the following scenario, but it observes the scenario

below it.

100



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Restaurant setting - expected interaction with Table 0

Robot’s initial belief: ([. .., satisfied],1.0)
Robot’s action: go to table 0 and give them the menu
Robot’s observation: happy

Robot’s updated belief: ([.. ., satisfied],1.0)
Robot’s action: go to table 0 and get their orders
Robot’s observation: happy

Robot’s updated belief: (|. .., satisfied],1.0)
Robot’s action: go to table 0 and give them bread
Robot’s observation: happy

Robot’s updated belief: (|. .., satisfied],1.0)
Robot’s action: go to table 0 and give them bread
Robot’s observation: happy

Robot’s updated belief: (|. .., satisfied],1.0)
Robot’s action: go to table 0 and give them bread
Robot’s observation: happy

Robot’s updated belief: ([. .., satisfied],1.0)
Robot’s action: go to table 0 and deliver their food
Robot’s observation: happy

Restaurant setting - actual interaction with Table 0

Robot’s initial belief: ([. .., satisfied],1.0)

Robot’s action: go to table 0 and give them the menu
Robot’s observation: happy

Robot’s updated belief: (|. .., satisfied],1.0)
Robot’s action: go to table 0 and get their orders
Robot’s observation: happy

Robot’s updated belief: ([.. ., satisfied],1.0)
Robot’s action: go to table 0 and give them bread
Robot’s observation: unhappy

Robot’s updated belief: discrepancy happens as the expectation was that the robot ends up in the

state satis fied and observes happy

The robot observes that the customers are unhappy. As the robot only expected that the
customers should be satisfied (switch to the sat i sfied state), and hence happy, a discrepancy
occurs. It is not immediately clear if the customers are unhappy because they do not want bread
(e.g., have an allergy to wheat) or they are having an argument regarding something else (so no
change in the robot’s policy). Maybe the customers are unsatisfied because they have an allergy

to wheat, so the robot has to consider for this specific table, bringing bread actually makes the

101



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

customers unsatisfied rather than satisfied and plan accordingly.

Example 2 1In this example, the robot delivers the customers’ food and water (and observes
happy after both action executions). While the customers are eating, the robot fills up their
glasses if it sees that they do not have much water in their glasses (to keep them satisfied). The
robot brings water, but it observes that the customers are unhappy. As the robot only expected
that the customers should be satisfied (switch to the satisfied state), and hence happy, a
discrepancy occurs. It is not immediately clear if the customers are unhappy because they do not
want more water (e.g., they are having a lunch business meeting in which people don’t want to be
interrupted frequently) or for some other reasons. If it becomes clear that the customers became
unsatisfied because they received water, the robot should plan its next actions accordingly.
Notice that in both of these examples, one table has different preferences that do not match with
the general model that works for all the other tables in the restaurant; thus, it should plan differently
for that particular table to get the customers successfully through their dining experience. We
will go through how we formulate the augmented POMDP model for Example 1’s discrepancy

scenario next. A similar formulation applies to Example 2.

Discrepancy Detection Following Example 1,
Pr(unhappy|customers are satisfied & waiting for food & do not have bread, bring bread) = 0.

Discrepancy Diagnosis In Example 1, we assume that when the customers entered the restau-
rant, they were satisfied. There were 2 actions that the robot executed bring menu and get
orders. After both the actions were executed, the robot observed happy. Thus, from the
perspective of the robot, both the observations match the robot’s model, and the robot updates its
belief state that the customers are 100% satisfied. The customers could not be in an unsatisfied
state in the previous action executions as the robot did not observe unhappy in any of those
executions.

If we were making only one change to the transition function, changing the transition func-
tion such that 7'(s'|s, a) = Pr(unsatisfied & waiting & no bread|satisfied & waiting & no bread,
bring bread) > 0 would explain the discrepancy. This says that we might actually transition to the
unsatisfied state by executing bring bread from the satisfied state. The transition
function for the original model was if the table is in the sat i sfied state, and the robot brings
bread for the table, with 100% probability, the table transitions to the satisfied state. The
hypotheses h1 and h2 say that if the table is in the sat i sfied state, and the robot brings bread
for the table, with 8% probability, the table switches to the satisfied state and with a%
probability the table becomes unsatisfied (8 + o = 100 and 5, a < 100). If o = 0, these

102



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

hypotheses are invalid. The hypotheses set and the clarification actions set for this case are very
similar to what the robot came up with in the navigation domain.

If we were only modifying the observation function, changing the observation function such
that Pr(unhappy|satisfied & waiting & no bread, bring bread) > 0 would explain the discrepancy.
This says that it is possible to also observe unhappy when the customers are satisfied (and
they are waiting for the food and do not have bread). The observation function for the original
model says that if we end up in a satisfied state by bringing bread, with 70% probability
we observe happy, and with 30% probability we observe neutral. The hypotheses for this
case say that if we end up in the sat isfied state by bringing bread, with 7% probability we
observe happy, with 6% probability we observe neut ral, and with 4% probability we observe
unhappy (7 + 6 + v = 100). If v = 0, none of these hypotheses are valid. If v > 0, there are 4
hypotheses associated with this case as both 7 and ¢ can go from nonzero to zero.

There are 6 hypotheses and 6 clarification actions. One can assume a uniform distribution over
the possible 6 hypotheses (each with 16% probability). Alternatively, since there are 2 hypotheses
associated with the « discrepancy parameter, and 4 hypotheses associated with the ~y discrepancy
parameter, one can also assume a uniform distribution over the discrepancy parameters. This
approach assigns 25% probability to 41 and h2, and 12.5% probability to h3 to h6. We use the

latter method in this work.

Discrepancy Reasoning and Recovery In the restaurant setting, the original state space was
S = SR x SC where SR denoted the robot’s state space and SC' denoted the table’s state space.
This particular table’s state space now includes the hypotheses set, SC' = SC' x M H; thus the
augmented state space is S’ = SR x SC". This particular table’s action space now includes the
clarification actions, A’ = AU A,. Since the augmented state and action spaces are specific to
this particular table, our formulation maintains the independence between the tables.

We add the hypotheses to the state space, so the state vector becomes: [original — state —
variables, h1,h2, h3, h4, h5, h6]. The hl to h6 state variables specify which model is valid. The
value of the original state variables are specified according to the different potential hypotheses.
Similar to the navigation domain, the robot changes the cost function to assign a high cost to the
unreliable parameters (unreliable action and state pairs in the transition or observation function) if
they are used during planning. The augmented planning model is then solved using the ILAO* al-
gorithm [79] to compute a policy. The discrepancy scenario for Table O is below. In the restaurant
setting with multiple tables, the other tables’ actions are interleaved with the Table 0’s actions to
effectively address all the tables. More specifically, in the interaction below since Table 0 does

not want bread anymore, the robot can attend to the other tables in the meantime while Table 0’s

103



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

food become ready.

Restaurant setting - actual interaction with Table 0 after the discrepancy

Robot’s updated belief: (|. .., satisfied],1.0)

Robot’s action: go to table 0 and give them bread

Robot’s observation: unhappy

A discrepancy happens, and the augmented POMDP model is built.

Robot’s updated belief:

([. .. yunsatisfied, 1,0,0,0,0,0],0.25), ([. . ., unsatis fied, 0, 1,0, 0,0, 0], 0.25),

([. .., satisfied,0,0,1,0,0,0],0.125),([.. ., satis fied, 0,0,0,1,0,0],0.125),
([...,satisfied,0,0,0,0,1,0],0.125),([.. ., satis fied, 0,0, 0,0, 0,1],0.125)

Robot’s action: is it possible for the satisfied customers on Table 0 to become unsatisfied if the robot
brings bread for them?

Robot’s observation: yes.

Robot’s updated belief:

([...,unsatisfied, 1,0,0,0,0,0],0.5), (..., unsatis fied, 0, 1,0, 0,0, 0], 0.5)

Robot’s action: is it still possible to make the customers on Table O satisfied, if the robot brings
bread for them?

Robot’s observation: no

Robot’s updated belief: (|. .., unsatisfied, 1,0,0,0,0,0],1.0)

Robot’s action: go to table 0 and deliver their food

Robot’s observation: happy

7.3 Efficient Planning on the Discrepancy Model

The size of the state and action spaces of the augmented POMDP model depends on the number
of hypotheses which makes solving these models very challenging. In this section, we describe
how the augmented POMDP model is solved efficiently. Before getting into the details of our
approach, we describe our framework. In general solving the original planning problem optimally
to assure the real-time performance of the robot in the restaurant setting is not feasible because of
the complexity of POMDP models. Thus, in this chapter we focus on real-time search algorithms
that interleave planning and action execution and guarantee that an agent’s next action is selected
within a hard prespecified time bound. These algorithms usually incorporate a learning mechanism
that prevents infinite loops and guarantees that, under certain conditions, the agent will reach a
goal despite limited planning. Planning usually consists of a lookahead phase, during which an

expansion-bounded search generates the local search space around the current state, discovering

104



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

the optimal path from the initial node to all frontier nodes, and a learning phase, during which the
heuristic values of the nodes within the local search space are updated based on the information
obtained during lookahead. Action execution is simply the transitioning of an agent from node to

node along the cost-minimal path discovered during the lookahead search.

7.3.1 Background on ILAO* Algorithm

Within the body of literature on real-time POMDP algorithms, we leverage the ILAO* algorithm
described in [79] to solve the augmented POMDP model. LAO* is a heuristic search algorithm
that can find optimal solutions for MDPs or POMDPs by expanding the reachable states using a
greedy policy. The algorithm has three main steps: expansion, revision, and convergence test. In
the expansion step, the algorithm expands some nonterminal tip state of the best partial solution
graph and add any new successor states to the explicit graph G. In the cost revision step, it creates
a set that contains the expanded state and all of its ancestors in the explicit graph by following the
current best solution, and then performs dynamic programming (value iteration or policy iteration)
on the set. For convergence test, it performs value iteration (or policy iteration) on the states
in the best solution graph until the best current solution graph does not have an unexpanded tip
state and the error bound falls below e. LAO* shares the properties of AO* and other heuristic
search algorithms. Given an admissible heuristic function, all state costs in the explicit graph
are admissible after each step and LAO* converges to an optimal or e-optimal solution without
(necessarily) evaluating all problem states [79].

Improved LAO* (ILAO*) improves the performance of LAO* by using various techniques.
One technique is to expand multiple states on the fringe of the best partial solution graph before
performing the cost revision step. For certain problems, expanding all states on the solution fringe
before performing the cost revision step worked better than expanding any subset of the fringe
states [79]. They also found it helpful to limit the number of iterations of value iteration in each
cost revision step because value and policy iteration are much more computationally expensive
than expanding the best partial solution graph. Thus, ILAO* limits the number of state backups
by integrating them into the solution expansion step. The algorithm is as follows. While the best
solution graph has some nonterminal tip state, the algorithm performs a depth-first search of the
best partial solution graph. For each visited state, if the state is not expanded, it gets expanded.
Later, states of the greedy policy graph are backed up only once in the postorder when they are
visited. ILAO* has the same convergence test as the LAO* algorithm. The full ILAO* algorithm
from [79] is shown in Algorithm 8. The algorithm is originally designed for MDPs, but they can
also be applied to belief MDPs (POMDPs).

Different from the original algorithm in [79] that runs the algorithm until convergence, we

105



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Algorithm 8: ILAO* Algorithm from [79] on POMDP p and with a time limit ¢/.

1 ILAO* (b,p,tl)

2 The explicit graph G’ asscoiated with p initially consists of the start belief state b.

3 while time-limit tl is not reached do

1. Expand best partial solution, update state costs, and mark best actions:
While the best solution graph has some nonterminal tip state, perform
a depth-first search of the best partial solution graph.
For each visited state ¢, in postorder traversal:

* If belief state 7 is not expanded, expand it.

* Use the Bellman equation to set V(i) and mark the best action for 7.

2. Convergence test: Perform value iteration on the states in the best solution graph.
Continue until one of the following two conditions is met.
(1) If the best solution graph changes so that it has an unexpanded tip state,
continue.
(2) If the error bound falls below ¢, break.

4 return the current solution graph.

only run the ILAO* algorithm until a time-limit is reached. To solve the original POMDP model,
the robot follows the ILAO* algorithm to expand all the belief states on the fringe of the best
partial solution graph, and then uses the domain-dependent heuristic function H (s) where s € S
to compute the frontier nodes’ heuristic values. To compute the heuristic value of the frontier
belief state b which is represented as a list of states and their probabilities, (state, prob), the robot
takes the minimum over the heuristic value of each state in the belief state b as shown in Eq. 7.1.
For example, in the navigation domain, the heuristic values can be computed by using Euclidean
distance, Manhattan distance or Dijkstra distance (considers obstacles). In the restaurant setting,

we consider the number of steps until the customers leave the restaurant as our heuristic function.

H(b) = H((s1,p1), - - (s, ) = min(H (s1), ..., H(sp)) (7.1

7.3.2 ILAO¥* on Discrepancy Model

We use the original ILAO* algorithm to solve the augmented POMDP model. The algorithm
follows the ILAO* algorithm to expand all the belief states on the fringe of the best partial solution
graph, and then uses a modified version of the domain-dependent heuristic function H called
H yugmentea to compute the frontier nodes’ heuristic values. Notice that the heuristic function

H (s) is initially defined over the state space of the original POMDP model, s € S, and the new

106



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

heuristic function H .y gmentea(s’) is defined over the state space of the augmented POMDP model,
s' € ', where the state includes both the original state variables and the hypotheses variables,
s" = [s, h]. Similar to Eq. 7.1, we take the minimum over the heuristic value of each state s’ in the
belief state. To compute the heuristic value of each state, [s, h] € S, we exclude the hypotheses
variables and use the original heuristic function defined over the original state space to obtain
the heuristic values as shown in Eq. 7.2, Hyugmentea(s’) = H(s) where s’ = [s, h]. This naive

approach of computing the heuristic values is the baseline approach that we compare against.

Haugmented(([sla hl]apl)a ceey ([Ska hl]vpk)v ([5,17 hQ]apll)> R ([5;717 hQ]ap;n)a ) ([8,1/7 hk]7p,1/)7 B
([s7 hels pp)) = min(H (s1), ..., H(sg), ., H(sY), oo, H(sy)s oo H(sY), oo, Hsy))
(1.2)

7.3.3 ILAO* with Hypothesis Decomposition on Discrepancy Model

The computational complexity of solving the augmented POMDP model depends on the number
of hypotheses. As the number of the hypotheses increases, the number of the clarification actions,
and consequently the branching factor of the augmented POMDP’s graph also increases. For
complex problems where there are a lot of potential hypotheses (e.g., where the history of actions
and observations should also be considered for diagnosis), it would be very challenging to solve
the augmented POMDP model. We address this challenge in this section. Our key idea is to
use the lower-bound on the value of the original planning problem under different hypotheses
to compute better heuristic values. Our algorithm uses the original ILAO* algorithm on the
augmented POMDP model for the expansion, revision and the convergence test steps of the
algorithm, but computes better heuristic values to better guide the search. The baseline approach
does not take into account the hypotheses when computing the heuristic values. Differently, we
use the key idea that the hypotheses can be solved separately independently of one another to
compute better lower-bounds on the cost to the goal. As shown in Eq. 7.3, we take the minimum
over the lower-bound value of the POMDP model associated with each hypothesis to compute the
heuristic values. Variable b denotes a distribution over the states of the original POMDP under
hypothesis h1, i.e., s1 to s;. Similarly, " and b” represent a distribution over the states under
hypothesis hy and hy. V' (b, hy) denotes the lower-bound on the value of the belief state b under
the hypothesis h,. Similarly, V (0, hy) and V' (0", hy,) denote the lower-bound on the value of the
belief state &’ and b” under the hypothesis hy and hy, respectively. Computing the lower-bound
on the value of each hypothesis has a similar computational complexity as the original planning

problem.

107



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Haugmented(([slv hl]apl)a R ([Ska hl]ka)v ([5,17 hQ]apll)v SRRE) ([S/Tn’ h?]ap;n)a ) ([8,1/5 hk])]),l/)? EERR)
([sms ], pp)) = min(V (b, ), V(¥ o), ..., V (", )
(7.3)

To compute the heuristic values associated with each hypothesis, one can solve the original
POMDP problem associated with each hypothesis, or use approximation methods which require a
low computational effort. We generally prefer approximation methods since solving the original
POMDP problem has a high computational complexity. In addition, the number of heuristic
computations is proportional to the number of frontier nodes of the graph which can exponentially
increase as we expand the graph; thus an approach that can compute a lower-bound on the value
of the frontier nodes with a low computational effort is preferred. We are particularly interested
in approximations that use the underlying MDP to compute lower-bounds on the value of the
hypotheses. As we mentioned earlier, the ILAO* algorithm can be used to solve MDPs or
POMDPs (belief MDPs). We compute lower-bounds on the value of each hypothesis by applying
the ILAO* algorithm to solve the MDP model associated with the hypothesis. The choice between
using the POMDP model associated with a particular hypothesis versus using the associated
MDP model in general depends on the domain, but in our experiments and in the literature the

approximate MDP model has been shown to be more effective [158].

Although it is easier to solve the original planning problem using the MDP approximation
compared to solving the augmented POMDP model, but the size of the MDP model still prevents
us from fully solving it. To be able to solve the augmented POMDP model in a real-time fashion,
e.g., less than 30 seconds planning time for each action execution, we introduce a parameter which

limits the time dedicated to computing a heuristic value for each belief state.

To solve the augmented POMDP model, the ILAO* algorithm in Alg. 8 is applied on the
augmented POMDP formulation, but rather than using the trivial heuristic computation in Eq. 7.2,
our algorithm uses Alg. 9 to compute the heuristic values for the frontier nodes of the augmented
POMDP’s graph. Alg. 9 also runs the ILAO* algorithm, but on the original POMDP model
associated with each hypothesis, and it uses the trivial heuristic computation, H (s), for its frontier
nodes. The beliefs and hypotheses variables are computed from the belief state of the
augmented POMDP model (line 2). The states in this belief state can be divided based on which
hypothesis they believe is valid. This will divide the belief state into disjoint sets associated with
different hypotheses. The probabilities associated with the states in each set is then normalized to

form the belief state for each hypothesis.

The algorithm goes over the hypotheses sequentially and runs one iteration of the ILAO*

108



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

algorithm which includes all the 3 steps (line 6), namely expansion, cost revision and convergence
test. The algorithm keeps iterating over the hypotheses until the heuristic time-limit is reached
(line 4). This approach ensures that we dedicate equal time to computing the value of each
hypothesis. To compute a lower-bound on the value of the frontier states in each hypothesis” MDP

graph (line 6), the algorithm uses the original heuristic function H(s).

Algorithm 9: Compute Heuristic Values for A Belief State b,y gmenteq 0f the Augmented
POMDP Model paugmented

1 ComputeHeuristicForAugmenetedTask (0,.gmented Paugmented, Nt1)
2 (beliefs,hypotheses) < DivideHypotheses(baugmentedsPaugmented)
3 V=0
4
5

while heuristic time-limit htl is not reached do

for (b, h) € (beliefs,hypotheses) do
/I ILAO* can be applied on the MDP or POMDP model associated with hypothesis i

Vi, <= ILAO*(b,h,htl) /i for the frontier nodes of this ILAO*, we use the original H function
7 V =min(V, V})
8 return V/

=)

7.4 Efficient Planning for Achieving Multiple Independents
POMDPs

In the multi-task settings such as the restaurant domain, the robot has to solve the agent POMDP
model associated with the multiple tasks to attend to them all. When a discrepancy happens, the
model associated with one task in augmented, and the Agent POMDP model should be built from
this new augmented POMDP model and the rest of the tasks. In the previous chapter, we discussed
how we leverage the independent tasks structure and the observation that the number of tasks that
the robot can accomplish within a horizon is limited to expedite planning for multiple independent
tasks. In this chapter, we focused on solving the augmented POMDP model associated with one
task more efficiently. We now discuss how the ideas from the previous chapter and this chapter can
be integrated to expedite planning for an agent POMDP that includes augmented POMDP models.
In Chapter 6, we used a discounted reward POMDP formulation, but in this chapter we used a
goal POMDP representation. It has been shown that goal POMDPs are actually more expressive
than discounted reward POMDPs, and any discounted reward POMDP can be converted to a
goal POMDP [26]. Thus, we first discuss how the algorithms in Chapter 6 can be modified to be
applied on an agent POMDP model built from multiple independents tasks with a goal POMDP

representation.

109



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

7.4.1 Multi-task Goal POMDP with Adaptive Horizon

Before getting into the details of the algorithm, we discuss how we formalize the client and agent
POMDPs with a goal POMDP representation. Different from the discounted reward POMDPs
that have either a maximum horizon A or a discount factor 7, the goal POMDPs have a set of
goal states GG. In addition, in the discounted reward POMDPs, the agent maximizes a reward
function, but in the goal POMDPs, the agent minimizes a cost function (all positive costs). The

other elements of the two types of POMDPs have the same representation (Chapter 2).

Client and Agent POMDPs

The client POMDP associated with each task is a tuple given by (S;, G;, A;, Z;, T;, O;, C;), where
S;i = SR x SC;. G; = SR x GC; denotes a non-empty set of goal states where GC; C SC;.
This defines a goal region for the task specific variables of task i. The goal states g € G; are
cost-free C'(g,a) = 0, absorbing T;(g,a,g) = 1 (Va € A;), and fully observable g € Z;, so
that O;(s',a,g9) = 1if s = g and O;(5, a, g) = 0 otherwise. The agent’s objective is to choose
actions at each time step to minimize the expected cost to a goal. The other elements of the tuple
are similar to the ones we defined for the discounted reward POMDP representation. The agent
POMDP created from multiple client POMDPs with a goal POMDP representation for a domain
with N tasks is represented by (N, S, G, A, Z, T, 0, C) where G = SRXxGC; xGCyx ... xGCy
denotes a non-empty set of goal states for the agent POMDP. The other elements of this POMDP
model are the same as the agent POMDP model with a discounted reward representation.

To address the restaurant setting, the robot can build an agent POMDP associated with all
the tables in the restaurant and apply the ILAO* algorithm on the agent POMDP to find the next

action to execute.

Proposed Multi-Task Method

We use a similar planning and execution framework as in Chapter 6. The main loop of the
algorithm is in Alg. 10. As in Chapter 6, P is a set of POMDP models. During the planning phase,
the algorithm computes the best action to execute in the current belief state given a time-limit
(lines 3-6). In the execution phase, the robot executes the selected action (line 7), updates the
belief state (line 8), and replans after each action execution.

Since we do not have access to a finite-horizon, the ideas that we used to solve the discounted
reward POMDPs with an infinite-horizon are used in the undiscounted reward POMDP problems.
In this section, we discuss how we modify multi-task-AH approach with H = oo from Chapter 6

and apply it here. Our key ideas are to use the truncated horizon and bound computations.

110



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Algorithm 10: Online Planner with Adaptive Horizon

1 MultiTaskAdaptiveHorizonPlanner (eny, P)
while not AllTasksDone() do
tpls <— InitializeTuples(P,2) // we start with pairs of tasks
while not timeout do
a,tpls,depth < SelectAction(P,tpls)
tpls <— RecomputeTuples(P,depth,tpls) /7 ILAO* could go one level deeper
observations < Step(env, a)
UpdateBeliefs(P,observations)

® N N R W N

In the multi-task-AH approach, we used the truncated horizon to find the maximum number
of tasks that the robot can achieve within the horizon. To solve the agent POMDP with a
goal POMDP representation, we use the depth that the ILAO* algorithm reaches to find the
maximum number of tasks that the robot can achieve within the depth. Different from the goal
POMDP representation where the agent’s goal is to minimize the cost function, an agent’s goal
in a discounted POMDP formulation is to maximize the reward function. Thus the upper-bound
computation in a discounted reward POMDP computes a lower-bound in a goal POMDP. However,
the lower-bound computation that we used for a discounted reward POMDP cannot be used to

compute an upper-bound in a goal POMDP. We will explain the reasons in more details later.

Limited Depth In discounted reward POMDPs with an infinite-horizon, the number of tasks
that the robot can attend to within H = oo is N, k* = N (Chapter 6.2.2). Similarly in the
goal POMDP representation since we do not have access to a maximum horizon, the number
of tasks that the robot can attend to is also N, £* = N. Thus, different from the algorithm in
Chapter 5 where we could limit the maximum number of tasks that the robot should consider
within A to compute an optimal solution, all the /V tasks should be considered in a goal POMDP
representation. However, since we have access to a truncated depth or horizon, similar to the
algorithm in Chapter 6, we leverage the observation that within the truncated depth d, the robot
can only consider k tasks (k < N), and it performs no ops on the other tasks. The robot only
considers combined models of size k till the truncated depth d while executing no ops on the other
N — k tasks, rather than a combined model of size IV, but computes the lower-bounds using the
solutions to the N individual tasks. We use the term depth instead of the horizon here as the depth
that the algorithm reaches depends on how the ILAO* algorithm performs its expansion step. If it
expands all the frontier nodes in each iteration, the depth increases by 1; however, the algorithm
can only expand a subset of the frontier nodes which might not increase the depth by 1.

Alg. 11 shows the multi-task-AH algorithm. The function InitializeTuples considers

111



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

all possible subsets of size k. Each subset consists of two sets, ¢pl. with size k and tpl; with size
N — k. The agent applies the ILAO* algorithm on the truncated agent POMDP built from the
POMDPs in tpl,. while executing no ops on the POMDPs in ¢pl;. However, the bound computations
for the frontier nodes are done on all POMDPs in tpl,, = tpl. U tpl; to assure valid lower-bounds
on the value of the tuple {p/ (MultiTaskILAO* function). The SelectAction function
solves a truncated agent POMDP for each ¢pl to compute its bounds while executing no ops on
other POMDPs that are not in ¢pl (line 7). It then updates the bounds on the value of the full
agent POMDP (line 8). The size of the sub-problems is updated as the depth increases. Function
RecomputeTuples updates the ¢pls set as the number of tasks that the robot can attend to

within the depth increases from k to &' = k + 1.

Algorithm 11: Multi-task Goal POMDP Solver
1 InitializeTuples (P,k)
tpls' < {(tpl.,tply) : tpl. € P(P),|tpl.| = k,tpl, = P\ tpl.}
return tpls’
electAction (P,tpls)
depth = 0; Vp = o0
for ipl € tpls do
Vipt»dipr < MultiTaskILAO*(¢pl)
Vp = min(Vp, Vip)
depth = max(depth, dyy)
apest <— action from the ¢pl with lowest V
return a.,tpls,depth
RecomputeTuples (P,d,tpls)
k,k' <+ the maximum # tasks the robot can attend to within d and d + 1;
tpls’ < tpls
if £ # k' then
‘ tpls' <« {(tpl., tpl;) : tpl. € P(P), |tpl.| = k', tpl, = P \ tpl.}
return tpls’
ComputeHeuristic (tpl,htl)

/I Variable htl is the time-limit on computing a lower-bound on the value of a task, V},

N

Y- -"- TN R WU R~ S 8]

Lo e e T e e e o
® 9 AW N =S

19 V0
20 for p € tpl,, do
21 ‘ V < V+ ComputeHeuristicForTask(p,htl)

22 return V'

Bound Computation The lower-bound is computed by assuming that the robot can address all
the tasks in parallel. Since we only have one robot that sequences the tasks to achieve them all, this

lower-bound computation is the minimum cost that the robot will get (ComputeHeuristic

112



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

function on line 18). We use the original ILAO* algorithm that we discussed in Section 7.3.2
to solve each task separately and compute a lower-bound on its value. Since each task has
enough complexity that prevents us from solving it fully, we use the heuristic time-limit pa-
rameter to limit the time that is dedicated to computing a lower-bound value for each task
(ComputeHeuristicForTask function on line 21). To compute a lower-bound on the value
of the frontier belief nodes in each task’s graph, the ILAO* algorithm uses a trivial heuristic
function H that is available for each task.

Since there is no notion of a maximum horizon or a discount factor here, one cannot compute
the upper-bound on the cost by selecting the best task to attend to while performing no ops on
the other tasks as done in Chapter 6. lLe., the blind policy of no ops has no notion of a goal.
However, there is a computationally intensive method to compute an upper-bound. To compute
the upper-bound, the robot could randomly select a sequence of tasks, run each task till its goal
is achieved, and then solve the next task in the sequence. After all the tasks in the sequence are
done, the sum of the costs from the different tasks is an upper-bound on the cost. Nevertheless,
our focus in this chapter is on real-time planning, and the bound computations should require a
very low computational effort. Thus, we do not use an upper-bound computation to prune the

subsets of tasks as done in Chapter 6.

7.4.2 Solving the Augmented Agent POMDP model

We call the agent POMDP model with the goal POMDP representation with at least one augmented
task, an augmented agent POMDP. The augmented agent POMDP is built from all the tasks,
the augmented ones and the non-augmented ones. The augmented agent POMDP has all the
properties of the agent POMDP model. The independence between the tasks is also intact as
the augmentation process only affects the augmented tasks and does not affect any other tasks.
Thus, Alg. 11 can be applied to the augmented agent POMDP. We integrate Alg. 11 with Alg. 9
to leverage both the task decomposition and the hypothesis decomposition. For this integration
we simply replace the ComputeHeuristicForTask function (Alg. 11 on line 21) with the

ComputeHeuristicForAugmenetedTask function (Alg. 9).

7.5 Evaluation

We first provide the proofs on why our approach is guaranteed to reach the goal, i.e., is complete.

We then discuss our experimental results on the navigation domain and the restaurant setting.

113



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

7.5.1 Properties of Planning on the Discrepancy Model

Definition 1 Given a POMDP model p represented by the tuple (S, G, A, Z,T, O, C), we say
a POMDP model q represented by (S, G, A, Z,T",0’,C") is a valid approximation of the true
POMDP p iff the following holds:

1. Vs, € S;Va € A: T(s,a,8) >0 = T'(s,a,8) >0 ANT(s,a,8) =0 =
T'(s,a,s") = 0. This condition says that if a particular parameter of 7" is zero, it should
also be zero in T". If a particular parameter of " is non-zero, it should also be non-zero
in 7"; however, their values do not need to exactly match. If we were to think about the
transition function as a binary matrix where the non-zeros values are 1 and the zero values
are 0, POMDPs p and ¢ would have the same binary matrix.

2.V € SVze€ ZVNae A:0O(s,a,2) >0 = O'(s,a,2z) >0N0(5,a,2) =0 =
O'(s',a,z) = 0. This condition says that if a particular parameter of O is zero, it should
also be zero in O'. If a particular parameter of O is non-zero, it should also be non-zero in
O'; however, their values do not need to exactly match. Similar to the transition function,
the binary matrix representing the observation functions of the POMDPs p and ¢ are the

same.

3. Vse S,a€ A:|C'(s,a) — C(s,a)| < oo. The cost function C” differs from C only by a

finite cost.

4. For a given initial belief state b, Vh € HT, where HT), is a set of all possible finite sequences
of actions and observations executed (observed) so far for the POMDP p, V*(h) < oo
where V" is the optimal cost of reaching the goal from the history %. This says that for a
given initial belief state b, for any history of actions and observations executed (observed)
so far for the POMDP p, there is a policy that reaches a goal with probability 1.0 (proper
policy).

In this section, we assume to have access to a planner that have soundness and completeness
guarantees when applied on the true POMDP model p. We prove that when the same planner is
applied on a valid approximate POMDP ¢, it would have soundness and completeness guarantees
with respect to the POMDP p.

We use the concept of a policy tree in our proofs. In a POMDP, an agent can base its decisions
on the history of its actions and observations. In a policy tree, nodes are actions, and edges are
observations. The action at the root is called the root action. An action node has observation
edges to actions at the next level. After an action is taken, the next action to take is one of the
actions at the next level, depending on what the agent observes. Each policy tree is associated

with a value function, which evaluates the long term reward (or cost) of taking the tree (policy).

114



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Given an initial belief state, the optimal policy can be found by going through the set of all useful
policy trees and finding the one whose value function is maximal (or minimal if we use a cost
function) with respect to the initial belief state. All the sequences of actions and observations in

this policy tree reaches a goal with probability 1.0.

Lemma 0) Under Def. 1, given an initial belief state b and a history of actions and observations
executed (observed) so far, a policy tree in the POMDP p also exists in the POMDP q and vice

versa.

Proof: As discussed in Chapter 2, the belief over the states at time ¢ can be computed from an
existing belief distribution over the states, b, 1, an action a and observation z as follows where

Pr(z|b;—1, a) is the normalizing constant.

O(z]s',a) %T(sﬂs,a)bt_l(s) 74
N o EIS .
(') = Pr(z|bi—1,a)

In this equation for the POMDP p, we use 7" and O as the transition and observation functions
respectively and for the POMDP ¢, we use 7" and O’ as the transition and observation functions
respectively. Given the belief states b, and b, associated with the POMDP p and POMDP ¢
respectively, if Vs € S : by(s) > 0 = bj(s) > 0Aby(s) =0 = by(s) = 0, for an
action a and an observation z we show that the belief update in Eq. 7.4 maintains the following
Vs e S:bi(s) >0 = bi(s) >0Ab(s) =0 = bj(s) = 0 where b, is the updated belief
state for the POMDP p and 0] is the updated belief state for the POMDP gq.

Under Def. 1, T has the same binary matrix as 7", and O has the same binary matrix as O’.

Thus, under Def. 1 and Eq. 7.4, for an action a and an observation z, the following holds:

Vs,s' € S :
bo(s) > 0AT(s'|s,a) >0AO(z|s',a) >0 = bi(s') >0
bo(s) >0 = by(s) >0 (7.5)

T(s'|s,a) >0 = T'(s'|s,a) > 0;0(z]s',a) >0 = O'(z|s',a) >0

bo(s) > ONT'(8'|s,a) > 0N O (z|s',a) >0 = bi(s') >0

115



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Vs,s' €9

bo(s) =0V T(ss,a) =0V O(z|]s,a) =0 = by(s') =0

bo(s) =0 = by(s) =0 (7.6)
T(s'|s,a) =0 = T'(s'|s,a) = 0;0(z]s',a) =0 = O'(z|s',a) =0

bo(s) =0V T'(s|s,a) =0V O'(z]s',a) =0 = bi(s') =0

Hence,
Vs, s’ € S :
bo(s) > 0AT(s'|s,a) >0AO0(z]s',a) >0 = bi(s') >0

bo(s) > 0AT(s'|s,a) >0ANO0O(z]s',a) >0 = bi(s') >0 an

Thus, Vs € S : b1(s') >0 = b\ (s') > 0Ab1(s') =0 = b\ (s’) = 0. This means that after
the execution of the action a and getting the observation z, the following holds: Vs € S : by (s) >
0 = bi(s) >0Abi(s) =0 = V)(s) = 0. The two belief states b; and b} will have the same
states with a non-zero distribution over them and any state that has a zero probability in b; will
have a zero probability in b. Using the same reasoning one can use a proof by induction method
to show that after executing (observing) a sequence of actions and observations of length ¢, we
would have Vs € S : by(s) > 0 = bi(s) > 0Ab(s) =0 = bj(s) = 0. Intuitively, this says
that under Def. 1 and Eq. 7.4, after executing (observing) a sequence of actions and observations,
both the POMDPs have the same set of states with a non-zero distribution over them; thus, they
have the same action nodes and observation edges available to them.

We now prove why given an initial belief state b and a history of actions and observations of
length ¢, a policy tree in the POMDP p also exists in the POMDP . We just proved that after
executing a sequence of actions and observations of length ¢, we would have Vs € S : by(s) >
0 = bi(s) >0Ab(s) =0 = b(s) = 0. The belief states b; and b, are the updated belief
states in the POMDPs p and ¢ respectively. We now show a policy tree in the POMDP p with the
belief state b; also exists in the POMDP ¢ with the belief state b;.

In Def. 1, we assumed that the cost functions in the POMDPs p and ¢ only differ by a finite cost,
and the two POMDPs have the same binary matrix for their transition and observation functions.
We use a proof by induction method. For a given policy tree of depth 1 in the POMDP p, let’s say
that the policy tree has a; as its root action node, and the set Z; as a set of possible observation

116



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

edges. Since the following holds: Vs € S : b(s) > 0 = bj(s) > 0Ab(s) =0 = by(s) =0,
there is a policy tree in the POMDP ¢ which has the action a; as its root action node and the
set Z; as a set of possible observation edges. Now, let’s assume for a policy tree of depth ¢
in the POMDP p, there exists the same policy tree of depth ¢ in the POMDP ¢q. We will now
reason why for a policy tree of depth ¢ + 1 in the POMDP p, there exists the same policy
tree of depth ¢ + 1 in the POMDP q. As we proved earlier, since the two POMDPs have the
same non-zero distribution over their states, each observation edge at depth ¢ in the POMDP
p and its corresponding observation edge in the POMDP ¢ have the same actions available to
them. Let’s call the action associated with one of these observation edges in the POMDP p,
a;+1. For this action node in the POMDP p and its corresponding action node in the POMDP
g, the same set of possible observations exists in the two POMDPs’ policy trees. Thus, given a
policy tree of depth ¢ + 1 in the POMDP p, there exists the same policy tree of depth ¢ + 1 in the
POMDP q. Similarly one can prove that a policy tree in the POMDP g also exists in the POMDP p.

Lemma 1) Soundness: Under Def. 1, if POMDP q is a valid approximation of the POMDP p,
a finite-cost solution from the belief state b} in the POMDP q is also a finite-cost solution from
the belief state by in the POMDP p, where Vs € S : by(s) >0 = bi(s) > 0Aby(s) =0 =
by(s) = 0.

Proof: Without loss of generality, let’s assume there is only one goal. If the POMDP ¢ has a
finite-cost solution to the goal from the belief state b)), there is a finite-cost policy tree in the
POMDP ¢ that reaches the goal with probability 1.0. Le., given the belief state b;,, any history of
actions and observations within this policy tree will always reach the goal. If a history of actions
and observations does not reach the goal, the cost of that policy tree cannot be finite. Let’s call
this policy tree 7. Under Lem. 0, the same policy tree 7 also exists in the POMDP p. Since the
cost functions of the POMDPs p and ¢ only differ by a finite cost, the policy tree 7 also has a finite
cost in the POMDP p. Thus, the POMDP p has a finite-cost solution to the goal. Likewise, if a
policy tree has an infinite-cost in any of the POMDPs p or ¢, it will have an infinite-cost according
to the other POMDP.

Lemma 2) Completeness: Under Def. 1, a finite-cost solution from the belief state by in
the POMDRP p is also a finite-cost solution from the belief state b) in the POMDP q, where
Vs e S:by(s) >0 = by(s) >0Aby(s) =0 = b(s) =0.

Proof: For every finite-cost solution in the POMDP p, there exits a finite-cost policy tree. Similar

117



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

to the proof for Lem. 1, the same policy tree also exists in the POMDP ¢, and it will have a

finite-cost.

Lemma 3) For a given initial belief state b, Vh € HT,, where H'T} is a set of all possible finite
sequences of actions and observations executed (observed) so far for the POMDP q, V,*(h) < oo
where V" is the optimal cost of reaching the goal from the history h. This says that for a given
initial belief state b, for any history of actions and observations executed (observed) so far for the

POMDRP q, there is a policy that reaches a goal with probability 1.0.

Proof: Under Lem. 0, given the same initial belief state b for the POMDPs p and ¢, any history
of actions and observations in the POMDP p also exists in the POMDP ¢ and vice versa, thus
HT, = HT,.

Def. 1’s condition 4 says that for any sequences of actions and observations in the POMDP
p,Yh € HT), e.g., h = (a1, 21, a2, 22, . . ., ay, z), there is a finite-cost policy tree that reaches a
goal with the probability 1.0. Le., all the sequences of actions and observations in this policy tree
have a finite cost to the goal. After executing a sequence h, the agent will be in the belief state b;
in POMDP p and in the belief state b, in POMDP ¢ such that Vs € S : by(s) > 0 = b,(s) >
O0Abi(s) =0 = b(s) =0 (Lem. 0). According to Lem. 2, if there is a finite-cost policy
tree in the POMDP p with the belief state b;, the same policy tree also exists in the POMDP ¢
with the belief state b; and will have a finite cost. Thus, for the same sequence of actions and
observations A in the POMDP ¢, there is a finite-cost policy tree where all its sequences of actions
and observations reach the goal with the probability 1.0. The same reasoning applies to the other

members of HTj,.

Lemma 4) A POMDP solver with completeness and soundness guarantees on any POMDP
would have completeness and soundness guarantees with respect to the POMDP p when applied
on the POMDP q.

Proof: In Lem. 1, we proved that a finite-cost solution to the goal in the POMDP ¢ is sound
with respect to the POMDP p. In Lem. 2, we proved that a finite-cost solution to the goal in the
POMDP p would have a finite cost in the POMDP ¢. Hence, if there is a finite-cost solution in the
POMDP p, a POMDP planner with soundness and completeness guarantees should be able to find
it when applied on the POMDP g.

Lemma 5 Under Def. 1, planning on the Discrepancy POMDP model with a hypotheses set that

118



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

includes a valid approximation of the true POMDP p, called POMDP q, is sound and complete.

Proof:
* Soundness: we use a proof by contradiction method. Let’s assume that the planner found a
solution to the goal by using the discrepancy POMDP model, but the solution has an infinite
cost according to the POMDP p. Since the valid approximate POMDP ¢ will always be a
part of the augmented belief state with a non-zero probability associated with it, under Lem.
1, it would assign an infinite cost to the solution. Thus, the planner would not output that

infinite-cost solution.

* Completeness: in Lem. 0 to 4, we proved that planning on the POMDP ¢ is both sound and
complete. Thus, if there exists a finite-cost solution in the POMDP p, applying the POMDP
solver on the POMDP ¢ will always find it. Now, if we prove that there will always be a
finite-cost path from the augmented start belief state in the discrepancy model to a belief
state where only the hypothesis associated with the POMDP ¢ is valid, we can prove that

there will always be a finite-cost solution from the augmented start belief state to a goal.

Given the set of clarification actions with a finite cost, the planner can use them to invalidate
all the invalid hypotheses and eventually validate the hypothesis associated with the POMDP
q. This is a finite-cost path to a belief state where the POMDP ¢ is only valid. In addition,
since the clarification actions act as a no op action for the task, under Lem. 3, one can
prove that for any history of actions and observations executed (observed), including the
clarification actions (or no ops), there is a policy for the discrepancy model that reaches a

goal. Thus, there will always be a finite-cost solution to a goal in the discrepancy model.

Lemma 6 Eq. 7.2 and Eq. 7.3 compute admissible heuristic values if the initial heuristic values

according to the original heuristic function H are admissible.

Proof: If the initial heuristic values according to the original heuristic function A are admissible,
Eq. 7.2 considers the heuristic value of the state (under any hypothesis) that is closer to the goal
as its heuristic value hence it is a lower-bound on the cost to the goal (similarly Eq. 7.1 is an
admissible heuristic).

If the initial heuristic values according to the original heuristic function A are admissible,
Eq. 7.3 takes a minimum over the heuristic value of the hypotheses. Within each hypothesis, we
can use the POMDP solution until a certain time-limit is reached and use the admissible function
from Eq. 7.1 to compute the heuristic values of the leaves; this is certainly a lower-bound on

the value of the hypothesis. Differently, one can use the MDP approximation until a certain

119



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

time-limit is reached and use the admissible function from Eq. 7.1 to compute the heuristic values
of the leaves. Using the MDP approximation computes a lower-bound on the value of the goal
POMDP associated with the hypothesis [158] (is an upper-bound on the value of a discounted
reward POMDP). Since the function from Eq. 7.1 is admissible, overall the approach computes a

lower-bound on the value of the hypothesis. Thus, Eq. 7.3 computes admissible heuristic values.

Lemma 7 Using the ILAO* algorithm [79] to perform planning on the discrepancy POMDP
model in an interleaved planning and execution fashion while using Eq. 7.2 or Eq. 7.3 to compute

the heuristics is both sound and complete.

Proof: We know that using the ILAO* to perform planning on any POMDP is sound and complete,
and with an admissible heuristic is also optimal [79]. Thus, given Lem. 0O to 6, running the ILAO*
planner until convergence on the discrepancy model is sound, complete and optimal.

We run the ILAO* with a time limit that when is reached, the current best solution is returned.
We then execute the best action and replan using the updated belief. The ILAO* algorithm with
a time-limit will not have the optimality guarantees but will remain sound and complete. This
is because the ILAO* never overestimates the heuristic values if the initial heuristic values are
admissible (Lem. 6), and repeated problem solving trials cause the heuristic values to converge to
their exact values. Thus, under Lem. 5 where there is a finite-cost solution to a goal from any
belief state (or history of actions and observations) in the discrepancy model, the ILAO* algorithm

with a time limit has the same soundness and completeness guarantees as the original ILAO*.

7.5.2 Efficiency Analysis

We evaluate the performance of our algorithms on the navigation and the restaurant domains.

Navigation Domain

We use a larger version of the 2D navigation domain from Section 7.1 as shown in Fig. 7.4. The
2D domain has 44 states. The only actions available to the robot are "north", "south", "east" and
"west". With any of these actions, the agent will take an step in that direction with probability 0.8
and with 0.1 probability in the states that are adjacent to the robot in that direction. If any of the
transitions are not possible because of an obstacle, the robot stays in its place with that probability.
An exception is that if the robot is in the state 4 and executes north, with the probability 1.0 it
ends up in the state 0. Another exception is that if the robot is in the state 36 and executes any
action, it can end up in states 3, 4, 5 and 6 each with the probability 0.25. The robot cannot go
to the goal through the state 36. The robot gets the following observations regarding where the

120



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

Figure 7.4: A 9 x 11 grid with the goal shown with a star, and the robot located at the state 4.

obstacles are: "left" (obstacle on the left), "right" (obstacle on the right), "neither" (both adjacent
cells are empty), "both" (there are obstacles in both of the adjacent cells), and "goal". The goal is
fully observable. The observation function does not depend on the action (only depends on the
state) and has a probability of 1.0 for the true observation. The observation function assumes that
the robot is pointing to the north always. For example, in the state 4, the robot observes "both",
and in the state 0, it observes "left". The robot receives a cost of 0.4 with any action execution
except if it executes an action in the goal state. The agent’s true initial state is 4, but the initial
belief state of the robot is that the robot can be in any state uniformly except the goal, the states 3,
5 and 6, and the adjacent states of the states 3, 5 and 6.

Similar to the small 3 x 4 scenario, in the planning phase the robot selects the action east
and observes "both". Given the observation and the belief state, the robot can only be in the
state 4. The planner then selects action north as it is parts of the optimal route to the goal. The
robot then observes "both". If the robot is in the state 4 and executes the action north, with the
probability 1.0 it should end up in the state 0. In the state O, the robot can only observe "left". The
observation "both" does not match with what is expected by the model, so a discrepancy happens.
This example has the 4 hypotheses from the 3 x 4 grid example. However, the robot can also
observe "both" in the states 3, 5 and 6, so it might be the case that the robot is teleported to any

121



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

of these states. Each of these states add two more hypotheses since we have to consider both a
transition with probability 1.0 to one of these states and a transition with a non-zero and less than
1 probability to one of these states. Thus, in total, we will have 10 hypotheses associated with this

discrepancy.
Experiment Setup

We call the whole process from when the robot starts its planning and execution process until
it reaches the goal or a maximum number of steps a planning episode. We refer to each run of
the planner to select an action to execute, a planning session. We design the grid environment
after the discrepancy such that after a directional action is executed, the robot moves to the state
with the highest probability of transitioning to and gets an observation associated with it. Any
of the 10 hypotheses might be a valid explanation for the discrepancy. To run the experiments,
before the start of the planning episode, we select a hypothesis from the hypotheses set as a
valid explanation and call it a ground-truth hypothesis. Given the ground-truth hypothesis, we
hard-code how the oracle should answer the robot’s questions such that the hypothesis is valid.
Note that in real-world, the oracle would answer the questions based on its own ground-truth
hypothesis. For each algorithm and each ground-truth hypothesis (out of 10), we run 5 episodes
each for 45 actions.

We consider running the algorithms with the following time limits (all in seconds), 1, 3, 5, 7.5,
10, 12.5, 15, 17.5, 20, 25, 30, and the following clarification action costs, 0.2, 0.5, 1 and 2. For
the algorithms that use a heuristic time-limit, we consider 0.005, 0.01 and 0.04 as the heuristic
time-limits (all in seconds). The heuristic values are computed by using Dijkstra distance which
is basically the cost to the goal in a deterministic setting while considering the obstacles. This is
how we define the original heuristic function H that we referred to in the previous sections. We

compare the following algorithms against one another:

* ILAO*: We run the original ILAO* algorithm with a specific time-limit on the discrepancy
POMDP model and use the original heuristic function H for heuristic computations (the

algorithm in Section 7.3.2).

* ILAO* with MDP heuristic: We run the original ILAO* algorithm with a specific time-
limit on the discrepancy POMDP model and use the solution to the MDP model associated
with the discrepancy model for heuristic computations. The heuristic computations are
performed until a time-limit is reached as specified by the heuristic time-limit parameter.
After the time-limit is reached, for the rest of the heuristic computations, the original

heuristic function H is used.

* ILAO* with decomposed hypotheses and POMDP heuristic: We run the original ILAO*

122



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

algorithm with a specific time-limit on the discrepancy POMDP model. For heuristic
computations, we take the minimum over the values of the POMDPs associated with
the hypotheses as described in Section 7.3.3. In this algorithm, the lower-bound value
V for a hypothesis is computed by using the hypothesis® POMDP model. The heuristic
computations are performed until a time-limit is reached as specified by the heuristic time-
limit parameter. After the time-limit is reached, for the rest of the heuristic computations,

the original heuristic function H is used.

* ILAO* with decomposed hypotheses and MDP heuristic (our approach): We run the
original ILAO* algorithm with a specific time-limit on the discrepancy POMDP model. For
heuristic computations, we take the minimum over the values of the MDPs associated with
the hypotheses as described in Section 7.3.3. In this algorithm, the lower-bound value V' for
a hypothesis is computed by using the hypothesis” MDP model. The heuristic computations
are performed until a time-limit is reached as specified by the heuristic time-limit parameter.
After the time-limit is reached, for the rest of the heuristic computations, the original

heuristic function H is used.

Results

We compare our method with different heuristic time-limits and clarification action costs against

the baselines.

Average Cost We compute the cost of each episode by summing the action costs of each
planning session. We then take the mean over the cost of the episodes associated with the 10
different hypotheses. We report the mean and error obtained by each algorithm over the 5 runs.
Figs. 7.5a, 7.5b, 7.5¢ and 7.5d show the results for different clarification action costs. Our
method obtains an average cost that is lower than all the baselines. The difference between the
performance of our method versus the other methods is larger as the heuristic time-limit increases
since there is more time to compute a better heuristic value. However, note that the heuristic
time-limit can only increase until a certain point, after that the heuristic computation will prevent
the robot from sufficiently searching the large graph associated with the discrepancy model. In
our experiments, we noticed that the heuristic time-limit 0.1 does not perform well.

The variant of our approach with a POMDP heuristic computation mostly performs worse
than all the algorithms, specifically, with smaller heuristic time-limits and smaller time-limits.
This is because the original POMDP associated with each hypothesis has a high complexity,
and the planner cannot explore it well enough to compute a good heuristic value. The heuristic
computation takes some of the time that the planner could use to explore the large graph associated

with the discrepancy model, and if the heuristic value is not very useful, spending computation

123



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

time on it will be worse than having a trivial heuristic function. When there is more time for
heuristic computation, e.g., for the heuristic time-limit 0.04 and the time-limits greater than 15s,
the decomposed hypotheses with a POMDP heuristic approach performs better than the original
ILAO* approach. The ILAO* algorithm with the MDP heuristic computation mostly performs
better than the original ILAO* without the MDP heuristic computation, but its performance
significantly increases after we use our decomposed hypotheses approach. When the clarification
action cost is larger, e.g., when the cost is 2, the cost of a sequence of 5 directional actions is
the same as the cost of one clarification action. Thus, the ILAO* algorithm should go deeper in
the graph associated with the discrepancy model to decide if asking a question is beneficial or
not. For the clarification action cost of 2 and the heuristic time-limit of 0.01s, since the heuristic
computation takes some of the time that the planner could use to explore the large graph associated
with the discrepancy model, the gap between the performance of our method and the ILAO*
method is smaller for the time-limits of less than 10s. This is also the case for the ILAO* with the

MDP heuristic approach.

heuristic time-limit: 0.005s heuristic time-limit: 0.01s heuristic time-limit: 0.04s
22.5 algorithm 22.5 algorithm 22.54 algorithm
e ILAO* e~ ILAO* e ILAO*
-u- ILAO* w MDP heursitic -=- ILAO* w MDP heursitic -~ ILAO* w MDP heursitic
20 0 -=- ILAO* w decomposed hypotheses & POMDP heuristic 20 0 -u- ILAO* w decomposed hypotheses & POMDP heuristic 20 0 4 -~ ILAO* w decomposed hypotheses & POMDP heuristic
N + ILAO* w decomposed hypotheses & MDP heuristic : —+ ILAO* w decomposed hypotheses & MDP heuristic . —+ ILAO* w decomposed hypotheses & MDP heuristic
17.5
15.0
12.5
\/‘\ \
A\ \
10.0 N\ — 10.0 \ 10.01
\ Y N
——— \ A S T
7.5 7.5 V' WA N 7.5
\/ \/ , - 2
V 7 N =
5.0 5.0 5.0
0 20 40 60 0 20 40 60 0 20 40 60
time-limit (s) time-limit (s) time-limit (s)
(a) Clarification action cost is 0.2.
heuristic time-limit: 0.005s heuristic time-limit: 0.01s heuristic time-limit: 0.04s
22.5 algorithm 22.5 algorithm 22.5 algorithm
e ILAO* e~ ILAO* e ILAO*
-u- ILAO* w MDP heursitic -=- ILAO* w MDP heursitic ~=- ILAO* w MDP heursitic
20.0 —a- ILAO* w decomposed hypotheses & POMDP heuristic 20.0 -a- ILAO* w decomposed hypotheses & POMDP heuristic 20.04 -s- ILAO* w decomposed hypotheses & POMDP heuristic
. + ILAO* w decomposed hypotheses & MDP heuristic : —+ ILAO* w decomposed hypotheses & MDP heuristic ’ —+ ILAO* w decomposed hypotheses & MDP heuristic

o
1251 ' \/\ 12,51 \ e | 12,51
10.0 | 100]{ | 100{
75 7.5 AR VAN \/'"""”’"”’*w——m,, 7.5 =\
5.0 5.0 5.0
0 20 40 60 0 20 40 60 0 20 40 60
time-limit (s) time-limit (s) time-limit (s)

(b) Clarification action cost is 0.5.

124



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

heuristic time-limit: 0.005s heuristic time-limit: 0.01s heuristic time-limit: 0.04s
22.54 algorithm
4 e ILAO*
-=- ILAO* w MDP heursitic
 ILAO* w decomposed hypotheses & POMDP heuristic
LAO* w decomposed hypotheses & MDP heuristic

-
wn \
o /N~
0125 = 125
10.0 10.0 10.04 -
; \ ! AL
7.5 algorithm 7.5 algorithm 7.54 ’ ———
-e- ILAO* -e- ILAO*
-u- ILAO* w MDP heursitic -u- ILAO* w MDP heursitic
-a- ILAO* w decomposed hypotheses & POMDP heuristic -a- ILAO* w decomposed hypotheses & POMDP heuristic
5.01% ILAO* w decomposed hypotheses & MDP heuristic 5.01 ILAO* w decomposed hypotheses & MDP heuristic 5.04
0 20 40 60 0 20 40 60 0 20 40 60
time-limit (s) time-limit (s) time-limit (s)
(c) Clarification action cost is 1.
heuristic time-limit: 0.005s heuristic time-limit: 0.01s heuristic time-limit: 0.04s
22.51 1 algorithm 22.5 22.54 algorithm
4 e ILAO* kY e ILAO*
\ -=- ILAO* w MDP heursitic \\ - K -~ ILAO* w MDP heursitic
.- * w decomposed hypotheses euristic L 1 - * w decomposed hypotheses heuristic
20.0 - 133* w :ecomioseg :;th:eses i :a%h;iz:nsnct 20.0 VTN 20.0 tﬁg* W demmgosed hzzotheses Z ;ODh;Teur\snc[
17.5 17.5 17.5
1500 \SW, (s 15.0 150{ v
-
o] N\
4 =
V125 s 12.5 12.51
10.0 10.0 /A |y — 100 © e
7.5 7.5 algorithm 7.5 ‘
-e- ILAO*
-u- ILAO* w MDP heursitic
-u- ILAO* w decomposed hypotheses & POMDP heuristic
5.0 5.0'{ 72 A0+ w decomposed hypatheces & MDP heuisic 5.0
0 20 40 60 0 20 40 60 0 20 40 60
time-limit (s) time-limit (s) time-limit (s)

(d) Clarification action cost is 2.

Figure 7.5: Difference between the average cost of our method and the baselines for different
time-limits and different heuristic time-limits.

Suboptimality We report how suboptimal the different approaches are as a function of time. We
give each planning session a time-limit of 1 hour for these experiments. Right after a discrepancy
happens, the different algorithms and the different hypotheses all start from the same belief state.
For each hypothesis and each algorithm, we compute the suboptimality at time ¢ (f < 3600s)
by dividing the optimal cost by the current lower-bound on the optimal cost. The closer this
number is to 1, the tighter the lower-bound is to the actual cost to the goal; thus the heuristic
value better guides the search. For the first planning step right after the discrepancy, since the
belief states for the different algorithms and different hypotheses are all the same, the optimal
action that the algorithms should take are the same and have the same cost; thus, the suboptimality
cost is comparable across algorithms and hypotheses. However, for the steps after the first step,
the different algorithms and the different hypotheses have different belief states, so different
optimal costs are considered in computing the suboptimality. Hence, there is more variance in the

125



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

suboptimality, and they are not directly comparable. Although, we can still compare their rate of

convergence to their optimal costs.

Figs. 7.6a, 7.6b, 7.6c and 7.6d show the results for the first planning session right after a
discrepancy happens for different clarification action costs. The different lines with the same
color are associated with the 10 different hypotheses. In most of the experiments, specifically, for
the heuristic time-limits 0.01 and 0.04, our approach converges faster than the other approaches.
However, for this planning step and smaller time-limits of less than 30s, the ILAO* approach and
the ILAO* with the MDP heuristic approach often perform better than our approach. In these
cases, when the heuristic time-limit is 0.005 and 0.01, the ILAO* with the MDP heuristic and
the ILAO* approach mostly perform better than our method, and when the heuristic time-limit is

0.04, all the three methods sometimes perform better than one another.

heuristic time-limit: 0.005s heuristic time-limit: 0.01s heuristic time-limit: 0.04s
3.00 igorithm 3.00 algorithm 3.00 algorithm
Lao* - ILAO* -~ ILAO*
. ILAO* w MDP heursitic 2.75] - ILAO* w MDP heursitic 2.75 - ILAO* w MDP heursitic
2.75 - ILAO* w decomposed hypotheses & POMDP heuristic " --- ILAO* w decomposed hypotheses & POMDP heuristic " | --- ILAO* w decomposed hypotheses & POMDP heuristic
" |LAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic
2.50 2.501
2
£ 2.251 2.251
£
' 2.00 2.004 |
5y
Q 1 751
S 1.75 1.75
0
1.504 1.501
1.254 1.25
1.00 1.00+ T - 1.00+ T -
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
time (s) time (s) time (s)
(a) Clarification action cost is 0.2.
3.00 heuristic time-limit: 0.005s 3.00 heuristic time-limit: 0.01s 3.00 heuristic time-limit: 0.04s
: algorithm . algorithm . algorithm
- ILAO* - ILAO* - ILAO*
2.75 - ILAO* w MDP heursitic | 2751 -~ ILAO* w MDP heursitic 2.75 --- ILAO* w MDP heursitic
--- ILAO* w decomposed hypotheses & POMDP heuristic . --- ILAO* w decomposed hypotheses & POMDP heuristic . --- ILAO* w decomposed hypotheses & POMDP heuristic
— ILAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic
2.50 2.50 2.50
2
=2. 2.251 2.25
©
£
52 2.00 2.00
Qo A
8 ‘
S 1. 1.754 1.75
0
1.50 X ) | 1.50 1.50
1.25 1.25
100l — —1 1,00 1.00 ——
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

time (s) time (s) time (s)

(b) Clarification action cost is 0.5.

126



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

heuristic time-limit: 0.005s istic time-limit: istic time-limit:
3.00 e 3.00 heuristic time-limit: 0.01s 3.00 heuristic time-limit: 0.04s
algorithm algorithm
--- ILAO* - ILAO* ——- ILAO*
2.75 --- ILAO* w MDP heursitic | 2.751 - ILAO* w MDP heursitic 2.75 -~ ILAO* w MDP heursitic
--- ILAO* w decomposed hypotheses & POMDP heuristic . -~ ILAO* w decomposed hypotheses & POMDP heuristic . --- ILAO* w decomposed hypotheses & POMDP heuristic
— ILAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic
2.50 2.50
Z
=225 2.25
£
= 2.00 2.00
Q
2
3 1.75 1.75
I \
1.501 1.50
1.251 el 1,25
1.00/ 1.00 — 1.00 i —
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
time (s) time (s) time (s)
(¢) Clarification action cost is 1.0.
heuristic time-limit: 0.005s istic time-limit: istic time-limit:
3.00 e 3.00 he.ur|st|c time-limit: 0.01s 3.00 heuristic time-limit: 0.04s
algorithm algorithm
- ILAO* - ILAO* - ILAO*
2.754 --- ILAO* w MDP heursitic 2.75 - ILAO* w MDP heursitic 2.75 -~ ILAO* w MDP heursitic
--- ILAO* w decomposed hypotheses & POMDP heuristic . --- ILAO* w decomposed hypotheses & POMDP heuristic . --- ILAO* w decomposed hypotheses & POMDP heuristic
— ILAO* w decomposed hypotheses & MDP heuristic —— ILAO* w decomposed hypotheses & MDP heuristic — ILAO* w decomposed hypotheses & MDP heuristic
2.50 2.501 2.50
2
= 2.251 2.25
£
5 2.00 2.00
o
2
2 1.754 1.75
0
1.501 1.50
125{ 00— 1.25
1.00 1.004, : ‘ — 1.00 — ‘
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
time (s) time (s) time (s)

(d) Clarification action cost is 2.0.

Figure 7.6: Difference between the suboptimality of the different algorithms in the first planning
step after the discrepancy.

Figs. 7.7a, 7.7b, 7.7c and 7.7d show the results for the second planning session after a
discrepancy happens for different clarification action costs. After the first planning step, depending
on the hypothesis, different actions might have been selected by the different algorithms, so each
hypothesis and algorithm might start from a different belief state and have different optimal
costs. In this planning step, our method mostly performs better than the other methods. After our
method, the ILAO* algorithm performs the best. In most of these cases, the ILAO* approach with
the MDP heuristic mostly performs worse than the other approaches. We also observe similar
results in the third planning step. We believe this is because right after the discrepancy, asking
the clarification actions matters a lot in finding a hypothesis that best describes the discrepancy;
however, the clarification actions are less important for the steps after. The way we compute the
heuristics in our approach does not include the clarification actions, but the heuristic computation
in ILAO* with the MDP heuristic includes them. For the steps after the first step, the latter

127



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

expands a graph with a higher branching factor for heuristic computations (more actions) and
computes a less useful heuristic value. Thus, on average over all the planning steps our approach

has a better performance than the other approaches.

heuristic time-limit: 0.005s 2.0 heuristic time-limit: 0.01s 50 heuristic time-limit: 0.04s
2.0 algorithm ) algorithm . algorithm
. LAO* - ILAO* - ILAO*
- ILAO* w MDP heursitic --- ILAO* w MDP heursitic --- ILAO* w MDP heursitic
--- ILAO* w decomposed hypotheses & POMDP heuristic --- ILAO* w decomposed hypotheses & POMDP heuristic --- ILAO* w decomposed hypotheses & POMDP heuristic
1.8 — ILAO* w decomposed hypotheses & MDP heuristic 1.81 — ILAO* w decomposed hypotheses & MDP heuristic 1.8 — ILAO* w decomposed hypotheses & MDP heuristic
z 7
w16 516
1S :
e} 3
g ;
814 114
> 3
(%] bl
1.2 1.2
Lol === T 1.04 —— \ - 1.0 - :
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
time (s) time (s) time (s)
(a) Clarification action cost is 0.2.
heuristic time-limit: 0.005s 2.0 heuristic time-limit: 0.01s 2.0 heuristic time-limit: 0.04s
2.0 algorithm ! algorithm - T:g‘:;thm
* --- ILAO* -
L e  MDP heursitic ~ ILAO* w MDP heursitic —otwwopheusie
. - * isti - * w decomposed hypotheses euristic
Ll IS decomposed ypotheses & POMDP b Hc | 1 g1 1agwwdacomposed rypotses & W newnsh | 18| ILAD* W decomposed hypotheses & MDP heristi
=
£ ] 1.6
S 1.61 1.6
£
pras]
o
314 1.4+
)
(%]
1.2 1.24
1.04 1.0 = = 1.0
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

time (s) time (s) time (s)

(b) Clarification action cost is 0.5.

heuristic time-limit: 0.005s 2.0 heuristic time-limit: 0.01s >0 heuristic time-limit: 0.04s
2.0 algorithm ! algorithm : algorithm
- ILAO* --- ILAO* - ILAO*
- ILAO* w MDP heursitic --- ILAO* w MDP heursitic - ILAO* w MDP heursitic
--- ILAO* w decomposed hypotheses & POMDP heuristic --- ILAO* w decomposed hypotheses & POMDP heuristic --- ILAO* w decomposed hypotheses & POMDP heuristic
1.8 — ILAO* w decomposed hypotheses & MDP heuristic 1.81 — ILAO* w decomposed hypotheses & MDP heuristic 1.8 — ILAO* w decomposed hypotheses & MDP heuristic
>
=
T 16 1.6 1.6
£
=
5y
& 1.4 ‘
=}
0
1.24
1.0+ . - = i 1.0+ . - 1.0, : =
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
time (s) time (s) time (s)

(c) Clarification action cost is 1.0.

128



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

heuristic time-limit: 0.005s 2.0 heuristic time-limit: 0.01s 50 heuristic time-limit: 0.04s
2.0 algorithm : algorithm ' algorithm
. ILAO* - ILAO* _LAO*
- ILAO* w MDP heursitic -~ ILAO* w MDP heursitic - ILAO* w MDP heursitic
--- ILAO* w decomposed hypotheses & POMDP heuristic --- ILAO* w decomposed hypotheses & POMDP heuristic --- ILAO* w decomposed hypotheses & POMDP heuristic
1.8 ILAO* w decomposed hypotheses & MDP heuristic 1.84 — ILAO* w decomposed hypotheses & MDP heuristic 1.8 — ILAO* w decomposed hypotheses & MDP heuristic
>
= :
T 16 1.6 1.6 i
£
- N v
2 | ‘; 1.
S14 149 141}
=} \
I \
1.2 1.24 1.2
1.0 e R ] 01, = — NG —
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
time (s) time (s) time (s)

(d) Clarification action cost is 2.0.

Figure 7.7: Difference between the suboptimality of the different algorithms in the second
planning step after the discrepancy.

Restaurant Domain

We use a slightly modified version of the restaurant domain from Chapter 3. We provide the
differences here. Each table goes through a sequence of states from wanting the menu to paying
for the meal and leaving. Any state associated with the current request = 8 and hand raise = 0 is
a goal state. This means that the customers have left, and their table is clean. Similar to the origi-
nal version of the restaurant setting, the customers level of satisfaction is not observable,
and there are 6 satisfaction levels, namely very unsatisfied, unsatisfied, a bit
unsatisfied, neutral, satisfied, and very satisfied. There are 3 observations
associated with the satisfaction level, happy, unhappy and neutral. If the customers are
very unsatisfied, the robot observes unhappy with probability 100%. Similarly, if the
customers are very satisfied, the robot observes happy with probability 100%. If the cus-
tomers are unsatisfied, the robot observes unhappy and neut ral with probability 90%
and 10%, respectively. These probabilities differ if the customers are a bit unsatisfied.
If the customers are a bit unsatisfied, the robot observes unhappy and neutral with
probability 70% and 30%, respectively. Differently, if the customers are neutral, the robot
observes neutral and happy with probability 70% and 30%, respectively. If the customers
are satisfied, the robot observes neutral and happy with probability 30% and 70%,
respectively. In the domain from Chapter 3, there was only one serve action that would have
different outcomes based on the table’s current request, but in this domain, the robot has one
serve action for each value of the current request. Thus, there are 8 serve actions in this domain.
Similar to the example in Chapter 7.2.3, we have an additional action called bring bread.

While the customers are waiting for their food, the robot brings them bread if it does not sees

129



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

bread on their table to keep them satisfied (and busy) while waiting. In the model, whenever the
customers receive bread their satisfaction level is set to very satisfied. The cost function
is as follows where the function action_cost(a) returns the cost of the action a as specified by the

action_cost_goto, action_cost_clari fication, and action_cost_noop variables:

time = min(time since request, 10)
action_cost_noop = 1; action_cost_goto = 1; action_cost_serve = 2; action_cost_clari fication = 3

C'(s, serve) = action_cost_serve

( .
gtime sat’ = 0 A sat’ <= sat
1.7tme sat’ = 1 A\ sat’ <= sat
C'(s,a = other actions) = action_cost(a) + { 1.4tme sat' = 2 A sat’ <= sat

2 % (satypay — sat’ +1)  sat’ = 3,4 A sat’ < sat

0 otherwise

\

Given the scenario from Chapter 7.2.3, the customers are in the waiting for food state
and the robot believes that the customers are satisfied with probability 100%. The robot
performs the bring bread action and observes that the customers are unhappy. As the robot
only expected that the customers should be very satisfied, and hence happy, a discrepancy occurs.
Similar to the previous scenario, there are 4 hypotheses associated with the current discrepancy.
However, since the robot can also observe unhappy when the customers are unsatisfied
and a bit unsatisfied. The transition to each of these states adds 2 additional hypotheses.

In total, there are 8 hypotheses associated with this discrepancy.

Experiment Setup

In the experiments, for a given satisfaction level, we consider the emotion with the highest
probability as the observation. We consider the highest satisfaction level in the belief state that
matches the ground-truth hypothesis as the customers current satisfaction level. Any of the 8
hypotheses might be a valid explanation for the discrepancy. To run the experiments, before the
start of the planning episode, we select a hypothesis from the hypotheses set as a valid explanation
and call it a ground-truth hypothesis. Given the ground-truth hypothesis, we hard-code how the
oracle should answer the robot’s questions such that the ground-truth hypothesis is valid. For each
algorithm and each ground-truth hypothesis, we run multiple episodes each for 30 actions. For 1
table, we run 5 episodes. For 2 to 7 tables, we run 15 episodes, and for 8 to 12 tables, we run 35

episodes. We use the same restaurant configuration across the different algorithms and runs.

130



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY

BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

We consider running the algorithms with the following time limits (all in seconds), 5, 10, 15,
20, 25, 30, 40, 50, 75, 100, 125, 150, 175 and 200. For the algorithms that use a heuristic time-

limit, we consider 0.01s as the heuristic time-limit (in seconds); i.e., the heuristic computation for

each task can only take 0.01s. In all the algorithms, we compute the value of a leaf belief node by

summing over the lower-bounds on the values of the tasks. We consider the number of steps until

the customers leave the restaurant as our heuristic function. Notice that in presence of multiple

tables, this trivial heuristic function is a lower-bound on the cost to a goal since it ignores having

multiple tables to attend to. We compare the following algorithms against one another:

Agent ILAO*: We run the original ILAO* algorithm with a specific time-limit on the agent
POMDP model built from the discrepancy POMDP model and all the other POMDP models.
We use the original heuristic function A for computing the heuristic values for each task as
described in Section 7.3.2 (Eq. 7.2).

Agent ILAO* with MDP heuristic: We run the original ILAO* algorithm with a specific
time-limit on the agent POMDP model. We use the solution to the MDP model associated
with each task for heuristic computations. The heuristic computations are performed until a
time-limit is reached as specified by the heuristic time-limit parameter. For the rest of the

heuristic computations beyond the heuristic time-limit, the heuristic function H is used.

Agent ILAO* with decomposed hypotheses and MDP heuristic: We run the original
ILAO* algorithm on the agent POMDP model. To compute the heuristic value for each
task, we take the minimum over lower-bound on the value of the MDP associated with each
hypothesis as described in Section 7.3.3 (Eq. 7.3). For the rest of the heuristic computations

beyond the heuristic time-limit, the original heuristic function H is used.

Multi-task ILAO*: We run Alg. 11 and use the original heuristic function H for computing

the heuristic values for each task as described in Section 7.3.2 (Eq. 7.2).

Multi-task ILAO* with MDP heuristic: We run Alg. 11 and use the solution to the MDP
model associated with each task for heuristic computations. The heuristic computations are
performed until a time-limit is reached as specified by the heuristic time-limit parameter.
The heuristic computations are performed until a time-limit is reached as specified by
the heuristic time-limit parameter. For the rest of the heuristic computations beyond the

heuristic time-limit, the original heuristic function H is used.

Multi-task ILAO* with decomposed hypotheses and MDP heuristic (our approach):
We run Alg. 11 and take the minimum over the lower-bound on the value of the MDP
associated with each hypothesis for heuristic computations as described in Section 7.3.3

(Eq. 7.3). The heuristic computations are performed until a time-limit is reached as specified

131



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

tables: 3 tables: 5 tables: 7
—o- Agent ILAO* -e- Agent ILAO* -e- Agent ILAO*
140000 -=- Agent ILAO* w MDP heursitic 140000 -+ Agent ILAO* w MDP heursitic 140000 -« Agent ILAO* w MDP heursitic
-a- Agent ILAO* w decomposed hypotheses & MDP heuristic -=- Agent ILAO* w decomposed hypotheses & MDP heuristic -=- Agent ILAO* w decomposed hypotheses & MDP heuristic
—+ Multi-task ILAO* —+ Multi-task ILAO* —+ Multi-task ILAO*
120000 T e oo nypotheses & op hewristie | 120000 7 e tevomponed ypotneses & op heurstic || 1200001 T Lo Gerompose hypotheses & MDP heursic
100000 100000 100000
+ 80000 80000 80000
S
60000 60000 60000
40000 40000 40000
20000 20000 20000
0-Lis - - - - 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
time-limit (s) time-limit (s) time-limit (s)
tables: 9 tables: 11 tables: 12
1400001 - AgentiLAde wHDP heursiic 140000 140000
-e- Agent ILAO* w decomposed hypotheses & MDP heuristic
—— Multi-task ILAO* N
120000 7 N A0+ w decomposed hypotheses & op heursuic | 1200007 120000
100000 100000 100000+
4 80000 80000 80000
S - : :
60000 60000 60000
40000 40000 40000
- Agent ILAO* -e- Agent ILAO*
-w=- Agent ILAO* w MDP heursitic -=- Agent ILAO* w MDP heursitic
-=- Agenl * w decomposed hypotheses heuristic -«- Agent * w decomposed hypotheses heuristic
20000 20000777 o L os oo Pypetheses G HDF et 20000 7 g e Ppetheses DT heur
—+— Multi-task ILAO* w MDP heursitic —+ Multi-task ILAO* w MDP heursitic
0 0 —+ Multi-task ILAO* w decomposed hypotheses & MDP heuristic 0 —+ Multi-task ILAO* w decomposed hypotheses & MDP heuristic
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
time-limit (s) time-limit (s) time-limit (s)

Figure 7.8: Difference between the average cost of the different algorithms in a restaurant with
different number of tables.

by the heuristic time-limit parameter. For the rest of the heuristic computations beyond the

heuristic time-limit, the original heuristic function H is used.

Results

We compare our method with different number of tables against the baselines. The average cost for

i : : : 30 N 2ses,; bit(s)Ci(s.ae)
an algorithm in one episode is computed as follows ¢y = > i DLy ==

where
|a;| is the length of the selected action at time ¢ and NV is the number of tasks. ‘V\;'e then take the
mean over the cost of the episodes associated with the 8 hypotheses. We report the mean and
error obtained by each algorithm over the multiple runs. Fig. 7.8 shows the average cost that the
different algorithms obtain for different number of tables as we increases the time-limit. The top
3 agent ILAO* approaches are plotted with a warm color and the multi-task approaches that use
Alg. 11 are plotted with a cool color. For readability of the plots, we only plot the mean cost over

the multiple runs.

132



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

: tables: 3 tables: 7
300 —e- Multi-task ILAO* tables 1 30000
e Multi-task ILAO* w MDP heursitic 80000+ \
—- Multi-task ILAO* w decomposed hypotheses & POMDP heuristic i
250 —+ Multi-task ILAO* w decomposed hypotheses & MDP heuristic 250001 i / 700004 \
v \/\ 600001 K.,
200 200004 W\ . A\
N \ AN \
\‘ 500001
15000 L.\-\ . / 40000 s . :
\\\ . \ — /74\\\
100 10000 \/><\ 30000/
<~ | 20000
50 5000 —e— Multi-task ILAO* —e— Multi-task ILAO*
- Multi-task ILAO* w MDP heursitic 10000 { -« Multi-task ILAO* w MDP heursitic
—-— Multi-task ILAO* w decomposed hypotheses & POMDP heuristic —— Multi-task ILAO* w decomposed hypotheses & POMDP heuristic
0 o + Multi-task ILAO* w decomposed hypotheses & MDP heuristic o + Multi-task ILAO* w decomposed hypotheses & MDP heuristic
0 50 . 1QO ) 150 200 0 50 100 150 200 0 50 100 150 200
time-limit (s) time-limit (s) time-limit (s)

Figure 7.9: Difference between the average cost of the different multi-task algorithms in a
restaurant with 1, 3 and 7 tables.

For 3 tables, the performance of the multi-task ILAO* is slightly better than the performance
of the agent ILAO*, but as the number of tables increases, the multi-task [LAO* performs much
better than the agent ILAO* approach. For larger number of tables, the multi-task ILAO* approach
even performs better than the agent ILAO* approaches that use the MDP heuristic. This signifies
the importance of using the independent tasks structure and the limited depth.

Within the different variants of the agent ILAO* algorithm, for 3 tables, the algorithms that
use the MDP heuristic perform much better than the agent ILAO* algorithm. The agent ILAO*
with MDP heuristic performs better than the other two algorithms for smaller number of tables
(tables < 6) and smaller time-limits (¢/ < 50s). The agent ILAO* with decomposed hypotheses
and MDP heuristic performs better than the other two algorithms for smaller number of tables
(tables < 6) and larger time-limits (t/ > 50s). The two algorithms that use an MDP heuristic
perform the same for larger number of tables (tables > 6) and larger time-limits, and they perform

better than the agent ILAO* algorithm in those settings.

Within the different variants of the multi-task ILAO* algorithm, the two algorithms that use
an MDP heuristic mostly perform better than the multi-task ILAO* algorithm. The difference
between the performance of these two algorithms and the multi-task ILAO* algorithm is larger
for smaller number of tables (tables < 8), but for larger number of tables this gap becomes
smaller. We believe this is because for larger number of tables the two algorithms take more
time to compute the heuristic values for all the tables, and the algorithms spend less time on the
main search. The performance of the two approaches are very similar in a restaurant setting with
different number of tables and different time-limits. We believe this is because 6 out of the 8
hypotheses claim that the customers become unsatisfied as a result of the bring bread action, so in

all those cases, the robot’s policy is to not bring bread for the customers. Thus, solving all those 8

133



CHAPTER 7. ROBOT PLANNING AND EXECUTION IN PRESENCE OF DISCREPANCY
BETWEEN ROBOT’S OBSERVATIONS AND THE POMDP MODEL

individual hypotheses to compute a heuristic value is unnecessary and not that helpful compared
to solving one MDP model associated with all of them.

Note that in a restaurant with a large number of tables (tables > 8 ), other than the augmented
table, there are more than 7 other tables that the robot should attend to. In such settings, attending
to that one augmented table might not even be on the robot’s list of priorities. Thus, it does
make sense if the two multi-task algorithms that use an MDP heuristic mostly perform the same.
Fig. 7.9 supports this hypothesis. For one augmented table, the performance of the ILAO*
with decomposed hypotheses and MDP heuristic is better than the ILAO* with MDP heuristic
algorithm, but as the number of tables increases, the two algorithm become very similar in
performance. The performance of the ILAO* with decomposed hypotheses and POMDP heuristic
is also very similar to our approach since reasoning about the observations do not modify the

robot’s policy drastically in this domain.
7.6 Conclusion and Discussion

In this chapter, we discuss how we formulate the discrepancy between the robot’s observation and
its model as a planning problem over an augmented model. The augmented model includes a set
of hypotheses regarding the discrepancy and a set of clarification actions targeted at an oracle to
invalidate the hypotheses. We then provide an approach that solves the augmented POMDP model
more efficiently by using the key idea that the hypotheses can be solved separately independently
of one another to compute better heuristic values. Our evaluation on a navigation domain shows
that our approach significantly performs better than the other approaches. Finally, we integrate
this approach with the efficient planning approaches that we developed in Chapter 6 to expedite
task planning for multi-task settings while addressing the discrepancies effectively. We evaluate
our algorithms on the restaurant setting and observe that the multi-task approaches perform
better than the approaches that solve the combined model. Within the multi-task approaches, the
approaches that use an MDP heuristic perform better. In this domain, our multi-task approach
with the decomposed hypotheses mostly performs similarly to the multi-task approach without
the decomposed hypotheses. We believe this is because the different hypotheses do not have
significantly different robot policies associated with them in the restaurant domain.

Our focus in this work is mostly on the discrepancy reasoning and recovery; future work could
involve studying the discrepancy detection and diagnosis in more details. Our approach assumes
to have access to an oracle, e.g., a restaurant waiter, that can address the clarification questions.
Future work could focus on designing more appropriate questions that can be asked from the
customers when an oracle is not available. Another area that we do not focus on in this work is

how (and if) the planning model should be updated with the new discrepancy information.

134



Chapter 8

Related Work

Autonomous robots that face a diversity of environments, a variety of tasks and a range of
interactions cannot be pre-programmed by foreseeing at the design stage all possible courses of
actions they may require. Especially, in dynamic and changing environments with semantically
rich tasks and human interactions such as the restaurant domain, robots with explicit deliberation
are needed. Even for applications in well-structured environments with a reduced range of
tasks, where engineered robotics operations are feasible, deployment and adaptation costs can
be reduced if the robot is equipped with deliberation capabilities. These deliberation functions
include: planning, acting, observing, monitoring, and learning [86]. What design choices a
roboticist make regarding each of these functionalities depend on the domain that the robot
is operating on and the resources it has access to. In this work, we focus on two deliberative
functionalities, namely planning and monitoring, for domains such as the restaurant domain where
the robot should achieve multiple independent tasks. As part of the planning functionality, we
discuss the related work on the formalization of the waiting tables task as a planning problem
and efficient decision-making algorithms to achieve multiple independent tasks. As part of the
monitoring functionality, we discuss the related work on addressing the discrepancies that arise
during execution.

In this work, we focus on problems where a robot is required to accomplish a set of prespecified
tasks. In many robotics applications this assumption is valid since the tasks can be modeled in a
decomposed fashion. Examples of these domains are given in Chapter 1. If the underlying tasks
are not given beforehand, our work can be combined with the existing approaches that decompose
a huge model into multiple task models to generate the tasks.

We start by discussing approaches that expedite planning and execution without using the
independence structure. We then discuss methods that do leverage the independence structure to

speed up planning and execution. We provide a discussion on the approaches that decompose a

135



CHAPTER 8. RELATED WORK

huge model into multiple tasks. Finally, we expand on the approaches that enable a robot to handle

the discrepancy between the robot’s model and its observations through learning and planning.

8.1 Formalization of the Restaurant Domain

We first discuss the task representations that our robot could use to perform planning. We then
explain how the task representations have been used in relevant works to model the restaurant

setting and provide a discussion on their drawbacks.

8.1.1 Task Representation for Planning

A lot of robotics applications consist of a set of tasks where the way the robot sequences the
tasks and is moving between them significantly affects the overall performance. The naive way
is to look at this problem as a navigation problem and represent it as a Traveling Salesman
Problem (TSP) where the goal is to find a minimal-cost cyclic tour through a set of points such
that every point is visited once [5]. However, to apply these approaches in real-world, multiple
additional factors of the robotic site have to be considered, e.g., obstacle avoidance, partial order
of the sequence, complicated objective functions, e.g., time or energy, a set of possible robot
base locations, or even temporal constraints. There has been a lot of works on modeling such
problems [3]. In multi-goal path planning problems, the goal is to determine a cost-efficient
collision-free path to visit a set of locations (goals) and return to a starting location [65, 205].
Differently, task sequencing or scheduling approaches can have complicated objective functions
and may consider obstacles or may not [2, 102, 207]. There has also been a lot of work on
scheduling with temporal constraints [53, 138] and even combining temporal reasoning and
spatial reasoning [63, 106]. All these representations focus on representing tasks in some way
and sequencing them to optimize some objective function while satisfying spatial and/or temporal
constraints. Although the objective of our work is the same, we focus on applications such as
waiting tables in a restaurant that focuses on achieving a set of tasks with internal states that
evolve over time, e.g., the people become dissatisfied after a few time steps, and may be partially
observable, e.g., the customers’ request might not be directly observable. Different from the path
planning literature, our focus is on task planning. Our work also differs from the task scheduling
literature since in the domains that we target there are no explicit temporal constraints, the robot
should figure out in what order it should attend the tasks by modeling how each task evolves as the
robot performs actions. These types of problems can be represented as sequential decision-making
models under uncertainty. In particular, models that can represent stochastic actions and partially

observable state spaces are used.

136



CHAPTER 8. RELATED WORK

The most common representations for sequential decision models in decision-theoretic plan-
ning under uncertainty are Markov decision processes (MDPs). MDPs provide a mathematical
framework for modeling sequential decision-making in situations where outcomes of actions are
uncertain. The objective of an agent is to maximize the accumulated reward over its lifetime. The
solution for an MDP is a policy that decides the best action for each state in the MDP, known as
the optimal policy. MDPs have proven to be useful in a variety of sequential planning applications
where it is crucial to account for uncertainty in the action execution. These applications include
inventory management, highway pavement maintenance, quality control, modeling medical treat-
ment, and of course robotics [27, 67, 97, 99, 198]. We use the MDP representation to model the

tasks in our mobile robot domain in Chapter 4.

The partially observable MDP model (POMDP) generalizes the MDP model to allow for even
more forms of uncertainty to be accounted for in the process. In POMDPs, the true state of the
system is not directly observable by the decision-maker. Instead, the decision-maker receives
observations from the environment. POMDPs have been shown useful in formalizing a variety
of different application including machine maintenance, interplanetary rovers, machine vision,
network troubleshooting, search and rescue, education, and medical diagnosis [36, 37, 152, 175].
Especially, in the context of human-robot interaction, models inspired by POMDPs’ ability to
represent unobservable mental states in people and reason based on beliefs have been used to
model social behaviors in agents models [33, 91, 134, 136, 152]. POMDPs have enabled robotic
teammates to coordinate through communication [14], software agents to infer the intention of
human players in game Al applications [116], and autonomous driving or robot navigation where

the robot interacts with pedestrians and human drivers [12, 13, 33].

Some works show the advantages of using the POMDP representation on real-world problems
over more naive approaches that do not model the human’s mental state. Examples of these are
the following. Some work formulates robot-student tutoring help action selection problem as
Assistive Tutor POMDP (AT-POMDP) by maintaining a belief over the student’s mastery of the
material and engagement with the task [152]. Their evaluation demonstrated the effectiveness
of using the AT-POMDP to help students with a long division math task. The students who
received help from the AT-POMDP policy showed improved learning gains when compared to
students who received help from a fixed policy. In another work the intentions of the humans are
represented as hidden state in POMDP, and the time-dependence of action outcomes are explicitly
modeled for both the humans and the robot. State aggregation over the time dimension of the state
space is used to trade-off between the quality of the representation of time and the model’s size in
order to find sufficiently expressive models that can also be solved tractably. They show that the

policies for time-dependent POMDP models with human intention as hidden state outperformed

137



CHAPTER 8. RELATED WORK

the policies of the less expressive models such as time-dependent MDP models [33]. In [91],
the authors formulate the problem of shared autonomy as a POMDP with uncertainty over the
user’s goal. As solving the POMDP to select the optimal action is intractable, they use hindsight
optimization to approximate the POMDP solution. In a user study, they compare their method to
a standard predict-then-blend approach, i.e., predict a single goal, then assist for that goal, and
find that their method enables users to accomplish tasks more quickly while utilizing less input.
In our work, we use the POMDP representation to model the tasks in the restaurant domain. We
consider the customers’ internal state as partially observable. As most POMDP algorithms are
interactable when applied on real-world problems, some of these works also focus on speeding up
POMDP planning by using approximation methods [91] and the assumptions that works for a
specific domain, e.g., the mixed observability assumption in [135]. We use a similar approach as
the latter works for the restaurant setting and show how our work in Chapters 5 and 6 leverages

the independence between the multiple POMDP tasks to expedite planning.

We have already introduced the Markov Decision Process (MDP). Then, the Partially Ob-
servable Markov Decision Process (POMDP) was presented which was the focus of most of this

thesis. Chapter 2 provides more details on these two representations.

8.1.2 Formalization of the Waiting Tables Task

Waiter robots have been deployed in restaurants to assist waiters by carrying food to the ta-
bles [163]. There has been work on robot localization and navigation in a restaurant [149, 206].
Different from these works, we use existing localization and navigation algorithms [21], and we
focus on task planning rather than path planning. Task planning is another area of research that
has been studied in the service robot domain [94, 129]. These works either do not model the
customers’ satisfaction or model it as an observable variable and use it to prioritize the next task.
Differently, we are interested in how the robot’s sequence of actions maximizes the customers’
long-term satisfaction which is not directly observable. A key aspect of our formalization is that
the tables evolve over time; this is not modeled in any of the previous works. Research has been
done on predicting the customer’s state in a restaurant or a bar [39]. This work focuses on inferring
the customers’ internal state and using that to select a robot behavior. In contrast, we focus on how
the robot’s sequence of actions impacts the customers’ long-term satisfaction. Our formalization
does not only enable a robot to consider what action it should execute immediately, but also what

sequence of actions will be performed in the future to increase the customers’ satisfaction.

138



CHAPTER 8. RELATED WORK

8.2 Robot Planning for Achieving Multiple Tasks

We focus on relevant works where the robot (or agent) should achieve multiple tasks. In this
section, we target problems were the smaller models or tasks are given, and we only focus on
expediting planning and execution for these problems. Our work in Chapter 4 uses the MDP
representation and the work in Chapters 5 and 6 use the POMDP representation. Thus, we
compare the former with the MDP literature and the latter with the POMDP literature.

8.2.1 Combining the Tasks and Solving Large Models Efficiently

As mentioned earlier, a conventional planning approach for domains represented as multiple tasks
is to combine all the tasks’ states and actions into one large model and compute the optimal policy
for the combined model at each time step. However, this approach is impractical if the number of
tasks are large. In this section, we provide relevant work on how to solve large MDP and POMDP

models faster.

Speeding Up MDP Planning

State abstraction (or state aggregation) has been extensively studied in artificial intelligence for
making learning and planning algorithms practical in large, real-world problems. The robot finds
solutions in the abstract state space much faster by treating groups of states as one state instead of
working in the original state space. Some work provides a unified treatment of state abstraction for
Markov decision processes [113]. They study five abstraction schemes and analyze their usability
for planning and learning. Another work investigates approximate state abstractions, which treats
nearly-identical situations as equivalent. They present theoretical guarantees of the quality of
behaviors derived from four types of approximate abstractions and empirically demonstrate their
effectiveness [1].

An object-oriented representation, which is an extension of the MDP formalism where the
state is represented as a set of objects each of which is composed of a set of features or attributes
has been proposed in [58]. They show orders of magnitude faster learning compared with
state-of-the-art algorithms that use standard representations not based on objects. A similar
formalism, relational MDPs (RMDPs), was introduced by [77] as a way to generalize plans to new
environments as well as generalizing plans from smaller tractable environments to significantly
larger ones. Another representation called factored MDPs allows very large, complex MDPs to be
represented compactly. In factored MDPs the framework of dynamic Bayesian network (DBIN)
describes a compact representation of the transition model and the reward function. Different

139



CHAPTER 8. RELATED WORK

algorithms have been proposed to solve these problems [11, 31, 32, 54].

Temporal abstractions have also been successfully used to increase the speed of planning
and learning. Hierarchical methods, such as MAXQ [57], allow learners to exploit a task that is
decomposed into different sub-tasks. The decomposition enables an agent to learn each subtask
relatively quickly and then combine them, resulting in an overall learning speed improvement
(compared to methods that do not leverage such a subtask hierarchy). In reinforcement learning
(RL), options [179] provide a general framework for defining temporally abstract courses of action
to speed up learning and planning. Hierarchical Reinforcement Learning (HRL) and planning
approaches have also been proposed to learn the internal policies of options (or subtasks) and
their termination conditions, in tandem with the policy over options [10, 15, 103, 105].

All the above approaches expedite planning or learning in some way for MDP models by
using state and temporal abstraction techniques, or assuming some object-oriented, hierarchical,
factored structure. Different from these approaches, our work in Chapter 4 focuses on speeding
up task execution rather than task planning by planning less often. The robot focuses on one task
at a time and only solves the large model when necessary. This both speeds up task execution
and also removes the necessity of processing all the sensory variables at each time step. One can

integrate our work with the above approaches to expedite both task planning and execution.

Speeding Up POMDP Planning

POMDPs provide a general framework for planning in partially observable stochastic environ-
ments. However, due to their computational complexity, for most real-world problems with large
state and observation spaces, POMDP planning is computationally intractable. The challenges
arise for the following two reasons. First, as the state is not fully observable, the agent must reason
about probability distributions over the states (or beliefs). This challenge is called the “curse of
dimensionality". In other words, the agent needs to reason over the complete history of actions
and observations up to the current time, in order to decide which action to perform. The second
major challenge is the “curse of history". In a planning task, a robot often needs to take many
actions to reach the goal, resulting in a long planning horizon. For POMDPs, the complexity of
planning often grows exponentially with the horizon. Thus, together, a long planning horizon and
a high-dimensional belief space compound the difficulty of planning under uncertainty. Research
on this topic has focused on solving POMDPs more efficiently by addressing either or both of
these challenges.

There is extensive research on speeding up POMDP solvers using different variations of the
point-based value iteration method [144]. These methods dramatically speed up solving POMDPs
and generate approximate policies for large domains by using probabilistic sampling [169],

140



CHAPTER 8. RELATED WORK

specifically the probabilistic selection of the belief space subset and the order of value function
updates of the belief space. They use a small number of sampled beliefs, thus are also able to
plan for longer horizons. It has been shown that these approaches generate good, approximate
policies for large domains. Similarly, Monte-Carlo-based approaches deal with the challenges
of POMDP planning by sampling from the belief state and generating random simulations to

estimate long-term reward [173].

Other methods for scaling up POMDPs leverage factored representations in the form of de-
cision trees [30] or graphs [11, 168], specifically Algebraic Decision Diagrams (ADDs). Even
though ADDs expedite planning by utilizing the limited dependencies between the state vari-
ables, they fail to compactly represent the POMDP when the policy is dependent on all the
variables [166].

Some research for scaling up POMDPs compress the state space [147, 160] by mapping
high-dimensional belief state into low-dimensional compressed belief or by bounding the number
of non-zero values within each belief point [204]. In [114], the authors propose an approach to

cluster belief states and combine it with belief compression to further improve POMDP tractability.

Research on hierarchical POMDP planning (HPOMDP) includes learning how to perform a set
of subtasks independently, and then learning a high-level policy to sequence the subtasks [181]. A
method [69] focuses on clustering the belief space to decompose a flat POMDP into an HPOMDP
that has coarser discretization at higher levels for both state and action space and then solving
the HPOMDP. Another method uses hierarchical finite-state controllers to scale-up planning and
to provide theoretical guarantees on the quality of the computed policy [78]. Other work gets
insights from the hierarchical approaches and provides a point-based approach that automatically
generates long action sequences and uses the sequences rather than the primitive actions to guide
sampling in the belief space and reduce the effective planning horizon [108]. Different from all
these approaches, the tasks in our domains are independent and the robot can execute them in
any order, i.e., no task provides a precondition for another task. Our approach not only considers

executing the tasks in a sequence but also interleaving the tasks’ execution when more rewarding.

In the POMDP literature, there is not much research done on the impact of planning horizon
on a POMDP’s solution; however, research on fully observable POMDPs (MDPs) has focused
on theoretical aspects of shallow versus long horizon planning. Some work assumes an accurate
model and identifies a set of properties of MDP that determines the loss due to shallow plan-
ning [93]. Another work focuses on how approximating a value function in MDPs becomes
increasingly difficult if the horizon increases [110]. Differently, it has been shown that planning
for smaller horizons can be beneficial when approximate POMDP solvers are used or the model is

not accurate [40, 92]. Another work expedites planning by planning up to a truncated horizon and

141



CHAPTER 8. RELATED WORK

using an estimate of the true optimal value, learned by solving similar MDPs for the full horizon,
as the terminal value [66].

All the above approaches expedite POMDP planning in some way by using approximation
methods, using compression or clustering techniques, or assuming some factored or hierarchical
structure in the domain. Although, we share common insights with these methods, i.e., computing
bounds [107, 174] and planning up to a truncated horizon, we leverage the structure in the class of
problems with multiple independent tasks to expedite planning for both short and long horizons.
There have been methods that use the structure in these problems, but they do not address optimal
POMDP planning for long horizons [166, 200]. In Chapters 5 and 6, we consider a structure in
the domain, namely the independence among the tasks, that differs from the assumptions made
in the previous methods. Our approaches can leverage the above methods to further expedite

planning when finding solutions for subsets of tasks.

8.2.2 Merging the Solutions to the Individual Tasks

In the literature, there is a large amount of research on merging the solutions to multiple MDPs
instead of solving the combined MDP model. We provide the pros and cons of each class of
approaches. Some of these works can be also applied on the POMDP models. However, we are
not aware of any approaches that apply them on the POMDP models. We could only find one
recent and relevant work that focuses on combining the solutions to multiple POMDP models.

Merging MDP Solutions

Goal management is an area of research that has some similarities to our work [187]. Some work
permits arbitration between current goals based on priority values that are dynamically computed
from predefined conditions and rules [43]. Another work evaluates all possible goals for the agent
using a set of predefined fitness functions and selects the goal with the best combined score [128].
However, in our domains, it is not feasible to hard-code the conditions or fitness functions. In
some other work, Q-learning is used to learn a goal selection policy over all the state variables [89].
We take a more reactive approach that only focuses on one task at a time and switches between
the tasks when it is triggered rather than considering all the tasks at each time step.
Behavior-based control systems (BBC) provide algorithms to select and activate the appro-
priate behaviors given the robot’s observations [118, 146]. In these approaches, the behaviors
are selected and executed concurrently to collectively achieve the desired system-level behavior
[133]. They take a decentralized approach to decide what action to execute, whereas we take a

centralized approach to decide what task to perform. Another work predefines the conditions and

142



CHAPTER 8. RELATED WORK

learns a switching policy over them [117, 151]. However, we do not predefine the conditions for
the switching policy.

The restless multi-arm bandit problem (RMAB) [197, 200] concerns the optimal allocation of
resources over time among a collection of bandits (or tasks) which are in competition. At each
time step, an algorithm should decide which bandits should be active, i.e., follow their optimal
policy, and which bandits should be passive, i.e., evolve to a new state. The optimization is to
find a policy for the sequential selection of active bandits. These problems can be modeled as
Markov Decision Process (MDP), are intractable [75], and have shown to have near-optimal
heuristic solutions on real-world problems [56, 115]. Another relevant planning approach focuses
on sequential stochastic resource allocation problems where multiple MDPs are weakly coupled
by resource constraints [29, 123]. In [123], the authors describe heuristic techniques for dealing
with several classes of constraints that use the solutions for individual MDPs to construct an
approximate global solution. Different from these approaches, our approach in Chapter 4 uses a
learning approach to decide when the robot should switch to another task rather than planning at
each time step.

As mentioned earlier, some of the above approaches can also be applied on the POMDP
representation, although we are not aware of any works that apply them on the POMDPs. We now
briefly mention how the algorithms in Chapters 5 and 6 are different from the above approaches.
Our algorithms use a POMDP representation, instead of an MDP representation, and propose
planning approaches (instead of learning approaches) to address the multi-task domains. The
approaches are different since they 1) take into account the partial observability of the state space,
2) are fast and provably optimal for both short and long horizons, and) do not limit the robot’s

action to be passive or active; the robot’s action set is a union of all POMDPs’ action sets.

Merging POMDP Solutions

The only work that we are aware of and the closest work to ours is by [166], which developed
an algorithm to decompose a factored POMDP into a set of restricted POMDPs (or tasks). They
solve each identified task separately, create a set of models with all possible combinations of the
subsets of the tasks, randomly sample the subsets and solve them, and combine the policies of
the smaller sampled subsets into a policy for the complete model. This work mostly focuses on
decomposing a huge factored POMDP into multiple POMDPs (or tasks) and provides a sampling
approach to select the subsets. Differently, our work provides rigorous approaches to select the
subsets and solve them to find a provably globally optimal solution. We assume that the robot
has a predefined set of tasks, efficiently remove subsets of tasks that have a low solution quality,

and then create a set of smaller models from the remaining subsets and solve them. We compare

143



CHAPTER 8. RELATED WORK

against this method [166] in Chapters 5 and 6.

8.2.3 Discussion on How to Decompose a Large Model Into Multiple Tasks

In the previous section, we assumed that the multiple tasks are given and discussed approaches
that speed up planning. In the case that the multiple tasks are not given, one may use the
following approaches to decompose the large model into multiple tasks or sub-goals. Most of

these approaches focus on hierarchical decomposition of large MDP or POMDP models.

In the MDP literature, decomposition techniques try to solve the global MDP by solving
small local MDPs [52, 109]. These works present a general framework to decompose MDPs into
smaller ones. The local solutions are then pieced together using a hierarchical policy construction
approach to obtain a global solution. More recent hierarchical RL approaches are capable of
learning both the internal policies of options (subtasks) in tandem with the policy over options
[10, 103, 105]. Other approaches have also been proposed to perform hierarchical decomposition
of factored Markov decision processes [95]. To be able to represent multiple levels of hierarchy,
the MAXQ hierarchical representation has been used. In [121], they present an algorithm for

automatic discovery and transfer of MAXQ hierarchies.

In the POMDP literature, some hierarchical POMDP planning (HPOMDP) approaches in-
vestigate the problem of automatically discovering the hierarchy. Some work models the search
for a good hierarchical policy in POMDP problems as a non-convex optimization problem with
variables corresponding to the hierarchy and policy parameters [38]. Another work addresses the
computational difficulty of solving the optimization problem by combining the factored encoding
of hierarchical structures into a dynamic Bayesian network (DBN) with a maximum-likelihood
estimation technique for policy learning [183]. Some of these approaches may not be directly
applicable on the domains that we focus on since the tasks in our domains are independent and
no task provides a precondition for another task; however, they can be applied on other robotics

domains.

As mentioned earlier, some work developed an algorithm to decompose a factored POMDP
into a set of restricted POMDPs (or tasks) and then combine their solutions to find a policy for
the complete model [166]. They explain the process of identifying variables that correspond to
tasks, and how to create a model restricted to a single task, or to a subset of tasks. Our work can
be combined with this approach to first decompose a factored POMDP into smaller POMDPs and
then merge their solutions to find an optimal solution.

144



CHAPTER 8. RELATED WORK

8.3 Discrepancy between Observations and Planning Model

When executing plans, the world may evolve differently than predicted resulting in discrepancies
between predicted and observed states of the world. These discrepancies can be caused by noisy
sensors, unanticipated exogenous actions, or by inaccuracies in the predictive model used to
generate the plan in the first place. Regardless of the cause, when a discrepancy is detected,
it brings into question whether the plan being executed remains valid (i.e., projected to reach
the goal) and where relevant, optimal with respect to some prescribed metric. The available
literature for execution monitoring is mostly concerned with the problem of monitoring plan
validity [68]. This is the problem of deciding whether an executing plan will still reach the goal
after unexpected events have happened. There are also works on more complex problem of

monitoring optimality [72]. This thesis is concerned with monitoring plan validity.

This line of research is related to a broad category of approaches that focus on execution
monitoring. There are several surveys that classify different execution monitoring approaches
applied to robotics and as a general problem [4, 84, 85, 143]. In this section, we provide
an overview of this field and discuss relevant works that pertain to our work on addressing
discrepancies in POMDP planning. For more details regarding the different execution monitoring

approaches, please refer to the surveys.

In order to operate in a changing and partially unpredictable environment, robots need the
ability to detect when the execution does not proceed as planned, and to correctly identify the
causes of the failure. An execution monitoring system is a system that allows the robot to compare
what is predicted regarding the robot activities to what is observed in the world. It detects and
interprets the discrepancies, performs diagnosis and triggers recovery actions when needed [24].
Reasoning about uncertainty as part of the planning problem can be done and is necessary in order
to weight different viable plans; however, the reasoning do not necessarily increase robustness of
the execution, e.g., if there is missing information. Thus, in order to act robustly in a partially
unknown and dynamic world, the system must also tolerate uncertainty (failing execution). A
monitoring system could be divided into the following 3 functionalities: 1) fault detection that
indicates that something is going wrong in the monitored system, 2) fault diagnosis that makes a
classification of what is going wrong, and 3) fault recovery that takes relevant actions to handle the
situation [143]. The execution monitoring approaches are classified into: analytical, data-driven,
and knowledge-based approaches [143]. This classification is mainly inspired from the field of

industrial control.

Analytical approaches (or model-based methods) rely on planning and acting models, but also

control theory models and filtering techniques for low-level action monitoring. These methods use

145



CHAPTER 8. RELATED WORK

a model to predict the state of a system and compare this prediction with the observation of the
current state. Data-driven approaches rely on statistical clustering methods for analyzing training
data of normal and failures cases, and pattern recognition techniques for diagnosis. Knowledge-
based approaches exploit specific knowledge in different representations (e.g., rules), which is
given or acquired for the purpose of monitoring and diagnosis. Our approach to discrepancy

detection, isolation and recovery can be classified as a model-based approach.

Model-based methods can be separated into approaches that use qualitative models of the
world, and approaches that use quantitative models of the world. The modeling formalisms call
for very different approaches. In quantitative models, the model is usually developed based
on some fundamental understanding of the physics of the process. In quantitative models, this
understanding is expressed in terms of mathematical functional relationships between the inputs
and outputs of the system. In contrast, in qualitative models these relationships are expressed
in terms of qualitative functions such as logical elements. Qualitative model-based methods
are often used for high-level plan monitoring, since they are based on logic mostly [48, 51].
A common approach is to monitor the execution of plans using preconditions and effects of
actions to check that the plan is still consistent [62, 68, 189, 191] while considering temporal plan
constraints [59, 112]. Quantitative model-based approaches usually rely on the generation and
analysis of numerical residuals, rather than on logic [84, 122]. Residuals are differences between
model-generated estimated values and the values observed during execution. These residuals
should ideally be zero (or zero mean) under no-fault conditions. In order to be useful in practical
applications, they should be insensitive to noise, disturbances, and model uncertainties while
maximally sensitive to faults. Quantitative model-based methods are generally used to monitor
stochastic and continuous systems. There are also research efforts on integrating these approaches

into a joint framework [48, 201].

We say a discrepancy has happened when the robot’s observation of the world does not belong
to the set of observations that the robot could receive from the environment by reasoning on its
planning model. Under the assumption that the robot’s sensors are not defective, the planning
model should be the reason for erroneous expectation, and the different elements of the POMDP
model should be examined for their inaccuracies. Similar to many other planning and execution
monitoring approaches (even learning), we assume that the state and observations spaces of the
planning model are complete. Thus, the transition and observation functions of the POMDP are
the main cause of the discrepancy. Hence, in this work, we will focus on the discrepancies that
arise due to the inaccuracies in the predictive model, and we will present related work in the field
as it pertains to our work on discrepancies in POMDP planning. Among the discrepancy detection,

diagnosis and recovery functionalities, our main focus is to use the original inaccurate planning

146



CHAPTER 8. RELATED WORK

model for discrepancy recovery, so the remaining of this section will mostly focus on planning

under model inaccuracies.

8.3.1 State Estimation, Plan Repair and Replanning

Previous work has looked at the problem of fault detection and diagnosis as a state estimation
problem; given some observation that gives rise to the suspicion that the actual current state is not
the one that is expected, one would like to identify the actual state [196]. Particle filters have been
extensively used for Bayesian state estimation in non-linear systems with noisy measurements.
They approximate the probability distribution with a set of samples or particles. These algorithms
are robust to modelling errors including unmodelled movements and systematic errors. An
approach within this body of literature called Sensor Resetting Localization (SRL) addresses the
sensor estimation problem by inserting additional hypotheses generated from sensing in the belief
state when the robot is uncertain of its position [111]. Some other work combines particle filters
with POMDPs for controlling a system [192]. A policy for the POMDP is computed offline while
particle filters are used online to track the belief state. They present multiple algorithms that focus
on faults that cannot directly be detected from current sensor values but require inference from a
sequence of time-varying sensor values. In [120], the author formulates the hybrid monitoring
and diagnosis task as a Bayesian model tracking and selection problem. Following research on
particle filters, they use a factored sampling technique to sample and represent the multi-modal
posterior distribution of the state (models) given the observations. One major problem with the
use of particle filters for diagnosis is that they focus on the most likely models, that is the nominal
behavior, while fault modes are unlikely and can therefore slip the attention of the filter. In [120],
the author overcomes this problem by biasing the samples towards the results of a separate,
qualitative diagnosis.

Some works recover from the faults by generating a universal plan [164]— one that covers any
possible situation the system may encounter, even when errors are made. In fact, when modeling
the problem as a Markov decision process (MDP), a policy that covers the entire state space,
such as the one generated by the value iteration or policy iteration algorithms, is a universal
plan. Even the LAO* and RTDP algorithms exploit reachability analysis to converge on optimal
universal plans that include only states that are reachable during the course of plan execution. In
most of these works a fault is associated with the execution of a faulty action, either mistakenly
performing a different normal action than the one specified by the plan (e.g., missing an exit in
driving) or performing a special action that represents some faulty condition (e.g., having a flat
tire). Since they map every state to an action, an agent executing the policy always knows what to

do next and this choice will be optimal and so no execution monitoring for dealing with run-time

147



CHAPTER 8. RELATED WORK

discrepancies is required, except for state estimation in the case of POMDPs. Planning can itself
be made robust through replanning and plan repair [70]. Replanning can be activated when a plan
has failed; it consists of stopping the plan execution, eventually positioning the system in a safe
state, and developing a new plan from the current situation and the remaining objectives. Plan
repair can be activated when part of a plan has failed, before replanning occurs; it can consist
of modifying the remainder of the current plan or developing a new plan from the failed one by
backtracking and eliminating the failed and impossible actions [76]. Some approaches consider
replanning from scratch rather than repairing a failed plan as it can be more efficient in certain
situations [131]; however, several people have found plan modification to be more efficient in
practice [72, 100].

Uncertainty in planning problems is sometimes handled by modeling the problem determin-
istically - enabling classical planning techniques to be used - but using methods for execution
monitoring and replanning to handle situations that arise when the plan fails (e.g., when a precon-
dition at some point fails to hold). According to [28], two extreme approaches can be adopted:
The first requires monitoring all preconditions required by future actions in the plan (once they
are established); when one fails replanning is invoked. Refinements of this scheme are, of course,
possible. The second, and much more common, approach simply monitors the current state and
should an unanticipated state be reached replanning is invoked. The former approach is very
costly, and the latter approach is not able to anticipate failures in advance. Thus, the decision
of whether to monitor a plan precondition, and when to monitor it, involves balancing the cost
of monitoring and the value of monitoring information. In [28], the author addresses the cost
versus value of monitoring trade-off by formulating the problem as a POMDP. They then develop
approximation methods to solve the POMDP faster such that it scales with plan size. Some other
work uses execution monitoring to address the challenges of POMDP solving. They propose an ap-
proach to approximately solve quasi-deterministic POMDPs by converting them into contingency
planning problems or MDPs. They build plans assuming both the actions and the observations
are reliable, then monitor the execution of the plan and use a value of information calculation to
add information gathering actions online [193]. Similar to [28], the authors focus on classical
planning plus execution monitoring to solve problems that could be represented as POMDPs and

use value of information to measure whether monitoring is worthwhile.

Another relevant work [130] presents an MDP-based integrated formulation for implementing
spacecraft goal-based mission planning, fault detection, and fault reconfiguration that takes into
account both logic-based compositional and continuous-valued models. The MDP includes state
variables and actions associated with the fault detection step (state variables such as fault flags

and processed measurements, and actions such as diagnostic actions) and the reconfiguration step

148



CHAPTER 8. RELATED WORK

(state variables such as current faults, ongoing mission-related actions, and mission status) as well
as planning. They then manage the complexity of solving the huge MDP by decomposition of
the integrated MDP into three separate MDPs for planning, fault detection, and reconfiguration
thereby reducing the computational effort required to generate the policies and the memory space
required to store them. In [145], the authors formally define error models that characterize the
likelihood of various faults and consider the problem of fault-tolerant planning, which optimizes
performance given an error model. They introduce an approach to plan for a bounded number
of faults and analyze its theoretical properties. All these approaches have a model of the error
or failure that might happen in the world and address it by including it in the planning model in

advance.

Depending on the way the system is modeled and on the available observations, diagnosis
may not be required or can be trivial. This is for instance the case when the state can be sensed
completely, or when it can be sensed partially and the observations coincide exactly with the
predictions of the model. Since then there is no discrepancy, there is no reason to believe that
the actual state is any different from the predicted one. In any case, the situation-dependent need
and requirements for diagnosis should be guided by its purpose, that is, in the case of execution
monitoring, it should be determined with respect to the state evaluation and replanning. If, for
instance, state evaluation is able to specify a subset of states in all of which the current plan should
be continued, then there is no need to disambiguate between two candidate diagnoses when both
candidates belong to this subset. This is for instance achieved by the explicit annotation of a

sufficient and necessary condition for the continued plan validity in [72].

In all approaches that we described above the premise is that planning from scratch in the new,
unexpected situation would produce a plan that is valid and optimal. But what if the discrepancy
that occurred is due to a systematic error and will thus repeat itself? This is for instance the
case when the agent applies an incorrect model of its own actions during planning. Consider the
following example from [72] of a soccer robot equipped with a kicking device: The user provided
the robot with a model describing that kicking will make the ball travel in a straight line until it
hits an obstacle. Unfortunately, during the game a fuse blows, causing the kicking device to fail
entirely. Assume the robot has intercepted the ball and is in a good position to score a goal by
either kicking or pushing the ball into the goal. Since kicking is usually faster this is the preferred
option, as it has a higher probability of success. Hence the robot triggers a kick action, but nothing
happens, because of the hardware defect. The robot realizes that something went wrong when
observing that the ball is still right in front of it, as this observation is inconsistent with the model.
But planning again in the new situation will not do any good since the best plan will still be to kick

instead of pushing the ball — according to the erroneous model. None of the approaches we have

149



CHAPTER 8. RELATED WORK

described so far would ever get out of this loop and the robot would miss its chance of scoring.
What is missing is a model adjustment step before replanning to account for modeling faults.
Thus, the appropriate approach that a robot should take depends on the type of the discrepancy.
For example, some work [24] distinguishes between two sources for discrepancies: exogenous
actions (EA) and violation of ontological assumptions (VOA). The paper assumes that the system
is always able to tell whether an action has been executed completely or not by reading internal
sensors. This is used to determine whether an EA or a VOA has caused a discrepancy: if no
action has been executed but a discrepancy occurs it is assumed to be due to an EA, otherwise
it is due to a VOA. When an EA occurs there is no need to adjust the model of the dynamics,
instead only the knowledge about the current situation is modified. If the discrepancy is deemed
to be due to a VOA, they use the truth value of the fluents that do not match the expectations to
extend the successor state axioms. Some other work [49] proposes to precede replanning with a
model-adjustment step to alter the planning operators as necessary to accommodate for this kind
of discrepancies. Not doing this implicitly assumes that a failure is never due to a systematic fault
and this ignorance can lead to the infinite repetition of such a failure. Another work applies to
path-planning problems where one needs to find shortest paths repeatedly as edges or vertices are
added or deleted, or the costs of edges are changed, for example, because the cost of planning
operators, their preconditions, or their effects change from one path-planning problem to the
next [101]. They develop an algorithm and present analytical results that demonstrate its similarity
to A*. They also present experimental results that demonstrate its potential advantage if the

path-planning problems change only slightly and the changes are close to the goal.

Replanning, plan repair, and state estimation approaches suffice if the discrepancy is not
due to a fundamental change in the environment and as a consequence to the robot’s planning
model. When there remains uncertainty about the model applied in planning, one can explore the
environment in order to improve the model through reinforcement learning approaches. We will
discuss the approaches that address POMDP planning where the model is inaccurate or uncertain

in the next section.

The relevant works on this topic mostly divide into two categories. Some research focuses
on learning the POMDP model’s parameters. Some other works assume a good initial, but
incomplete POMDP model and address the incompleteness using planning approaches. Our
proposed contribution falls under the second category. Since our proposed approach uses human
input to resolve the discrepancies, we end this section by discussing approaches that use human

input to learn new skills or decrease robot’s uncertainty for planning.

150



CHAPTER 8. RELATED WORK

8.3.2 Learning and Refining the Model Parameters

Papers in this area focus on learning a policy directly from interactions with the environment. A
well-known model-free approach [119] resolves perceptual aliasing in POMDPs by using variable
length short-term memory. They use a test to determine when a distinction is relevant to a task to
add it to its short-term memory. The Baum-Welch algorithm is used to tune the parameters of the
model. Another work uses the same short-memory approach and proposes a model-free algorithm
for learning finite-state controllers of a given size by reducing the search to policies representable
as finite policy graphs [124].

Learning a model from the environment and then solving it using a model-based approach or
interleaving these two steps has also been studied. Some work presents a model-based algorithm
that learns a POMDP model and its solution in conjunction, avoiding the slow computation of the
Baum-Welch algorithm [167]. They augment the USM algorithm originally proposed in [119]
to learn a POMDP model using a predefined sensor model. Some works use Bayes-adaptive
POMDPs (BAPOMDPs) which are POMDPs characterized by a prior distribution over their
underlying hidden Markov model (HMM) parameters [50, 156, 159, 186, 194]. Rather than fitting
a single HMM to training data—which could introduce significant modeling error into subsequent
analysis—the defining characteristic of BAPOMDPs is the use of a prior distribution to capture
model uncertainty. The optimal BAPOMDP policies make decisions under uncertainty in both the
system state and model parameters. A recent work is motivated by that the optimal policy to any
finite horizon POMDP can be captured by a finite-state controller (FSC) [186]. They extend an
expectation-maximization (EM) algorithm for solving Bayes-adaptive MDPs (BAMDPs) via FSC
optimization to the more general BAPOMDP setting.

To decrease the amount of data needed, some work presents an algorithm called MEDUSA
which incrementally learns a POMDP model using oracle queries and heuristics to select actions
that will improve the model, while still optimizing a reward function [90]. A similar approach is
taken in [61] which operates on a finite number of POMDPs sampled from an unconstrained model
posterior. Given a history of actions and observations, the next action is chosen by minimizing the
Bayes risk over the set of all possible actions. They take an active-learning approach in which the
agent asks an expert for the correct action to take if the agent deems that model uncertainty may
cause it to take undue risks. These queries both limit the amount of training required and allow
the agent to infer the potential consequences of an action without executing it. The convergence
properties of this method require that the agent can query an oracle (at a cost) to reveal the optimal
action at any time [61]. Another method learns the observation function of a POMDP using
oracle queries [9]. They associate a Dirichlet distribution over possible observations to each state.

Similar to the previous approach, a set of candidate models is sampled and updated whenever new

151



CHAPTER 8. RELATED WORK

oracle information about an optimal action becomes available. The optimal action that is inquired
from an oracle is compared with the actions that each POMDP suggests. If the actions agree, the
Dirichlet parameters are updated.

Intrinsic motivation can also be used to enable the agent to learn a useful model of the
environment that is likely to help it learn its eventual tasks more efficiently [71, 170]. As in [82],
the intrinsic reward can be used to drive the agent to where the model is uncertain in its predictions,
or to acquire novel experiences that its model has not been trained on. In some work, the agent
improves its model of the environment through probabilistic inference, and learning progress is
measured in terms of Shannon’s information gain. They provide a theoretically sound foundation

for designing more effective exploration strategies [177].

8.3.3 Solving the Models in Presence of Model Uncertainty

Optimal solutions to Markov Decision Problems can be sensitive with respect to the state transition
probabilities as in some practical problems, the estimation of those probabilities is not accurate [55,
199]. This problem was first proposed in the context of MDPs. Bounded Markov Decision
Processes (BMDPs) [74] in particular specify the uncertainty over the transitions using uncertainty
intervals and solve the BMDPs using optimistic or pessimistic assumptions [88, 137]. Towards
more effectively modeling problems with unpredictable events, some work uses a factored MDP
model [31] and develops a hybrid framework that explicitly distinguishes decision factors whose
conditional probability tables (CPTs) are not assigned precisely while still representing known
probability components using conventional principled MDP transitions [202]. They describe two
solution approaches for modeling such events. The first approach augments the conventional
model with additional features that effectively render the events predictable. In the second
approach, they devise a model wherein unpredictable events are explicitly treated as special
factors whose CPTs are not assigned precisely, and provide a formal method for recasting the
problem as a BMDP. In a similar vein, some work introduces a novel class of problems called
Configurable Markov Decision Processes (CMDPs) where the robot is allowed to explicitly reason
about different transition functions. If changing the transition function is deemed more rewarding,
the robot can ask an external entity, e.g., a human user, to change the environment accordingly.
They show the effectiveness of their approach from theoretical and algorithmic perspectives [172]
as well as its performance in multiple problems [171].

The BMDP formulation and algorithms have also been applied to POMDPs [87, 132, 139].
In [132], they assume that the parameters of POMDPs are imprecise but bounded and formulate the
framework of Bounded-parameter Partially Observable Markov Decision Processes (BPOMDPs).
They propose a modified value iteration as a basic strategy for dealing with parameter imprecision

152



CHAPTER 8. RELATED WORK

in a BPOMDP. They then introduce an anytime algorithm based on computing lower and upper-
bounds for solving BPOMDPs. One of the first works that studied parameter imprecision of general
POMDPs is by [87] where they formulate a new framework, POMDPs with imprecise parameters
(POMDPIPs), introduce a new optimality criterion by adopting beliefs in the imprecisely specified
state transition functions and observation functions, present an algorithm to solve them, and
provide its theoretical analysis. Another work builds upon [87, 132] and the BMDP literature and
introduces a new optimality criterion to solve BPOMDPs and a policy iteration algorithm that
converges to an e-optimal policy under the proposed optimality criterion.

We are also taking a planning approach to handle the model imperfection. Different from the
above papers, we do not consider the uncertainty in the model definition explicitly. We resolve
the discrepancy between the robot’s observations and the model definition as it arises by querying

an oracle.

8.3.4 Learning and Planning Using Human Input

The idea of querying an expert to obtain labels for unlabeled training examples has been explored
in machine learning research. In this context, Active Learning (AL) has been used to minimize
labeling costs while considering the value of obtaining correct labels [44, 45]. This problem has
also been explored in more complex domains where there are multiple oracles, each of which may
be reluctant to answer, incorrectly answer, and have data point-sensitive costs subject to a fixed
budget [60, 203].

In robotics research, active learning has been used in robot learning from demonstration
research area which aims at learning new skills from human demonstrations. Active learning
has been used to maximize the generalizability of a learned skill to unseen situations while
efficiently using the human teacher’s limited time [41]. In this context, some work presents a
supervised learning technique that uses measures of similarity to past examples and classification
confidence of the underlying supervised learning algorithm to determine when the robot should
act autonomously or request a demonstration [42]. Another work investigates whether robots
can supplement their questions with information about their state in a manner that increases the
accuracy of human responses [154]. In [34], the authors identify three types of questions (label,
demonstration and feature queries) and discuss how a robot can use these while learning new skills.
In label queries category, the learner selects an unlabeled instance and requests a label for it. In
demonstration queries category, the learner finds a configuration of the environment that its model
does not cover, and asks for a demonstration. Feature queries are divided into subcategories; the
robot can ask about a particular feature’s relevance for the task, its variance or invariance, whether

a feature can have a certain value, or what values a feature is allowed to have. The paper presents

153



CHAPTER 8. RELATED WORK

two experiments; one experiment characterizes the use of these queries in human task learning
and the other evaluates them in a human-robot interaction setting. They find that feature queries
are the most common in human learning and are perceived as the smartest when used by the
robot. Most of these works focus on learning new skills from demonstration using active learning
while also investigating how the incorporation of AL methods in LfD impacts a robot’s interaction
with its user. Our focus is not on the interaction between the robot and the customers or the
oracle, but we get inspiration from the above works for generating the questions. As mentioned
previously, in POMDP literature, some works learn the POMDP parameters by inquiring a human
expert [9, 61, 90]. Different from all these works, we focus on developing planning and execution
algorithms that leverage queries to resolve the discrepancy between the robot’s observations and
its model.

A relevant work [7, 8] presents a novel type of POMDPs called Oracular POMDPs (OPOMDPs)
which rather than standard observations include an "oracle". This representation allows the robot
to query an "oracle" for the full state information at a fixed cost. They show that this class of
POMDPs are easier to solve than regular POMDPs. In [7], they introduce an efficient heuristic
algorithm that utilizes the solution of the underlying MDP and weighs the value of consulting
the oracle against the value of taking a state-modifying action. To address the optimality issues
of [7], [8] presents an approximate, anytime algorithm that converges to the optimal value function
and thus the optimal policy. This work assumes that the robot has access to an oracle at any
point during planning. This approach expedites POMDP planning by querying an oracle for the
full state information. Some work extends the previous work [153]. They explore the use of
humans who are already in the environment as information providers in a real-world navigation
scenario. They introduce a Human Observation Provider POMDP framework (HOP-POMDP)
that models humans’ availability and costs of interruption to determine when to query the humans
during navigation. They contribute new algorithms for planning with HOP-POMDPs. Another
work introduces a model for planning robot manipulation tasks under uncertainty in a human
environment [185]. The planning agent is enabled to request human help in case of insuffi-
cient information about the current world state, including situations associated with a high risk.
Furthermore, human users are provided with the opportunity to express preferences about the
manipulation task’s outcome. In all these works, the questions help with the state estimation
problem, but do not address the model adjustment step that is required to prevent the robot from

repeating failures.

154



Chapter 9
Conclusion and Future Work

In this chapter, we review the contributions of this thesis. We then discuss future avenues for

future work. Finally, we summarize the thesis document.

9.1 Contributions

The key contributions of our work are the following.

Formalization of the class of problems with multiple independent tasks that evolve over
time We introduce a novel class of problems with one robot attending to N independent tasks
that evolve over time. We model each task, the robot’s state and the actions that can be applied to
the task as a POMDP and call it client POMDP. We then discuss what assumptions are necessary
for the N client POMDPs to be independent. Finally, we discuss how the N client POMDPs are
combined into one large POMDP model called an agent POMDP.

Formalization of robot waiting in a restaurant We formalize the waiting tables task as a
planning problem with one robot and N independent tables (or N independent POMDP tasks).
We provide the assumptions under which the restaurant domain can be an instance of the afore-

mentioned class of problems.

Efficient task execution algorithm for multi-task problems We provide an approach for
efficient rask execution by reducing the need to perform planning at each time step. Our approach
learns what state features have the largest impact on the switching behavior of the robot and uses
them as triggers to stop the execution of the current task. The replanning step on all the tasks is

only performed often when one of those triggers are active, thus, it speeds up the task execution.

155



CHAPTER 9. CONCLUSION AND FUTURE WORK

Efficient short and long-horizon planning algorithms for multi-task problems with the in-
dependence structure We expedite task planning for the aforementioned class of problems. We
leverage the independence structure in these problems to solve the agent POMDP more efficiently.
Our key ideas include decomposing the agent POMDP with N tasks into a series of much smaller
planning problems with £ tasks (k < /N) and computing lower and upper-bounds on the value
of an optimal solution for variable horizons which allow us to terminate the search early while
guaranteeing optimality. We analyze the algorithms theoretical properties and demonstrate its

efficiency on the waiting tables domain.

An algorithmic framework for addressing the discrepancy between the robot’s observations
and its model We address the challenges of planning for real-world applications such as the
restaurant domain where having an exact and comprehensive model that works for all the tables is
infeasible. As a result, unexpected situations could arise that prevent the robot from attending
to all the tables. We refer to these unexpected situation where the robot’s observation differs
from what is expected to be observed given the robot’s model as discrepancies. We formulate the
discrepancy between the robot’s observations and its model as an augmented planning problem
with a set of hypotheses that explain the discrepancy and a set of clarification actions that can
invalidate the hypotheses. The goal of our formulation is to enable the robot to achieve the
task irrespective of the existing discrepancy, and only diagnose the exact explanation for the

discrepancy and resolve it if it helps with achieving the goal.

Efficient planning algorithms for solving the discrepancy model in multi-task problems
We solve the discrepancy POMDP model more efficiently by using the lower-bound on the
value of the individual hypothesis to compute better heuristic values for the frontier nodes in
the graph associated with the discrepancy model. We then integrate this approach with the
efficient long-horizon planning algorithms that we developed for multi-task problems. Since
the discrepancy model has a goal POMDP representation that differs from the discounted sum
POMDP representation that we used in the multi-task planning algorithms, we first describe what
modifications should be made on the multi-task planning algorithms to enable them to be applied
on goal POMDPs. We then describe how the heuristic computation for these multi-task planning

algorithms changes to leverage the lower-bound on the value of each individual hypothesis.

Experimental results on the waiting tables in the restaurant domain We demonstrate the
performance of our efficient short and long-horizon planning algorithms on a simulated restaurant
setting with a large number of tables. We observe significant speedup when the robot uses our

algorithms to decompose the large planning problem into smaller sub-problems while guaranteeing

156



CHAPTER 9. CONCLUSION AND FUTURE WORK

an optimal solution. We then evaluate the efficiency of our planning algorithms that solve the
discrepancy model in a single-task grid-world environment and observe a higher quality of
solutions that our planning algorithms compute. Finally, we consider a task with a discrepancy
model and multiple other tasks that use the original planning model and evaluate our planning
algorithms in such multi-task setting. Our results show the benefits of decomposing the large

planning problem into smaller planning problems.

9.2 Discussion

In this section, we discuss the challenges of running our algorithms on a real robot in a real
restaurant setting. Although we mostly focus on the restaurant setting, the challenges extend to
most multi-task settings. The next section will focus on the many avenues for future work.
Autonomous robots that face a diversity of environments, a variety of tasks and a range
of interactions cannot be accurately modeled in simulation and pre-programmed by foreseeing
at the design stage all possible courses of actions they may require. Especially, in dynamic
and changing environments with semantically rich tasks and human interactions such as the
restaurant domain, robots with explicit deliberation functions such as planning, acting, observing,
monitoring, and learning are needed [86]. What design choices a roboticist make regarding each
of these functionalities depend on the domain that the robot is operating on and the resources it
has access to. In this thesis, we focus on two deliberative functionalities, namely planning and
monitoring, for domains such as the restaurant domain where the robot should achieve multiple
independent tasks. In this section, we will first focus on the challenges that the planning and
monitoring modules should be able to tackle in a real restaurant setting. More specifically, we will
go through the real-world situations where our assumptions do not hold. We will then discuss the
general challenges of running our planning and monitoring modules on the real robot alongside

the acting, observing, and learning modules.

9.2.1 Going Beyond the Assumptions

In the formalization of the restaurant setting, we assume that the /V tables (or tasks) are indepen-
dent. This assumption helps us in addressing some of the computational challenges of planning
for such multi-task domains. However, in a real restaurant setting, the independence assumption
might not hold. If the independence assumption does not hold for certain tables, one can combine
the POMDPs associated with those dependent tables and solve it along the other tables. In this

case, as long as some of the tables are independent, one can leverage our algorithms to expedite

157



CHAPTER 9. CONCLUSION AND FUTURE WORK

planning. In the worst case, however, if all the tables are dependent on one another, our approach

performs the same as the baseline approaches.

The definition of the independence structure could also serve as a limitation of our work. We
assume that the robot’s state is fully observable, and the robot’s observation function depends on
the task’s state only. Thus, under this assumption, one cannot perform both active localization
and task planning jointly in our POMDP planner. We basically decouple the task planning aspect
of the multi-task domains from their path planning aspect and mostly focus on task planning.
Although this decoupling of task and path planning is a common approach in robotics applications,

it might limit the types of domains where one can use our approaches.

For the multi-task settings, we develop provably optimal algorithms that expedite planning for
short and long horizon planning problems. Although our provably optimal approaches perform
better than the baseline approaches, for long horizon problems, their high planning times prevent
them from being practical in a real restaurant setting with many tables. For these problems
suboptimal anytime approaches might be preferred (similar to the approach in Chapter 7). We will
explain how our algorithms can be extended to further expedite planning for real-time applications

in the next section.

In dynamic and changing environments with semantically rich tasks and human interactions
such as the real restaurant domain, the assumption of having a perfect model of the domain might
not always hold for all the tasks. We develop algorithms that effectively address the unexpected
situations that arise due to having an imperfect model for multi-task domains by querying an
oracle. Under the assumption that the robot has access to an oracle, e.g., human waiter, these
algorithms to some extend enable the robot to deal with the unpredictability of a real restaurant
domain with diverse customers (i.e., they might not follow the same model that the robot follows).
However, the assumption that the robot has access to an oracle might become invalid in some
domains, e.g., the human waiter is not available when the robot needs him. For these type of
domains or situations where an oracle is not available, the robot can still guarantee to reach the
goal if all the diagnosed hypotheses agree on an alternative finite-cost route to the goal. In this
case, the robot can just take the alternative finite-cost route to reach the goal without asking any
clarification questions. However, if the hypotheses cannot agree on one finite-cost route to the
goal, our algorithms fail to reach the goal. This signifies the importance of developing effective

diagnosis strategies to come up with a suitable set of hypotheses.

The algorithms that we describe in this work are limited to a particular discrepancy detection
approach, and they use domain knowledge for diagnosis. As we will describe in the next section,
the discrepancy detection and diagnosis approaches can be extended to better address real robot

settings where different detection and diagnosis strategies might be needed. For example, a soccer

158



CHAPTER 9. CONCLUSION AND FUTURE WORK

robot that is pushed by another soccer robot could just take an state estimation and replanning
approach to address the discrepancy rather than adjusting its planning model [111]. However,
a robot with a hardware defect would need to adjust its model to replan effectively [122]. In
real-world settings, the robot should be equipped with different detection and diagnosis strategies

to be able to handle the different discrepancy scenarios.

9.2.2 Simulation to Real World

To some extend, we address some of the challenges of a real world setting by using a POMDP
representation. The POMDP representation is more powerful than deterministic planning and
the MDP representation. The POMDP representation enables the robot to reason about both
uncertainty in the action execution and observation in a systematic manner, but at the cost of more
computation effort. Thus, if the complex real world settings can be modeled accurately, meaning
that all the elements of the POMDP including the states, the actions, the observations, and the
transition and observation probabilities are given, the POMDP representation would be able to
address the uncertainty of the real world. The POMDP representation assumes complete certainty
over all its elements. However, as we discussed in Chapter 7, it is not always possible to model
the real world perfectly. It is in fact very challenging to define in advance all the states, all the
actions, all the observations, and the true transition and observation probabilities for the POMDP.
The algorithms in Chapter 7 are designed to address some of the challenges associated with
having an inaccurate model of the real world to some extend. Ie., they address the challenges of
having inaccurate transition and observation functions to guarantee that the robot will eventually
reach its goal under the assumption that all the states, all the actions, and all the observations are
given. However, even given the assumptions, there is still so much research to be done to have a
system that can tackle different types of discrepancies and failures. Furthermore, the assumptions
regarding the states, actions and observations might also be invalid in the real world.

In this thesis, we use a hard-coded restaurant simulator. We also assume that the robot is
equipped with all the necessary actions and observations. However, in unstructured environments
with semantically rich tasks and human interactions such as the restaurant domain, no matter
how well we design the simulator, there will be differences between the simulation and the real
world. The gap between the simulation and the reality could be due to the differences in physical
modeling or perception modeling and might result in failed executions or errors in observations.
The observation errors could include errors in localization, activity recognition, the detection of the
table’s current request, etc. There are techniques to increase the system’s robustness to execution
failures and perception errors. Differences such as physical modeling errors can sometimes be

lessened via appropriate choices of the state-action space [165]. Differences such as perception

159



CHAPTER 9. CONCLUSION AND FUTURE WORK

errors can also be lessened via appropriate filtering techniques or by adding extra sensors for
more robustness, e.g., by adding extra sensors on each table in the restaurant setting rather than
only using top-view cameras or the sensors on the robot. In this work, we did not discuss the
sensor requirements or the different methods for getting reliable and robust observations; however,
having robust observations affects both the execution (or acting) and planning modules and is a
crucial step to successfully deploy the robots in a real restaurant.

In addition to the previous challenges, many simulations, unlike the real-world, act completely
synchronously with the policy decisions, meaning no changes in the environment happen while
the agent is deciding the next action and there is no real-time constraint on the agents decision
making. Such differences could be addressed by designing simulations that act asynchronously
or having other strategies that appropriately deal with the changes in the environment while the
robot is planning the next action.

In robotics, a lot of effort has been put into exploring training in simulation and then executing
policies on real robot hardware. This approach is commonly known as Sim2Real [162]. There
are two commonly used techniques which do bring in an element of transfer learning from
simulation to the real world: domain randomization during training [182] and additional training
after simulation in the real-world [162]. This signifies the importance of learning in the real

restaurant setting for a successful transfer from the simulation to the real world.

9.3 Future Work

We discuss the many avenues for future work that we consider interesting and worth pursuing.
We consider future work on topics that are more specific to this thesis as well as future work on

topics that are related to the challenges in deploying the robot in a real restaurant setting.

Expediting planning further Many other approached have also been proposed to speed up
POMDP solvers by using point-based methods [169], hierarchical planning [181], clustering
and compression of belief space [160, 175], factored representation [168], and online POMDP
approaches [158]. Our approaches can leverage the above methods to solve the subsets of tasks
faster. In most of this work, we focused on optimal planning for multi-task settings. Another
direction for expediting planning for multi-task settings is to focus on practical anytime algorithms
that use both the independent tasks and the adaptive horizon (which inherently is anytime) and
integrate them with the practicality of anytime sampling-based approaches such as [176] which
randomly samples a subset of scenarios to speed up planning.

There are also techniques that could trivially be integrated with our methods to expedite

160



CHAPTER 9. CONCLUSION AND FUTURE WORK

planning further such as: 1) solving the individual tasks offline, 2) solving the sub-problems in
parallel (the sub-problems lend themselves well to multi-threading), and 3) using the lower and
upper-bounds to prune the nodes that are known to be sub-optimal in the search tree [140].
Furthermore, in a specific restaurant, a waiter’s procedures might follow a specific routine
that could correspond to only exploring a certain part of the robot’s state, action, and observation
space. All the planning experiences that the robot obtains as it plans and executes action could be

learnt into a model that could be used later on for fast replanning.

Frequency of replanning In our approaches in Chapters 5 and 6, a robot would reevaluate the
environment after each action execution and replan accordingly. A drawback of this approach is
that if the actions take a lot of time steps to execute, or a high-level action that consists of multiple
primitive actions is executed, the robot could miss some key events. Differently, our approach
in Chapter 4 focus on a more reactive approach to switch from one task to another using the
stimuli. Since planning with a high frequency can be very inefficient, future work could involve
integrating these two approaches such that the robot could replan after each action execution and

when something interesting happens in the environment.

Discrepancy detection The appropriate approach that a robot should take to address a discrep-
ancy depends on the type of the discrepancy. Some discrepancies might be due to exogenous
events rather than as a result of an action execution. To handle these type of discrepancies, it
might not be needed to adjust the transition or observation functions, instead only the knowledge
about the current state could be modified; thus, the state estimation and replanning approaches
might suffice [111, 120]. However, if the discrepancy occurs as a result of an action execution,
replanning with a model-adjustment step to alter the transition or observation functions are re-
quired to accommodate for this kind of discrepancy. In this work, we only tackle the latter type of
discrepancy where the model should be adjusted. However, a more in-depth study of the different
types of discrepancies for a given domain might be necessary to choose the right strategy.

In this work, our focus is mostly on the discrepancy recovery rather than the discrepancy
detection and diagnosis. We only focus on discrepancies where an observation is impossible
given the robot’s model. We do not consider cases where an observation has a low probability of
being observed according to the model. Future work could involve detecting these low-probability

discrepancies as done in [111].

Discrepancy diagnosis We generate a set of hypotheses by modifying the transition and obser-
vation functions. In general, coming up with a set of hypotheses that includes an approximation

of the correct model could be domain-dependent and very challenging. Coming up with different

161



CHAPTER 9. CONCLUSION AND FUTURE WORK

hypotheses generation methods that are appropriate for different types of domains could be an
interesting future work.

We used domain-knowledge to decide what parts of the transition and observation functions
should get affected when a discrepancy occurs. For example, in the grid-world, when a discrepancy
occurs, it affects all the transitions that involve the current and next states irrespective of the
action. For example, if the robot executes "north" from the state 4 and expects to end up in the
state 0, and a discrepancy happens. This discrepancy involves a change in the transition from
the state 4 to the state 0 with any action. If we could previously go from the state 4 to the state
0 with another action, e.g., action "left", under the hypothesis that this transition is impossible,
we cannot go from the state 4 to the state 0 with the action "left". Differently, in the restaurant
domain, if the robot believes that the customers are "satisfied", and they become "unsatisfied"
with the action "bring bread", they will also become "unsatisfied" if the robot believes that the
customers are "neutral" and executes "bring bread". In this domain, when a discrepancy occurs, it
affects all the transitions that involve the action and the next state irrespective of the current state.

In this work, we asked the clarification questions from an oracle waiter. Differently, some
questions can also be asked from the customers themselves. Future work could involve having
multiple types of oracles with different confidence on their answers and multiple types of questions

with different information gain as done in [60, 203].

Updating the discrepancy model The focus of this thesis was not on permanently updating the
model with the new discrepancy information. However, depending on the domain and the types of
discrepancies, the discrepancy information could be useful to include in the model. In situations
where the discrepancy persists throughout task executions, one might use learning approaches as

discussed in Chapter 8.3.2 to update the planning model for later use [61, 90].

Efficient planning with multiple robots In this work, we focus on efficient task-planning for
a robot in a multi-task setting. If we were to use our algorithms in a multi-robot restaurant, we
could first assign the tasks to the different robot waiters and then plan for each robot individually.
However, in presence of multiple robots, the task and motion planning aspects of the problem
need to be integrated. This is because in a multi-robot setting, the assumption that the tasks are
independent of one another might become invalid as going to a table by a robot might be blocked
by a different robot going to another table. In addition to figuring out which robot has a priority
over the other robot to pass first given the tasks’ status [126], future work could focus on comping
up with strategies to preserve the independence between the tasks.

In a real restaurant setting, the multiple waiters are able to share tasks depending on how

162



CHAPTER 9. CONCLUSION AND FUTURE WORK

needy their assigned tables are. For example, if one robot is idle, it could take up an action that
another robot should have performed for better overall performance of the restaurant. This could

also be an interesting direction for future work.

Performing sidework tasks Waiters typically do work in the restaurant in addition to their
main serving tasks. Waiter sidework could include duties such as cleaning service areas, refilling
table condiments, tidying menus, restocking beverage and server stations. A robot’s idle time
could be used to perform these sidework tasks. One strategy to attend to these sidework tasks
could be to include these sidework tasks in the robot’s set of main tasks; however, this approach
would make the combined model larger and more challenging to solve. A direction for future
work could involve coming up with planning strategies to attend to these sidework tasks while

effectively addressing the main tasks.

Deploying the robot in a real restaurant setting The ultimate goal of our research is to enable
a service robot to perform tasks in a real restaurant by taking care of an ongoing stream of requests
efficiently and respond to the customers appropriately. Our research does not focus on inferring
the customers state from sensory observations. Our future efforts could involve integrating our
planner with models that infer some of those observable variables, e.g., the current request/activity,
from data [180].

Our example implementation of the restaurant domain might be insufficient for a real restaurant
setting with tasks and human interactions. In this work, we make the following simplifications.
First, we assume that the information from different customers is integrated, and we only consider
having access to the information for a given table. In a real restaurant setting, making decisions
based on aggregated information might not be preferred. Second, we only focus on task-planning
for a restaurant setting and assume that we have access to a path to the tables. In general, the task
and path planning aspects of the problem might need to be integrated to account for low-level
information (e.g., customers blocking the robot’s path) that could help with making better high-
level decisions. Finally, there are also other challenges that come up when we include perception
and execution modules in our robotic system such as receiving inconsistent observations or action
failures. In this thesis, we mostly evaluated our algorithms in a simulated restaurant setting. A
more in-depth study is needed to analyze the complexity of the problems that our robotic system,

including the planning, perception, and execution modules, can address.

163



CHAPTER 9. CONCLUSION AND FUTURE WORK

9.4 Summary

In this thesis, we contribute novel algorithms for domains where a robot should accomplish
multiple tasks by switching between them. A conventional approach to deal with these multi-task
problems is to combine all the tasks’ states and robot actions into one large model and compute
an optimal policy for this combined model. For the problems that we are interested in, the number
of tasks can be large making this planning approach computationally impractical and challenging.
We provide an algorithm that expedites task execution by solving the combined model associated
with all the tasks less often. We then formalize a general class of problems where a robot is
required to accomplish a set of tasks that are partially observable and evolve independently of each
other according to their dynamics. We formalize the restaurant domain and define the assumptions
under which the restaurant domain can be an instance of this class of problems. We present
methods that exploit the structure found in these problems, namely the independence between the
tasks, to optimally and efficiently plan for short and long planning horizons. Our key ideas include
decomposing the problem into a series of much smaller planning problems, and computing lower
and upper-bounds on the value of an optimal solution for variable horizons. We then focus on
real-world applications such as the restaurant domain where having an exact and comprehensive
model that works for all the tables is infeasible. As a result, discrepancies could arise that prevent
the robot from attending to all the tables. We discuss how we formulate the discrepancies as a
robot planning problem. We then explain how we tackle the discrepancies by augmenting the
planning problem’s state and action space with a set of hypotheses and questions regarding the
discrepancies that aim at finding where the potential inaccuracies in the original planning model
lie. Finally, we provide algorithms to solve the augmented planning problem more efficiently for
single-task and multi-task settings. We present the algorithms, analyze their theoretical properties,

and demonstrate their effectiveness on a grid environment and the waiting tables domain.

164



Appendix A

Robot Experiments

In this appendix, we give an overview of the CoBot robots and the tasks they can perform with
a focus on the restaurant setting (Fig. A.1). The CoBot robots are developed in the CORAL
laboratory as part of the research of many past students, including: Mike Licitra, who physically
built the robots; Joydeep Biswas [20], Brian Coltin [46], and Stephanie Rosenthal [155], who laid
the foundation for the complete navigation, task execution, and symbiotic autonomy of the robots.

The CoBot robots navigate smoothly and quickly due to their omnidirectional bases. All the
computation is done on an onboard tablet or laptop computer. They have LIDAR and Kinect
sensors to localize and detect obstacles, a touchscreen to interact with humans, and speakers for
voice interactions. For sensing, the robots use a combination of planar LIDAR and an RGB-D
camera. The CoBots autonomously localize and navigate using depth-camera and LIDAR-based
localization and navigation algorithms [23]. The CoBots autonomously avoid obstacles by moving
to the side of the hallway, but if they cannot avoid an obstacle, they stop and say "Please excuse
me." until the obstacle is moved. For the things the robots cannot do, the robots ask humans in
the building for help [155]. For example, the CoBots do not have arms, so they ask humans to
press the elevator buttons for them. These functionalities were developed to enable the CoBot
robots to perform user-requested tasks in office buildings. In this work, we will discuss the
functionalities that we used in our robot experiments to enable the CoBot robots to service the
tables in a restaurant setting.

The software architecture on the CoBots is designed to be modular and easily extensible. The
CoBot robots have multiple software nodes, including the robot hardware drivers, localization,
navigation, the graphical user interface, the task planner, the server interface, and the scheduling
server [20]. The software nodes communicate with each other using ROS, and specifically through
topics and services [150]. In this thesis, we use the localization and navigation software modules,

and we will discuss them in more details later.

165



APPENDIX A. ROBOT EXPERIMENTS

Figure A.1: CoBot mobile service robots.

The CoBot robots offer multiple tasks to their users. A task refers to a function that the robot
can execute and takes a fixed number of arguments as its input. The CoBot robots offer their
users four tasks: GoTo, PickUpAndDelivery, Escort, and MessageDelivery. Each
of the tasks that the CoBot robots can execute involves driving to one or more locations. A full
description of the tasks is in [142]. In this thesis, we will go through the GoTo task which is used
to go to the different tables in the restaurant. GoTo requires a single location argument as the
robot’s destination. To execute this task, the robot drives from its current position to the specified
destination. We use the POMDP planning approaches that we describe in this thesis to decide
what action the robot should perform next. The GoTo task is leveraged to navigate between the
multiple tables. We will explain the different components of our robot experiments, namely, the

restaurant model, perception module, task planning module and execution module next.

A.1 Restaurant Model

Our restaurant setup has three tables with one person on each table as shown in Fig. A.2 and
one robot. In our restaurant setting, the positions that the robot navigates to, the kitchen and the
tables, are hard-coded. Each table follows the POMDP model from Chapter 3. We added two
new actions to each POMDP model, go fo the kitchen and pick up food for a table. The kitchen is
shown with k£ in Fig. A.2a. We also added a new state variable food_pickedup to each POMDP
model that shows if the food or drink is picked up by the robot. We create a robot simulator with
the POMDP models associated with the 3 tables.

166



APPENDIX A. ROBOT EXPERIMENTS

a0: navigating to T2

t=1
want menu

s N t=1
T2

.
N ‘e want food
I 25!
®

012345

t=1
cash ready

4 N
TO
A I 4

012345

(a) Simulation (b) Real-world

Figure A.2: A restaurant setting with 3 tables (7°0, 7'1 and 7'2) and one robot.

A.2 Perception

The perception module has two components, a component for sensing the tables’ states and

another component for sensing the state of the robot.

We use the robot simulator which uses the POMDP model for each table to generate the
observations associated with the state of the table. After each action execution, the simulator
considers a set of possible observations given the robot’s current belief state and the executed
action. The robot then selects a random observation from this set. For the example scenario
that we show later (based on the POMDP model in Chapter 3), we assume that all the following
state variables: food, water, cooking status, current request, hand raise, time since food or water
has been served, time since food is ready, and time since request are fully observable, and the
satisfaction level is the only hidden state variable. There is no stochasticity in terms of the 8
observable state variables. Thus, after each action execution, the simulator just outputs the updated
values for those 8 state variables as the observation. Our future efforts could involve inferring

some of those observable variables, e.g., the current request/activity, from input data [180].

The CoBot robots use a Vector Map to localize. The Vector Map is a representation of the
layout of the building stored in vector form; that is, each constituent segment of the map is stored,
using a pair of 2D points described by their (x, y) coordinates. The blue lines in Fig. A.3 show a
plotting of the vectors that are stored in the Vector Map file. The robot uses this Vector Map to
localize correctly. The robot uses the reading from its sensors (Lidar and Kinect) to find planar
surfaces, matches these planar surfaces to walls described in the Vector Map and continuously

updates its position [23].

167



APPENDIX A. ROBOT EXPERIMENTS

L

l-——— ~

Figure A.3: The Navigation Map of the Gates Hillman Center’s 3rd floor used by the CoBot
robots.

168



APPENDIX A. ROBOT EXPERIMENTS

A.3 Task Planning

We use the POMDP solver from Chapter 5 and apply it on the restaurant model. The POMDP
planner and the CoBot communicate through ROS topics. Whenever the POMDP planner selects
an action to be executed by the robot, it publishes the action on a topic where the CoBot receives
it. The robot then checks if the action is a navigation action, a service action, or a communication
action and executes it. The planners from Chapter 6 and Chapter 7 could also be easily replaced

with this planner to solve longer horizon problems and address the discrepancies that arise.

A4 Execution

There are 3 types of actions that the robot can execute, navigation action, service action, or
communication action. For the navigation actions, the CoBot robots use a Navigation Graph
to navigate around the building. The Navigation Graph stores the information the robot needs
to move around the environment described by the Vector Map. The vertices of the Navigation
Graph are points on the map, identified by their (z, y) coordinates, and edges are straight lines
connecting them. The navigation graph is stored by the robot as a binary file. Fig. A.3 shows the
plotting of the Navigation Graph for the Gates Hillman Center’s 3rd floor with green vertexes and
pink edges overlaid on the Vector Map. The robot is shown with an orange circle, and its direction
is shown with an orange line. The robots use the Navigation Graph when they must move to a
given destination. To reach a location (z, y), the robot first identifies and drives to the closest point
on the Navigation Graph, and then, the robot computes a path, via the graph, to the point closest
to its destination. Finally, the robot drives, in a straight line, from the point on the Navigation
Graph to its desired position. Given a destination location, the navigation planner first finds the
projected destination location that lies on one of the edges in the navigation graph. This projected
destination location is then used to compute a topological policy using Dijkstra’s algorithm for
the entire graph. The navigation planner projects the current location onto the graph and then
executes the topological policy until the robot reaches the edge on which the destination lies,
and then drives straight to the destination location [22]. We use the navigation graph to navigate
between the multiple tables in the restaurant. Fig. A.4 shows the plotting of the Navigation Graph
for the room where we set up the restaurant setting with 3 tables.

CoBots take a conservative approach to navigation. In particular, the obstacle-avoidance
algorithm uses a local greedy planner, which assumes that paths on the navigation graph will
always be navigable and can be blocked only by humans. As a result, the planner will not

consider an alternative route if a path is blocked, but will stop before the humans and ask to be

169



APPENDIX A. ROBOT EXPERIMENTS

1( JZ__L -
. 1L

e |
—]

s

Figure A.4: The Navigation Map of the room where we set up the restaurant setting with the
tables and the kitchen overlaid on it.

excused. When the robot finds an obstacle on its path, the robot stops, and requests passage, saying
“Please excuse me.”. Upon arrival at its destination, the robot announces that it has completed
its navigation to the POMDP planner. The robot’s position is updated as the robot moves in the
environment using its localization module.

If the action is a communication action, the robot uses its speaker to say the message associated
with the communication action, e.g., "your food is not ready". Since CoBot does not have arms to
manipulate the world, it relies on human help for some of its capabilities, e.g., placing the food on
the table or handing over the menu. If the action is a service action, the robot asks for help from

the humans to perform the action, e.g., "please take the menu" and "please take your food".

A.S5 Example Scenario

Here! is a video of one example scenario using our setup. As mentioned earlier, in our restaurant
setting, we hard-code the coordinates (x, y, #) for the kitchen and the tables. The image on the
top-left of the video is a top-view image of the restaurant with tables 7°0, 7'1 and 7'2. The status
of the tables, wait time, current request and the belief over the satisfaction level is shown in the
top-left image. The robot attends to the tables by executing the actions that the POMDP planner
selects until all the customers leave the restaurant. As the robot services the tables, the tables’
satisfaction level increases. As the customers wait to be served, their satisfaction level decreases.

The robot takes an interleaved planning and execution approach where it plans for a fixed short

"https://youtu.be/cq2TpFoPc60

170


https://youtu.be/cq2TpFoPc60
https://youtu.be/cq2TpFoPc60

APPENDIX A. ROBOT EXPERIMENTS

finite horizon of 4, executes the action and replans. The robot’s action is shown on the bottom
of the video. Each table goes through a sequence of 8 requests from want menu to clean
table. The customers’ hand raises in the video is just for the sake of the video, and the robot is
not sensing any of the hand raises. In the model, the customers need to be attended to by the robot
at all times unless they are eating their food or drinking. Le., if the tables’ current request is not
eating or drinking, the customers need a service from the robot.

Fig. A.5 shows snapshots of the video. We randomly initialize the status of the tables. The
customer on 7'0 has his money ready for the robot to pick up, and the robot believes that this
customer is sat isfied with probability 1.0. The customer on 71 is waiting for her food, and
the robot believes that this customer is very unsatisfied with probability 1.0. The customer
on 12 wants the menu, and the robot believes that this customer is s1ightly unsatisfied
with probability 1.0. All the wait times are 0 at the beginning. The belief state of the robot
includes the status of all the tables.

Given the current belief state, the POMDP planner selects action Go to Table 2 asshown
in Fig. A.5a. The robot then uses its navigation graph and localization module to go to 72. The
robot then plans its next action (Fig. A.5b). The robot asks the customer to take the menu (not
shown) and then asks what his order is (Fig. A.5c). Consequently, the satisfaction level of the
customer on 7'2 increases. Since the customers on 7'0 and 71 are waiting, their satisfaction level
decreases. The robot then decides to go to 7'1 and perform the communication action "your food
is not ready" to keep the customer informed and increase her satisfaction level (Fig. A.5d). While
the robot is attending to 7'1, the satisfaction level of the customers on 70 and 72 decreases. The
robot then goes to 70 to obtain the money from that customer (Fig. A.5e and Fig. A.5f1).

As mentioned earlier, the customers’ satisfaction level depends on their wait time, and the
reward function depends on the customers’ satisfaction level and how long they have been waiting.
Thus, the robot attends to the multiple tables to increase their satisfaction levels and reset their
wait times. The robot keeps switching between the multiple tables to attend to them until all the

customers leave.

171



APPENDIX A. ROBOT EXPERIMENTS

t=0

want menu t=0

food being cooked
want food

uuuuuu

xxxxxx

Goling) o TRble 2

(a) The robot goes to 1'2.
— .

t=1
want menu t=1

@ food being cooked
u

want food

T1

,,,,,,,,,

cash ready

ssssss

Rleanning) ce

(b) The robot is planning its next action.

172



ready to order t=2
% food being cooked

want food

®

t=2
cash ready

APPENDIX A. ROBOT EXPERIMENTS

t=1
food being cooked
want food t=4

food being cooked
| want food
1

jl_| ! T
t=4
cash ready

(d) The robot then goes to 1’1 and performs the communication action your food is not ready.

173



APPENDIX A. ROBOT EXPERIMENTS

t=2
food being cooked
want food t=5

food being cooked
% want food
! 1

t=5
cash ready

v‘“

Golng o Tible 0

(e) The robot goes to T°0.

t=3
food being cooked
want food t=6
food half cooked
want food

1] :
t=6

cash ready
.. fS

TO
!\'
|

.
y 0aSkets -
l/h IL‘* ::‘ _\y,l‘

i

(f) The robot asks the customer to place the money in the basket.

Figure A.5: Snapshots of the robot video.

174



Bibliography

[1] David Abel, D Ellis Hershkowitz, and Michael L Littman. Near optimal behavior via
approximate state abstraction. arXiv preprint arXiv:1701.04113,2017. 8.2.1

[2] Sergey Alatartsev, Vera Mersheeva, Marcus Augustine, and Frank Ortmeier. On optimizing
a sequence of robotic tasks. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 217-223. IEEE, 2013. 8.1.1

[3] Sergey Alatartsev, Sebastian Stellmacher, and Frank Ortmeier. Robotic task sequencing
problem: A survey. Journal of intelligent & robotic systems, 80(2):279-298, 2015. 8.1.1

[4] Gianluca Antonelli. A survey of fault detection/tolerance strategies for auvs and rovs.
In Fault diagnosis and fault tolerance for mechatronic systems: Recent advances, pages
109-127. Springer, 2003. 8.3

[5] David L. Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling
salesman problem: a computational study. Princeton university press, 2006. 8.1.1

[6] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009. 7.1

[7] Nicholas Armstrong-Crews and Manuela Veloso. Oracular partially observable markov de-
cision processes: A very special case. In Proceedings 2007 IEEE International Conference
on Robotics and Automation, pages 2477-2482. IEEE, 2007. 8.3.4

[8] Nicholas Armstrong-Crews and Manuela Veloso. An approximate algorithm for solving
oracular pomdps. In 2008 IEEE International Conference on Robotics and Automation,
pages 3346-3352. IEEE, 2008. 1.3, 8.3.4

[9] Amin Atrash and Joelle Pineau. A bayesian method for learning pomdp observation
parameters for robot interaction management systems. In The POMDP practitioners
workshop, 2010. 8.3.2, 8.3.4

[10] P. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAIL 2017. 1.2.1,
8.2.1,8.2.3

[11] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebric decision diagrams and their applications. Formal
methods in system design, 10(2-3):171-206, 1997. 8.2.1, 8.2.1

[12] Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. Intention-aware online
pomdp planning for autonomous driving in a crowd. In 2015 IEEE international conference
on robotics and automation (ICRA). IEEE, 2015. 3.1, 8.1.1

175



Bibliography

[13] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun Lee,
and Daniela Rus. Intention-aware motion planning. In Algorithmic foundations of robotics
X, pages 475-491. Springer, 2013. 8.1.1

[14] Samuel Barrett, Noa Agmon, Noam Hazon, Sarit Kraus, and Peter Stone. Communicating
with unknown teammates. In ECAI, pages 45-50, 2014. 8.1.1

[15] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 2003. 1.2.1, 8.2.1

[16] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using real-time
dynamic programming. Artificial intelligence, 72(1-2):81-138, 1995. 2.2.2

[17] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics,
pages 679-684, 1957. 2.1

[18] Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580-595, 1991. 2.2.2

[19] B. Bethke, J. P. How, and A. Ozdaglar. Approximate dynamic programming using support
vector regression. In CDC, 2008. 4.3.4

[20] Joydeep Biswas. Vector map-based, non-markov localization for long-term deployment of
autonomous mobile robots. 2014. A, A

[21] Joydeep Biswas and Manuela Veloso. Episodic non-markov localization: Reasoning about
short-term and long-term features. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 3969-3974. IEEE, 2014. 8.1.2

[22] Joydeep Biswas and Manuela M Veloso. Localization and navigation of the cobots over
long-term deployments. The International Journal of Robotics Research, 32(14):1679—
1694, 2013. 5.4.4, A4

[23] Joydeep Biswas and Manuela M Veloso. Episodic non-markov localization. Robotics and
Autonomous Systems, 87:162—-176,2017. 5.4.4,5.4.4, A, A.2

[24] Marcus Bjdareland. Model-based execution monitoring. In Linkoping Studies in
Science and Technology, Dissertation No 688, available at http://www. ida. liu.
se/labs/kplab/people/marbj. Citeseer, 2001. 8.3, 8.3.1

[25] Blai Bonet and Héctor Geffner. Learning in depth-first search: A unified approach to
heuristic search in deterministic, non-deterministic, probabilistic, and game tree settings.
Technical report, Technical report, Universidad Simon Bolivar, 2005. Available at https ...,
2005. 2.2.2

[26] Blai Bonet and Hector Geffner. Solving pomdps: Rtdp-bel vs. point-based algorithms. In
IJCAI, pages 1641-1646. Pasadena CA, 2009. 2.2.2,7.2.1,7.4

[27] Richard J Boucherie and Nico M Van Dijk. Markov decision processes in practice. Springer,
2017. 8.1.1

[28] Craig Boutilier. Approximately optimal monitoring of plan preconditions. arXiv preprint
arXiv:1301.3839, 2013. 8.3.1

[29] Craig Boutilier and Tyler Lu. Budget allocation using weakly coupled, constrained markov

176



Bibliography

decision processes. 2016. 8.2.2

[30] Craig Boutilier and David Poole. Computing optimal policies for partially observable deci-
sion processes using compact representations. In Proceedings of the National Conference
on Artificial Intelligence, pages 1168—1175. Citeseer, 1996. 8.2.1

[31] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural
assumptions and computational leverage. Journal of Artificial Intelligence Research, 11:
1-94, 1999. 8.2.1, 8.3.3

[32] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic program-
ming with factored representations. Artificial intelligence, 121(1-2):49-107, 2000. 8.2.1

[33] Frank Broz et al. Planning for human-robot interaction: representing time and human
intention. PhD thesis, Carnegie Mellon University, The Robotics Institute, 2008. 8.1.1

[34] Maya Cakmak and Andrea L. Thomaz. Designing robot learners that ask good questions. In
2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
17-24. 1EEE, 2012. 8.3.4

[35] Anthony R. Cassandra. Russell and norvig’s 4x3 maze. [Maze domain defini-
tion]. URL http://cs.brown.edu/research/ai/pomdp/examples/4x3.
95.POMDP. 7.1

[36] Anthony R Cassandra. A survey of pomdp applications. In Working notes of AAAI 1998
fall symposium on planning with partially observable Markov decision processes, 1998.

3.1,5.1,8.1.1

[37] Anthony Rocco Cassandra. Exact and approximate algorithms for partially observable
markov decision processes. 1998. 8.1.1

[38] Laurent Charlin, Pascal Poupart, and Romy Shioda. Automated hierarchy discovery
for planning in partially observable environments. In Advances in Neural Information
Processing Systems, pages 225-232,2007. 8.2.3

[39] Luefeng Chen, Min Wu, Mengtian Zhou, Jinhua She, Fangyan Dong, and Kaoru Hirota.
Information-driven multirobot behavior adaptation to emotional intention in human-robot
interaction. /IEEE Transactions on Cognitive and Developmental Systems, 2018. 3.1, 8.1.2

[40] YiChun Chen, Mykel J Kochenderfer, and Matthijs TJ Spaan. Improving offline value-
function approximations for pomdps by reducing discount factors. In IROS, 2018. 8.2.1

[41] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 8(3):1-121, 2014. 1.3, 8.3.4

[42] Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-based
autonomy. Journal of Artificial Intelligence Research, 34:1-25, 2009. 8.3.4

[43] D. Choi. Reactive goal management in a cognitive architecture. Cognitive Systems Research,
2011. 8.2.2

[44] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.
Machine learning, 15(2):201-221, 1994. 8.3.4

[45] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical

177


http://cs.brown.edu/research/ai/pomdp/examples/4x3.95.POMDP
http://cs.brown.edu/research/ai/pomdp/examples/4x3.95.POMDP

Bibliography

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

models. Journal of artificial intelligence research, 4:129-145, 1996. 8.3.4
Brian Coltin. Multi-agent pickup and delivery planning with transfers. 2014. A

Brian Coltin and Manuela Veloso. Multi-observation sensor resetting localization with
ambiguous landmarks. Autonomous robots, 35(2):221-237,2013. 1.3, 7.1

M-O Cordier, Philippe Dague, Francois Lévy, Jacky Montmain, Marcel Staroswiecki, and
Louise Travé-Massuyes. Conflicts versus analytical redundancy relations: a comparative
analysis of the model based diagnosis approach from the artificial intelligence and automatic
control perspectives. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 34(5):2163-2177, 2004. 8.3

William Cushing and Subbarao Kambhampati. Replanning: A new perspective. Proceed-
ings of the International Confer-ence on Automated Planning and Scheduling. Monterey,
USA, pages 13-16, 2005. 8.3.1

Patrick Dallaire, Camille Besse, Stephane Ross, and Brahim Chaib-draa. Bayesian rein-
forcement learning in continuous pomdps with gaussian processes. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2604-2609. IEEE, 2009.
8.3.2

Johan De Kleer, Alan K Mackworth, and Raymond Reiter. Characterizing diagnoses and
systems. Artificial intelligence, 56(2-3):197-222, 1992. 8.3

Thomas Dean and Shieu-Hong Lin. Decomposition techniques for planning in stochastic
domains. In IJCAI, volume 2, page 3. Citeseer, 1995. 8.2.3

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
intelligence, 49(1-3):61-95, 1991. 8.1.1

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Learning the structure of
factored markov decision processes in reinforcement learning problems. In Proceedings of
the 23rd international conference on Machine learning, pages 257-264, 2006. 8.2.1

Karina V Delgado, Leliane N De Barros, Daniel B Dias, and Scott Sanner. Real-time dy-
namic programming for markov decision processes with imprecise probabilities. Artificial
Intelligence, 230:192-223, 2016. 2.2.2, 8.3.3

Sarang Deo, Seyed Iravani, Tingting Jiang, Karen Smilowitz, and Stephen Samuelson.
Improving health outcomes through better capacity allocation in a community-based
chronic care model. Operations Research, 61(6):1277-1294, 2013. 8.2.2

T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function decom-
position. J. Artif. Intell. Res.(JAIR), 2000. 8.2.1

C. Diuk, A. Cohen, and M. L. Littman. An object-oriented representation for efficient
reinforcement learning. In ICML, 2008. 8.2.1

Patrick Doherty, Jonas Kvarnstrom, and Fredrik Heintz. A temporal logic-based planning
and execution monitoring framework for unmanned aircraft systems. Autonomous Agents
and Multi-Agent Systems, 19(3):332-377, 2009. 8.3

Pinar Donmez and Jaime G Carbonell. Proactive learning: cost-sensitive active learning

178



Bibliography

with multiple imperfect oracles. In Proceedings of the 17th ACM conference on Information
and knowledge management, pages 619-628, 2008. 8.3.4,9.3

[61] Finale Doshi, Joelle Pineau, and Nicholas Roy. Reinforcement learning with limited
reinforcement: Using bayes risk for active learning in pomdps. In Proceedings of the 25th
international conference on Machine learning, pages 256-263, 2008. 1.3,7.1, 8.3.2, 8.3.4,
9.3

[62] Richard J Doyle, David J Atkinson, and Rajkumar S Doshi. Generating perception requests
and expectations to verify the execution of plans. In AAAI, pages 81-88, 1986. 8.3

[63] Stefan Edelkamp, Morteza Lahijanian, Daniele Magazzeni, and Erion Plaku. Integrating
temporal reasoning and sampling-based motion planning for multigoal problems with
dynamics and time windows. IEEE Robotics and Automation Letters, 3(4):3473-3480,
2018. 8.1.1

[64] Sean P Engelson and Drew V McDermott. Error correction in mobile robot map learning.

In Proceedings 1992 IEEE International Conference on Robotics and Automation, pages
2555-2556. IEEE Computer Society, 1992. 7.1

[65] Jan Faigl, Vojtech Vonasek, and Libor Preucil. A multi-goal path planning for goal regions
in the polygonal domain. In ECMR, pages 171-176, 2011. 8.1.1

[66] Amirmassoud Farahmand, Daniel Nikolaev Nikovski, Yuji Igarashi, and Hiroki Konaka.
Truncated approximate dynamic programming with task-dependent terminal value. In
AAAIL 2016. 8.2.1

[67] Eugene A Feinberg and Adam Shwartz. Handbook of Markov decision processes: methods
and applications, volume 40. Springer Science & Business Media, 2012. 8.1.1

[68] Richard E Fikes, Peter E Hart, and Nils J Nilsson. Learning and executing generalized
robot plans. Artificial intelligence, 3:251-288, 1972. 8.3

[69] Amalia Foka and Panos Trahanias. Real-time hierarchical pomdps for autonomous robot
navigation. Robotics and Autonomous Systems, 55(7):561-571, 2007. 8.2.1

[70] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Replanning
versus plan repair. In /ICAPS, volume 6, pages 212-221, 2006. 8.3.1

[71] Mikhail Frank, Jiirgen Leitner, Marijn Stollenga, Alexander Forster, and Jiirgen Schmidhu-
ber. Curiosity driven reinforcement learning for motion planning on humanoids. Frontiers
in neurorobotics, 7:25,2014. 8.3.2

[72] Christian Wilhelm Fritz. Monitoring the generation and execution of optimal plans. PhD
thesis, 2009. 7.1, 8.3, 8.3.1

[73] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine learning,
2006. 4.3.2

[74] Robert Givan, Sonia Leach, and Thomas Dean. Bounded parameter markov decision
processes. In European Conference on Planning, pages 234-246. Springer, 1997. 8.3.3

[75] Kevin D Glazebrook, Diego Ruiz-Hernandez, and Christopher Kirkbride. Some indexable
families of restless bandit problems. Advances in Applied Probability, 38(3):643—-672,

179



Bibliography

2006. 8.2.2

[76] Keith Golden, Oren Etzioni, and Daniel Weld. Planning with execution and incomplete
information. Technical report, Technical report, Dept of Computer Science, University of
Washington, TR96-01-09, 1996. 8.3.1

[77] Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans
to new environments in relational mdps. In Proceedings of the 18th international joint
conference on Artificial intelligence, pages 1003—1010, 2003. 8.2.1

[78] Eric A Hansen and Rong Zhou. Synthesis of hierarchical finite-state controllers for pomdps.
In ICAPS, pages 113-122, 2003. 8.2.1

[79] Eric A Hansen and Shlomo Zilberstein. Lao*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2):35-62, 2001. 2.2.2,7.2.3,7.2.3,7.3.1,
4,8,7.5.1

[80] Milos Hauskrecht. Value-function approximations for partially observable markov decision
processes. Journal of artificial intelligence research, 13:33-94, 2000. 2.2.1

[81] Carlos Hernandez and Pedro Meseguer. Lrta*(k). In Proceedings of the 19th international
Jjoint conference on Artificial intelligence, pages 1238—1243, 2005. 2.2.2

[82] Todd Hester and Peter Stone. Intrinsically motivated model learning for a developing
curious agent. In 2012 IEEE international conference on development and learning and
epigenetic robotics (ICDL), pages 1-6. IEEE, 2012. 8.3.2

[83] M. Humphrys. Action selection methods using reinforcement learning. From Animals to
Animats, 1996. 4.2.1

[84] Inseok Hwang, Sungwan Kim, Youdan Kim, and Chze Eng Seah. A survey of fault
detection, isolation, and reconfiguration methods. IEEE transactions on control systems
technology, 18(3):636—653, 2009. 8.3

[85] Félix Ingrand and Malik Ghallab. Robotics and artificial intelligence: A perspective on
deliberation functions. Ai Communications, 27(1):63-80, 2014. 8.3

[86] Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey. Artificial
Intelligence, 247:10-44, 2017. 8, 9.2

[87] Hideaki Itoh and Kiyohiko Nakamura. Partially observable markov decision processes
with imprecise parameters. Artificial Intelligence, 171(8-9):453-490, 2007. 8.3.3

[88] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30
(2):257-280, 2005. 8.3.3

[89] U. Jaidee, H. Mufoz-Avila, and D. W. Aha. Learning and reusing goal-specific policies for
goal-driven autonomy. In /CCBR, 2012. 1.2.1, 8.2.2

[90] Robin Jaulmes, Joelle Pineau, and Doina Precup. Probabilistic robot planning under model
uncertainty: an active learning approach. In NIPS Workshop on Machine Learning Based
Robotics in Unstructured Environments, 2005. 1.3, 7.1, 8.3.2, 8.3.4, 9.3

[91] Shervin Javdani, Siddhartha S Srinivasa, and J Andrew Bagnell. Shared autonomy via
hindsight optimization. Robotics science and systems: online proceedings, 2015, 2015.

180



Bibliography

8.1.1

[92] Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective
planning horizon on model accuracy. In AAMAS, 2015. 8.2.1

[93] Nan Jiang, Satinder P Singh, and Ambuj Tewari. On structural properties of mdps that
bound loss due to shallow planning. In ZJCAI, 2016. 8.2.1

[94] Hyun-Wook Jo, Jae-Ho Ahn, Jun-Sang Park, Jun-Han Oh, and Jong-Tae Lim. Task planning
for service robots with optimal supervisory control. In 2010 IEEE Conference on Robotics,
Automation and Mechatronics. IEEE, 2010. 3.1, 8.1.2

[95] Anders Jonsson and Andrew Barto. Causal graph based decomposition of factored mdps.
Journal of Machine Learning Research, T(Nov):2259-2301, 2006. 8.2.3

[96] J. Karlsson. Learning to solve multiple goals. PhD thesis, University of Rochester, 1997.
4.2.1

[97] Seyedeh N. Khatami and Chaitra Gopalappa. A reinforcement learning model to inform
optimal decision paths for hiv eliminationl. medRxiv, 2021. doi: 10.1101/2021.07.
11.21260328. URL https://www.medrxiv.org/content/early/2021/07/
14/2021.07.11.21260328. 8.1.1

[98] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 4.3.1

[99] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 2013. 4.2.1, 8.1.1

[100] Sven Koenig, David Furcy, and Colin Bauer. Heuristic search-based replanning. In AIPS,
pages 294-301, 2002. 8.3.1

[101] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning a*. Artificial
Intelligence, 155(1-2):93-146, 2004. 8.3.1

[102] Ewa Kolakowska, Stephen F Smith, and Morten Kristiansen. Constraint optimization
model of a scheduling problem for a robotic arm in automatic systems. Robotics and
Autonomous Systems, 62(2):267-280, 2014. 8.1.1

[103] G. Konidaris. Constructing abstraction hierarchies using a skill-symbol loop. In IJCAI,
2016. 1.2.1,8.2.1,8.2.3

[104] Richard E Korf. Real-time heuristic search. Artificial intelligence, 42(2-3):189-211, 1990.
2.2.2

[105] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. In NIPS, 2016.
1.2.1,8.2.1,8.2.3

[106] TK Satish Kumar, Marcello Cirillo, and Sven Koenig. On the traveling salesman problem
with simple temporal constraints. In Tenth Symposium of Abstraction, Reformulation, and
Approximation, 2013. 8.1.1

[107] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based pomdp
planning by approximating optimally reachable belief spaces. In RSS, 2008. 8.2.1

181


https://www.medrxiv.org/content/early/2021/07/14/2021.07.11.21260328
https://www.medrxiv.org/content/early/2021/07/14/2021.07.11.21260328

Bibliography

[108] Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee. Motion planning under
uncertainty for robotic tasks with long time horizons. IJRR, 2011. 8.2.1

[109] Pierre Laroche, Yann Boniface, and René Schott. A new decomposition technique for
solving markov decision processes. In Proceedings of the 2001 ACM symposium on applied
computing, pages 12—-16, 2001. 8.2.3

[110] Lucas Lehnert, Romain Laroche, and Harm van Seijen. On value function representation
of long horizon problems. In AAAI 2018. 8.2.1

[111] Scott Lenser and Manuela Veloso. Sensor resetting localization for poorly modelled mobile
robots. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2,
pages 1225-1232. IEEE, 2000. 1.3,7.1, 7.1, 8.3.1,9.2.1,9.3

[112] Steven James Levine. Monitoring the execution of temporal plans for robotic systems. PhD
thesis, Massachusetts Institute of Technology, 2012. 8.3

[113] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state
abstraction for mdps. In ISAIM, 2006. 8.2.1

[114] Xin Li, William K Cheung, and Jiming Liu. Improving pomdp tractability via belief
compression and clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 40(1):125-136, 2009. 8.2.1

[115] Keqin Liu and Qing Zhao. Indexability of restless bandit problems and optimality of whittle
index for dynamic multichannel access. IEEE Transactions on Information Theory, 56(11):
5547-5567, 2010. 8.2.2

[116] Owen Macindoe, Leslie Pack Kaelbling, and Toméas Lozano-Pérez. Pomcop: Belief space
planning for sidekicks in cooperative games. In Eighth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2012. 8.1.1

[117] E. Martinson, A. Stoytchev, and R. C. Arkin. Robot behavioral selection using g-learning.
Technical report, Georgia Institute of Technology, 2001. 1.2.1, 8.2.2

[118] M. J. Matari¢ and F. Michaud. Behavior-based systems. In Springer Handbook of Robotics.
2008. 1.2.1,8.2.2

[119] R McCallum. Reinforcement learning with selective perception and hidden state. 1997.
1.3,7.1,83.2

[120] Sheila Mcllraith. Diagnosing hybrid systems: A bayesian model selection approach. In
Proceedings of the Eleventh International Workshop on Principles of Diagnosis (DX’ 00),
pages 140-146, 2000. 8.3.1,9.3

[121] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. Automatic discovery
and transfer of maxq hierarchies. In Proceedings of the 25th international conference on
Machine learning, pages 648-655, 2008. 8.2.3

[122] Juan Pablo Mendoza. Regions of inaccurate modeling for robot anomaly detection and
model correction. 2017. 8.3, 9.2.1

[123] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. P. Kaelbling, T. L. Dean, and

182



Bibliography

C. Boutilier. Solving very large weakly coupled markov decision processes. In AAAI/IAAI,
1998. 8.2.2

[124] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling. Learn-
ing finite-state controllers for partially observable environments. arXiv preprint
arXiv:1301.6721, 1999. 8.3.2

[125] V. Mnih, K. Kavukcuoglu, and D. Silver et al. Human-level control through deep reinforce-
ment learning. Nature, 2015. 2.1,4.2.1,4.3.1

[126] Anahita Mohseni-Kabir, David Isele, and Kikuo Fujimura. Interaction-aware multi-agent
reinforcement learning for mobile agents with individual goals. In 2019 International
Conference on Robotics and Automation (ICRA), pages 3370-3376. IEEE, 2019. 9.3

[127] Anahita Mohseni-Kabir, Manuela Veloso, and Maxim Likhachev. Efficient robot planning
for achieving multiple independent partially observable tasks that evolve over time. In
ICAPS, 2020. 6.3.2,6.3.2,6.3.2,64,2

[128] H. Muiioz-Avila, M. A. Wilson, and D. W. Aha. Guiding the ass with goal motivation
weights. In Goal Reasoning: Papers from the ACS Workshop, 2015. 1.2.1, 8.2.2

[129] Lu Na and Lu Fei. Robot multi-tasks optimization using improved jshop2 planner. Interna-
tional Journal of Control and Automation, 2015. 3.1, 8.1.2

[130] Ali Nasir. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for
Spacecraft Applications. PhD thesis, 2012. 8.3.1

[131] Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation: A theoretical and
empirical analysis. Artificial intelligence, 76(1-2):427-454, 1995. 8.3.1

[132] Yaodong Ni and Zhi-Qiang Liu. Bounded-parameter partially observable markov decision
processes. In ICAPS, pages 240-247, 2008. 1.3, 8.3.3

[133] M. Nicolescu, O. C. Jenkins, and A. Olenderski. Learning behavior fusion estimation from
demonstration. In ROMAN, 2006. 8.2.2

[134] Stefanos Nikolaidis and Julie Shah. Human-robot teaming using shared mental models.
ACM/IEEE HRI, 2012. 8.1.1

[135] Stefanos Nikolaidis, Yu Xiang Zhu, David Hsu, and Siddhartha Srinivasa. Human-robot
mutual adaptation in shared autonomy. In 2017 12th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). IEEE, 2017. 3.1, 8.1.1

[136] Stefanos Nikolaidis, Minae Kwon, Jodi Forlizzi, and Siddhartha Srinivasa. Planning with
verbal communication for human-robot collaboration. ACM Transactions on Human-Robot
Interaction (THRI), 7(3):1-21, 2018. 8.1.1

[137] Arnab Nilim and Laurent El Ghaoui. Robustness in markov decision problems with

uncertain transition matrices. In Advances in neural information processing systems, pages
839-846, 2004. 8.3.3

[138] Ernesto Nunes and Maria Gini. Multi-robot auctions for allocation of tasks with temporal
constraints. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. 8.1.1

[139] Takayuki Osogami. Robust partially observable markov decision process. In International

183



Bibliography

Conference on Machine Learning, pages 106—115, 2015. 8.3.3

[140] Sébastien Paquet, Brahim Chaib-draa, and Stéphane Ross. Hybrid pomdp algorithms. In
Proceedings of The Workshop on MSDM, 2006. 9.3

[141] F. Pedregosa, G. Varoquaux, and A. Gramfort et al. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 2011. 2

[142] Vittorio Perera. Language-Based Bidirectional Human and Robot Interaction Learning for
Mobile Service Robots. PhD thesis, University of Science and Technology of China, 2018.
A

[143] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics and Autonomous
Systems, 53(2):73-88, 2005. 8.3

[144] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An
anytime algorithm for pomdps. In IJCAI, volume 3, pages 1025-1032, 2003. 2.2.1, 8.2.1

[145] Luis Enrique Pineda, Yi Lu, Shlomo Zilberstein, and Claudia V Goldman. Fault-tolerant
planning under uncertainty. In Twenty-Third International Joint Conference on Artificial
Intelligence. Citeseer, 2013. 8.3.1

[146] P. Pirjanian. Behavior coordination mechanisms-state-of-the-art. Technical report, Univer-
sity of Southern California, 1999. 1.2.1, 8.2.2

[147] Pascal Poupart and Craig Boutilier. Value-directed compression of pomdps. In Advances
in neural information processing systems, pages 1579—1586, 2003. 8.2.1

[148] ML Puterman et al. Discrete stochastic dynamic programming, 1994. 2.1

[149] Yu Qing-xiao, Yuan Can, Fu Zhuang, and Zhao Yan-zheng. Research of the localization of
restaurant service robot. International Journal of Advanced Robotic Systems, 2010. 3.1,
8.1.2

[150] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In /ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009. A

[151] C. Raievsky and F. Michaud. Improving situated agents adaptability using interruption
theory of emotions. In SAB, 2008. 1.2.1, 8.2.2

[152] Aditi Ramachandran, Sarah Strohkorb Sebo, and Brian Scassellati. Personalized robot
tutoring using the assistive tutor pomdp (at-pomdp). In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 8050-8057, 2019. 8.1.1

[153] Stephanie Rosenthal and Manuela Veloso. Modeling humans as observation providers
using pomdps. In 2011 RO-MAN, pages 53-58. IEEE, 2011. 1.3, 8.3.4

[154] Stephanie Rosenthal, Anind K Dey, and Manuela Veloso. How robots’ questions affect
the accuracy of the human responses. In RO-MAN 2009-The 18th IEEE International
Symposium on Robot and Human Interactive Communication, pages 1137-1142. IEEE,
2009. 8.3.4

[155] Stephanie L Rosenthal. Human-Centered Planning for Effective Tast Autonomy. PhD
thesis, Carnegie Mellon University, 2012. A, A

184



Bibliography

[156] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive pomdps. In
Advances in neural information processing systems, pages 1225-1232,2008. 1.3, 7.1, 8.3.2

[157] Stephane Ross, Joelle Pineau, and Brahim Chaib-draa. Theoretical analysis of heuristic
search methods for online pomdps. In Advances in neural information processing systems,
pages 1233-1240, 2008. 2.2.1

[158] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-Draa. Online planning
algorithms for pomdps. Journal of Artificial Intelligence Research, 32:663-704, 2008.
1.2.2,2.2.1,5.1,7.3.3,7.5.1,9.3

[159] Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. A bayesian
approach for learning and planning in partially observable markov decision processes.
Journal of Machine Learning Research, 12(May):1729-1770, 2011. 8.3.2

[160] Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Finding approximate pomdp
solutions through belief compression. Journal of artificial intelligence research, 23:1-40,
2005. 1.2.2,5.1,8.2.1,9.3

[161] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Prentice Hall
Upper Saddle River, NJ, USA:, 2002. 7.1

[162] Andrei A Rusu, Matej Vecerik, Thomas Rothorl, Nicolas Heess, Razvan Pascanu, and Raia
Hadsell. Sim-to-real robot learning from pixels with progressive nets. In Conference on
Robot Learning, pages 262-270. PMLR, 2017. 9.2.2

[163] Sakari, Pieska, Van, Spiz, Juhana, Jauhiainen, Mika, and Luimula. Social service robots in
wellness and restaurant applications. 2013. 8.1.2

[164] Marcel Schoppers. Universal plans for reactive robots in unpredictable environments. In
IJCAI, volume 87, pages 1039-1046. Citeseer, 1987. 7.1, 8.3.1

[165] Devin Schwab. Robot Deep Reinforcement Learning: Tensor State-Action Spaces and
Auxiliary Task Learning with Multiple State Representations. PhD thesis, Carnegie Mellon
University, 2020. 9.2.2

[166] Guy Shani. Task-based decomposition of factored pomdps. IEEE transactions on cyber-
netics, 44(2):208-216, 2013. 5.1, 5.4, 6.4,8.2.1,8.2.2,8.2.3

[167] Guy Shani, Ronen I Brafman, and Solomon E Shimony. Model-based online learning of
pomdps. In European Conference on Machine Learning, pages 353—364. Springer, 2005.
8.3.2

[168] Guy Shani, Pascal Poupart, Ronen I Brafman, and Solomon Eyal Shimony. Efficient add
operations for point-based algorithms. In /CAPS, pages 330-337, 2008. 1.2.2, 5.1, 8.2.1,
9.3

[169] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp solvers.
Autonomous Agents and Multi-Agent Systems, 27(1):1-51, 2013. 1.2.2, 5.1, 8.2.1,9.3

[170] Pranav Shyam, Wojciech Jaskowski, and Faustino Gomez. Model-based active exploration.
arXiv preprint arXiv:1810.12162, 2018. 8.3.2

[171] Rui Silva, Francisco S Melo, and Manuela Veloso. What if the world were different?

185



Bibliography

gradient-based exploration for new optimal policies. In GCAI, pages 229-242, 2018. 8.3.3

[172] Rui Silva, Gabriele Farina, Francisco S Melo, and Manuela Veloso. A theoretical and
algorithmic analysis of configurable mdps. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 29, pages 455463, 2019. 8.3.3

[173] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in
neural information processing systems, pages 2164-2172, 2010. 8.2.1

[174] Trey Smith and Reid Simmons. Heuristic search value iteration for pomdps. Proc. Uncer-
tainty in Artificial Intelligence, 2004. 8.2.1

[175] Trey Smith, David R Thompson, and David Wettergreen. Generating exponentially smaller
pomdp models using conditionally irrelevant variable abstraction. In ICAPS, pages 304-311,
2007. 1.2.2,5.1,8.1.1,9.3

[176] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning
with regularization. In Advances in neural information processing systems, pages 1772—
1780, 2013. 6.5,9.3

[177] Yi Sun, Faustino Gomez, and Jiirgen Schmidhuber. Planning to be surprised: Optimal
bayesian exploration in dynamic environments. In International Conference on Artificial
General Intelligence, pages 41-51. Springer, 2011. 8.3.2

[178] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998. 2.1,4.1,4.3.4

[179] R. S. Sutton, S. P. Singh, D. Precup, and B. Ravindran. Improved switching among
temporally abstract actions. In NIPS, 1999. 4.2.1, 8.2.1

[180] A. Taylor, R. Kaufman, S. Girdhar, and H. Admoni. Modeling human need for attention
and interruptibility in restaurant scenarios. In Proceedings of In Al x Food Workshop at
IJCAI ’19, August 2019. 9.3, A.2

[181] Georgios Theocharous and Leslie P Kaelbling. Approximate planning in pomdps with
macro-actions. In Advances in Neural Information Processing Systems, 2004. 1.2.2, 5.1,
8.2.1,9.3

[182] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS),
pages 23-30. IEEE, 2017. 9.2.2

[183] Marc Toussaint, Laurent Charlin, and Pascal Poupart. Hierarchical pomdp controller
optimization by likelihood maximization. In UAI, volume 24, pages 562-570, 2008. 8.2.3

[184] J. N. Tsitsiklis and B. Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in neural information processing systems, 1997. 2.1

[185] Interaktives Planen unter unsicheren Bedingungen. Interactive planning under uncertainty.
2017. 8.3.4

[186] Erik P Vargo and Randy Cogill. Expectation-maximization for bayes-adaptive pomdps.
Journal of the Operational Research Society, 66(10):1605-1623, 2015. 8.3.2

186



Bibliography

[187] S. Vattam, M. Klenk, M. Molineaux, and D. W. Aha. Breadth of approaches to goal
reasoning: A research survey. Technical report, Naval Research Lab Washington DC, 2013.
1.2.1,8.2.2

[188] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. Cobots: Robust symbiotic autonomous
mobile service robots. In IJCAI, 2015. 4.1

[189] Manuela M Veloso, Martha E Pollack, and Michael T Cox. Rationale-based monitoring for
planning in dynamic environments. In AIPS, volume 171, page 180, 1998. 8.3

[190] Manuela M Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosenthal, Susana Brandao,
Tekin Mericli, and Rodrigo Ventura. Symbiotic-autonomous service robots for user-
requested tasks in a multi-floor building. 2012. 5.4.4

[191] Venkat Venkatasubramanian, Raghunathan Rengaswamy, and Surya N Kavuri. A review

of process fault detection and diagnosis: Part ii: Qualitative models and search strategies.
Computers & chemical engineering, 27(3):313-326, 2003. 8.3

[192] Vandi Verma, Geoft Gordon, Reid Simmons, and Sebastian Thrun. Real-time fault diagnosis
[robot fault diagnosis]. IEEE Robotics & Automation Magazine, 11(2):56-66, 2004. 1.3,
7.1,8.3.1

[193] Minlue Wang, Sebastien Canu, and Richard Dearden. Improving robot plans for information
gathering tasks through execution monitoring. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5285-5291. 1EEE, 2013. 8.3.1

[194] Y1 Wang, Kok Sung Won, David Hsu, and Wee Sun Lee. Monte carlo bayesian reinforce-
ment learning. arXiv preprint arXiv:1206.6449, 2012. 8.3.2

[195] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas. Dueling
network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015. 2.1,4.1,4.2.1

[196] Richard Washington. On-board real-time state and fault identification for rovers. In Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages 1175-1181.
IEEE, 2000. 8.3.1

[197] Richard R Weber and Gideon Weiss. On an index policy for restless bandits. Journal of
Applied Probability, 27(3):637-648, 1990. 8.2.2

[198] Douglas J White. Further real applications of markov decision processes. Interfaces, 18(5):
55-61, 1988. 8.1.1

[199] Chelsea C White III and Hany K Eldeib. Markov decision processes with imprecise
transition probabilities. Operations Research, 42(4):739-749, 1994. 1.3, 8.3.3

[200] Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of applied
probability, 25(A):287-298, 1988. 8.2.1, 8.2.2

[201] Cristina M Wilcox and Brian C Williams. Runtime verification of stochastic, faulty systems.
In International Conference on Runtime Verification, pages 452-459. Springer, 2010. 8.3

[202] Stefan Witwicki, Francisco Melo, Jesus Capitdn, and Matthijs Spaan. A flexible approach

187



Bibliography

to modeling unpredictable events in mdps. In Twenty-Third International Conference on
Automated Planning and Scheduling, 2013. 8.3.3

[203] Kyle Hollins Wray and Shlomo Zilberstein. A pomdp formulation of proactive learning. In
Thirtieth AAAI Conference on Artificial Intelligence, 2016. 8.3.4, 9.3

[204] Kyle Hollins Wray and Shlomo Zilberstein. Approximating reachable belief points in
pomdps. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 117-122. IEEE, 2017. 8.2.1

[205] Christian Wurll and Dominik Henrich. Point-to-point and multi-goal path planning for
industrial robots. Journal of Robotic Systems, 18(8):445-461, 2001. 8.1.1

[206] Qingxiao Yu, Can Yuan, Zhuang Fu, and Yanzheng Zhao. An autonomous restaurant
service robot with high positioning accuracy. Industrial Robot: An International Journal,
2012. 3.1, 8.1.2

[207] Paraskevi Th Zacharia, Elias K Xidias, and Nikos A Aspragathos. Task scheduling

and motion planning for an industrial manipulator. Robotics and computer-integrated
manufacturing, 29(6):449-462, 2013. 8.1.1

188



	1 Introduction
	1.1 Motivation and Formulation
	1.2 Planning and Execution for Multiple Independent Tasks
	1.2.1 Expediting Task Execution
	1.2.2 Expediting Task Planning

	1.3 Efficient Robot Planning and Execution in Presence of Discrepancies
	1.4 Contributions
	1.5 Thesis Outline

	2 Background
	2.1 Markov Decision Processes (MDPs)
	2.2 Partially Observable Markov Decision Processes (POMDPs)
	2.2.1 Discounted Reward POMDPs
	2.2.2 Goal POMDPs


	3 Formalization of the Restaurant Domain
	3.1 Motivation
	3.2 Formulation
	3.3 Assumptions
	3.4 Conclusion and Discussion

	4 Efficient Task Execution by Using Interruptions to Switch Among Multiple MDP Models
	4.1 Motivation
	4.2 Approach
	4.2.1 Learning Task Selection Policy
	4.2.2 Identifying Task-Switching Stimuli

	4.3 Experiments
	4.3.1 Neural Network Structure
	4.3.2 Feature Importance Computation
	4.3.3 Simulation Setup
	4.3.4 Results of Task-Switching Behavior
	4.3.5 Results of Identifying Task-Switching Stimuli

	4.4 Application on the Restaurant Domain
	4.5 Conclusion and Discussion

	5 Optimal Short-Horizon Planning for Achieving Multiple Independent POMDPs
	5.1 Motivation
	5.2 Problem Formulation
	5.2.1 Client POMDP
	5.2.2 Agent POMDP

	5.3 Approach
	5.3.1 Proposed Method
	5.3.2 Optimality Proofs

	5.4 Experiments
	5.4.1 Restaurant Model
	5.4.2 Results
	5.4.3 Further Analysis
	5.4.4 Robot Experiments 

	5.5 Conclusion and Discussion

	6 Optimal Long-Horizon Planning for Achieving Multiple Independent POMDPs
	6.1 Motivation
	6.2 Approach
	6.2.1 Agent POMDP with Adaptive Horizon
	6.2.2 Multi-task POMDP with Adaptive Horizon

	6.3 Optimality Proofs
	6.3.1 Summary of the Proofs
	6.3.2 Complete Proofs

	6.4 Experiments
	6.4.1 Restaurant Model
	6.4.2 Quantitative Results
	6.4.3 Qualitative Results

	6.5 Conclusion and Discussion

	7 Robot Planning and Execution in Presence of Discrepancy between Robot's Observations and the POMDP Model
	7.1 Motivation
	7.2 Formulation of Discrepancy Recovery as a Planning Problem
	7.2.1 Discrepancy POMDP Model
	7.2.2 How to Compute the Hypotheses Set and the Clarification Actions?
	7.2.3 Example Formulations

	7.3 Efficient Planning on the Discrepancy Model
	7.3.1 Background on ILAO* Algorithm
	7.3.2 ILAO* on Discrepancy Model
	7.3.3 ILAO* with Hypothesis Decomposition on Discrepancy Model

	7.4 Efficient Planning for Achieving Multiple Independents POMDPs
	7.4.1 Multi-task Goal POMDP with Adaptive Horizon
	7.4.2 Solving the Augmented Agent POMDP model

	7.5 Evaluation
	7.5.1 Properties of Planning on the Discrepancy Model
	7.5.2 Efficiency Analysis

	7.6 Conclusion and Discussion

	8 Related Work
	8.1 Formalization of the Restaurant Domain
	8.1.1 Task Representation for Planning
	8.1.2 Formalization of the Waiting Tables Task

	8.2 Robot Planning for Achieving Multiple Tasks
	8.2.1 Combining the Tasks and Solving Large Models Efficiently
	8.2.2 Merging the Solutions to the Individual Tasks
	8.2.3 Discussion on How to Decompose a Large Model Into Multiple Tasks

	8.3 Discrepancy between Observations and Planning Model
	8.3.1 State Estimation, Plan Repair and Replanning
	8.3.2 Learning and Refining the Model Parameters
	8.3.3 Solving the Models in Presence of Model Uncertainty
	8.3.4 Learning and Planning Using Human Input


	9 Conclusion and Future Work
	9.1 Contributions
	9.2 Discussion
	9.2.1 Going Beyond the Assumptions
	9.2.2 Simulation to Real World

	9.3 Future Work
	9.4 Summary

	A Robot Experiments
	A.1 Restaurant Model
	A.2 Perception
	A.3 Task Planning
	A.4 Execution
	A.5 Example Scenario

	Bibliography

