
CMPack '00

Scott Lenser, James Bruce, and Manuela Veloso

Carnegie Mellon University, SCS
Pittsburgh, PA 15213-3891

fslenser,jbruce,mmvg@cs.cmu.edu

1 Introduction

This is a description of Carnegie Mellon University's entry in the Sony legged
league of RoboCup 2000. See our web page for more details [4]. The main com-
ponents of our system are: vision, localization, behaviors(including a basic world
model), and motions. The main changes for this year are: basic world model,
new behaviors/behavior architecture, walking and kicking motions. We placed
third in the competition, losing only to the �rst place team.

2 Vision

The vision system is responsible for interpreting data from the robots' primary
sensor, a camera mounted in the nose. The images are digitized are color seg-
mented in hardware using color thresholds that are learned o�ine. The low level
vision software then carries out the following steps:

{ Connect neighboring pixels of the same color class to make regions.
{ Connect nearby regions of the same color class into larger regions.
{ Calculate statistics for the regions useful for high level vision.

Nearby regions are merged when the density occupied in their bounding area
is above a threshold for that color class. The low level vision uses the CMVision
librarry which is described in more detail in [3] and is freely available under the
GPL [2]. After the low level processing is performed, the high level vision carries
out the following steps for each type of object of interest (currently these include
the ball, goals, markers, and other robots).

{ Scan lists of regions for colors that include the object of interest.
{ For each region or regions that may form the object, evaluate domain and
geometric constraints to generate a con�dence value.

{ Perform additional �ltering rules to remove false positives.
{ Take the hypothesis with the highest remaining con�dence value.
{ Transform the object from image coordinates to ego-centric body coordinates
(not yet implemented for the other robots).

We found our vision system to be generally robust to noise and highly accu-
rate in object detection and determining object locations. However, like many
vision systems it remains sensitive to lighting conditions, and requires a fair
amount of time and e�ort to calibrate.

P. Stone, T. Balch, and G. Kraetzschmar (Eds.): RoboCup 2000, LNAI 2019, pp. 623-626, 2001.
c Springer-Verlag Berlin Heidelberg 2001

3 Localization

Our localization system, Sensor Resetting Localization [6], uses a probabilistic
model of the world to estimate the robots location on the �eld. The robots lo-
cation is represented as a probability density over the possible positions and
orientations of the robot. Since the probability density is in general a very com-
plex function, we approximate the probability density by a set of sample points.
The samples are chosen such that if x% of the samples are expected to be found
in a particular area then the probability that the robot is in that area is x%.
Each sample point represents a particular location on the �eld at which the
robot might be located. Localization is the process of updating this probability
density. To make the computation tractable, we make the Markov assumption
that the robots future location depends only on its present location, the motions
executed, and the sensor readings. Updates are done in such a way that the
expected density of sample points in a region is proportional to the probability
of the robot's location being within that region. The localization system auto-
matically resets itself if it notices to high of an error. For more detail including a
probabilistic derivation of the algorithm, see the Sensor Resetting Localization
paper [6].

4 Behavior System

Our behavior system is a hierarchical behavior-based system. The system is
primarily reactive, but some behaviors have internal state to enable behavior
sequencing. The input to the system is information about the objects seen (from
the vision) and an estimate of the robots location (from the localization). The
output of the behaviors is a motion to be executed. The motion can be a type of
kick or getup to execute (discrete) or a direction to walk (continuous). The be-
havior system consists of three interconnected hierarchies for sensors, behaviors,
and control. The sensor hierarchy represents all that is known about the world,
including a basic world model that tracks objects' locations when they are out of
view. The behavior hierarchy makes all of the robot's choices. The control hier-
archy encodes everything the robot can do. Our system is similar to the system
used by the FU-Fighters small size RoboCup team [1]. We loosened the sensor
heirarchy and made behaviors responsbile for their own activation levels. This
results in reduced coupling between the behaviors/sensors and di�erent behavior
levels.

The sensor hierarchy represents the knowledge that the robot has about the
world. We divide the sensors into two categories, real sensors and virtual sensors.
Virtual sensors represent a processed version of the real sensors that includes
information that the behaviors are directly interested in. The virtual sensors
serve to aggregate information and act as a model of the world complete with
memory. Virtual sensors also avoid computing the same information twice in
separate behaviors. The sensor hierarchy has a data structure for storing the
sensor values and code to update the virtual sensors in the data structure from

624 Scott Lenser et al.

the real sensors. The data structure output by the sensor hierarchy provides the
input to the behavior hierarchy.

The behavior hierarchy and control hierarchies are tightly coupled and co-
operate to decide on the action to perform. The behavior hierarchy consists of n
behavior sets. Each behavior set represents a set of behaviors. The control hier-
archy consists of n control sets. Each control set is a data structure representing
all the actions the robot could perform. Behavior/control sets at di�erent levels
of the hierarchy operate at di�erent level of detail. A behavior set at level k
receives input from the the control set at level k + 1 and the sensor hierarchy.
The behavior set decides what action to perform and writes the decision into
the more detailed control set at level k. For example, a behavior set contains a
behavior for getting behind the ball. This behavior is activated when the control
set above indicates it would help. The behavior uses the sensors to �nd out where
the ball is and sets a goal for the next level down to run along an arc that gets
behind the ball. Each behavior calculates its own activation and a combinator
resolves con
icts to decide which behaviors are actually run. The combinator
allows multiple behaviors to be run in parallel but assures that con
icting be-
haviors are never run together. Each behavior set takes an abstract description
of the task to be performed makes it more concrete. The control hierarchy pro-
vides storage for the inputs and outputs of the levels of the behavior hierarchy.
The lowest level of the control hierarchy is simply the commands to be sent to
the motion module.

5 Motions

The motion componentallows the robot to walk, kick the ball, and get up after
falling. The behavior system requests a walking motion in the form of velocity
requests for x, y, and �, a getup routine, or a kick. The motion system deter-
mines the required angles and PID values for each of the joints to carry out the
command and executes it as soon as stability allows. A successful walking motion
must make the robot travel on the desired path direction, while ensuring that
the robot does not fall over. Also, the other motions must transition smoothly
to and from walking.

The high level motion system consists of walks with separate stepping pat-
terns (walking forward, turning left, turning right), several kicks for manipulat-
ing the ball, and four getup routines, one for each possible fall (front, back, left
side, right side). The motion system was constructed as a state machine. The
non-walking motions were speci�ed as time variant functions to determine raw
joint angles and kinematic targets for the legs.

Our walk is a quasi-static crawl gait. This gait is characterized by having 3
feet in contact with the ground at all times. Quasi-static means that ignoring
noise and momentum, the robot can stop at any point in the walk without
falling over. Our walk uses a �xed attitude of the body to prevent unwanted
oscillation of the head. We constrain feet in contact with the ground to not
move relative to the ground. We choose a path for the body to follow and the

625CMPack ’00

locations of the feet are calculated using the o�set of the contact point to the
center of the body and an inverse kinematic model. We represent the path taken
by the body using a Hermite spline [5]. These splines take the initial and target
points as parameters, as well as derivatives at each, and generate a smooth
trajectory to follow conforming to the control points/derivatives. Every time a
foot is picked up, the motion system takes the most recent target walk request
from the behavior system. It then determines the current position and velocity
of the body (simply by consulting the current spline) and plots a new spline
path from the current position/velocity to the target position/velocity one cycle
later. Thus we have fully continuous body paths and velocities regardless of
the sequence of requests by the behaviors and latency of only a single step
before beginning to execute a command. Walk speed ranged from 100mm/sec
to 0mm/sec, allowing �ne speed control. The path of the feet in the air was
represented as a Catmull-Rom spline with points chosen to ensure continuity of
horizontal velocity upon foot contact and su�cient elevation to clear the ground.

Overall we found the walk to perform signi�cantly better than other im-
plementations of the same gait at the competition, as well as allowing for a
simpli�ed software architecture thanks to high level primitives such as splines.
We demonstrated the fastest and most stable walk using the crawling gait. Fu-
ture goals include adapting our approach to other gaits such as trotting (two
feet in the air at a time), which allow much higher speeds but which require
dynamic stability.

6 Conclusion

We implemented a highly competent robot team. We plan to incorporate more
machine learning into our robots to improve performance, robustness, and de-
velopment time. We also plan to work on better knowledge of the locations of
the other robots. We'd like to thank Sony for providing the excellent robots to
work with.

References

1. S. Behnke, B. Frtschl, R. Rojas, et al. Using hierarchical dynamical systems to
control reactive behavior. In Proceedings of IJCAI-99, pages 28{33, 1999.

2. J. Bruce, T. Balch, and M. Veloso. CMVision
(http://www.coral.cs.cmu.edu/cmvision/).

3. J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image segmentation
for interactive robots. In Proceedings of IROS-2000, 2000.

4. J. Bruce, S. Lenser, and M. Veloso. CMPack '00
(http://www.cs.cmu.edu/~robosoccer/legged/).

5. J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics, Principles and

Practice. Addison-Wesley, Reading, Massachusetts, second edition, 1990.
6. S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile

robots. In Proceedings of ICRA-2000, 2000.

626 Scott Lenser et al.

