
The CMUnited-98 Champion Simulator Team ?Peter Stone, Manuela Veloso, and Patrick RileyComputer Science Department,Carnegie Mellon UniversityPittsburgh, PA 15213fpstone,velosog@cs.cmu.edu, priley@andrew.cmu.eduhttp://www.cs.cmu.edu/f~pstone,~mmvg, http://www.andrew.cmu.edu/~prileyA shortened version of this paper appears in\RoboCup-98: Robot Soccer World Cup II." M. Asada and H. Kitano eds.Springer Verlag, Berlin, 1999.Abstract. The CMUnited-98 simulator team became the 1998 RoboCupsimulator league champion by winning all 8 of its games, outscoringopponents by a total of 66{0. CMUnited-98 builds upon the success-ful CMUnited-97 implementation, but also improves upon it in manyways. This article describes the complete CMUnited-98 software, em-phasizing the recent improvements. Coupled with the publicly-availableCMUnited-98 source code, it is designed to help other RoboCup andmulti-agent systems researchers build upon our success.1 IntroductionThe CMUnited-98 simulator team became the 1998 RoboCup [4] simulator leaguechampion by winning all 8 of its games, outscoring opponents by a total of 66{0.CMUnited-98 builds upon the successful CMUnited-97 implementation [8], butalso improves upon it in many ways.The most notable improvements are the individual agent skills and the strate-gic agent positioning in anticipation of passes from teammates.While the successof CMUnited-98 also depended on our previous research innovations includinglayered learning [9], a
exible teamwork structure [10], and a novel communi-cation paradigm [10], these techniques are all described elsewhere. The purposeof this article is to clearly and fully describe the low-level CMUnited-98 agentarchitecture as well as the key improvements over the previous implementation.Coupled with the publicly-available CMUnited-98 source code [11], this arti-cle is designed to help researchers involved in the RoboCup software challenge [5]build upon our success. Throughout the article, we assume that the reader isfamiliar with the soccer server [1].? This research is sponsored in part by the DARPA/RL Knowledge Based Planningand Scheduling Initiative under grant number F30602-95-1-0018. The views andconclusions contained in this document are those of the authors and should not beinterpreted as representing the o�cial policies or endorsements, either expressed orimplied, of the U. S. Government.

The rest of the article is organized as follows. Section 2 gives an overview ofthe entire agent architecture. Section 3 describes the agents' method of keepingan accurate and precise world model. Section 4 details the low-level skills avail-able to the agents. Section 5 presents the CMUnited-98 collaborative coordina-tion mechanisms. Section 6 summarizes the RoboCup-98 results and Section 7concludes.2 Agent Architecture OverviewCMUnited-98 agents are capable of perception, cognition, and action. By per-ceiving the world, they build a model of its current state. Then, based on a setof behaviors, they choose an action appropriate for the current world state.A driving factor in the design of the agent architecture is the fact that thesimulator operates in �xed cycles of length 100 msec. As presented in Section [1],the simulator accepts commands from clients throughout a cycle and then up-dates the world state all at once at the end of the cycle. Only one action command(dash, kick, turn, or catch) is executed for a given client during a given cycle.Therefore, agents (simulator clients) should send exactly one action commandto the simulator in every simulator cycle. If more than one command is sent inthe same cycle, a random one is executed, possibly leading to undesired behavior.If no command is sent during a simulator cycle, an action opportunity has beenlost: opponent agents who have acted during that cycle may gain an advantage.In addition, since the simulator updates the world at the end of every cycle,it is advantageous to try to determine the state of the world at the end of theprevious cycle when choosing an action for the current cycle. As such, the basicagent loop during a given cycle t is as follows:{ Assume the agent has consistent information about the state of the world atthe end of cycle t� 2 and has sent an action during cycle t� 1.{ While the server is still in cycle t� 1, upon receipt of a sensation (see, hear,or sense body), store the new information in temporary structures. Do notupdate the current state.{ When the server enters cycle t (determined either by a running clock orby the receipt of a sensation with time stamp t), use all of the informationavailable (temporary information from sensations and predicted e�ects ofpast actions) to update the world model to match the server's worldstate (the \real world state") at the end of cycle t � 1. Then choose andsend an action to the server for cycle t.{ Repeat for cycle t+ 1.While the above algorithm de�nes the overall agent loop, much of the chal-lenge is involved in updating the world model e�ectively and choosing an appro-priate action. The remainder of this section goes into these processes in detail.

3 World ModelingWhen acting based on a world model, it is important to have as accurate andprecise a model of the world as possible at the time that an action is taken.In order to achieve this goal, CMUnited-98 agents gather sensory informationover time, and process the information by incorporating it into the world modelimmediately prior to acting.3.1 Object RepresentationThere are several objects in the world, such as the goals and the �eld markerswhich remain stationary and can be used for self-localization. Mobile objects arethe agent itself, the ball, and 21 other players (10 teammates and 11 opponents).These objects are represented in a type hierarchy as illustrated in Figure 1.
Mobile
Object

Stationary
Object

Ball Player

ObjectFig. 1. The agent's object type hierarchy.Each agent's world model stores an instantiation of a stationary object foreach goal, sideline, and �eld marker; a ball object for the ball; and 21 playerobjects. Since players can be seen without their associated team and/or uniformnumber, the player objects are not identi�ed with particular individual players.Instead, the variables for team and uniform number can be �lled in as theybecome known.Mobile objects are stored with con�dence values within [0,1] indicating thecon�dence with which their locations are known. The con�dence values areneeded because of the large amount of hidden state in the world: no objectis seen consistently. While it would be a mistake to only remember objects thatare currently in view, it is also wrong to assume that a mobile object will staystill (or continue moving with the same velocity) inde�nitely. By decaying thecon�dence in unseen objects over time, agents can determine whether or not torely on the position and velocity values [2].All information is stored as global coordinates even though both sensor andactuator commands are speci�ed in relative coordinates (angles and distancesrelative to the agent's position on the �eld). Global coordinates are easier tostore and maintain as the agent moves around the �eld because the global coor-dinates of stationary objects do not change as the agent moves, while the relative

coordinates do. It is a simple geometric calculation to convert the global coor-dinates to relative coordinates on demand as long as the agent knows its ownposition on the �eld.The variables associated with each object type are as follows:Object :� Global (x; y) position coordinates� Con�dence within [0,1] of the coordinates' accuracyStationary Object : nothing additionalMobile Object :� Global (dx; dy) velocity coordinates� Con�dence within [0,1] of the coordinates' accuracyBall : nothing additionalPlayer :� Team� Uniform number� Global � facing angle� Con�dence within [0,1] of the angle's accuracy3.2 Updating the World ModelInformation about the world can come from{ Visual information;{ Audial information;{ Sense body information; and{ Predicted e�ects of previous actions.Visual information arrives as relative distances and angles to objects in theplayer's view cone. Audial information could include information about globalobject locations from teammates. Sense body information pertains to the client'sown status including stamina, view mode, and speed.Whenever new information arrives, it is stored in temporary structures withtime stamps and con�dences (1 for visual information, possibly less for audial in-formation). Visual information is stored as relative coordinates until the agent'sexact location is determined.When it is time to act during cycle t, all of the available information is usedto best determine the server's world state at the end of cycle t � 1. If no newinformation arrived pertaining to a given object, the velocity and actions takenare used by the predictor to predict the new position of the object and thecon�dence in that object's position and velocity are both decayed.When the agent's world model is updated to match the end of simulatorcycle t � 1, �rst the agent's own position is updated to match the time of thelast sight; then those of the ball and players are updated.

The Agent Itself: Since visual information is given in coordinates relative tothe agent's position, it is important to determine the agent's exact positionat the time of the sight. When updating the world model to match the endof simulator cycle t � 1, there may have been visual information with timestamp t � 1 and/or t (anything earlier would have been incorporated intothe previous update of the world model at the end of cycle t � 1).If the latest visual information has time stamp t � 1, then the agent's ownposition is not updated until after the other objects have been updated astheir coordinates are stored relative to the old agent position. On the otherhand, if the latest visual information has time stamp t, or if there has been nonew visual information since the last world-state update, the agent's statuscan be updated immediately.In either case, the following process is used to update the information aboutthe agent:{ If new visual information has arrived:� The agent's position can be determined accurately by using the rel-ative coordinates of one seen line and the closest stationary object.{ If no visual information has arrived:� Bring the velocity up to date, possibly incorporating the predictede�ects of any actions (a dash) taken during the previous cycle.� Using the previous position and velocity, predict the new positionand velocity.{ If available, reset the agent's speed as per the sense body information.Assume velocity is in the direction the agent is facing.{ Bring the player's stamina up to date either via the sense body informa-tion or from the predicted action e�ects.The Ball: As the key focus of action initiative in the domain, the ball's positionand velocity drives a large portion of the agents' decisions. As such, it isimportant to have as accurate and up-to-date information about the ball aspossible.The ball information is updated as follows:{ If there was new visual information, use the agent's absolute position atthe time (determined above), and the ball's temporarily stored relativeposition to determine the ball's absolute position at the time of the sight.{ If velocity information is given as well, update the velocity. Otherwise,check if the old velocity is correct by comparing the new ball positionwith the expected ball position.{ If no new visual information arrived or the visual information was fromcycle t� 1, estimate its position and velocity for cycle t using the valuesfrom cycle t � 1. If the agent kicked the ball on the previous cycle, thepredicted resulting ball motion is also taken into account.{ If the ball should be in sight (i.e. its predicted position is in the player'sview cone), but isn't (i.e. visual information arrived, but no ball infor-mation was included), set the con�dence to 0.

{ Information about the ball may have also arrived via communicationfrom teammates. If any heard information would increase the con�dencein the ball's position or velocity at this time, then it should be usedas the correct information. Con�dence in teammate information can bedetermined by the time of the information (did the teammate see the ballmore recently?) and the teammate's distance to the ball (since playerscloser to the ball see it more precisely).Ball velocity is particularly important for agents when determining whetheror not (or how) to try to intercept the ball, and when kicking the ball. How-ever, velocity information is often not given as part of the visual informationstring, especially when the ball is near the agent and kickable. Therefore,when necessary, the agents attempt to infer the ball's velocity indirectlyfrom the current and previous ball positions.Teammates and Opponents: The biggest challenge in keeping track of playerpositions is that the visual information often does not identify the player thatis seen [1]. One might be tempted to ignore all ambiguously-speci�ed players.However, for strategic planning it is very useful to have a complete pictureof the player positions around the �eld.In general, player positions and velocities are determined and maintained inthe same way as in the case of the ball. A minor addition is that the directiona player is facing is also available from the visual information.When a player is seen without full information about its identity, previousplayer positions can be used to help disambiguate the identity. Knowing themaximumdistance a player can move in any given cycle, it is possible for theagent to determine whether a seen player could be the same as a previouslyidenti�ed player. If it is physically possible, the agent assumes that they areindeed the same player.Since di�erent players can see di�erent regions of the �eld in detail, com-munication can play an important role in maintaining accurate informationabout player locations.From the complete set of player locations, an agent can determine both thedefensive and o�ensive o�sides lines. It is particularly important for forwardsto stay in front of the last opponent defender in order to avoid being calledo�sides. Forwards periodically look towards the opponent defenders in orderto increase the accuracy of their location information.4 Agent SkillsOnce the agent has determined the server's world state for cycle t as accuratelyas possible, it can choose and send an action to be executed at the end of thecycle. In so doing, it must choose its local goal within the team's overall strategy.It can then choose from among several low-level skills which provide it with basiccapabilities. The output of the skills are primitive movement commands.The skills available to CMUnited-98 players include kicking, dribbling, ballinterception, goaltending, defending, and clearing. The implementation details

of these skills are described in this section.The common thread among these skills is that they are all predictive, locallyoptimal skills (PLOS). They take into account predicted world models as wellas predicted e�ects of future actions in order to determine the optimal primitiveaction from a local perspective, both in time and in space.One simple example of PLOS is each individual agent's stamina management.The server models stamina as having a replenishable and a non-replenishablecomponent. Each is only decremented when the current stamina goes below a�xed threshold. Each player monitors its own stamina level to make sure that itnever uses up any of the non-replenishable component of its stamina. No matterhow fast it should move according to the behavior the player is executing, it slowsdown its movement to keep itself from getting too tired. While such behaviormight not be optimal in the context of the team's goal, it is locally optimalconsidering the agent's current tired state.Even though the skills are predictive, the agent commits to only one actionduring each cycle. When the time comes to act again, the situation is completelyreevaluated. If the world is close to the anticipated con�guration, then the agentwill act similarly to the way it predicted on previous cycles. However, if theworld is signi�cantly di�erent, the agent will arrive at a new sequence of actionsrather than being committed to a previous plan. Again, it will only execute the�rst step in the new sequence.4.1 KickingThere are three points about the kick model of the server that should be under-stood before looking at our kicking style. First, a kick changes the ball's velocityby vector addition. That is, a kick accelerates the ball in a given direction, asopposed to setting the velocity. Second, an agent can kick the ball when it is inthe \kickable area" which is a circle centered on the player (see Figure 2). Third,the ball and the player can collide. The server models a collision when the balland player are overlapping at the end of a cycle. If there is a collision, the twobodies are separated and their velocities multiplied by �0:1.As a �rst level of abstraction when dealing with the ball, all reasoning is doneas a desired trajectory for the ball for the next cycle. Before a kick is actuallysent to the server, the di�erence between the ball's current velocity and theball's desired velocity is used to determine the kick to actually perform. If theexact trajectory can not be obtained, the ball is kicked such that the directionis correct, even if the speed is not.In order to e�ectively control the ball, a player must be able to kick theball in any direction. In order to do so, the player must be able to move theball from one side of its body to the other without the ball colliding with theplayer. This behavior is called the turnball behavior. It was developed based oncode released by the PaSo'97 team[7]. The desired trajectory of a turnball kick iscalculated by getting the ray from the ball's current position that is tangent toa circle around the player (see Figure 3). Note that there are two possible suchrays which correspond to the two directions that the ball can be turned around

the player. Care is taken to ensure that the ball stays well within the kickablearea from kick to kick so that the player keeps control of the ball.
Kickable Area

Player
A

Ball

B

Player

Ball

Kickable Area

Temporary
Target

Position
Desired

BufferFig. 2. Basic kicking with velocity pre-diction. Fig. 3. The turnball skill.The next important skill is the ability to kick the ball in a given direction,either for passing or shooting. The �rst step is to �gure out the target speed ofthe ball. If the agent is shooting, the target speed is the maximum ball speed,but for a pass, it might be better to kick the ball slower so that the receivingagent can intercept the ball more easily. In this case, the agent must take intoaccount the ball's deceleration over time when determining how hard to kick theball.In order to get the ball to the desired speed, several kicks in successionare usually required. By putting the ball to the side of the player (relative tothe desired direction of the kick) the agent can kick the ball several times insuccession. If a higher ball speed is desired, the agent can use the turnball kicksto back the ball up so that enough kicks can be performed to accelerate the ball.This skill is very predictive in that it looks at future velocities of the ballgiven slightly di�erent possible kicks. In some cases, doing a weaker kick one cyclemay keep the ball in the kickable area so that another kick can be executed thefollowing cycle. In Figure 2, the agent must choose between two possible kicks.Kicking the ball to position A will result in the ball not being kickable next cycle;if the ball is already moving quickly enough, this action may be correct. However,a kick to position B followed by a kick during the next cycle may result in ahigher overall speed. Short term velocity prediction is the key to these decisions.4.2 DribblingDribbling is the skill which allows the player to move down the �eld while keepingthe ball close to the player the entire time. The basic idea is fairly simple:alternate kicks and dashes so that after one of each, the ball is still close to theplayer.

Every cycle, the agent looks to see that if it dashes this cycle, the ball willbe in its kickable area (and not be a collision) at the next cycle. If so, then theagent dashes, otherwise it kicks. A kick is always performed assuming that onthe next cycle, the agent will dash. As an argument, the low-level dribbling codetakes the angle relative to the direction of travel at which the player should aimthe ball (see Figure 4). This is called the \dribble angle" and its valid values are[�90; 90]. Deciding what the dribble angle should be is discussed in Section 4.3.
Dribble Angle

Player

Ball

Predicted Position in 2 cyclesCurrent PositionFig. 4. The basic dribbling skill.First the predicted position of the agent (in 2 cycles) is calculated:pnew = pcurrent + v + (v � pdecay + a)where pnew is the predicted player position, pcurrent is the current position ofthe player, v is the current velocity of the player, pdecay is the server parameterplayer decay, and a is the acceleration that a dash gives. The a value is usuallyjust the dash power times the dash power rate in the direction the player isfacing, but stamina may need to be taken into account.Added to pnew is a vector in the direction of the dribble angle and lengthsuch that the ball is in the kickable area. This is the target position ptarget of theball. Then the agent gets the desired ball trajectory by the following formula:traj = ptarget � pball1 + bdecaywhere traj is the target trajectory of the ball, pball is the current ball position,and bdecay is the server parameter ball decay. This process is illustrated inFigure 4.If for some reason this kick can not be done (it would be a collision forexample), then a turnball kick is done to get the ball in the right position. Thenthe next cycle, a normal dribble kick should work.As can be seen from these calculations, the basic dribbling is highly predictiveof the positions and velocities of the ball and player. It is also quite local in thatit only looks 2 cycles ahead and recomputes the best action every cycle.4.3 Smart DribblingThe basic dribbling takes one parameter that was mentioned above: the dribbleangle. Smart dribbling is a skill layered on the basic dribbling skill that decides

the best dribble angle based on opponent positions. Intuitively, the agent shouldkeep the ball away from the opponents, so that if an opponent is on the left, theball is kept on the right, and vice versa.The agent considers all nearby opponents that it knows about. Each opponentis given a \vote" about what the dribble angle should be; each opponent votesfor the valid angle [�90; 90] that is farthest from itself. For example, an opponentat 45 degrees, would vote for -90, while an opponent at -120 degrees would votefor 60. Each opponent's vote is weighted by the distance and angle relative tothe direction of motion. Closer opponents and opponents more in front of theagent are given more weight (see Figure 5).
Distance from Player

Angle WeightDistance Weight

Angle from Center
(of agent’s direction)Fig. 5. The weights for smart dribbling.4.4 Ball InterceptionThere are two types of ball interception, referred to as active and passive inter-ception. The passive interception is used only by the goaltender in some particu-lar cases, while the rest of the team uses only the active interception. Each cycle,the interception target is recomputed so that the most up to date informationabout the world is used.The active interception is similar to the one used by the Humboldt '97team[3]. The active interception predicts the ball's position on successive cy-cles, and then tries to predict whether the player will be able to make it to thatspot before the ball does, taking into account stamina and the direction that theplayer is facing. The agent aims for the earliest such spot.This process can be used for teammates as well as for the agent itself. Thus,the agent can determine which player should go for the ball, and whether it canget there before the opponents do.The passive interception is much more geometric. The agent determines theclosest point along the ball's current trajectory that is within the �eld. By pre-diction based on the ball's velocity, the agent decides whether it can make it tothat point before the ball. If so, then the agent runs towards that point.4.5 GoaltendingThe assumption behind the movement of the goaltender is that the worst thingthat could happen to the goaltender is to lose sight of the ball. The sooner

the goaltender sees a shot coming, the greater chance it has of preventing agoal. Therefore, the goaltender generally uses the widest view mode and usesbackwards dashing when appropriate to keep the ball in view to position itselfin situations that are not time-critical.Every cycle that the ball is in the defensive zone, the goaltender looks to seeif the ball is in the midst of a shot. It does this by extending the ray of the ball'sposition and velocity and intersecting that with the baseline of the �eld. If theintersection point is in the goaltender box and the ball has su�cient velocity toget there, the ball is considered to be a shot (though special care is used if anopponent can kick the ball this cycle). Using the passive interception if possible(see Section 4.4), the goaltender tries to get in the path of the ball and then runat the ball to grab it. This way, if the goaltender misses a catch or kick, the ballmay still collide with the goaltender and thus be stopped.When there is no shot coming the goaltender positions itself in anticipationof a future shot. Based on the angle of the ball relative to the goal, the goaltenderpicks a spot in the goal to guard; call this the \guard point." The further theball is to the side of the �eld, the further the goaltender guards to that side.Then, a rectangle is computed that shrinks as the ball gets closer (though itnever shrinks smaller than the goaltender box). The line from the guard pointto the ball's current position is intersected with the rectangle, and that is thedesired position of the goaltender.4.6 DefendingCMUnited-98 agents are equipped with two di�erent defending modes: opponenttracking and opponent marking. In both cases, a particular opponent player isselected as the target against which to defend. This opponent can either beselected individually or as a defensive unit via communication (the latter is thecase in CMUnited-98).In either case, the agent defends against this player by observing its positionover time and position itself strategically so as to minimize its usefulness to theother team. When tracking, the agent stays between the opponent and the goalat a generous distance, thus blocking potential shots. When marking, the agentstays close to the opponent on the ball-opponent-goal angle bisector, making itdi�cult for the opponent to receive passes and shoot towards the goal. Defensivemarking and tracking positions are illustrated in Figure 6.When marking and tracking, it is important for the agent to have accurateknowledge about the positions of both the ball and the opponent (although theball position isn't strictly relevant for tracking, it is used for the decision ofwhether or not to be tracking). Thus, when in the correct defensive position,the agent always turns to look at the object (opponent or ball) in which it isleast con�dent of the correct position. The complete algorithm, which results inthe behavior of doggedly following a particular opponent and glancing back andforth between the opponent and ball, is as follows:{ If the ball position is unknown, look for the ball.

Angle
Bisector

Ball

Marker
Tracker

Goal

OpponentFig. 6. Positioning for defensive tracking and marking.{ Else, if the opponent position is unknown, look for the opponent.{ Else, if not in the correct defensive position, move to that position.{ else, look towards the object, ball or opponent, which has been seen lessrecently (lower con�dence value).This defensive behavior is locally optimal in that it defends according tothe opponent's current position, following it around rather than predicting itsfuture location. However, in both cases, the defensive positioning is chosen inanticipation of the opponent's future possible actions, i.e. receiving a pass orshooting.4.7 ClearingOften in a defensive position, it is advantageous to just send the ball up�eld,clearing it from the defensive zone. If the agent decides that it cannot passor dribble while in a defensive situation, it will clear the ball. The importantdecision in clearing the ball is where to clear it to. The best clears are up�eld,but not to the middle of the �eld (you don't want to center the ball for theopponents), and also away from the opponents.The actual calculation is as follows. Every angle is evaluated with respectto its usefulness, and the expected degree of success. The usefulness is a sinecurve with a maximum of 1 at 30 degrees, .5 at 90 degrees, and 0 at -90, wherea negative angle is towards the middle of the �eld. The actual equation is (� isin degrees): usefulness(�) = sin(32� + 45) + 12 (1)The expected degree of success is evaluated by looking at an isosceles trianglewith one vertex where the ball is, and congruent sides extending in the directionof the target being evaluated. For each opponent in the triangle, its distancefrom the center line of the triangle is divided by the distance from the playeron that line. For opponent C in Figure 7, these values are w and d respectively.The expected success is the product of all these quotients. In Figure 7, opponentA would not a�ect the calculation, being outside the triangle, while opponent

d

w

Player

C

B

A

Clear

DirectionFig. 7. Measuring the expected success of a clear.B would lower the expected success to 0, since it is on the potential clear line(w = 0).By multiplying the usefulness and expected success together for each possibleclear angle, and taking the maximum, the agent gets a crude approximation tomaximizing the expected utility of a clear.There is a closely related behavior of o�ensive \sending." Rather than tryingto clear the ball to the sides, the agent sends the ball to the middle of theo�ensive zone with hopes that a teammate will catch up to the ball before thedefenders. This is useful if the agent is too tired or unable to dribble for somereason. It is especially useful to beat an o�sides trap because it generally requiresthe defenders to run back to get the ball.The only di�erence with defensive clearing is the usefulness function. Forsending, the usefulness function is linear, with slope determined by the agent'sY position on the �eld. The closer the agent is to the sideline, the steeper theslope, and the more that it favors sending to the middle of the �eld.5 CoordinationGiven all of the individual skills available to the CMUnited-98 clients, it becomesa signi�cant challenge to coordinate the team so that the players are not all tryingto do the same thing at the same time. Of course one and only one agent shouldexecute the goaltending behavior. But it is not so clear how to determine whenan agent should move towards the ball, when it should defend, when it shoulddribble, or clear, etc.If all players act individually | constantly chase the ball and try to kicktowards the opponent goal | they will all get tired, there will be nowhere topass, and the opponents will have free reign over most of the �eld. Buildingupon the innovations of the CMUnited-97 simulator team [8], the CMUnited-98team uses several complex coordination mechanisms, including reactive behav-ior modes, pre-compiled multi-agent plans and strategies, a
exible teamworkstructure, a novel anticipatory o�ensive positioning scheme, and a sophisticatedcommunication paradigm.

5.1 Behavior ModesA player's top-level behavior decision is its behavior mode. Implemented as arule-based system, the behavior mode determines the abstract behavior that theplayer should execute. For example, there is a behavior mode for the set of statesin which the agent can kick the ball. Then, the decision of what to do with theball is made by way of a more involved decision mechanism. On each actioncycle, the �rst thing a player does is re-evaluate its behavior mode.The behavior modes include:Goaltend: Only used by the goaltender.Localize: Find own �eld location if it's unknown.Face Ball: Find the ball and look at it.Handle Ball: Used when the ball is kickable.Active O�ense: Go to the ball as quickly as possible. Used when no teammatecould get there more quickly.Auxiliary O�ense: Get open for a pass. Used when a nearby teammate hasthe ball.Passive O�ense: Move to a position likely to be useful o�ensively in the future.Active Defense: Go to the ball even though another teammate is already go-ing. Used in the defensive end of the �eld.Auxiliary Defense: Mark an opponent.Passive Defense: Track an opponent or go to a position likely to be usefuldefensively in the future.The detailed conditions and e�ects of each behavior mode are beyond thescope of this article. However, they will become more clear in subsequent sectionsas the role-based
exible team structure is described in Section 5.3.5.2 Locker-Room AgreementAt the core of the CMUnited-98 coordination mechanism is what we call theLocker-Room Agreement [10]. Based on the premise that agents can periodi-cally meet in safe, full-communication environments, the locker-room agreementspeci�es how they should act when in low-communication, time-critical, adver-sarial environments.The locker-room agreement includes speci�cations of the
exible teamworkstructure (Section 5.3) and the inter-agent communicationparadigm (Section 5.5).A good example of the use of the locker-room agreement is CMUnited-98's abil-ity to execute pre-compiled multi-agent plans after dead-ball situations. Whileit is often di�cult to clear the ball from the defensive zone after goal kicks,CMUnited-98 players move to pre-speci�ed locations and execute a series ofpasses that successfully move the ball out of their half of the �eld. Such \setplays" exist in the locker-room agreement for all dead-ball situations.A new addition to CMUnited-98's locker-room agreement is a defensive o�-sides strategy. Since the rules of the soccer server prohibit an opponent from

receiving a pass when located behind the last defender on the opponent's at-tacking half of the �eld2, it is an e�ective defensive strategy to move all thedefenders forward towards mid�eld. However, if only one defender is fartherback than the rest of the team, the strategy can back-�re horribly.To take advantage of this rule using the locker-room agreement, the teamagrees on a formula based on the location of the ball and the opponent's furthest-back defender. This strategy relies on relatively consistent sensing by all of thedefensive players, but it does not require any communication. Independently, theplayers can dynamically adjust their positions as the ball and opponents moveso that the team's defenders stay in a coordinated line.The CMUnited-98 o�sides line was always at least 15 meters behind thecurrent ball position to prevent opponents from dribbling through to goal andat least 40 meters behind the opponents last defender to allow enough room inthe mid�eld to pass the ball amongst teammates.5.3 Roles and FormationsLike CMUnited-97, CMUnited-98 is organized around the concept of
exibleformations consisting of
exible roles. Roles are de�ned independently of theagents that �ll them: homogeneous agents (all except the goalie) can freely switchroles as time progresses. Each role speci�es the behavior of the agent �lling therole, both in terms of positioning on the �eld and in terms of the behavior modesthat should be considered. For example, forwards never go into auxiliary defensemode and defenders never go into auxiliary o�ense mode.A formation is a collection of roles, again de�ned independently from theagents. Just as agents can dynamically switch roles within a formation, the entireteam can dynamically switch formations. After testing about 10 formations, theCMUnited-98 team ended up selecting from among 3 di�erent formations. Astandard formation with 4 defenders, 3 mid�elders, and 3 forwards (4-3-3) wasused at the beginnings of the games. If losing by enough goals relative to thetime left in the game (as determined by the locker-room agreement), the teamwould switch to an o�ensive 3-3-4 formation.When winning by enough, the teamswitched to a defensive 5-3-2 formation.Formations also include sub-formations, or units, for dealing with issues oflocal importance. For example, the defensive unit can be concerned with markingopponents while not involving the mid�elders or forwards. A player can be a partof more than one unit.For a detailed presentation of roles, formations, and units, see [10].5.4 SPARThe
exible roles de�ned in the CMUnited-97 software were an improvement overthe concept of rigid roles. Rather than associating �xed (x; y) coordinates with2 As in real soccer, the o�sides rule is more complicated than that. But for the purposesof this article, the above de�nition is su�cient.

each position, an agent �lling a particular role was given a range of coordinatesin which it could position itself. Based on the ball's position on the �eld, theagent would position itself so as to increase the likelihood of being useful to theteam in the future.However, by taking into account the positions of other agents as well asthat of the ball, an even more informed positioning decision can be made. Theidea of strategic position by attraction and repulsion (SPAR) is one of the novelcontributions of the CMUnited-98 research which has been applied to both thesimulator and the small robot teams [12].When positioning itself using SPAR, the agent uses a multi-objective functionwith attraction and repulsion points subject to several constraints. To formalizethis concept, we introduce the following variables:{ P - the desired position for the passive agent in anticipation of a passingneed of its active teammate;{ n - the number of agents on each team;{ Oi - the current position of each opponent, i = 1; : : : ; n;{ Ti - the current position of each teammate, i = 1; : : : ; (n� 1);{ B - the current position of the active teammate and ball;{ G - the position of the opponent's goal.SPAR extends similar approaches of using potential �elds for highly dynamic,multi-agent domains [6]. The probability of collaboration in the robotic soccerdomain is directly related to how \open" a position is to allow for a successfulpass. Thus, SPAR maximizes the distance from other robots and minimizes thedistance to the ball and to the goal, namely:{ Repulsion from opponents, i.e., maximize the distance to each opponent:8i;maxdist(P;Oi){ Repulsion from teammates, i.e., maximize the distance to other passive team-mates: 8i;maxdist(P; Ti){ Attraction to the active teammate and ball: mindist(P;B){ Attraction to the opponent's goal: mindist(P;G)This formulation is a multiple-objective function. To solve this optimizationproblem, we restate the problem as a single-objective function. As each termmayhave a di�erent relevance (e.g. staying close to the goal may be more importantthan staying away from opponents), we want to apply a di�erent weightingfunction to each term, namely fOi , fTi , fB , and fG, for opponents, teammates,the ball, and the goal, respectively. Our anticipation algorithm then maximizesa weighted single-objective function with respect to P :max(nXi=1 fOi(dist(P;Oi))+n�1Xi=1 fTi(dist(P; Ti))�fB(dist(P;B))�fG(dist(P;G)))In our case, we use fOi = fTi = x, fB = 0, and fG = x2. For example, thelast term of the objective function above expands to (dist(P;G))2.

One constraint in the simulator team relates to the position, or role, that thepassive agent is playing relative to the position of the ball. The agent only con-siders locations that within one of the four rectangles, illustrated in Figure 5.4:the one closest to the position home of the position that it is currently playing.This constraint helps ensure that the player with the ball will have several dif-ferent passing options in di�erent parts of the �eld. In addition, players don'tneed to consider moving too far from their positions to support the ball.
Ball

0 1

2 3Fig. 8. The four possible rectangles, each with one corner at the ball's location, con-sidered for positioning by simulator agents when using SPAR.Since this position-based constraint already encourages players to stay nearthe ball, we set the ball-attraction weighting function fB to the constant functiony = 0. In addition to this �rst constraint, the agents observe three additionalconstraints. In total, the constraints in the simulator team are:{ Stay in an area near home position;{ Stay within the �eld boundaries;{ Avoid being in an o�sides position;{ Stay in a position in which it would be possible to receive a pass.This last constraint is evaluated by checking that there are no opponents ina cone with vertex at the ball and extending to the point in consideration.In our implementation, the maximum of the objective function is estimatedby sampling its values over a �ne-grained mesh of points that satisfy the aboveconstraints.Using this SPAR algorithm, agents are able to anticipate the collaborativeneeds of their teammates by positioning themselves in such a way that the playerwith the ball would have several useful passing options.5.5 CommunicationThe soccer server provides a challenging communication environment for teamsof agents. With a single, low-bandwidth, unreliable communication channel forall 22 agents and limited communication range and capacity, agents must notrely on any particular message reaching any particular teammate. Nonetheless,

when a message does get through, it can help distribute information about thestate of the world as well as helping to facilitate team coordination.All CMUnited-98 messages include a certain amount of state informationfrom the speaker's perspective. Information regarding object position and team-mate roles are all given along with the con�dence values associated with thisdata. All teammates hearing the message can then use the information to aug-ment their visual state information.The principle functional uses of communication in CMUnited-98 are{ To ensure that all participants in a set play are ready to execute the multi-step plan. In this case, since the ball is out of play, time is not a criticalissue.{ To assign defensive marks. The captain of the defensive unit (the goaltenderin most formations) determines which defenders should mark or track whichopponent forwards. The captain then communicates this information peri-odically until receiving a con�rmation message.For a detailed speci�cation of the communication paradigm as it was �rstdeveloped for CMUnited-97, see [10].5.6 Ball HandlingOne of the most important decisions in the robotic soccer domain arises whenthe agent has control of the ball. In this state, it has the options of dribbling theball in any direction, passing to any teammate, shooting the ball, clearing theball, or simply controlling the ball.In CMUnited-98, the agent uses a complex heuristic decision mechanism, in-corporating a machine learning module, to choose its action. The best teammateto receive a potential pass (called potential receiver below) is determined by a de-cision tree trained o�-line [9]. Following is a rough sketch of the decision-makingprocess without all of the parametric details.To begin with, since kicks (i.e. shots, passes, and clears) can take severalcycles to complete (Section 4.1), the agent remembers the goal of a previouslystarted kick and continues executing it. When no kick is in progress (do the �rstthat applies):{ If close to the opponent's goal and no defenders are blocking the path tothe goal (de�ned as a cone with vertex at the ball): shoot or dribble basedon the goaltender's position, the position of the closest opponent, and thedistance to the goal.{ At the other extreme, if close to the agent's own goal and there is an opponentnearby: clear the ball.{ If approaching the line of the last opponent defender: dribble the ball forwardif possible; otherwise send the ball (clear) past the defender.{ If the potential receiver is closer to the goal and has a clear shot: pass to thepotential receiver.{ If no opponents are in the direct path to the goal: dribble to the goal.

{ If fairly close to the opponent's goal and there is at most one opponent infront of the goal: shoot.{ If no opponents are in the way of one of the corner
ags: dribble towards thecorner
ag.{ If there is a potential receiver: pass.{ If it's possible to hold onto the ball without moving (at most one opponentis nearby): hold the ball.{ Otherwise: Kick the ball away (clear).6 ResultsIn order to test individual components of the CMUnited-98 team, it is best tocompile performance results for the team with and without these components aswe have done elsewhere [10]. However, competition against other, independently-created teams is useful for evaluating the system as a whole.At the RoboCup-98 competition, CMUnited-98 won all 8 of its games by acombined score of 66{0, �nishing �rst place in a �eld of 34 teams. Table 1 detailsthe game results.Opponent A�liation Score(CMU{Opp.)UU Utrecht University, The Netherlands 22 { 0TUM / TUMSA Technical University Munich, Germany 2 { 0Kasuga-Bitos II Chubu University, Japan 5 { 0Andhill'98 NEC, Japan 8 { 0ISIS Information Sciences Institute (USC), USA 12 { 0Rolling Brains Johannes Gutenberg-University Mainz, Germany 13 { 0Windmill Wanderers University of Amsterdam, The Netherlands 1 { 0AT-Humboldt'98 Humboldt University of Berlin, Germany 3 { 0TOTAL 66 { 0Table 1. The scores of CMUnited-98's games in the simulator league of RoboCup-98.CMUnited-98 won all 8 games, �nishing in 1st place out of 34 teams.From observing the games, it was apparent that the CMUnited-98 low-levelskills were superior in the �rst 6 games: CMUnited-98 agents were able to drib-ble around opponents, had many scoring opportunities, and su�ered few shotsagainst.However, in the last 2 games, the CMUnited-98 strategic formations, commu-nication, and ball-handling routines were put more to the test as the Windmill

Wanderers (3rd place) and AT-Humboldt'98 (2nd place) also had similar low-level capabilities. In these games, CMUnited-98's abilities to use set-plays toclear the ball from its defensive zone, to get past the opponents' o�sides traps,and to maintain a cohesive defensive unit became very apparent. Many of thegoals scored by CMUnited-98 were a direct result of the opponent team beingunable to clear the ball from its own end after a goal kick: a CMUnited-98 playerwould intercept the clearing pass and quickly shoot it into the goal. In particu-lar, two of the goals in the �nal game against AT-Humboldt'98 were scored inthis manner. On the other hand, the CMUnited-98 simulator team was able toclear the ball successfully from its own zone using its ability to execute set-plays,or pre-compiled multi-agent plans. Rather than kicking the ball up the middleof the �eld, one player would pass out to the sideline to a second player thatwould then clear the ball up the �eld. After a series of 3 or 4 passes, the ballwas usually safely in the other half of the �eld.Another strategic advantage that was clear throughout CMUnited-98's gameswas the players' abilities to maintain a coherent defensive unit exploiting the o�-sides rule, and conversely, its ability to get through the defense of other teams.Often, the opposing teams were unable to get anywhere near the CMUnited-98goal because of the defenders' ability to stay in front of some of the opposing for-wards, thus rendering them o�sides and prohibiting them from ever successfullyreceiving the ball.In order to deal with opposing teams that tried to use a similar technique,the CMUnited-98 forwards would kick the ball towards the o�ensive corners ofthe �eld (the \sending" skill described in Section 4.7) and then either get to theball before the defenders or intercept defenders' clearing passes. CMUnited-98scored several nice goals after such kicks to the corners.In addition to the strategic reasoning that helped the team win its �nal twogames, the �ne points of the dribbling and goaltending skills also came intoplay. Using their predictive, locally optimal skills (PLOS|see Section 4), theCMUnited-98 players were occasionally able to dribble around opponents forshots. At a crucial moment against the Windmill Wanderers, the CMUnited-98goaltender made a particularly important save: winning 1{0 near the end of thegame, a shot got past the goaltender, but it was able to turn and catch the ballbefore the ball entered the goal.7 ConclusionThe success of CMUnited-98 at RoboCup-98 was due to several technical inno-vations ranging from predictive locally optimal skills (PLOS) to strategic posi-tioning using attraction and repulsion (SPAR). Building on the innovations ofCMUnited-97, including
exible formation, a novel communication paradigm,and machine learning modules, CMUnited-98 successfully combines low-level in-dividual and high-level strategic, collaborative reasoning in a single multi-agentarchitecture.

For a more thorough understanding of the implementation details involved,the reader is encouraged to study the algorithms described here in conjunc-tion with the CMUnited-98 source code [11]. Other RoboCup researchers andmulti-agent researchers in general should be able to bene�t and build from theinnovations represented therein.References1. David Andre, Emiel Corten, Klaus Dorer, Pascal Gugenberger, Marius Jol-dos, Johan Kummeneje, Paul Arthur Navratil, Itsuki Noda, Patrick Riley, Pe-ter Stone, Romoichi Takahashi, and Travlex Yeap. Soccer server manual, ver-sion 4.0. Technical Report RoboCup-1998-001, RoboCup, 1998. At URLhttp://ci.etl.go.jp/~noda/soccer/server/Documents.html.2. Mike Bowling, Peter Stone, and Manuela Veloso. Predictive memory for an inac-cessible environment. In Proceedings of the IROS-96 Workshop on RoboCup, pages28{34, Osaka, Japan, November 1996.3. Hans-Diter Burkhard, Markus Hannebauer, and Jan Wendler. AT humboldt |development, practice and theory. In Hiroaki Kitano, editor, RoboCup-97: RobotSoccer World Cup I, pages 357{372. Springer Verlag, Berlin, 1998.4. Hiroaki Kitano, Yasuo Kuniyoshi, Itsuki Noda, Minoru Asada, Hitoshi Matsubara,and Eiichi Osawa. RoboCup: A challenge problem for AI. AI Magazine, 18(1):73{85, Spring 1997.5. Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi,Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCupsynthetic agent challenge 97. In Proceedings of the Fifteenth International JointConference on Arti�cial Intelligence, pages 24{29, San Francisco, CA, 1997. Mor-gan Kaufmann.6. Jean-Claude Latombe. Robot Motion Planning. Kluwer, 1991.7. E. Pagello, F. Montesello, A. D'Angelo, and C. Ferrari. A reactive architecturefor RoboCup competition. In Hiroaki Kitano, editor, RoboCup-97: Robot SoccerWorld Cup I, pages 434{442. Springer Verlag, Berlin, 1998.8. Peter Stone and Manuela Veloso. The CMUnited-97 simulator team. In HiroakiKitano, editor, RoboCup-97: Robot Soccer World Cup I, pages 387{397. SpringerVerlag, Berlin, 1998.9. Peter Stone and Manuela Veloso. A layered approach to learning client behaviorsin the RoboCup soccer server. Applied Arti�cial Intelligence, 12:165{188, 1998.10. Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment,and low-bandwidth communication for real-time strategic teamwork. Arti�cialIntelligence, 1999. To appear.11. Peter Stone, Manuela Veloso, and Patrick Riley. CMUnited-98 source code,1998. Accessible from http://www.cs.cmu.edu/~ pstone/RoboCup/CMUnited98-sim.html.12. Manuela Veloso, Michael Bowling, Sorin Achim, Kwun Han, and Peter Stone. TheCMUnited-98 champion small robot team. In Minoru Asada and Hiroaki Kitano,editors, RoboCup-98: Robot Soccer World Cup II. Springer Verlag, Berlin, 1999.

