
Interleaving Planning and Robot Executionfor Asynchronous User RequestsKaren Zita Haighkhaigh@cs.cmu.eduhttp://www.cs.cmu.edu/�khaigh Manuela M. Velosommv@cs.cmu.eduhttp://www.cs.cmu.edu/�mmvComputer Science DepartmentCarnegie Mellon UniversityPittsburgh, PA 15213-3891AbstractThis paper describes Rogue, an integrated plan-ning and executing robotic agent. Rogue is designedto be a roving o�ce gopher unit, doing tasks such aspicking up & delivering mail and returning & pick-ing up library books, in a setup where users can posttasks for the robot to do. We have been working to-wards the goal of building a completely autonomousagent which can learn from its experiences and im-prove upon its own behaviour with time. This paperdescribes what we have achieved to-date: (1) a systemthat can generate and execute plans for multiple inter-acting goals which arrive asynchronously and whosetask structure is not known a priori, interrupting andsuspending tasks when necessary, and (2) a systemwhich can compensate for minor problems in its do-main knowledge, monitoring execution to determinewhen actions did not achieve expected results, and re-planning to correct failures.1 IntroductionWe have been working towards the goal of buildingan autonomous robot that is capable of planning andexecuting high-level tasks in a dynamic environment.To achieve this end, we have been building an inte-grated framework, Rogue, which combines prodigy,a planning and learning system [17], with Xavier, anautonomous robot [9]. The setup allows users to posttasks for which prodigy generates appropriate plans,delivers them to Xavier, and monitors their execution.Rogue acts as the task scheduler for the robot.Xavier is a robot developed by Reid Simmons atCarnegie Mellon [9, 13]. One of the goals of the Xavierproject is to have the robot move autonomously in ano�ce building reliably performing o�ce tasks such aspicking up and delivering mail and computer print-outs, returning and picking up library books, andcarrying recycling cans to the appropriate containers.Our on-going contribution to this ultimate goal is atthe high-level reasoning of the process, allowing therobot to e�ciently handle multiple interacting goals,and to learn from its experience. We aim at build-ing a complete planning, executing and learning au-tonomous robotic agent.We have developed techniques for the robot to au-

tonomously perform many-step plans, and to appro-priately handle asynchronous user interruptions withnew task requests. We are currently investigatingtechniques that will allow the system to use experienceto improve its performance and model of the world.Currently, Rogue has the following capabilities: (1) asystem that can generate and execute plans for multi-ple interacting goals which arrive asynchronously andwhose task structure is not known a priori, interrupt-ing and suspending tasks when necessary, and (2) asystem which can compensate for minor problems inits domain knowledge, monitoring execution to deter-mine when actions did not achieve expected results,and replanning to correct failures.Other researchers investigate the problem of inter-leaving planning and execution (including [1, 4, 6, 7]).We build upon this work and pursue our investigationfrom three particular angles: that of real executionin an autonomous agent, in addition to simulated ex-ecution, that of challenging the robot with multipleasynchronous user-de�ned interacting tasks, and thatof interspersing execution and replanning as an addi-tional learning experience.In this paper, we focus on presenting our currentwork on the interleaving of planning and execution bya real robot within a framework with the followingsources of incomplete information:� the tasks requested by the users are not com-pletely speci�ed,� the set of all the goals to be achieved is not knowna priori,� the domain knowledge is incompletely or incor-rectly speci�ed, and� the execution steps sent to the robot may not beachieved as predicted.The learning portions of the system is the focus of ourcurrent work and will be the topic of future papers.The paper is organized as follows: In Section 2 weintroduce the Rogue architecture, our developed inte-grated system. We illustrate the behaviour of Roguefor a single goal when no errors occur during execu-tion in Section 3. We describe the behaviour of thearchitecture with multiple goals and simple executionerrors in Section 4. In Section 5 we brie
y present

some related work. Finally we provide a summary ofRogue's current capabilities in Section 5 along with adescription of our future work to incorporate learningmethods into the system.2 General ArchitectureRogue1 is the system built on top of prodigy4.0to communicatewith and to control the high-level taskplanning in Xavier2. The system allows users to posttasks for which the planner generates a plan, delivers itto the robot, and then monitors its execution. Rogueis intended to be a roving o�ce gofer unit, and willdeal with tasks such as delivering mail, picking upprintouts and returning library books.
Figure 1: Xavier the robotXavier is a mobile robot being developed atCMU [9, 13] (see Figure 1). It is built on an RWI B24base and includes bump sensors, a laser range �nder,sonars, a color camera and a speech board. Control,perception and navigation planning are carried out ontwo on-board Intel 80486-based machines. Xavier cancommunicate with humans via an on-board lap-topcomputer or via a natural language interface.Beyond its research abilities, Xavier can au-tonomously perform one of a number of sim-ple tasks for users via it's on-line WWW page:http://www.cs.cmu.edu/�Xavier. To date, Xavierhas been operational more than 180 hours, coveringalmost 60km and completing more than 90% of itstasks.The software controlling Xavier includes both reac-tive and deliberative behaviours, integrated using the1In keepingwith the Xavier theme,Rogue is named after the\X-men" comic-book character who absorbs powers and expe-rience from those around her. The connotation of a wanderingbeggar or vagrant is also appropriate.2We will use the term Xavier when referring to features spe-ci�c to the robot, prodigy to refer to features speci�c to theplanner, and Rogue to refer to features only seen in the com-bination.

Task Control Architecture (TCA) [12, 14]. TCA pro-vides facilities for scheduling and synchronizing tasks,resource allocation, environment monitoring and ex-ception handling. The reactive behaviours enable therobot to handle real-time local navigation, obstacleavoidance, and emergency situations (such as detect-ing a bump). The deliberative behaviours include vi-sion interpretation, maintenance of occupancy grids &topological maps, and path planning & global naviga-tion (an A� algorithm).All modules and behaviours operate independently,concurrently and in a distributed manner; they canalso be modi�ed or added incrementally without af-fecting existing behaviours. The clear separation be-tween reactive and deliberative behaviours increasessystem predictability by isolating di�erent concerns:the robot's behaviour during normal operation is read-ily apparent, while strategies for handling exceptionscan be individually analyzed.Prodigy and Xavier are linked together using theTask Control Architecture [12, 14] as shown in Fig-ure 2. Currently, Rogue's main features are (1) theability to receive and reason about multiple asyn-chronous goals, suspending and interrupting actionswhen necessary, and (2) the ability to reason aboutand correct simple execution failures.
Request

Task Status

Feedback

TCA

Base

(sonar,laser)
Speech Vision

SAY

[Reid Simmons]

Navigate

User InteractionPlan Steps

Monitor

Execution

(asynchronous)

User Request
PRODIGYROGUE

Xavier

Plan Step

User Request

User Request

(Task Control Architecture)

Success/FailFigure 2: Rogue Architecture2.1 ProdigyProdigy is a domain-independent problem solverthat serves as a testbed for machine learning re-search [3, 17]. Prodigy4.0 is a nonlinear planner thatuses means-ends analysis and backward chaining toreason about multiple goals and multiple alternativeoperators to achieve the goals.The planning reasoning cycle involves several de-cision points, including which goal to select from the

set of pending goals, and which applicable action toexecute.Prodigy provides a method for creating searchcontrol rules which reduces the number of choices ateach decision point by pruning the search space or sug-gesting a course of action. In particular, control rulescan select, prefer or reject a particular goal or actionin a particular situation. Control rules can be usedto focus planning on particular goals and towards de-sirable plans. Dynamic goal selection from the set ofpending goals enables the planner to interleave plans,exploiting common subgoals and addressing issues ofresource contention.Prodigy maintains an internal model of the worldin which it simulates the e�ects of selected applica-ble operators. Applying an operator gives the plan-ner additional information (such as consumption of re-sources) that might not be accurately predictable fromthe domain model. Prodigy also supports real-worldexecution of its applicable operators when it is abso-lutely necessary to know the outcome of an action; forexample, when actions have probabilistic outcomes, orthe domain model is incomplete and it is necessary toacquire additional knowledge. During the applicationphase, user-de�ned code is called which can map theoperator to a real-world action sequence [15]. Someexamples of the use of this feature include shorten-ing combined planning and execution time, acquiringnecessary domain knowledge in order to continue plan-ning (e.g. sensing the world), and executing an actionin order to know its outcome and handle any failures.3 Base-line BehaviourThis section describes Rogue's underlying archi-tecture in more detail, describing the interface forusers to create task requests, and then, through theuse of an example, describes how the planner generatesa plan to achieve the request and executes it, success-fully making an o�ce delivery. The features describedhere were developed using the Xavier simulator andthen tested on the actual robot.
Figure 3: User Request InterfaceAny user can create and send a goal request toRogue via a simple user interface, shown in Figure 3.These requests can come in asynchronously, and in-clude information about what item needs to be moved,where it needs to be picked up, where it needs to bedelivered, and who is making the request. Rogue isable to identify and handle incomplete goal informa-tion by utilizing default values and accessing various

on-line information sources (such as finger), or re-questing them from the user.Consider a simple problem where a single requestis made: the request is from Figure 3 where the usermitchellwould like his mail taken from room 5303 toroom 5313. Figure 4 shows the search tree generatedby prodigy.
has-item mitchell delivermail

deliver-item r-5313 delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

n10

n11

n13

n17

n14n8

n7

n5

goto-deliver-loc r-5313

goto-pickup-loc r-5303Solution:<goto-pickup-loc mitchell r-5303><acquire-item r-5303 mitchell delivermail><goto-deliver-loc mitchell r-5313><deliver-item r-5313 mitchell delivermail>Figure 4: Search Tree and Solution for single task problem;goal nodes in ovals, executed actions in rectangles.When the request arrives at the Rogue module,Rogue translates it into a prodigy state and goal de-scription and then spawns a prodigy run. Prodigyuses its domain knowledge to create a series of ac-tions that will achieve the goal. When the plan-ner has mapped out the plan with enough detail toknow its �rst action, it informs Rogue, which sendsa command to Xavier who starts executing the plan.The �rst action can be determined when prodigyknows that the step will be useful in achieving thegoal, and will not be dis-achieved by another action.There are four actions that need to be executed inorder to achieve the goal, namely deliver-item (node7), acquire-item (node 10), goto-pickup-loc (node 13),and goto-deliver-loc (node 17). The structure of thegoal tree indicates that nodes 7 and 10 should be exe-cuted after nodes 13 and 17. Simple reasoning showsthat achieving node 17 would be pointless since theaction would be immediately undone. As a result,Rogue starts to execute (goto-pickup-loc). The solu-tion shown in Figure 4 shows the complete ordering ofthe executed actions.Each of the actions described in the domain modelis mapped to a command sequence suitable for Xavier.These commands are executed in the real-world dur-ing the operator application phase of prodigy, as de-scribed above. These sequences are manually gener-ated but incremental in nature. They may be exe-cuted directly by the Rogue module (e.g. an ac-tion like finger), or sent via the TCA interface tothe Xavier module designed to handle the command.prodigy relies on a state description of the world to

<GOTO-PICKUP-LOC MITCHELL R-5303>SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 2316.5d0))...waiting...Action NAVIGATE-TO-GOAL-ACHIEVED finished.Verifying Location: R-5303LOCATION-VERIFIED R-5303<ACQUIRE-ITEM R-5303 MITCHELL DELIVERMAIL>SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please place Tom Mitchell's mail delivery on my tray.")SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please indicate on my keyboard when you are finished.")Are you finished placing Tom Mitchell's mail delivery on my tray? (y/i(mpossible)): yCOMPLETED-ACTION (ACQUIRE-ITEM 1 "Tom Mitchell's mail delivery")<GOTO-DELIVER-LOC MITCHELL R-5313>SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 4115.0d0))...waiting...Action NAVIGATE-TO-GOAL-ACHIEVED finished.Verifying Location: R-5313LOCATION-VERIFIED R-5313<DELIVER-ITEM R-5313 MITCHELL DELIVERMAIL>SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please take Tom Mitchell's mail delivery from my tray.")SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please indicate on my keyboard when you are finished.")Are you finished taking Tom Mitchell's mail delivery from my tray? (y/i(mpossible)): yCOMPLETED-ACTION (DELIVER-ITEM 1 "Tom Mitchell's mail delivery")Figure 5: Planner/Robot Interactionplan. Rogue is capable of converting Xavier's actualperception information into prodigy's state represen-tation, and Rogue's monitoring algorithm determineswhich information is relevant for planning and replan-ning. Similarly Rogue is capable of translating plansteps into Xavier's actions commands.There is a large variety of available commands, in-cluding those to request or update current location in-formation, to acquire images through the vision cam-era, and to notice landmarks.For example, the action (goto-pickup-loc room) ismapped to the commands (1) �nd out the coordinatesof the room, and (2) navigate to those coordinates.The command navigateToGoal creates a (shortest)path from the current location to the requested loca-tion, and then uses probabilistic reasoning to navigateto the requested goal. The model performs reasonablywell given incomplete or incorrect metric informationabout the environment and in the presence of noisye�ectors and sensors.The command C say sends the string to the speechboard, and responses ma be used by Rogue whilemonitoring execution (described in more detail below).Figure 5 shows a trace of the interaction betweenthe planner and the robot for the plan shown in Fig-ure 4. Each line marked SENDING COMMAND indicatesa direct command sent through the TCA interface toone of Xavier's modules.The complete procedure for achieving a particular
task is summarized as follows:1. Receive task request2. Add knowledge to state model, create top-levelgoal3. Create plan4. Send execution commands to robot, monitoringoutcomeWe have described above Rogue's behaviour in theface of a single goal request when no errors occur. Thesections below describe how Rogue handles multiplegoal requests, reasoning about prioritizing and inter-rupting actions, and also how it handles simple planfailures.Linking a symbolic planner to a robot executor re-quires not only that the planner is capable generatingpartial plans for execution in a continuous way, butthat the dynamic nature of the real world can be cap-tured in the planners' knowledge base. The plannermust continuously re-evaluate the goals to be achievedbased on current state information. Rogue enablesthis link by both mapping prodigy's plan steps intoXavier's commands and by abstracting Xavier's per-ception information prodigy's state information.4 Additional BehavioursThe capabilities described in the preceding sectionare su�cient to create and execute a simple plan inan unchanging world. The real world, however, needs

De�ne: DK domain knowledgeDe�ne: G top-level goalDe�ne: PG pending goals cache (unsolved top-level goals and their subgoals)At each prodigy interrupt point:Let R be the list of pending unprocessed requestsFor each request 2 R, turn request to goal:- DK (DK [f (needs-item request-userid request-object)(pickup-loc request-pickup-loc)(deliver-loc request-deliver-loc) g- G((and G (has-item request-userid request-object))- PG((and PG (has-item request-userid request-object))- request-completed (nilFigure 6: Integrating new goal requests into the search tree.At each prodigy decision point(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS(if (and (candidate-goal <goal>)(or (ancestor-is-top-priority-goal <goal>)(compatible-with-top-priority-goal <goal>))))(then select goal <goal>))Figure 7: Goal selection search control rulea more
exible system that can monitor its own exe-cution and compensate for problems and failures. Inaddition, simple single-goal plans such as the one de-scribed above are overly simplistic and do not addressthe needs of the people who will be using these roboticagents. This section describes the extensions we haveimplemented to the base-line system in an attempt tostart addressing real-world issues.4.1 Interrupts & Multiple GoalsIt is very possible that while Rogue is executingthe plan to achieve its �rst goal, other users may sub-mit goal requests. Rogue does not know a prioriwhat these requests will entail. One common methodfor handling these multiple goal requests is simply toprocess them in a �rst-come-�rst-served manner; how-ever this method ignores the possibility that new goalsmay be more important or could be achieved oppor-tunistically.Rogue has the ability to process incoming asyn-chronous goal requests, prioritize them and identifywhen di�erent goals could be achieved opportunisti-cally. It is able to temporarily suspend lower priorityactions, resuming them when the opportunity arises;and it is able to successfully interleave similar requests.When a new request comes in, Rogue adds it toprodigy's pending goals cache and updates the do-main model. Pseudocode for doing the full goal inte-gration is shown in Figure 6. The important points arethat (a) the relevant information about the request isadded to prodigy's domain model, and (b) the newgoal is added to the list of pending goals { the goalsthat must be achieved before the planning is complete.When prodigy reaches the next decision point, it�res any relevant search control rules. Search con-

trol rules force the planner to focus its planning ef-fort on selected or preferred goals, as described above.Figure 7 shows Rogue's goal selection control rulewhich forces prodigy to examine all of its remain-ing unsolved goals; it is at this point when prodigy�rst starts to reason about the newly added task re-quest. This particular control rule selects those goalswith high priority and those goals which can be oppor-tunistically achieved without compromising the mainhigh-priority goal.The function (ancestor-is-top-priority-goal)calculates whether the goal is a subgoal of a high pri-ority goal. Rogue prioritizes goals according to a sim-ple, modi�able metric. This metric currently involveslooking at the user's position in the department andat the type of request: Priority = PersonRank +TaskRank. The request also contains deadline infor-mation and a \why" slot for additional reasoning tobe implemented in the future; this information wouldallow goal priorities to change with time or situation-dependent features.The function (compatible-with-top-priority-goal) allows Rogue to identify when di�erent goalshave similar features so that it can opportunisticallyachieve lower priority goals while achieving higher pri-ority ones. For example, if multiple people whose of-�ces are all in the same hallway asked for their mailto be picked up and brought to them, Rogue woulddo all the requests in the same episode, rather thanonly bringing the mail for the most important person.Compatibility is currently de�ned by physical proxim-ity (\on the path of") with a �xed threshold for beingtoo out of the way, although other features of the do-main could (and should) be taken into account.The control rule feature of prodigy permits plans

Plan 1: Goto

Plan 1: Acquire

Plan 2: Goto

Plan 2: Goto

Plan 2: Deliver

Plan 1: Goto

Plan 1: Deliver

Plan 2: Acquire

Plan 1: Goto

Plan 1: Acquire

Plan 1: Deliver

Plan 1: Goto

Plan 2: Goto

Plan 2: Acquire

Plan 2: Goto

Plan 2: Deliver

Plan 1: Goto

Plan 1: Acquire

Plan 1: Deliver

Plan 1: Goto

Plan 2: Goto

Plan 2: Acquire

Plan 2: Goto

Plan 2: Deliver

?

?

NoYes

?Compatible?

Figure 8: Merging Two Plansand actions for one goal to be interrupted by anotherwithout necessarily a�ecting the validity of the plan-ning for the interrupted goals. Prodigy's means-ends search engine simply suspends the planning forthe interrupted goal, plans for and achieves the newgoal, then returns to planning for the interruptedgoal. By using its domain model, prodigy is ableto identify whether the suspended plan has been in-validated; if so, then it will replan the invalid portionof the plan. prodigy's means-ends search engine sup-ports dynamic goal selection and changing objectivesby making it easy to suspend and reactivate tasks.Figure 8 shows how two plans might be merged byprodigy's control rules. If the two plans are compat-ible, Rogue identi�es the order which most exploitsthe similarity between the two plans, and merges thesteps accordingly (orderings other than the one shownare possible, and steps may be eliminated if appropri-ate). If however, the two plans are not compatible,Rogue suspends execution of the lower priority planuntil the higher priority one is complete. When it re-sumes execution of less important plan, it does notre-execute unnecessary parts. If, for example, Roguehad already acquired the item in question, it wouldnot attempt to re-acquire it; the knowledge of havingacquired the object is not forgotten.The search tree shown in Figure 9 shows howprodigy expands the two goals (has-item mitchelldelivermail) and (has-item jhm deliverfax).The second user (jhm) is a more important person,making a more important request. The request arrivesvia the TCA message interface while Xavier is movingtowards room 5303. Rogue examines the new requestand identi�es that it is more important than the origi-nal (current) goal. However, the current goal not onlyshares a delivery point with the new goal, but also the

physical path of the original goal subsumes that of thenew goal. Rogue decides therefore that the two goalsare compatible and that it can achieve the lower prior-ity goal without seriously compromising the new goal.It continues along its path to room 5303, acquires the�rst object, then moves to room 5311 where it acquiresthe second object, then completes the delivery of bothitems to room 5313.4.2 Monitoring Execution, DetectingFailures & ReplanningAny action that is executed by any agent is notguaranteed to succeed in the real world. Probabilisticplanners may increase the probability of a plan suc-ceeding, but the domain model underlying the planis bound to be incompletely or incorrectly speci�ed.Not only is the world more complex than a model,but it is also constantly changing in ways that cannotbe predicted. Therefore any agent executing in thereal world must have the ability to monitor the exe-cution of its actions, detect when the actions fail, andcompensate for these problems.The TCA architecture provides mechanisms formonitoring the progress of actions. Rogue currentlymonitors the outcome of the navigateToG command.Since the navigate module may get confused and re-port a success even in a failure situation, Rogue al-ways veri�es the location with a secondary test (visionor human interaction). If Rogue detects that in factthe robot is not at the correct goal location, Rogueupdates prodigy's domain knowledge to re
ect theactual position, rather than the expected position.This update has the direct e�ect of indicating toprodigy that the execution of an action failed, and itwill attempt to �nd another action which can achievethe goal. Since prodigy's search algorithm is state-based, it examines the current state before makingeach decision. If the preconditions for a given desir-able action are not true, prodigy must attempt toachieve them. Therefore, when an action fails, theactual outcome of the action is not the same as theexpected outcome, and prodigy will attempt to �ndanother solution. The process is described in moredetail by Stone [15].In a similar manner, prodigy is able to detectwhen an action is no longer necessary. If an action un-expectedly achieves some other necessary part of theplan, then that knowledge is added to the state andprodigy will not need to subgoal to achieve it. Also,when an action accidentally disachieves the e�ect of aprevious action (and the change is detectable), Roguedeletes the relevant precondition and prodigy will beforced to reachieve it.In this manner, Rogue is able to detect simple ex-ecution failures and compensate for them. The inter-leaving of planning and execution reduces the need forreplanning during the execution phase and increasesthe likelihood of overall plan success. It allows the sys-tem to adapt to a changing environment where failurescan occur.Observing the real world allows the system to adaptto its environment and to make intelligent and relevantplanning decisions. Observation allows the planner to

has-item mitchell delivermail

deliver-item r-5313 delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

acquire-item r-5311 jhm deliverfax

robot-has-item jhm deliverfax

robot-in-room r-5311

goto-pickup-loc r-5311

has-item jhm deliverfax

deliver-item r-5313 deliverfax

n22

n23

n20

n25

n26

n28

robot-in-room r-5313

n14

finish

n5

n10

n11

n13

n17

n14n8

n7

goto-deliver-loc r-5313

goto-pickup-loc r-5303Solution: <goto-pickup-loc mitchell r-5303> - executed.<acquire-item r-5303 mitchell delivermail> - executed.<goto-pickup-loc jhm r-5311> - executed.<acquire-item r-5311 jhm deliverfax> - executed.<goto-deliver-loc mitchell r-5313> - executed.<deliver-item r-5313 jhm deliverfax> - executed.<deliver-item r-5313 mitchell delivermail> - executed.Figure 9: Search Tree and Solution for two task problem; goal nodes in ovals, executed actions in rectangles.update and correct its domain model when it noticechanges in the environment. For example, it can no-tice limited resources (e.g. battery), notice externalevents (e.g. doors opening/closing), or prune alterna-tive outcomes of an operator. In these ways, obser-vation can create opportunities for the planner and itcan also reduce the planning e�ort by pruning possi-bilities. Real-world observation creates a more robustplanner that is sensitive to its environment.5 Related WorkFollowing is a brief description of some of the robotarchitectures most similar to Rogue, pointing outsome of the major di�erences.Shakey [8] was the �rst system to actually useplans to control a real robot in tasks involving pushingboxes. It also had a limited ability to reuse successfulplans. The robot had a simple vision system and couldidentify failures and plan to correct them. Shakeyhowever operated in a very simple near-static worlddoing very simple single-goal tasks. The range of fail-ures that could occur were very limited, and goals werenot very challenging. There was little need for com-plex high-level reasoning or learning.pareto [11], can plan to acquire information andrecognize opportunities in the environment (as canRogue), but relies on powerful, perfect sensing in asimulated world. It is also not clear how pareto han-dles action failure.ATLANTIS [5] and rap [4], like TCA, are archi-tectures that enable a library of behaviours and reac-tions to be controlled by a deliberative system. Thehave been used as the underlying control mechanism

on a variety of robots, from indoor mobile robots [5]to spacecraft robots [2]. We believe that Rogue is theonly such system that can support asynchronous goals,but since each of these architectures is inherently ex-tensible, the behaviours demonstrated by Rogue un-der TCA could be easily transferred to one of the otherarchitectures.6 SummaryIn this paper we have presented Rogue, an in-tegrated planning and execution robot architecture.Rogue has the ability� to easily integrate asynchronous requests,� to prioritize goals,� to easily suspend and reactivate tasks,� to recognize compatible tasks and opportunisti-cally achieve them,� to execute actions in the real world, integratingnew knowledge which may help planning, and� to monitor and recover from failure.An autonomous agent with all of these features hasclear advantages over more limited agents. Althoughthere are a small number of other integrated archi-tectures which support some of these features, noneappear to support them all.Rogue represents a successful integration of a clas-sical AI planner with a real mobile robot. The com-plete planning & execution cycle for a given task canbe summarized as follows:1. Rogue requests a plan from prodigy.2. prodigy passes executable steps to Rogue.

3. Rogue translates and sends the planning stepsto Xavier.4. Rogue monitors execution and through ob-servation identi�es goal status; failure meansthat prodigy's domain model is modi�ed andprodigy may backtrack or replan for decisionsAs described here, Rogue is fully implementedand operational. The system completes all requestedtasks, running errands between o�ces in our build-ing. In the period from December 1, 1995 to May 31,1996 Xavier attempted 1571 navigation requests andreached its intended destination in 1467 cases, whereeach job required it to move 40 meters on average fora total travel distance of over 60 kilometers.This work is the basis for machine learning re-search with the goal of creating an agent that canreliably perform tasks that it is given. We intendto implement more autonomous detection of actionfailures and learning techniques to correct those fail-ures. In particular, we would like to learn contin-gency plans for di�erent situations and when to applywhich correction behaviour. We also intend to imple-ment learning behaviour to notice patterns in the en-vironment; for example, how long a particular actiontakes to execute, when to avoid particular locations(e.g. crowded hallways), and when sensors tend tofail. We would like, for example, to be able to say \Atnoon I avoid the lounge", or \My sonars always missthis door: : :next time I'll use pure dead-reckoning fromsomewhere close that I know well", or even somethingas apparently simple as \I can't do that task given whatelse I have to do." When complete, Rogue will learnfrom real world execution experience to improve itshigh-level reasoning capabilities.Prodigy has been successfully used as a test-bed for machine learning research many times (e.g.[10, 18, 16]), and this is the primary reason whywe selected it as the deliberative portion of Rogue.Xavier's TCA architecture supports incremental be-haviours and therefore will be a natural mechanismfor supporting these learning behaviours.References[1] Philip E. Agre and David Chapman. Pengi: An im-plementation of a theory of activity. In Proceedingsof AAAI-87, pages 268{272, San Mateo, CA, 1987.Morgan Kaufmann.[2] R. Peter Bonasso and David Kortenkamp. Using alayered control architecture to alleviate planning withincomplete information. In Proceedings of the AAAISpring Symposium \Planning with Incomplete Infor-mation for Robot Problems", pages 1{4, Stanford, CA,March 1996. AAAI Press.[3] Jaime G. Carbonell, Craig A. Knoblock, and StevenMinton. Prodigy: An integrated architecture forplanning and learning. In K. VanLehn, editor, Ar-chitectures for Intelligence. Erlbaum, Hillsdale, NJ,1990. Also Available as Technical Report CMU-CS-89-189.[4] R. James Firby. Task networks for controlling con-tinuous processes. In Proceedings of AIPS-94, pages49{54, Chicago, IL, June 1994.

[5] Erann Gat. Integrating planning and reacting ina heterogeneous asynchronous architecture for con-trolling real-world mobile robots. In Proceedings ofAAAI-92, pages 809{815, 1992.[6] Kristian Hammond, Timothy Converse, and CharlesMartin. Integrating planning and acting in a case-based framework. In Proceedings of AAAI-90, pages292{297, San Mateo, CA, 1990. Morgan Kaufmann.[7] Drew McDermott. Planning and acting. CognitiveScience, 2, 1978.[8] Nils J. Nilsson. Shakey the robot. Technical Report323, AI Center, SRI International, Menlo Park, CA,1984.[9] Joseph O'Sullivan and Karen Zita Haigh. Xavier.Carnegie Mellon University, Pittsburgh, PA, July1994. Manual, Version 0.2, unpublished internal re-port.[10] M. Alicia P�erez. Learning Search Control Knowl-edge to Improve Plan Quality. PhD thesis, School ofComputer Science, Carnegie Mellon University, Pitts-burgh, PA, July 1995. Available as Technical ReportCMU-CS-95-175.[11] Louise Margaret Pryor. Opportunities and Planningin an UnpredictableWorld. PhD thesis, NorthwesternUniversity, Evanston, Illinois, 1994. Also available asTechnical Report number 53.[12] Reid Simmons. Structured control for autonomousrobots. IEEE Transactions on Robotics and Automa-tion, 10(1), February 1994.[13] Reid Simmons, Rich Goodwin, Karen Zita Haigh,Sven Koenig, and Joseph O'Sullivan. A modular ar-chitecture for o�ce delivery robots. Submission toAutonomous Agents 1997, February 1997.[14] Reid Simmons, Long-Ji Lin, and Chris Fedor. Au-tonomous task control for mobile robots. In Pro-ceedings of the IEEE Symposium on Reactive Control,Philadelphia, PA, September 1990.[15] Peter Stone and Manuela Veloso. User-guided inter-leaving of planning and execution. In Proceedingsof the European Workshop on Planning, September1995.[16] Manuela M. Veloso. Planning and Learning by Ana-logical Reasoning. Springer Verlag, Berlin, Germany,December 1994. PhD Thesis, also available as Techni-cal Report CMU-CS-92-174, School of Computer Sci-ence, Carnegie Mellon University, Pittsburgh, PA.[17] Manuela M. Veloso, Jaime Carbonell, M. Alicia P�erez,Daniel Borrajo, Eugene Fink, and Jim Blythe. Inte-grating planning and learning: The prodigy archi-tecture. Journal of Experimental and Theoretical Ar-ti�cial Intelligence, 7(1), January 1995.[18] Xuemei Wang. Learning by observation and practice:An incremental approach for planning operator ac-quisition. In Proceedings of ML-95, Tahoe City, CA,1995.

