Interleaving Planning and Robot Execution
for Asynchronous User Requests

Karen Zita Haigh

khaigh@cs.cmu.edu
http://wuw.cs.cmu.edu/~khaigh

Manuela M. Veloso

mmv@cs.cmu.edu
http://www.cs.cmnu.edu/~mmv

Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract

This paper describes ROGUE, an integrated plan-
ning and executing robotic agent. ROGUE s designed
to be a roving office gopher unit, doing tasks such as
picking up & delivering mail and returning & pick-
g up library books, wn a setup where users can post
tasks for the robot to do. We have been working to-
wards the goal of building a completely autonomous
agent which can learn from its experiences and im-
prove upon its own behaviour with time. This paper
describes what we have achieved to-date: (1) a system
that can generate and execute plans for multiple inter-
acting goals which arrive asynchronously and whose
task structure is not known a priori, interrupting and
suspending tasks when necessary, and (2) a system
which can compensate for minor problems in its do-
main knowledge, monitoring execution to determine
when actions did not achieve expected results, and re-
planning to correct failures.

1 Introduction

We have been working towards the goal of building
an autonomous robot that is capable of planning and
executing high-level tasks in a dynamic environment.
To achieve this end, we have been building an inte-
grated framework, ROGUE, which combines PRODIGY,
a planning and learning system [17], with Xavier, an
autonomous robot [9]. The setup allows users to post
tasks for which PRODIGY generates appropriate plans,
delivers them to Xavier, and monitors their execution.
ROGUE acts as the task scheduler for the robot.

Xavier is a robot developed by Reid Simmons at
Carnegie Mellon [9, 13]. One of the goals of the Xavier
project 1s to have the robot move autonomously in an
office building reliably performing office tasks such as
picking up and delivering mail and computer print-
outs, returning and picking up library books, and
carrying recycling cans to the appropriate containers.
Our on-going contribution to this ultimate goal is at
the high-level reasoning of the process, allowing the
robot to efficiently handle multiple interacting goals,
and to learn from its experience. We aim at build-
ing a complete planning, executing and learning au-
tonomous robotic agent.

We have developed techniques for the robot to au-

tonomously perform many-step plans, and to appro-
priately handle asynchronous user interruptions with
new task requests. We are currently investigating
techniques that will allow the system to use experience
to improve 1ts performance and model of the world.
Currently, ROGUE has the following capabilities: (1) a
system that can generate and execute plans for multi-
ple interacting goals which arrive asynchronously and
whose task structure is not known a priori, interrupt-
ing and suspending tasks when necessary, and (2) a
system which can compensate for minor problems in
its domain knowledge, monitoring execution to deter-
mine when actions did not achieve expected results,
and replanning to correct failures.

Other researchers investigate the problem of inter-
leaving planning and execution (including [1, 4, 6, 7]).
We build upon this work and pursue our investigation
from three particular angles: that of real execution
in an autonomous agent, in addition to simulated ex-
ecution, that of challenging the robot with multiple
asynchronous user-defined interacting tasks, and that
of interspersing execution and replanning as an addi-
tional learning experience.

In this paper, we focus on presenting our current
work on the interleaving of planning and execution by
a real robot within a framework with the following
sources of incomplete information:

e the tasks requested by the users are not com-
pletely specified,

e the set of all the goals to be achieved is not known
a priort,

e the domain knowledge 1s incompletely or incor-
rectly specified, and

e the execution steps sent to the robot may not be
achieved as predicted.

The learning portions of the system is the focus of our
current work and will be the topic of future papers.
The paper is organized as follows: In Section 2 we
introduce the ROGUE architecture, our developed inte-
grated system. We illustrate the behaviour of ROGUE
for a single goal when no errors occur during execu-
tion in Section 3. We describe the behaviour of the
architecture with multiple goals and simple execution
errors in Section 4. In Section 5 we briefly present

some related work. Finally we provide a summary of
ROGUE’s current capabilities in Section 5 along with a
description of our future work to incorporate learning
methods into the system.

2 General Architecture

ROGUE' is the system built on top of PRODIGY4.0
to communicate with and to control the high-level task
planning in Xavier?. The system allows users to post
tasks for which the planner generates a plan, delivers it
to the robot, and then monitors its execution. ROGUE
is intended to be a roving office gofer unit, and will
deal with tasks such as delivering mail, picking up
printouts and returning library books.

Figure 1: Xavier the robot

Xavier is a mobile robot being developed at
CMU [9, 13] (see Figure 1). Tt is built on an RWI B24
base and includes bump sensors, a laser range finder,
sonars, a color camera and a speech board. Control,
perception and navigation planning are carried out on
two on-board Intel 80486-based machines. Xavier can
communicate with humans via an on-board lap-top
computer or via a natural language interface.

Beyond its research abilities, Xavier can au-
tonomously perform one of a number of sim-
ple tasks for users via it’s on-line WWW page:
http://www.cs.cmu.edu/~Xavier. To date, Xavier
has been operational more than 180 hours, covering
almost 60km and completing more than 90% of its
tasks.

The software controlling Xavier includes both reac-
tive and deliberative behaviours, integrated using the

!n keeping with the Xavier theme, ROGUE is named after the
“X-men” comic-book character who absorbs powers and expe-
rience from those around her. The connotation of a wandering
beggar or vagrant is also appropriate.

2We will use the term Xavier when referring to features spe-
cific to the robot, PRODIGY to refer to features specific to the
planner, and ROGUE to refer to features only seen in the com-
bination.

Task Control Architecture (TCA) [12, 14]. TCA pro-
vides facilities for scheduling and synchronizing tasks,
resource allocation, environment monitoring and ex-
ception handling. The reactive behaviours enable the
robot to handle real-time local navigation, obstacle
avoidance, and emergency situations (such as detect-
ing a bump). The deliberative behaviours include vi-
sion interpretation, maintenance of occupancy grids &
topological maps, and path planning & global naviga-
tion (an A* algorithm).

All modules and behaviours operate independently,
concurrently and in a distributed manner; they can
also be modified or added incrementally without af-
fecting existing behaviours. The clear separation be-
tween reactive and deliberative behaviours increases
system predictability by isolating different concerns:
the robot’s behaviour during normal operation is read-
ily apparent, while strategies for handling exceptions
can be individually analyzed.

PrODIGY and Xavier are linked together using the
Task Control Architecture [12, 14] as shown in Fig-
ure 2. Currently, ROGUE’s main features are (1) the
ability to receive and reason about multiple asyn-
chronous goals, suspending and interrupting actions
when necessary, and (2) the ability to reason about
and correct simple execution failures.

User R
ser Request |, Task Status
(asynchronous) Feedback ROGU E PRODIGY
User Request
Monitor

Plan Steps| | Execution User Interaction

Y

TCA
(Task Control Architecture)

[Reid Simmons]

Plan St SAY
Success/Fail

Base
(sonar,laser)

Xavier

Navigate Speech Vision

Figure 2: Rogue Architecture

2.1 Probicy

ProODIGY is a domain-independent problem solver
that serves as a testbed for machine learning re-
search [3, 17]. PRoDIGY4.0 is a nonlinear planner that
uses means-ends analysis and backward chaining to
reason about multiple goals and multiple alternative
operators to achieve the goals.

The planning reasoning cycle involves several de-
cision points, including which goal to select from the

set of pending goals, and which applicable action to
execute.

ProODIGY provides a method for creating search
control rules which reduces the number of choices at
each decision point by pruning the search space or sug-
gesting a course of action. In particular, control rules
can select, prefer or reject a particular goal or action
in a particular situation. Control rules can be used
to focus planning on particular goals and towards de-
sirable plans. Dynamic goal selection from the set of
pending goals enables the planner to interleave plans,
exploiting common subgoals and addressing issues of
resource contention.

PRODIGY maintains an internal model of the world
in which it simulates the effects of selected applica-
ble operators. Applying an operator gives the plan-
ner additional information (such as consumption of re-
sources) that might not be accurately predictable from
the domain model. PRODIGY also supports real-world
execution of its applicable operators when it is abso-
lutely necessary to know the outcome of an action; for
example, when actions have probabilistic outcomes, or
the domain model is incomplete and it is necessary to
acquire additional knowledge. During the application
phase, user-defined code is called which can map the
operator to a real-world action sequence [15]. Some
examples of the use of this feature include shorten-
ing combined planning and execution time, acquiring
necessary domain knowledge in order to continue plan-
ning (e.g. sensing the world), and executing an action
in order to know its outcome and handle any failures.

3 Base-line Behaviour

This section describes ROGUE’s underlying archi-
tecture in more detail, describing the interface for
users to create task requests, and then, through the
use of an example, describes how the planner generates
a plan to achieve the request and executes it, success-
fully making an office delivery. The features described
here were developed using the Xavier simulator and
then tested on the actual robot.

Possible Goals:

& Deieer Fan User Information: Deadline time:
- - User identification: |mitchell
& Deliver Mail
Pickup L fon: |5303

&> Pick up Fax

- Delivery Location: |5313
<> Pick up Mail

_ Deadline time: 14:33
< Pick up Printout

Deadline date: Fri Dec 1

¢ Pick up Coffee

Figure 3: User Request Interface

Any user can create and send a goal request to
ROGUE via a simple user interface, shown in Figure 3.
These requests can come in asynchronously, and in-
clude information about what item needs to be moved,
where 1t needs to be picked up, where it needs to be
delivered, and who is making the request. ROGUE is
able to identify and handle incomplete goal informa-
tion by utilizing default values and accessing various

on-line information sources (such as finger), or re-
questing them from the user.

Consider a simple problem where a single request
is made: the request is from Figure 3 where the user
mitchell would like his mail taken from room 5303 to
room 5313. Figure 4 shows the search tree generated
by PRODIGY.

n5
(has-item mitchell delivermail j
‘ n7
| deliver-item r-5313 delivermail |

nl4
robot-in-room r-5313

n8
(robot-has-item mitchell delivermail j

‘ n nl7

10
| acquire-item r-5303 mitchell delivermail | | goto-deliver-loc r-5313 |

nil
robot-in-room r-5303

nl3

| goto-pickup-loc r-5303

Solution:

<goto-pickup-loc mitchell r-5303>
<acquire-item r-5303 mitchell delivermail>
<goto-deliver-loc mitchell r-5313>
<deliver-item r-5313 mitchell delivermail>

Figure 4: Search Tree and Solution for single task problem;
goal nodes in ovals, executed actions in rectangles.

When the request arrives at the ROGUE module,
ROGUE translates it into a PRODIGY state and goal de-
scription and then spawns a PRODIGY run. PRODIGY
uses its domain knowledge to create a series of ac-
tions that will achieve the goal. When the plan-
ner has mapped out the plan with enough detail to
know its first action, it informs ROGUE, which sends
a command to Xavier who starts executing the plan.
The first action can be determined when PRODIGY
knows that the step will be useful in achieving the
goal, and will not be dis-achieved by another action.
There are four actions that need to be executed in
order to achieve the goal, namely deliver-item (node
7), acquire-item (node 10), goto-pickup-loc (node 13),
and goto-deliver-loc (node 17). The structure of the
goal tree indicates that nodes 7 and 10 should be exe-
cuted after nodes 13 and 17. Simple reasoning shows
that achieving node 17 would be pointless since the
action would be immediately undone. As a result,
ROGUE starts to execute (goto-pickup-loc). The solu-
tion shown in Figure 4 shows the complete ordering of
the executed actions.

Each of the actions described in the domain model
is mapped to a command sequence suitable for Xavier.
These commands are executed in the real-world dur-
ing the operator application phase of PRODIGY, as de-
scribed above. These sequences are manually gener-
ated but incremental in nature. They may be exe-
cuted directly by the ROGUE module (e.g. an ac-
tion like finger), or sent via the TCA interface to
the Xavier module designed to handle the command.
PRODIGY relies on a state description of the world to

<GOTO-PICKUP-LOC MITCHELL R-5303>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 2316.5d0))

...waiting...
Action NAVIGATE-TO-GOAL-ACHIEVED finished.

Verifying Location: R-5303
LOCATION-VERIFIED R-5303

<ACQUIRE-ITEM R-5303 MITCHELL DELIVERMAIL>

SENDING COMMAND (TCAEXECUTECOMMAND "C_say'" "Please place Tom Mitchell’s mail delivery on my tray.")
SENDING COMMAND (TCAEXECUTECOMMAND "C_say'" "Please indicate on my keyboard when you are finished.")

Are you finished placing Tom Mitchell’s mail delivery on my tray? (y/i(mpossible)): y
COMPLETED-ACTION (ACQUIRE-ITEM 1 "Tom Mitchell’s mail delivery")

<GOTO-DELIVER-LOC MITCHELL R-5313>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 4115.0d0))

...waiting...
Action NAVIGATE-TO-GOAL-ACHIEVED finished.

Verifying Location: R-5313
LOCATION-VERIFIED R-5313

<DELIVER-ITEM R-5313 MITCHELL DELIVERMAIL>

SENDING COMMAND (TCAEXECUTECOMMAND "C_say'" "Please take Tom Mitchell’s mail delivery from my tray.")
SENDING COMMAND (TCAEXECUTECOMMAND "C_say'" "Please indicate on my keyboard when you are finished.")

Are you finished taking Tom Mitchell’s mail delivery from my tray? (y/i(mpossible)): y
COMPLETED-ACTION (DELIVER-ITEM 1 "Tom Mitchell’s mail delivery")

Figure 5: Planner/Robot Interaction

plan. ROGUE is capable of converting Xavier’s actual
perception information into PRODIGY’s state represen-
tation, and ROGUE’s monitoring algorithm determines
which information is relevant for planning and replan-
ning. Similarly ROGUE is capable of translating plan
steps into Xavier’s actions commands.

There is a large variety of available commands, in-
cluding those to request or update current location in-
formation, to acquire images through the vision cam-
era, and to notice landmarks.

For example, the action (goto-pickup-loc room) is
mapped to the commands (1) find out the coordinates
of the room, and (2) navigate to those coordinates.
The command navigateToGoal creates a (shortest)
path from the current location to the requested loca-
tion, and then uses probabilistic reasoning to navigate
to the requested goal. The model performs reasonably
well given incomplete or incorrect metric information
about the environment and in the presence of noisy
effectors and sensors.

The command C_say sends the string to the speech
board, and responses ma be used by ROGUE while
monitoring execution (described in more detail below).

Figure 5 shows a trace of the interaction between
the planner and the robot for the plan shown in Fig-
ure 4. Each line marked SENDING COMMAND indicates
a direct command sent through the TCA interface to
one of Xavier’s modules.

The complete procedure for achieving a particular

task 1s summarized as follows:

1. Receive task request

2. Add knowledge to state model, create top-level
goal

3. Create plan

4. Send execution commands to robot, monitoring
outcome

We have described above ROGUE’s behaviour in the
face of a single goal request when no errors occur. The
sections below describe how ROGUE handles multiple
goal requests, reasoning about prioritizing and inter-
rupting actions, and also how it handles simple plan
failures.

Linking a symbolic planner to a robot executor re-
quires not only that the planner is capable generating
partial plans for execution in a continuous way, but
that the dynamic nature of the real world can be cap-
tured in the planners’ knowledge base. The planner
must continuously re-evaluate the goals to be achieved
based on current state information. ROGUE enables
this link by both mapping PRODIGY’s plan steps into
Xavier’s commands and by abstracting Xavier’s per-
ception information PRODIGY’s state information.

4 Additional Behaviours

The capabilities described in the preceding section
are sufficient to create and execute a simple plan in
an unchanging world. The real world, however, needs

Define: DK « domain knowledge
Define: G < top-level goal

At each PRODIGY interrupt point:

- request-completed <= nil

Define: PG « pending goals cache (unsolved top-level goals and their subgoals)

Let R be the list of pending unprocessed requests
For each request € R, turn request to goal:
- DK < DK U{ (needs-item request-userid request-object)
(pickup-loc request—-pickup-loc)
(deliver-loc requesi-deliver-loc) }
- G <= (and G (has-item request-userid request-object))
- PG < (and PG (has-item request-userid request-object))

Figure 6: Integrating new goal requests into the search tree.

At each PRODIGY decision point

(then select goal <goal>))

(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS
(if (and (candidate-goal <goal>)
(or (ancestor-is-top-priority-goal < goal>)
(compatible-with-top-priority-goal <goal>))))

Figure 7: Goal selection search control rule

a more flexible system that can monitor its own exe-
cution and compensate for problems and failures. In
addition, simple single-goal plans such as the one de-
scribed above are overly simplistic and do not address
the needs of the people who will be using these robotic
agents. This section describes the extensions we have
implemented to the base-line system in an attempt to
start addressing real-world issues.

4.1 Interrupts & Multiple Goals

It is very possible that while ROGUE is executing
the plan to achieve its first goal, other users may sub-
mit goal requests. ROGUE does not know a prior:
what these requests will entail. One common method
for handling these multiple goal requests is simply to
process them in a first-come-first-served manner; how-
ever this method ignores the possibility that new goals
may be more important or could be achieved oppor-
tunistically.

ROGUE has the ability to process incoming asyn-
chronous goal requests, prioritize them and identify
when different goals could be achieved opportunisti-
cally. It is able to temporarily suspend lower priority
actions, resuming them when the opportunity arises;
and it is able to successfully interleave similar requests.

When a new request comes in, ROGUE adds it to
PRODIGY’s pending goals cache and updates the do-
main model. Pseudocode for doing the full goal inte-
gration is shown in Figure 6. The important points are
that (a) the relevant information about the request is
added to PRODIGY’s domain model, and (b) the new
goal is added to the list of pending goals — the goals
that must be achieved before the planning is complete.

When PRODIGY reaches the next decision point, it
fires any relevant search control rules. Search con-

trol rules force the planner to focus its planning ef-
fort on selected or preferred goals, as described above.
Figure 7 shows ROGUE’s goal selection control rule
which forces PRODIGY to examine all of its remain-
ing unsolved goals; it is at this point when PRODIGY
first starts to reason about the newly added task re-
quest. This particular control rule selects those goals
with high priority and those goals which can be oppor-
tunistically achieved without compromising the main
high-priority goal.

The function (ancestor-is-top-priority-goal)
calculates whether the goal is a subgoal of a high pri-
ority goal. ROGUE prioritizes goals according to a sim-
ple, modifiable metric. This metric currently involves
looking at the user’s position in the department and
at the type of request: Priority = PersonRank +
TaskRank. The request also contains deadline infor-
mation and a “why” slot for additional reasoning to
be implemented in the future; this information would
allow goal priorities to change with time or situation-
dependent features.

The function (compatible-with-top-priority-
goal) allows ROGUE to identify when different goals
have similar features so that it can opportunistically
achieve lower priority goals while achieving higher pri-
ority ones. For example, if multiple people whose of-
fices are all in the same hallway asked for their mail
to be picked up and brought to them, ROGUE would
do all the requests in the same episode, rather than
only bringing the mail for the most important person.
Compatibility is currently defined by physical proxim-
ity (“on the path of”) with a fixed threshold for being
too out of the way, although other features of the do-
main could (and should) be taken into account.

The control rule feature of PRODIGY permits plans

Plan 1: Goto Plan 2: Goto
Plan 1: Acquire Plan 2: Acquire
Plan 1: Goto Plan 2: Goto
Plan 1: Deliver Plan 2: Deliver

?Compatible?

Plan 1: Goto Plan 1: Goto
Plan 1: Acquire Plan 1: Acquire
Plan 2: Goto Plan 1: Goto
Plan 2: Acquire Plan 1: Deliver
Plan 2: Goto !
Plan 2: Deliver Plan 2: Goto
Plan 1: Goto Plan 2: Acquire
Plan 1: Deliver Plan 2: Goto
Plan 2: Deliver

Figure 8: Merging Two Plans

and actions for one goal to be interrupted by another
without necessarily affecting the validity of the plan-
ning for the interrupted goals. PRODIGY’s means-
ends search engine simply suspends the planning for
the interrupted goal, plans for and achieves the new
goal, then returns to planning for the interrupted
goal. By using its domain model, PRODIGY is able
to identify whether the suspended plan has been in-
validated; if so, then it will replan the invalid portion
of the plan. PRODIGY’s means-ends search engine sup-
ports dynamic goal selection and changing objectives
by making it easy to suspend and reactivate tasks.

Figure 8 shows how two plans might be merged by
PRODIGY’s control rules. If the two plans are compat-
ible, ROGUE identifies the order which most exploits
the similarity between the two plans, and merges the
steps accordingly (orderings other than the one shown
are possible, and steps may be eliminated if appropri-
ate). If however, the two plans are not compatible,
ROGUE suspends execution of the lower priority plan
until the higher priority one is complete. When it re-
sumes execution of less important plan, it does not
re-evecute unnecessary parts. If, for example, ROGUE
had already acquired the item in question, it would
not attempt to re-acquire it; the knowledge of having
acquired the object is not forgotten.

The search tree shown in Figure 9 shows how
PRODIGY expands the two goals (has-item mitchell
delivermail) and (has-item jhm deliverfax).
The second user (jhm) is a more important person,
making a more important request. The request arrives
via the TCA message interface while Xavier is moving
towards room 5303. ROGUE examines the new request
and identifies that it is more important than the origi-
nal (current) goal. However, the current goal not only
shares a delivery point with the new goal, but also the

physical path of the original goal subsumes that of the
new goal. ROGUE decides therefore that the two goals
are compatible and that it can achieve the lower prior-
ity goal without seriously compromising the new goal.
It continues along its path to room 5303, acquires the
first object, then moves to room 5311 where it acquires
the second object, then completes the delivery of both
items to room 5313.

4.2 Monitoring Execution, Detecting
Failures & Replanning

Any action that is executed by any agent is not
guaranteed to succeed in the real world. Probabilistic
planners may increase the probability of a plan suc-
ceeding, but the domain model underlying the plan
is bound to be incompletely or incorrectly specified.
Not only is the world more complex than a model,
but 1t is also constantly changing in ways that cannot
be predicted. Therefore any agent executing in the
real world must have the ability to monitor the exe-
cution of its actions, detect when the actions fail, and
compensate for these problems.

The TCA architecture provides mechanisms for
monitoring the progress of actions. ROGUE currently
monitors the outcome of the navigateToG command.
Since the navigate module may get confused and re-
port a success even in a failure situation, ROGUE al-
ways verifies the location with a secondary test (vision
or human interaction). If ROGUE detects that in fact
the robot is not at the correct goal location, ROGUE
updates PRODIGY’s domain knowledge to reflect the
actual position, rather than the expected position.

This update has the direct effect of indicating to
PRODIGY that the execution of an action failed, and it
will attempt to find another action which can achieve
the goal. Since PRODIGY’s search algorithm is state-
based, it examines the current state before making
each decision. If the preconditions for a given desir-
able action are not true, PRODIGY must attempt to
achieve them. Therefore, when an action fails, the
actual outcome of the action is not the same as the
erpected outcome, and PRODIGY will attempt to find
another solution. The process is described in more
detail by Stone [15].

In a similar manner, PRODIGY is able to detect
when an action is no longer necessary. If an action un-
expectedly achieves some other necessary part of the
plan, then that knowledge is added to the state and
PRODIGY will not need to subgoal to achieve it. Also,
when an action accidentally disachieves the effect of a
previous action (and the change is detectable), ROGUE
deletes the relevant precondition and PRODIGY will be
forced to reachieve it.

In this manner, ROGUE is able to detect simple ex-
ecution failures and compensate for them. The inter-
leaving of planning and execution reduces the need for
replanning during the execution phase and increases
the likelihood of overall plan success. It allows the sys-
tem to adapt to a changing environment where failures
can occur.

Observing the real world allows the system to adapt
to its environment and to make intelligent and relevant
planning decisions. Observation allows the planner to

| *finish* |

n5
[has-item mitchell delivermail]

n7
I deliver-item r-5313 delivermail I

n8
[robot-has-item mitchell delivermail j

‘ n10 ‘

nl4
[robot-in-room r-5313]

nl7 ‘

n20

[has-item jhm deliverfaxj

‘ n22
Ideliver—item r-5313 deliverfax I

n23
[robot—hasritem jhm deliverfax j

n25

I acquire-item r-5303 mitchell delivermail I I goto-deliver-loc r-5313

I acquire-item r-5311 jhm deliverfax I

‘ nll
[robot-in-room r-5303

‘ nl3
I goto-pickup-loc r-5303

Solution: <goto-pickup-loc mitchell r-5303>

<acquire-item r-5303 mitchell delivermail>
executed.
<acquire-item r-5311 jhm deliverfax>

<goto-pickup-loc jhm r-5311>

<goto-deliver-loc mitchell r-5313>

<deliver-item r-5313 jhm deliverfax>
<deliver-item r-5313 mitchell delivermail>

‘ n26
[robot-in-room r-5311 j

‘ n28
I goto-pickup-loc r-5311 I

executed.

executed.
- executed.
executed.
executed.
executed.

Figure 9: Search Tree and Solution for two task problem; goal nodes in ovals, executed actions in rectangles.

update and correct its domain model when it notice
changes in the environment. For example, it can no-
tice limited resources (e.g. battery), notice external
events (e.g. doors opening/closing), or prune alterna-
tive outcomes of an operator. In these ways, obser-
vation can create opportunities for the planner and it
can also reduce the planning effort by pruning possi-
bilities. Real-world observation creates a more robust
planner that is sensitive to its environment.

5 Related Work

Following is a brief description of some of the robot
architectures most similar to ROGUE, pointing out
some of the major differences.

Shakey [8] was the first system to actually use
plans to control a real robot in tasks involving pushing
boxes. It also had a limited ability to reuse successful
plans. The robot had a simple vision system and could
identify failures and plan to correct them. Shakey
however operated in a very simple near-static world
doing very simple single-goal tasks. The range of fail-
ures that could occur were very limited, and goals were
not very challenging. There was little need for com-
plex high-level reasoning or learning.

PARETO [11], can plan to acquire information and
recognize opportunities in the environment (as can
ROGUE), but relies on powerful, perfect sensing in a
simulated world. It 1s also not clear how PARETO han-
dles action failure.

ATLANTIS [5] and rAP [4], like TCA, are archi-
tectures that enable a library of behaviours and reac-
tions to be controlled by a deliberative system. The
have been used as the underlying control mechanism

on a variety of robots, from indoor mobile robots [5]
to spacecraft robots [2]. We believe that ROGUE is the
only such system that can support asynchronous goals,
but since each of these architectures is inherently ex-
tensible, the behaviours demonstrated by ROGUE un-
der TCA could be easily transferred to one of the other
architectures.

6 Summary

In this paper we have presented ROGUE, an in-
tegrated planning and execution robot architecture.
ROGUE has the ability

to easily integrate asynchronous requests,

to prioritize goals,

to easily suspend and reactivate tasks,

to recognize compatible tasks and opportunisti-
cally achieve them,

to execute actions in the real world, integrating
new knowledge which may help planning, and

e to monitor and recover from failure.

An autonomous agent with all of these features has
clear advantages over more limited agents. Although
there are a small number of other integrated archi-
tectures which support some of these features, none
appear to support them all.

ROGUE represents a successful integration of a clas-
sical Al planner with a real mobile robot. The com-
plete planning & execution cycle for a given task can
be summarized as follows:

1. ROGUE requests a plan from PRODIGY.
2. PRODIGY passes executable steps to ROGUE.

3. ROGUE translates and sends the planning steps
to Xavier.

4. ROGUE monitors execution and through ob-
servation 1identifies goal status; failure means
that PRODIGY’s domain model is modified and
PRODIGY may backtrack or replan for decisions

As described here, ROGUE is fully implemented
and operational. The system completes all requested
tasks, running errands between offices in our build-
ing. In the period from December 1, 1995 to May 31,
1996 Xavier attempted 1571 navigation requests and
reached its intended destination in 1467 cases, where
each job required it to move 40 meters on average for
a total travel distance of over 60 kilometers.

This work is the basis for machine learning re-
search with the goal of creating an agent that can
reliably perform tasks that it 1s given. We intend
to implement more autonomous detection of action
failures and learning techniques to correct those fail-
ures. In particular, we would like to learn contin-
gency plans for different situations and when to apply
which correction behaviour. We also intend to imple-
ment learning behaviour to notice patterns in the en-
vironment; for example, how long a particular action
takes to execute, when to avoid particular locations
(e.g. crowded hallways), and when sensors tend to
fail. We would like, for example, to be able to say “At
noon I avoid the lounge”, or “My sonars always miss
this door. . . next time I'll use pure dead-reckoning from
somewhere close that I know well”, or even something
as apparently simple as “I can’t do that task given what
else I have to do.” When complete, ROGUE will learn
from real world execution experience to improve its
high-level reasoning capabilities.

ProDIGY has been successfully used as a test-
bed for machine learning research many times (e.g.
[10, 18, 16]), and this is the primary reason why
we selected 1t as the deliberative portion of ROGUE.
Xavier’s TCA architecture supports incremental be-
haviours and therefore will be a natural mechanism
for supporting these learning behaviours.

References

[1] Philip E. Agre and David Chapman. Pengi: An im-
plementation of a theory of activity. In Proceedings
of AAAI-87, pages 268-272, San Mateo, CA, 1987.
Morgan Kaufmann.

[2] R. Peter Bonasso and David Kortenkamp. Using a
layered control architecture to alleviate planning with
incomplete information. In Proceedings of the AAAIT
Spring Symposium “Planning with Incomplete Infor-
mation for Robot Problems”, pages 1-4, Stanford, CA,
March 1996. AAAI Press.

[3] Jaime G. Carbonell, Craig A. Knoblock, and Steven
Minton. PRODIGY: An integrated architecture for
planning and learning. In K. VanlLehn, editor, Ar-
chitectures for Intelligence. Erlbaum, Hillsdale, NJ,
1990. Also Available as Technical Report CMU-CS-
89-189.

[4] R. James Firby. Task networks for controlling con-
tinuous processes. In Proceedings of AIPS-94, pages
49-54, Chicago, IL, June 1994.

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

FErann Gat. Integrating planning and reacting in
a heterogeneous asynchronous architecture for con-
trolling real-world mobile robots. In Proceedings of
AAAI-92, pages 809-815, 1992.

Kristian Hammond, Timothy Converse, and Charles
Martin. Integrating planning and acting in a case-
based framework. In Proceedings of AAAI-90, pages
292-297, San Mateo, CA, 1990. Morgan Kaufmann.
Drew McDermott. Planning and acting. Cognitive
Science, 2, 1978.

Nils J. Nilsson. Shakey the robot. Technical Report
323, Al Center, SRI International, Menlo Park, CA,
1984.

Joseph O’Sullivan and Karen Zita Haigh. Xavier.
Carnegie Mellon University, Pittsburgh, PA, July
1994. Manual, Version 0.2, unpublished internal re-
port.

M. Alicia Pérez. Learning Search Control Knowl-
edge to Improve Plan Quality. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, July 1995. Available as Technical Report
CMU-CS-95-175.

Louise Margaret Pryor. Opportunities and Planning
in an Unpredictable World. PhD thesis, Northwestern
University, Evanston, Illinois, 1994. Also available as
Technical Report number 53.

Reid Simmons. Structured control for autonomous
robots. IEEFE Transactions on Robotics and Automa-
tion, 10(1), February 1994.

Reid Simmons, Rich Goodwin, Karen Zita Haigh,
Sven Koenig, and Joseph O’Sullivan. A modular ar-
chitecture for office delivery robots. Submission to
Autonomous Agents 1997, February 1997.

Reid Simmons, Long-Ji Lin, and Chris Fedor. Au-
tonomous task control for mobile robots. In Pro-
ceedings of the IEFE Symposium on Reactive Control,
Philadelphia, PA, September 1990.

Peter Stone and Manuela Veloso. User-guided inter-
leaving of planning and execution. In Proceedings
of the European Workshop on Planning, September
1995.

Manuela M. Veloso. Planning and Learning by Ana-
logical Reasoning. Springer Verlag, Berlin, Germany,
December 1994. PhD Thesis, also available as Techni-
cal Report CMU-CS-92-174, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA.
Manuela M. Veloso, Jaime Carbonell, M. Alicia Pérez,
Daniel Borrajo, Eugene Fink, and Jim Blythe. Inte-
grating planning and learning: The PRODIGY archi-
tecture. Journal of Experimental and Theoretical Ar-
tificial Intelligence, 7(1), January 1995.

Xuemei Wang. Learning by observation and practice:
An incremental approach for planning operator ac-
quisition. In Proceedings of ML-95, Tahoe City, CA,
1995.

