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Abstract

In complex dynamic multi-robot domains, there is a set of individual robots that must
coordinate together through a centralized planner that inevitably makes assumptions
based on a model of the environment and the actions of the individual. Eventually, the
individuals may encounter failures, because the centralized planner’s models of the
states and actions are incomplete and the assumptions it makes are incorrect. In this
thesis, we address the problem of what an individual robot must do when faced with
such failures and can no longer execute the plan generated by the centralized planner.

While previous work has exclusively explored centralized approaches or decen-
tralized approaches for dynamic multi-robot problems, it lacks the combination of a
centralized approach with intelligent planning individuals, whom are often found in
decentralized approaches. In centralized approaches, the focus has been on remov-
ing the need for replanning through conditional planning and policy generations, on
hierarchical decomposition to simplify the multi-robot problem, or on predicting the
informational needs of teammates. In decentralized approaches, the focus has been
on improving auctioning algorithms, task decomposition, task assignment, and policy
generation. In this thesis, I contribute a novel intra-robot replanning algorithm for the
individual robots that autonomously handle failures with a set of pre-defined plans. To
make local replanning feasible, I introduce a rationale-driven plan that provides the
reasoning behind the choices made by the centralized planner. The intra-robot replan-
ning algorithm then has a choice of how to fix the plan, given the set pre-defined plans
and provided rationales, or of invoking the centralized planner. We can improve this
process by learning scores for the pre-defined plans that are used by the intra-robot
replanning algorithm to improve the performance of the robot.

This thesis is motivated by my previous work with individual robot replanning and
centralized planners and the inability of their individual robots to handle failures. With
autonomous underwater vehicles (AUVs), their approach to failures is to rise to the
surface of the ocean, message the centralized controller, and wait for a new plan. With
the Small-Size League soccer robots, their approach to failures is to continue, blindly
executing a failing team plan, because taking at least some course of action, even if
currently failing, can be better than inaction in an adversarial domain. Of course,
continuing to execute a failing plan is an inadvisable approach, but the individual
soccer robots lacked the necessary individual intelligence to fix the problem. These
domains share the common thread of relying on the centralized planner to provide
them with a new solution to handle failures. And, in doing so, they act inefficiently, are
slow to react, and oftentimes have a higher cost in regard to the team’s performance.

In this thesis, we describe our rationale-driven plan which details the reasoning
for the actions and parameters chosen within the plan. We then explain our intra-
robot replanning algorithm which uses the rationale-driven plan to replan locally. We
evaluate the work with multiple domains in different environments to provide evidence
of the effectiveness and generality of our approach. We then describe our method
for learning and improving the intra-robot replanning algorithm. Lastly, we discuss
possible future work that can expand upon the work in this thesis.
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Chapter 1

Introduction

“ There are plenty of teams in every sport that have great players and never win titles.
Most of the time, those players aren’t willing to sacrifice for the greater good of the
team. The funny thing is, in the end, their unwillingness to sacrifice only makes in-
dividual goals more difficult to achieve. One thing I believe to the fullest is that if
you think and achieve as a team, the individual accolades will take care of themselves.
Talent wins games, but teamwork and intelligence wins championships.

~Michael Jordan, former professional basketball player [Jordan, 1994, pg. 20-24] ”
Each member of a team must willingly sacrifice for the welfare of the team, using teamwork,

but they also need to intelligently contribute to the team, using intelligence. Balancing teamwork
with motivated intelligent players is the key to winning championships, and championships are
a microcosm for human intelligent behavior: coordination, communication, dynamic movement,
adversarial, reacting, planning, replanning, and learning. Of course, one thesis can only tackle a
small portion of such a strong artificial intelligence (AI) problem, i.e., a general human intelligence
problem.

In this thesis, we focus on the individual robots and their ability to replan locally, quickly, and
proactively towards achieving team goals, while being instructed by some centralized team planner.
The centralized team planner wants the team to be successful in achieving the team goals, and to
do so, it generates a plan for each individual robot that it considers to be achievable. However,
the models used to generate such a plan are often incomplete and inaccurate. Given imperfect
models, the centralized planner creates a plan that oftentimes does not hold valid throughout the
entire execution of the plan. Often, a failure occurs at the individual level, leaving the individual
robot with a frequently overlooked choice of how to handle such a failure.

In the literature, the standard approach to how is to have the robot wait for a new plan or
perform a standard set of actions to keep the robot safe, e.g., an autonomous underwater vehicle
(AUV) surfaces and signals for help, a Mars rover stops and waits while calling Earth, or a soccer
robot continues executing until a new plan is received. This approach has the implicit assumption
that the environment will not change for the worse while the robot is waiting for a new plan.
However, if we remove that assumption and consider environments that continue to change, making
the situation worse for the robot, we must consider the consequences of how the individual robot
handles failures. Given the possibility of such an adversarial environment and the time delay

1



between the robot and the centralized planner, an intelligent robot has a choice in the face of a
failure: blindly follow the provided plan, stop and wait for a new plan, or as this thesis introduces,
replan locally to handle the failure and then continue with the previously provided plan. In our
work, we consider replanning as the robot selecting from a set of pre-defined plans (policies) that
can be used to handle some failure case, where it is often a many-to-one mapping of pre-defined
plans to failure. We are investigating the choices of the individual robot beyond the provided
instructions of the provided plan while remaining true to the centralized planner’s mission and
goals.

Our approach is to take the benefits of centralized team planning – tightly coordinated, global
goal-oriented, and predetermined joint actions – and combine them with the benefits of intelli-
gent individuals – locally reactive, adaptable, and computationally simpler. The centralized team
planning approaches gather global information and produce plans that can be tightly coordinated
and globally optimal, if feasible. However, the individual robots often lack the intelligence and/or
independence to handle local dynamic changes without waiting for the centralized approach. Con-
versely, decentralized approaches rely on the intelligence of the individuals to reduce computa-
tion and to find locally feasible (if not locally optimal) solutions. However, the decentralized ap-
proaches often lack the agility to produce tightly coordinated plans thereby lacking many benefits
of centralized team planning. In many ways, decentralized methods are full of talented players but
those players struggle to develop the necessary sacrificing teamwork. Our approach is to combine
a centralized planner with intelligent robots that can choose how and when to proactively replan
locally, if the situation requires the robot to do so.

In our experience, replanning is inevitable. Current methods of modeling complex dynamic
domains are imperfect and simplified due to the complexity of such domains. The centralized
planner’s ability to generate a reliable multi-robot plan is hampered by imperfect models and the
problem is only further compounded by the multi-robot dimensionality. The consequences appear
when the individual robot executes its plan and there is a mismatch between the modeled state
and the current executed state, invalidating conditions in the plan provided by the centralized plan-
ner. Furthermore, in removing the assumption of a safe environment, we should assume that the
environment may get worse for the individual robot if it does nothing proactive. Therefore, replan-
ning locally is inevitable if we want to have reliable performance in our robot teams using current
methods of modeling complex dynamic domains.

The challenge for the individual robot is to remain compliant with the provided plan, or more
generally with the reasoning of the centralized planner. The centralized planner makes many
choices during the process of generating the team plan and in general has some reason for se-
lecting the actions and their parameters within the plan. Therefore, our approach adds the cen-
tralized planner’s reasoning into the plan, and ultimately provides that reasoning to the individual
robots executing the plan. The replanning algorithm we introduce uses the centralized planner’s
reasoning while replanning locally to ensure that the individual robot is not counterproductive to
the objectives of the centralized planner.
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1.1 Thesis Question
This thesis seeks to answer the question,

How can an individual robot, within a centralized controlled team, locally han-
dle failures and changes in dynamic environments while remaining compliant to the
reasoning of the centralized controller?

The individual robot is the fundamental unit of any team and ultimately, the individual robot con-
tends with failures and unforeseen changes in the environments caused in part by the complexity
of modeling the dynamics of the robot and environment. We argue that many such failures can
be solved locally by an individual robot, i.e., without the intervention of the centralized controller,
and doing so improves the overall performance of the team.

The challenge for the individual robot is to remain compliant with the provided plan, but more
generally with the reasoning of the centralized controller. The centralized controller has its own
models and reasons for choosing the action within the plan. And, in order for the individual robot
to improve the performance of the team, the actions chosen by the individual robot must not be
counterproductive to the objectives of the centralized controller.

1.2 Approach
Our approach in this thesis involves individual robots proactively replanning, i.e., selecting an
alternative plan from a set of pre-defined plans, given they are already provided with an informative
plan, a rationale-driven plan. The approach consists of attaching the centralized planner’s rationale,
i.e., the constraints and reasoning used by the centralized planner in selecting the actions for each
individual robot, to the team plan to generate the rationale-driven plan. This enables the individual
robots to replan locally when there are changes in the environment that result in a plan failure, while
remaining compliant with the centralized planner’s objectives. The individual robots monitor the
execution of their rationale-driven plan and proactively choose how and when to replan locally
and when to ask for a new plan from the centralized planner. Failures come in many different
forms and as such there are often many different methods that can be used to handle each failure,
a many-to-one mapping. During the execution of the rationale-driven plan, the individual robot
chooses which pre-defined plan to use to re-enable the failing rationale or condition(s) of the plan.
Learning helps inform the individual robots to make better choices by learning the most effective
pre-defined plan given the current state of the environment, thereby providing the individual robot
with the knowledge of when to use a particular pre-defined plan.

1.2.1 Rationale-Driven Plan
In order to provide the individual robots with information to enable local replanning, we introduce
the centralized planner’s rationale in the plan representation. The rationales represent the reasoning
behind the choices of the centralized planner. Rationales are preconditions, effects, goals, sub-
goals, constraints, or any choice made by the centralized planner that reduces the search space
during the planning process and ultimately produces the final plan. In other words, the rationales
we introduce are the model’s constraints on the actions of the robot and on the environment, are
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the decisions (and assumptions) made by the centralized planner, and are any external constraints
placed on the planning process, e.g., for efficiency, human-user preference, or safety. In general,
the rationale that the centralized planner uses during the process of creating the final plan remains
valid during the execution of the final plan.

1.2.2 Intra-Robot Replanning
Ultimately, we are investigating the individual robot’s role in replanning locally while being in-
structed by some centralized planner. However, the complex dynamic domains that our robots
operate in make replanning, similar to planning, a challenging pursuit. There are many ways to
handle a failure for the single robot within a team:

• Arguably the least effective method is the blind executor, where the robot continues execut-
ing its plan as if nothing has changed in the environment. This method can lead the robot
to continuously attempt an infeasible action. As a counterpoint, in adversarial domains like
robot soccer, blindly executing the plan might be a good option if the centralized planner
cannot generate an alternative plan, e.g., continuing an attempt to kick the ball into the goal,
that is now blocked, can be better than stopping and holding the ball until the centralized
planner generates a new plan.

• The robot waits for the centralized planner to generate a new plan. This is often a very safe
approach in many domains, but this assumes the environment does not continue to worsen,
e.g, in robot soccer, the opposing robot gets closer to stealing the ball as the robot waits.
This assumption is unrealistic and waiting can often be detrimental, therefore we do not
make this assumption. Furthermore, this can take an extensive amount of communication
time in certain domains, e.g., environments with satellite communication like ocean frontier
tracking or space exploration.

• Our approach, where the robot chooses to replan locally to fix the local failures and attempts
to reachieve the failed rationale. This provides a more proactive approach to handling prob-
lems for the individual in adversarial environments.

We assume the robot has multiple methods (replan policies) that can enable rationales should they
change and make the current plan infeasible. An example rationale is that a particular path is
chosen for a robot to take because it is clear and becomes false if the path is not clear during
execution. A few examples of replan policies would be to clean the path to make it clear again,
find another path to avoid the unclear path, if such an action is applicable, or the fall-back replan
policy of informing the centralized planner that the path is no longer clear and the current plan is
invalid. The question we tackle in this thesis is how does the robot choose what replan policy to
execute given a state of the world and a rationale-driven plan. The provided rationales enable the
robot to choose what replan policies should be used to re-enable a failed rationale. The individual
robot then executes one of these replan policies and attempts to fix the failure and continue with
the plan provided by the centralized planner. In picking one policy from the applicable ones, we
sort them based on some pre-defined ordering or score. Learning a score, rather than using a pre-
defined ordering, can be more beneficial when trying to optimize the selection of one replan policy
from the applicable ones.
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1.2.3 Learning
The issue of how to choose what replan policy to use in complex dynamic domains also includes
when to pick a certain replan policy to handle the failure. There are oftentimes multiple policies
that can handle a particular failure or re-enable a rationale because there are often multiple ways of
handling a situation. So assuming there are multiple choices, when does the robot select a particular
replan policy? Learning provides the individual robot with an opportunity to gather experience
about the different replan policies and over time, learn to pick the best one that optimizes some
metric or score.

Our method takes some information about the environment state and produces a score for
each replanning policy. The score depends on the metric that we are trying to optimize for in
the environment and the score aligns with the objective we are attempting to improve through
replanning. For example, we may want to learn the probability (the metric) that a policy will
succeed to improve the success rate (the objective) of the individual or we may want to learn the
true cost (the metric) of the replan policy to reduce the total cost (the objective) of replanning. For
our method, we use neural networks as our representation of the state to score function. The inputs
are a subset of the state variables of the individual robot’s environment. The output is the number
representing a score for a given replanning policy for that particular state. We train the neural
networks using historical data of when the robot executed a particular replan policy. Therefore,
each individual robot has one neural network for each replan policy that produces a number, or
score, based on the current environment.

1.3 Contributions
The key contributions of this thesis are as follows:

• Formalize the rationale-driven plan that includes information on how the actions of the plan
are selected, constrained, or processed by the centralized planner, i.e, the reasoning of why
the centralized planner chooses the particular actions and their associated parameters within
the rationale-driven plan.

• Introduce algorithms for generating the rationale-driven plan.

• Introduce a novel intra-robot replanning algorithm that:

– Determines the rationales of the plan that are no longer valid,

– Determines the replan policies that are capable of repairing the rationales that are no
longer valid,

– Sorts the applicable replan policies according to some predetermined ordering or by a
learned score for each replan policy,

– Executes one by one the sorted replan policies until the rationale becomes valid or a
new plan is requested from the centralized planner.

• Demonstrates the benefit of learning value functions for each replan policy based on the state
of the environment in order to improve the sorting of the replan policies to further improve
the performance of replanning locally.
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• Formalize domains that use centralized planning and intra-robot planning to handle the dy-
namic, perhaps adversarial, nature of the environment.

• Evaluate intra-robot replanning in different dynamic domains showing improvement over a
traditional purely centralized planner approach. These domains include robot soccer, au-
tonomous underwater vehicles, and a formal planning description domain.

1.4 Thesis Outline
Section 2.6 provides a quick overview of the chapters in this thesis. For a more detailed outline,
Chapter 2 provides a running example that breaks down the core elements of this thesis. The
example provides a comprehensive understanding of the different problems being addressed in
this thesis, and how the different chapters combine together in order to tackle the problem of intra-
robot replanning within a centralized controlled multi-robot team.
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Chapter 2

A Running Example: A Guide to the Thesis

This chapter runs through an example domain and highlights the key issues within this thesis. The
example breaks down the problem into the different elements that were briefly discussed in the
introduction chapter. This thesis involves different aspects of centralized planning, replanning,
and individual adaptation that are needed to tackle the overall challenge of intra-robot replanning,
and the running example illustrated in this chapter provides a primary example of the problem,
how it was handled, and how the simpler solutions can be generalized to the methods provided in
this thesis. Lastly, we summarize how each part of this example relates to specific parts of this
thesis and how the key ideas implemented into this example problem are generalized to handle
similar problems.

2.1 Domain Description and Chapter Outline

In this section, we describe the robot soccer domain used in our example. The RoboCup Small-
Size League (SSL) is a multi-robot domain consisting of teams of six robots that play soccer in
a highly dynamic and adversarial environment. Overhead cameras track the positions of the ball
and each robot on the field, which are fed into a centralized computer shared by both teams, see
Figure 2.1. The shared vision system referred to as SSL vision also detects and provides the field
markers such as the half line, goal line, and goal box to each team [Zickler et al., 2009]. Each
team must autonomously coordinate their robots in real time over radio waves, with the ultimate
goal of manipulating the ball and scoring more goals than the opposing team to win. Both team
coordination and individual robot skills are important aspects of this domain. In this running
example, we focus on centralized planning and individual robot execution using opponent-aware
ball-manipulation individual skills.

To plan tractably in a domain as complex and time-sensitive as robot soccer, one can separate
the team planning aspect of the problem, e.g., to whom and where the robot controlling the ball
should pass, from the execution of the plan, e.g., how to pass/move the ball to the chosen teammate
[Browning et al., 2005]. This example focuses on the division of work between team planning and
individual robot execution. We specifically address the problem of a robot that is tasked with
moving the ball to a specific target location under opponent pressures, i.e., opponents blocking
or attempting to steal the ball from the assigned robot. This task and location is assumed to be
provided by a centralized team planner, but the robot has the opportunity to evaluate different
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Figure 2.1: The flow of data from cameras to a centralized computer that controls the robots by
radio waves [Tucker, 2010].

Figure 2.2: One of CMDragon’s robots, with a ball touching its dribbler bar (horizontal black
cylinder). The dribbling bar can be spun to put backspin on the ball for semi-control. Designed
and built by Michael Licitra.

methods of achieving its task of moving the ball, given its ball-manipulation skills.
To manipulate the ball, most teams in SSL have converged to similar mechanisms: a kicker to

impart momentum on the ball, and a dribbler bar to dribble the ball, see Figure 2.2. Their ball-
manipulation skills thus depend on these mechanisms, and the optimal skill depends on the state
of the opponents. Kicking the ball directly to its target is a highly accurate method of moving the
ball, provided no opponents are nearby to steal the ball before the kick or to intercept it before
it reaches its destination. Alternatively, the robot can dribble the ball to a better location before
kicking, which is less reliable in the absence of opponents, due to the risk of losing the ball while
dribbling, but may be better than directly kicking it if there are opponents nearby.

In this running example, we illustrate the effects of different skills by using the mechanisms
above in complementary ways to create opponent-aware ball-manipulation plans. First, we specify
four macro-skills that the robot can take: align to shoot the ball, align to shoot using the dribbler,
move the ball to a more beneficial location using the dribbler, and kick the ball. We define in detail
the algorithms and physical limitations of these skills. Then, we use a skill decision algorithm to
select among these skills depending on the state of the opponents.

We then provide evidence of the efficacy of our approach using two methods: statistics gathered
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from the RoboCup 2015 competition, and in-lab experiments. The RoboCup statistics provide
evidence of the effectiveness of the approach in real competitive games. To collect experimental
data in a more controlled setup, we run repeated experiments of various soccer scenarios that
illustrate the advantages of each of the defined skills. These experiments show that the various
skills are successful in different scenarios, which supports the need for an opponent-aware decision
process among the skills, as well as within each skill. Overall, this work highlights the larger
picture that intra-robot replanning can improve team performance.

2.2 Problem Description

In the general robot soccer problem, each robot in the team must be able to effectively perform the
individual skills selected by the centralized team planner. In this chapter’s example, we assume
that a robot ρ at location l ρ, currently in possession of the ball, must move the ball from its current
location lb to a target location lt , chosen by a separate team planner [Mendoza et al., 2016]. Thus,
the robot needs to decide how to best move the ball to lt .

Our robots can manipulate the ball via two mechanisms: (i) a kicker enables the robots to
impart momentum on the ball and thus perform shots or passes, and (ii) a dribbler bar enables
the robots to impart backspin on the ball, and thus drive while maintaining contact with the ball.
Kicking the ball enables the robots to move the ball quickly, but without protecting it. Dribbling
the ball enables them to move the ball while guarding it; however, this method of moving the ball
is slower, and it sometimes fails due to the robot losing control of the ball.

Due to the hardware design of the robots, the robot must have the ball immediately in front of
it to be able to dribble it or kick it, i.e., the robot must face in direction φ = (lb − l ρ), and be at
a distance of approximately rρ + rb from the ball, where rρ and rb are the radius of the robot and
ball, respectively. Furthermore, the robots are only capable of kicking in the forward direction φ.
Thus, to execute a pass or a shot, the robot must be facing both the ball and the target location lt .

To intelligently decide how to move the ball to lt , the robot must know (i) how to use its dribbler
and kicker effectively, and (ii) how to evaluate the probability of success of different ways of using
them. The use of the kicker and evaluating how likely it is for a pass or a shot to be successful has
been researched previously [Biswas et al., 2014], and we use similar techniques in our example.
The following chapter focuses on our approach to using the dribbling bar effectively and how to
best choose among different dribbling and kicking skills.

2.3 Rationales: Possession and Alignment

In this section, we present the rationales used in our running example. Robot, ρ, has two conflicting
objectives when in possession of the ball: aligning with the ball towards its target (alignment), and
maintaining possession of the ball from the opponents (possession). These are the rationale of the
current problem we are considering. In the previous CMDragon team, the focus was purely on
alignment which we define as

A =
φ

|φ | ·
(lt − l ρ)
| lt − l ρ | < εa ∧ | lb − l ρ | < εd (2.1)
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such that it is aligned with the target angle by less than cos−1 (εa) and close enough to the ball
within some εd [Biswas et al., 2015].

However, opponents introduce a threat that removes any guarantee on possession, and, by only
considering alignment, the ball is often stolen. This failure to maintain possession can be attributed
to two factors: the arc travel time of ρ and the opponent’s proximity to the ball. Figure 2.3 demon-
strates where the arc distance to alignment can take longer than the opponent’s distance. In our
simplified example, the opponent is very close in proximity to ρ and has an easy opportunity to
gain possession of the ball by heading directly to it.

dT

dρ

φ

ρ ρ2T

Figure 2.3: ρ drives to a position near the
ball that aligns to pass to ρ2 while T drives
directly to take the ball.

Mexit

dT
dρ

Menter

ρ T ρ2

Figure 2.4: Variables used to determine if ρ
should drive directly to the ball since T is
threatening to take possession.

We define the objective of possession by describing dρ and dT as our robot’s and the closest
opponent robot’s distance to the ball respectively, Menter as a proportional gain added to dρ, and
Mexit as a constant distance from the ball. Shown in Figure 2.4, a possession threat (P) is then
defined to be true if

P = dρ + (dρ ∗ Menter ) > dT ∨ dT < Mexit (2.2)

Our approach maintains possession before considering alignment. If there is a possession threat
then ρ drives directly to the ball and dribbles the ball. ρ is free to align itself if there is no threat.

These two rationales are constraining the action of kicking the ball to the new location. They
are rationales used by the centralized planner in deciding the actions of the individual robot, and the
centralized planner assumes that they remain valid during the execution of the plan. Considering
the example again, we are providing these two specific rationale to the individual robot which
is therefore acting as our rationale-driven plan in this example. In order for the rationale-driven
plan to be useful, the individual robot needs to have methods that can fix the plan if a rationale
becomes invalid during the execution of the plan. In the robot soccer domain, the rationale often
become invalid because of the adversarial nature of the game as the opposing team constantly
regains control of the ball through stealing or intercepting it.

2.4 Individual Robot Skills for Intra-Robot Replanning
This section covers the opponent-aware ball manipulation skills that are used for replanning. Con-
sidering possession and alignment as we defined them, we describe the Skill Decision Algorithm,
which is an opponent-aware algorithm that implements the skills in an intelligent way that main-
tains ball possession. Lastly, we describe two dribbling skills used in the Skill Decision Algorithm.
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2.4.1 Skill Decision Algorithm for Individual Skills
Based on the robot’s manipulation mechanisms, we create four skills that can be used to move the
ball to its target:

kick (K): Kicks the ball to lt . This is the quickest method of moving the ball to the target.

align-non-dribbling (A¬D): Aligns behind the ball by moving to the location lb+
(lb−l t )rρ
| lb−l t | , where

rρ is the radius of the robot. Shown in Figure 2.5.

dribbling-rotate (DR): Dribbles the ball by approaching the closest location lb +
(lρ−lb )rρ
| lρ−lb | while

facing the ball. It then quickly rotates to align to lt . Shown in Figure 2.6.

dribbling-move (DM): Dribbles the ball by approaching it directly, and then moves the ball by
pushing it toward lt , while avoiding obstacles. Shown in Figure 2.7.

ρ
T ρ2

lt

ρ
T ρ2

lt
ρ T ρ2

lt

Figure 2.5: Align-non-dribbling: Drives around the ball (orange dot) on the dashed circle’s
perimeter to align to pass to target, lt (black dot).

ρ T
ρ2

lt
ρ

T
ρ2

lt
ρ

T
ρ2

lt

Figure 2.6: Dribbling-rotate: Dribbles the ball (orange dot), and pushes the ball along one of the
black lines to align to pass to target, lt (black dot).

ρ T ρ2

P1 P2
P3

lt
ρ T ρ2

P1

P2
lt ρ

T ρ2

P1

lt

Figure 2.7: Dribbling-move: Dribbles the ball (orange dot) and pushes it along the path (black
line) to lt while avoiding obstacles such as the blue opposing robot, T .
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Algorithm 2.1 Skill Decision Algorithm. Inputs: Team goal success probability, E(lt ), aligned
with ball and target, A, and possession threat, P. Output: Skill.

1: function SDA(E(lt ), A, P)
2: if E(lt ) <= δ then # Low success probability
3: s = DM # Move the ball to target location
4: else # Higher success probability
5: if A then # Checking alignment
6: s = K # Kick if aligned
7: else
8: if P then # Check if an opponent is near
9: s = DR # Dribble the ball before an opponent steals it

10: else
11: s = A¬D # We have time to align nicely
12: end if
13: end if
14: end if
15: return s # Skill to execute
16: end function

The Skill Decision Algorithm (SDA), used by ρ at each time step, is shown in Algorithm 2.1.
The team-goal’s evaluation, E(lt ), is determined by multiple factors including: open angle, oppo-
nent interception time, and pass/shoot distance, which combine to create a probability of succeed-
ing [Biswas et al., 2014]. Line 2 shows that if E(lt ) is less than or equal to a threshold δ, then the
skill DM is chosen to improve the current state, i.e., to improve the E(lt ). Otherwise, if E(lt ) is
greater than δ then SDA checks alignment, A, with lt , line 5. If A is true, then SDA kicks the ball
to lt . Otherwise, SDA checks if there is a possession threat, P, since aligning might lose the ball,
line 8. If P is true, then SDA uses the skill DR to grab the ball, protecting it, while still quickly
aligning itself to kick to lt . Otherwise, SDA uses the more robust A¬D skill to align itself around
the ball. Lastly, the skill selected for execution is returned on line 15.

The task of the SDA is to execute a particular skill based on the current state of the rationales
provided by the centralized planner. This implementation is limited to this particular domain, but
the key elements of the algorithm can be generalized. First, SDA determines the rationales that are
failing or are invalid, which happens through a if/then tree, or decision tree. Generalizing, the first
task is to check all the rationales and determine which ones are currently invalid and store them in
a list. Next, SDA determines what skill to execute by again relying on the tree structure to decide
the skill. This can be generalized by determining which skills can fix certain invalid rationale and
generating a new list of possible skills to execute to fix the plan. The list of skills would then
need to be sorted based on some ordering, which would generalize the SDA’s method of sorting
using a tree structure. However, the new generalized ordering method could change based on the
function used to sort the skills while the SDA’s tree structure in this example is static. Lastly, the
generalized method would return the first skill in the ordered list to be executed. Next, we discuss
two of the skills used in SDA, which are representative of the replan policies used by the intra-robot
replanning algorithm.
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2.4.2 Dribbling-Rotate
DR’s priority is to align to lt as quickly as possible, see previously described Figure 2.6. DR
dribbles the ball while maintaining an inward force to compensate for the centrifugal forces of the
ball in order to maintain control as shown in Figure 2.8. It faces in the direction φ that provides the
necessary centripetal force to maintain the ball on the dribbler of the robot: facing slightly inwards
while turning provides a component of the normal force from the robot that always points towards
the center of the circumference. Given the robot drives forward with speed s while gradually
changing its orientation with speed ω, forming a circle of radius R, the constraint s = ωR holds in
this case. The necessary angle offset φ can be obtained analytically by noticing that all the forces
in Figure 2.8 need to cancel out in the rotating reference frame. Therefore, we obtain the pair of
equations:

| f N | sin φ = | f C |
| f N | cos φ = | f F | (2.3)

Then, given the acceleration of gravity g, the coefficient of friction of the carpet under the robots
µ, and the mass of the ball m (which cancels out in the end), we obtain:

| f N | cos φ = mω2R
| f N | sin φ = µmg (2.4)

Solving these equations for φ gives the result for the desired heading:

φ = tan−1(
ω2R
µg

) (2.5)

We estimate µ by starting from measurements of when the robot kicks the ball. Then we locally
optimize to the value that gives the best dribbling performance.

f N

f F

f CR

φ

Figure 2.8: Robot dribbling the ball while facing slightly inwards. There exists an angle φ for
which the forces are balanced.

2.4.3 Dribbling-Move
DM’s priority is to keep possession while driving towards lt and avoiding all opponents and team-
mates, see previously described Figure 2.7. The priority of alignment naturally occurs as ρ drives

13



Algorithm 2.2 Dribbling-Move. Inputs: State of the world, W , robot, R, ball, B, and target, lt .
Output: Location and angle.

1: function Dribbling − Move(W , R, B, lt)
2: Rb = Bloc − Rloc
3: B f ront = Rb.x > 0
4: Bclose = Rb.x < MaxRobotRadius + (2 ∗ BallRadius)
5: Bondribbler = |Rb.y | ≤ DribberWidth
6: Blost = ¬(B f ront ∨ Bclose ∨ Bondribbler )
7: {P1, P2, ..., lt } = RRT (lt,W )
8: T = TurningT hreat(W )
9: if Blost then

10: {P1, P2, . . . , lt } = RRT (B,W )
11: else if |Rangle − P1

angle | > α ∨ |Rloc − P1 | < Dmin then
12: θ = P1

angle
13: if T then
14: θ = P1

angle + 180
◦

15: end if
16: return {Rloc, θ}
17: end if
18: θ = Rangle + (Rangle − P1

angle) ∗ γ
19: return {P1, θ}
20: end function

toward lt as shown in Figure 2.7. In Algorithm 2.2, DM determines if ρ has the ball by checking:
(i) if the ball is in front of ρ, B f ront , (ii) if the ball is close to ρ, Bclose, and (iii) if the ball is
located somewhere on ρ’s dribbler, Bondribbler . If ρ loses the ball then DM drives directly to the
ball to regain possession. The path used to drive to lt is generated by a Rapidly-exploring Random
Tree (RRT) where the opponents and teammates are obstacles, as defined in [Lavalle et al., 2000].
The path is made of multiple intermediate locations, (P1, P2, ..., Pn−1, lt ). After any point Pn, DM
is always slightly turning ρ’s forward direction towards the next point Pn+1 by some empirically
tuned γ. This maintains control of the ball while dribbling and moving. If the turning angle goes
beyond a threshold, α, then DM stops and rotates in place with the ball. α was empirically tuned
by testing the limits of turning before the dribbler lost the ball (α = 40◦ for our experiments). If
there is a turning threat such that an opponent, in close proximity, in the direction ρ is turning,
then it turns in the opposite direction to protect the ball from being stolen [Mendoza et al., 2016].
DM is complete once the ball arrives at lt .

2.4.4 Replan Policies

The ball-manipulation skills previously described are specific replan policies used to fix a certain
rationale in the plan. They are very domain specific as they require some understanding of the
possible failures of the rationales provided by the centralized planner and require a solution that
would be feasible for the individual robot to execute within the current environment. In this thesis,
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we describe many different replan policies for the different domains we describe in later chapters.
They work in very similar ways to the skills we describe in this example. The replan policies
take a set of inputs from the state and then execute a plan that attempts to fix one or more invalid
rationales. Importantly, there may be replan policies that handle the same invalid rationale creating
a choice for the individual robot (e.g., a robot not aligned to its desired pass location has a choice
of DM , DR, or A¬D). In general, the replan policies attempt to fix the plan, by enabling the
invalid rationale, and they have to comply with the other rationales, or constraints, provided by the
centralized planner.

2.5 Experimental Evaluation

In this section, we detail multiple experimental evaluations of the SDA and the dribbling skills.
These evaluations provide experimental evidence for the effectiveness and usefulness of individ-
ual robots having the ability to replan locally provided they have the rationale of the centralized
planner. Similarly, after the introduction of the rationale-driven plan and the intra-robot replan-
ning algorithm in this thesis, we provide experimental evaluations to demonstrate the generality
and effectiveness of this approach in different domains, Chapters 5-7. These chapters, like the
upcoming experiments and results in this section, provide experimental evidence and confirm the
effectiveness of intra-robot replanning within a centralized controlled team.

2.5.1 RoboCup Results

In this subsection, we analyze the semi-final and the final game of the 2015 RoboCup Small-Size
league, shown in the Table 2.1. We used the new skills (DR, DM) and SDA during these games in
the tournament. The data was collected by analyzing the log files of the games. For our purposes,
we define a successful pass as the ball reaching to its intended target, and a possession threat, P, as
described earlier (an opponent in close proximity that could steal the ball). In the tables below, the
second column is the number of times a skill succeeded in passing the ball while the third column
is the success rate of those passes actually reaching the teammate. This distinction is important
since the skill might pass around the possession threat, P, but the teammate fails or the ball is
intercepted.

Semi-Final game
Skill (Success/Total) (Success/Total)
First Part Total # of Uses P + Pass
A¬D 17/32 3/14
Second Part
A¬D 9/28 1/6
DR 11/15 (∀P) 4/11
DM 10/17 (∀P) 7/10

Final game
Skill (Success/Total) (Success/Total)

Total # of Uses P + Pass
A¬D 10/29 3/13
DR 23/36(∀P) 11/18
DM 10/23 (∀P) 6/10

Table 2.1: Statistics for the three maneuvering skills during the Semi-Final and Final game at the
2015 RoboCup Small-Size League tournament.
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ρ T ρ2
lt

Figure 2.9: (EXP1) Used in the simulation
evaluation, it is a passing with marking do-
main where T is facing off against ρ, who
must kick to ρ2.

ρ T ρ2
lt

Figure 2.10: (EXP2) Used in the simulation
evaluation, it is a passing with marking do-
main where ρ must get around the ball to
align itself to kick to ρ2.

The semi-final game is divided into two parts since for roughly half the game only A¬D was
used. In the first part, there were 14 passes with P and only 3 were successful using only A¬D. In
the second part, we used SDA with the rule that dribbling was only allowed on the offensive side
of the field. Therefore, on the defensive side, A¬D + P was used 6 times, succeeding 1 time. On
the offensive side, DR passed 11 times and succeeded 4 times with no clear improvement. DM did
improve with 7 successful passes out of 10 times. Interestingly, DM was only used when under
pressure by an opponent, which was the major cause of the low value of E(lt ) (< 0.1). Therefore,
DM started in a situation with a vastly low probability of success and under P, but still it succeeded
7 times in getting away from the opponents and finding a better pass.

In the final game, we used SDA for the entire game with the same offensive restriction to
dribbling. Again, we see poor performance for A¬D + P with 3 successful passes out of 13. DR
performed much better in this game with 11 successful passes out of 18, and DM performed well
again with 6 successful passes out of 10.

Real games only provide sparse amounts of information on the benefit of the added skills
because they are short and unreproducible. Still, they provide evidence on the algorithm’s per-
formance in real-world conditions against unknown opponents for which they were designed to
handle. The results show that A¬D is very unsuccessful when there is a possession threat, and
by implementing more intelligent ball-manipulation skills we improve the success rate against un-
known opponents. Based on our review of the competition games, there were clear times when DR
was better than DM and vice versa. To better understand our analysis of the game, we explore the
passing with marking domain to challenge our robot with situations often found in robot soccer,
specifically those with possession threats.

2.5.2 Passing with Marking
Passing with marking is a sub-domain of soccer that uses marking to induce a state where the
probability of successfully passing is decreased due to the proximity of the opponent(s), i.e., a
possession threat. The domain starts with one robot ρ being marked by a close opponent Taker, T ,
at some distance dT . ρ is placed closest to the ball while T blocks the initial pass. As T’s distance
to the ball, dT , decreases, it is more likely to gain possession or block the pass. The objective is
for ρ to pass to ρ2 before T steals the ball or kicks it out of bounds. We define stealing the ball as
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when T has the ball within a robot radius plus a ball radius for at least 1 second. This constraint
ends stalemates where both robots are driving into the ball and not moving. The domain is defined
by a bounded area, and the teammate ρ2 moves within this area to get open for the pass defined by
its own team objective [Mendoza et al., 2016].

We devised two scenarios of the passing with marking: EXP1 where ρ is facing the ball and T ,
shown in Figure 2.9, and EXP2 where ρ faces away from T with the ball near its dribbler, shown
in Figure 2.10. We ran both EXP1 and EXP2 in a physics-based simulation. For each test, we used
only one of the approaches to see if the skill could pass the ball to ρ2 using only that approach.
We also devised two opponents that change the performance of the approaches. The Drive to ball
opponent heads for the ball and tries to grab a hold of it. The Clear ball opponent attempts to kick
the ball out of bounds, which usually involves it heading towards either the right or left side of ρ
to kick it away.

EXP1 induces a state where T is blocking the initial pass and as dT decreases the taker has a
higher chance of stealing the ball away from ρ. This is clearly demonstrated in Table 2.2 where
for both opponents the non-dribble approach A¬D often fails to pass to its teammate. However,
A¬D does surprisingly better than DR against the Drive to ball for two reasons. First, DR fails at
this task because as ρ approaches the ball so does T , and they often get stuck in a stalemate as
DR’s forward velocity pushes against T . Second, A¬D’s success is due to luck as it kicks the ball
immediately off of T and on occasion can get the rebound and pass to ρ2. As dT increases, the ball
bounces less and A¬D does not get as lucky, as shown in Table 2.2. DM performs the best against
Drive to ball since when it gets into the stalemate position it can sometimes rotate in place with the
ball and move to a better passing position. Rotating in place allows DM to succeed where DR fails.
Both DR and DM perform very well against Clear ball because the same stalemate position does
not arise as often since T is trying to get to the side of the ball in order to kick it out of bounds.
This provides these skills with the opportunity to dribble without getting stuck.

Physics-based Simulation EXP1 (Success/100)
Opponents

Approach Drive to ball (dT = {260, 360, 460, 860} mm) Clear ball (dT = 260 mm)
A¬D 15 11 2 1 3
DR 4 2 0 14 89
DM 35 48 53 97 84

Table 2.2: Passing with marking for 100 episodes on each approach. See Figure 2.9 for setup.

EXP2 induces a state where ρ has to get around the ball in order to align itself to pass to ρ2,
while T puts pressure from the back as it tries to steal the ball. In Table 2.3, A¬D did the worst out
of the three approaches, and its small success against Drive to ball is because T would sometimes
get stuck behind ρ and remain behind it. DR and DM both did well against Drive to ball. DM
was the best because it simply rotated in place first to align itself and it did so in the opposite
direction of T . This meant that T was often circling around on the backside of ρ, giving it a clear
pass. However, rotating in place was DM’s downfall against Clear ball since T would maintain its
heading until ρ rotated to a side and then T would kick it away. The reason DR did the best against
Clear ball was because it created more distance between itself and T as it circled around. For the
same reason, it performed better as dT increased while DM remained relatively the same.
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Physics-based Simulation EXP2 (Success/100)
Opponents

Approach Drive to ball (dT = 590 mm) Clear ball (dT = {590, 690} mm)
A¬D 21 4 8
DR 84 48 85
DM 96 22 18

Table 2.3: Passing with marking for 100 episodes on each approach. See Figure 2.10 for setup.

We do not have a way of automating experiments on real-robots, and robots wear with use so it
is not cost-effective to run hundreds of experiments on the real-robots. We did run the EXP1 with
the Clear ball opponent on our real-robots. Each approach was tested 10 times, and the results in
Table 2.4 are slightly different than our simulated experiment. A¬D did very poorly as predicted
by simulation, but the performances of DR and DM were not as expected. This difference can be
attributed to factors on the complexity of executing skills in a stochastic environment with noisy
actuators and perception, i.e., the simulation does perfectly describe the noise in wheel velocity,
carpet slip, and vision locality error. DM still performs well on passing to the teammate. DR would
often continuously circle while T blocked the pass and the ball was eventually stolen. An example
run of A¬D and DM is shown in Figure 2.11.

Real-robot experiment (Success/10))
Opponents

Approach Clear ball (dT = 355 mm)
A¬D 0
DR 2
DM 5

Table 2.4: Passing with marking using real-robots with 10 episodes each.

A¬D1

DM1

A¬D2

DM2

A¬D3

DM3

Figure 2.11: (A¬D): ρ rotates around the ball to pass but loses it as the opponent kicks it away.
(DM): ρ, using Algorithm 2.2, goes directly to the ball, slides past the opponent to the right, and
passes to the teammate. ρ was 75 mm and T was 355 mm away from the ball in their initial
positions. T was running Clear ball.

18



2.6 Summary
In this chapter, we demonstrate that an individual robot can improve the team performance by first
considering the rationale of the actions that were chosen for it and then decide, if needed, to change
the action to have a better success rate. This example demonstrates the key aspects of this thesis
when considering the problem of intra-robot replanning. The following describes how the chapters
of the thesis align with different aspects of the example that is described in this chapter.

Chapter 3 - In Section 2.3, we highlight two rationale used by the team planner when consider-
ing the action of passing to another team member, possession and alignment. These rationale were
then used by the individual robot for decision making. In general, the individual robot should be
provided with all of the reasoning for the plan provided by the centralized planner. We generalize
the concept of rationale and we detail the process of extracting the rationale from the planner and
adding it to the plan in Chapter 3.

Chapter 4 - In Section 2.4, we detail the individual action of the individual robots that are
used for intra-robot replanning. Specifically, in section 2.4.1, the Skill Decision Algorithm details
which skill is used based on the value of the rationale in the current state. This works for this
specific example, however a more general concept is to have an algorithm that selects applicable
skills, actions, or policies based on the value of rationales, provided in the plan, in the current
environment. We detail the generalized intra-robot replanning algorithm in Chapter 4.

Chapter 5 - In Section 2.5, we describe different results in the robot soccer domain that demon-
strate the benefits of our approach over the previous purely centralized method. We provide more
results highlighting the benefits of intra-robot replanning in the robot soccer domain in Chapter 5.

Chapter 6 - We describe experiments within a different domain, specifically with autonomous
underwater vehicles in a simulated ocean environment. In this domain, we highlight the benefits
of intra-robot replanning when communicating with the centralized planner is costly. The ocean
domain is in many ways different than our robot soccer domain as the ocean environment is very
complex and hard to model. Therefore, experiments in the ocean domain highlight the generality
of our approach.

Chapter 7 - We describe experiments in an abstract planning domain where a robot, in a
simulated environment, must collect keys, unlock doors, and drop keys. This domain focuses
on a more traditional planning problem and demonstrates the benefits of intra-robot replanning
for a single robot communicating with a centralized planner that generates the rationale from its
planning process while not having a complete model of the environment.

Chapter 8 - In our example, we show that different skills are useful in different situations that
the soccer robot was involved in. In other words, a particular skill is more useful in certain states
of the environment and less in others. This problem was not handled in our example because of
the static nature of the Skill Decision Algorithm. In Chapter 8, we detail the process of learning
a score for each replan policy, a skill in this chapter’s example. The score is then used in our
generalized intra-robot replanning algorithm to improve the performance even further.

Chapter 9 - We discuss previous work in areas relevant to the research of intra-robot replan-
ning. These include plan representation, execution, failures, replanning, and learning.

Chapter 10 - We conclude the thesis with a summary of its contributions and the possible
directions for future work.
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Chapter 3

Rationale-Driven Plan

Planning does not include execution. Planning can be considered a sub-problem of the larger
problem of planning and execution. Planning involves an initial state, a goal state, and a model of
the agent(s) and the environment. A plan, a sequence of actions, is then generated using the model
that goes from the initial state to the goal state for the agent(s). These plans can come in a variety
of forms. Some examples are:

1. STRIPS: a sequence of actions with precondition(s) and effect(s) that take an initial state to
a goal state through the effects of actions [Fikes and Nilsson, 1971].

2. A simple temporal network: a sequences of actions with start, duration, and end times for
temporal flexible plans [Dechter et al., 1991].

3. A finite state machine: the current state (precondition) determines the next immediate action
with the assumption that it will eventually lead to the goal state [Gill, 1962].

4. A Markov decision process (MDP) policy: a universal plan, a function that for any state
produces an action [Bellman, 1957].

These all share a common feature that a model is used when generating the plan. However, the
model may not equal reality. The model is an estimation, an approximation, of reality. Therefore,
the model may be inaccurate and incomplete, so an executing agent may find that the generated
plan does not match reality. MDPs attempt to handle this uncertainty, but generating MDPs for
large problems can be very expensive and oftentimes excessive. Therefore, we consider linear
plans, but ultimately the execution of such a plan fails when discrepancies between expectation
and reality occur.

Going forward, we consider a plan as a sequence of actions with preconditions and effects (as
defined by STRIPS). Provided such a plan, an executing agent can behave in a variety of ways
when presented with a failure:

1. Indifferent: blindly continues executing actions without consideration for failures.

2. Re-plan: generates an entirely new plan from the failed state to the goal state.

3. Restore: attempts to fix or alter a subset of the old plan to handle the failed state.
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Most research has focused on avoiding the indifferent executing agent as much as possible, and
has primarily focused on re-plan because it essentially makes the problem of planning equal to
planning and execution by continuously re-planning for all failures [Fritz and McIlraith, 2007].
The restore executing agent functions in the large spectrum between indifferent and re-plan. A
majority of the previous research in these areas have assumed that planning and executing are
accomplished by the same agent.

In this thesis, we presume the planning is performed by a centralized planner and the execution
is performed by different agent(s). This division of labor is often seen in multi-robot domains
where a centralized planner generates and sends the plan to each individual robot. We refer to
the collective approach of re-plan and restore as replanning. When considering replanning, the
simplest solution is to have the executing robot recognize a failure and then request a new plan
from the centralized planner, allowing the centralized planner to decide on the type of replanning.
However, this division creates a communication overhead between planning and executing, and
state information needs to be exchanged and most likely simplified, i.e., the executing robot may
know more about the world than the centralized planner. There can also be multiple executing
robots that need to be informed about changes in the plan due to failures, leading to more overhead
and considerations on how often the executing robot should be in contact with the centralized
planner. Ultimately, the simplest solution can have detrimental effects on the performance of the
executing robots(s).

Our alternative solution is to allow the executing robot to handle failures locally when possible,
and defer to the centralized planner when there is no other option. The executing robot would then
be categorized in restore as it will attempt to fix the previously provided plan before requesting
a new plan. This theory was introduced as intra-agent replanning by [Talamadupula et al., 2013]
where the individual executing agent must comply with the constraints of the other agents in the
environment. In our case, the executing robot must comply with the centralized planner’s ratio-
nale, i.e., its reasoning for why the actions and its parameters were selected into the plan, while
replanning for failures. For our purposes, there are two vital concerns with the implementation of
an intra-robot replanning robot: (i) the executing robot must detect failures, and (ii) the execut-
ing robot must restore its plan without being counter-productive towards the centralized planner’s
overall objective(s). There has been research in monitoring rationales in dynamic environments
that occur during the planning phase, but it did not add all of the rationale to the plan or focus on
rationales during the execution of the plan [Veloso et al., 1998].

This chapter introduces a rationale-driven plan which provides the reasoning of the centralized
planner to the individual robot(s). In Section 3.1, we describe the rationale-driven plan and the
different types of rationale contained within the rationale-driven plan. In Section 3.2, we describe
the algorithms that generate the rationales that are added to the rationale-driven plan.

3.1 Elements of a Rationale-Driven Plan
The rationale-driven plan needs to store the rationale, or reasoning, of why the actions and their
parameters were chosen by the centralized planner. Certain rationales can then be monitored by the
autonomous robot in case they become invalid or change during execution, and then the rationales
may be used, if needed, for replanning. We define the recognizable preconditions and effects
of actions as the structural rationale of a plan, and they are often used in execution monitoring
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for detecting immediate failures. However, we argue that the structural rationale only provide a
fraction of the total reasoning within a planning system. During the process of creating or selecting
actions, the planner makes many decisions about why actions are applicable and relevant to the
plan. We consider these the processing rationale of the planner. Furthermore, the planner may
locally or globally constrain the actions or state of the robot, in which case we refer to these as
constraint rationale.

3.1.1 Structural Rationale
The primary method of detecting failures comes from the sub-goaling structure explored during
the process of solving a planning problem. The preconditions and the effects of an action provide
the conditions for an action and the resulting changes after the action is executed. They essentially
provide the rationale behind why the actions are in their particular order. As previously stated,
we refer to these as the structural rationale of the plan. Without these, the executing robot would
not be able to check if it has failed an action (effects), or that an action is no longer possible
(preconditions). The sub-goaling structure provides a clear method for monitoring execution for
immediate failures:

• Preconditions provide information on what in the environment needs to remain valid before
the action can be executed.

• Effects provide information on what the outcomes of the action are meant to change in the
environment. With regard to failures, they are important for knowing if a goal or subgoal
was achieved.

The structural rationale have been used numerously in research for execution monitoring, failure
detection, and replanning in dynamic environments [Kambhampati, 1990].

Consider again the division of planning and execution. The centralized planner provides the
structural rationale with the plan to the executing robots so that the executing robots can detect
when an immediate failure occurs. The executing robot monitors its current state for the precondi-
tions and effects of the action it is currently executing. Upon detecting a failure, the autonomous
robot wants to restore the plan, if possible. However, we have assumed the autonomous robot is
not the planner and therefore only contains the information provided in the plan. Assuming the
autonomous robot has a method to restore the plan, then would the plan have provided enough
information, given the actions and structural rationale, to restore the plan properly, i.e., in compli-
ance with the centralized planner’s objective(s)? Of course this depends on the planning algorithm,
assumptions made by the planner, and in general, the rationale of the centralized planner. We ar-
gue the autonomous robot would generally not have enough information to replan properly. For
example, there may be areas that are out of bounds for the robot, speed limits such that the robot
should not go faster in an attempt to make up time, or a rather common assumption that the world
should not change externally to the robot’s actions.

3.1.2 Processing Rationale
In general, we claim there is a varying amount of information left out by the planner. Consider:
i) the selection process of actions, why the actions were chosen in comparison with other possible
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Action Rationale Type
• preconditions
• effects
• constraints
• why-this-action
• relevant-to
• joint-with

Structural Rationale

Constraint Rationale

Processing Rationale

Figure 3.1: Rationales added to each action within a plan

actions; ii) the bounding of action parameters, why and how the values were determined for the
parameters; and iii) the other robots involved in the plan. To facilitate intra-robot replanning, the
executing robot needs to be provided with more information about the decision making of the
centralized planner, i.e., include the planner’s rationale.

This line of research follows a similar path to problem solving cases introduced by [Veloso and
Carbonell, 1993]. As an approach to speed up planning, problem solving cases are stored with the
reasoning and rationale of previous planning problems. The rationale are entirely derived from the
planning process. This research focused on using the problem solving cases to speed up planning
when solving a new problem. It did not consider replanning, adding this information to the plan, or
the addition of multiple robots within the plan. That withstanding, it provides a reasonable starting
point for considering rationale to add to the plan for intra-robot replanning.

Given an action in the plan, these are the questions that are of importance to the executing robot
trying to replan locally:

• Why was this action added to the plan?

• Why was this particular action and its parameters chosen?

• What sub-goal(s) and goal(s) does this action contribute to achieving?

• What other robots are involved in this action?

As shown in Figure 3.1, we have new additions to the action that we have placed into different
rationale types. The processing rationale captures the information on why this action was added to
the plan, why this action and its parameters were chosen, why was it needed in the plan, i.e., for
what sub-goal and goal, and what other robots are involved in the action.

Why-this-action: is a set of functions with their associated parameters. They provide reason-
ing on why an action and its parameters were chosen for the plan. Examples are:

• select with associated parameters for selection reason.

• prefer with the preferred name and the alternative actions that were not preferred.

• reject with the rejected name and the alternative actions that were rejected leading to the
selected action.

• why-user with a function name provided by a user and its associated input parameters.

24



Relevant-to: refers to the goal that needs this action or condition to be achieved.
Joint-with: provides a set of references to the other robots involved in the action. This can be

a set of robot IDs or be empty for an action executed alone. This information is very important in
informing the robot that the action is a joint-action [Levesque et al., 1990]. In particular, the robot
needs to consider the other robots when it is attempting to replan a joint action.

3.1.3 Constraint Rationale

We define the constraint rationale as the facts that are checked or assumed by the centralized
planner but there is no explicit plan to achieve them, unlike the preconditions that the centralized
planner may try to achieve, i.e, to plan for. The constraint rationale are included in the domain by
human operators and/or by the planner’s model. They also may refer to coordination requirements
with other robots in the plan. We represent a constraint rationale as a function with a finite set of
parameters (pi):

f (p1, p2, ..., pn) → {true, f alse} (3.1)

that returns true or false given those specific parameters. An example constraint is that the “sky
is clear" for the current plan of “walk to store" to remain valid by the planner’s rationale, because
if the sky was not clear, then the plan would need to be “walk to store with umbrella." We could
represent this pseudo constraint as the following function:

SkyClear(cloudcoverage, precipitation) = cloudcoverage < 50%

∧ precipitation ≡ 0
(3.2)

where the sky is only clear if the cloud coverage is less than fifty percent and there is no detectable
precipitation.

3.2 Generating a Rationale-Driven Plan
We have defined the information necessary for our rationale-driven plan in the previous section,
however, generating this information is very planner dependent and the rationales vary between
planners. Therefore, in this thesis, we detail select parts of a classical planner that extracts the
rationale information, with the assumption that other planners can adapt these parts as needed. We
assume a planning problem P = 〈A,C, I,G〉 where A are the actions, C are the constraints, I is the
initial state, and G are the goals. We assume A has preconditions, effects, and parameters.

Algorithm 3.1 adds the rationales when the planner is deciding if an action is applicable given
a state. As the planner loops over the actions, line 1, the planner must pick parameter values for
the action if needed. The rationale for picking these parameters is stored in line 2. For example,
the parameter for an action “move" may be the speed, and the speed limit may be one of multiple
rationales used to pick the value for the speed. The rationales are created by the developers of the
planner and are assumed to be shared with the individual robots. The preconditions and effects are
added in lines 3 and 4, respectively. The action is then checked to be applicable in the state, and
the constraints are checked to be true given the action in line 5. Then the constraints are added in
line 6.
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Algorithm 3.1 Returns applicable actions, Â, provided state, S, actions, A, and constraints, C.
1: for all a ∈ A do
2: a.why-this-action← pick-parameters(a)
3: a.precondition← preconditions(a)
4: a.effects← effects(a)
5: if a.precondition ∈ S ∧ {∀C(a,S) = true} then
6: a.constraints← C
7: Â.insert(a)
8: end if
9: end for

10: return Â

Robot Defender (D1)
Action KICK BALL

parameters 〈θ, X,Y, Bx, By, B′x, B′y, 〉
precond. LOC(D1, X = 3, Y = −0.8)

HEADING(D1, θ = 45◦)
LOC(B, Bx = 3.5, By = −0.8)

effects ¬LOC(B, Bx = 3.5, By = −0.8)
LOC(B, B′x = 5.6, B′y = 2.1)

constraints not-facing-our-goal-side
why-this pass-to-D2

-action pass-open
current-loc

G

D1

D2

O

Figure 3.2: Example to help illustrate Algorithm 3.1. The illustration shows D1 plan to kick the
ball (orange dot) to D2 (at the dashed circle location). The KICK BALL action for D1 shows the
rationale provided by the Algorithm 3.1.

Consider an example in the robot soccer domain in Figure 3.2 to help illustrate Algorithm 3.1
(see Chapters 2 & 5 for more details on the robot soccer domain). The centralized planner is
checking applicable actions for the robot D1 (Defender 1). Here, the action KICK BALL is being
checked to see if it is applicable. On line 2, the function pick-parameters returns the rationales
for why these parameters in the action were chosen. The θ parameter was chosen because the
pass is open (pass-open) in that direction. The X,Y were picked simply because that is the current
location of D1 (current-loc). If the precondition X,Y parameters become invalid then the rationale
current-loc informs D1 on how to fix the values. The remaining parameters involve the ball’s (B)
location. They were decided on in order to pass the ball from D1 to its teammate D2, (pass-to-D2).
Now D1 is informed that it is kicking the ball to the new location in order to pass the ball to its
teammate. On lines 3 & 4, the preconditions and effects of the action are added. On line 5, assume
the preconditions are valid in the state (S). Next, the constraints are tested. For this example,
assume that the users of the robot soccer team do not want the robot to kick the ball backwards
towards its own goal. In this case, the angle of the robot is checked and determined to be valid,
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so the constraint, not-facing-our-goal-side, is added to the action. In contrast, consider that the
next action is KICK BALL except with an angle of 145◦, i.e., facing to pass to the goalie, G. The
constraint would fail and the action would be deemed not applicable. This process would continue
as the centralized planner checked the applicability of actions during the search for the final plan.

Algorithm 3.2 selects one of the applicable actions to continue the search and provides the
rationale for why this particular action was chosen from the applicable ones. An action is selected
in line 1. The rationale, or reason, for selecting this particular action is then stored in line 2.

Algorithm 3.2 Selecting an action given current state, S, and applicable actions, Â
1: a =select-action(S, Â)
2: a.why-this-action← used-selection-rule

Robot Attacker (A1)
Action KICK BALL (A2)
Action KICK BALL (Goal Shot)

why-this-action prefer-ordering {
goal→ kick→ dribble

}
Action DRIBBLE BALL

(i)

(ii)

(iii)

A1

A2

GO

Figure 3.3: Example to help illustrate Algorithm 3.2. The illustration shows the applicable actions
that the centralized planner has for A1 currently in its planning process. These actions are: (i) Kick
the ball (orange dot) to A2 (at the dashed circle location), (ii) Kick the ball into the goal, and
(iii) Dribble the ball (squiggly line) to a new better location. The action KICK BALL has been
selected and the rationale is stored in why-this-action.

Consider an example in the robot soccer domain in Figure 3.3 to help illustrate Algorithm 3.2.
The current applicable actions are (i) to kick the ball to teammate, A2, (ii) to kick the ball into
the goal, and (iii) to dribble the ball to a new location (squiggly line in figure). The centralized
planner must make a decision regarding which of the actions it continues the search with. If the
planner chooses at random, the rationale could be randomly-selected. However, in our example, we
have a preferred ordering for the applicable actions, i.e., goal shots are preferred, then passes, then
dribbling the ball. Therefore, the KICK BALL (Goal Shot) is selected and provided the rationale
prefer-ordering.

Algorithm 3.3 adds rationales to each action once the action is in the final plan. Line 1 adds
the goal that action a is used to achieve. Line 2 adds the robots that are tasked to execute this
action with the robot given this action, r̂ . Line 3 loops over all of the effects of the action. Line 4
stores the rationale of why the effect is needed in the plan. This may be required as a precondition

27



of one of r̂’s actions or for some robot in the team, in which case it would include the robot(s)
as part of the rationale. However, the effect may not be required in the plan, a superfluous effect
of the action. In that case, the rationale would be labeled superfluous so that r̂ would know to
ignore it during intra-robot replanning. Lastly, the planner may have more constraints, given the
entire finalized plan, that the robot needs to maintain during execution, line 6. For example, certain
predicates previously achieved and not needed as a precondition of this action need to remain for
an action in the future, i.e., persistent conditions similarly defined in [Kambhampati and Hendler,
1992].

Algorithm 3.3 Rationales added during final construction of the plan path, given an action, a,
current state, S, goal, g, relevant to a, the robot executing this action, r̂ , all the robots, R, involved
in the plan, and any new constraints in the final plan, C.

1: a.relevant-to← g

2: a.joint-with← r ⊆ {R − {r̂ }|joint(r, a)}
3: for all e ∈ a.effects do
4: e.rationale← why-needed(e,R)
5: end for
6: a.constraints← C

Consider an example in the robot soccer domain in Figure 3.4 to help illustrate Algorithm 3.3.
In this example, we have a plan for two robots to score a goal. For simplicity, we have only added
the rationales that are relevant to the example (the effect rationale relevant to preconditions of
future actions have been removed for simplicity). The first action of A1 is to dribble and move the
ball to the new location. The relevant-to rationale relates to the sub-goal of positioning the ball at
location (Bx, By). This action is not a joint action and therefore joint-with is null. The constraint
has-ball is the assumption made by the centralized planner that the robot maintains control of the
ball the entire time it dribbles the ball to the new location. The next action for A1 is to rotate its
position. The relevant-to is the needed precondition of the heading for the next KICK BALL action.
Again, this is not a joint action. The constraint is that while A1 is rotating there should not be any
possession threat, i.e., there is not an opposing robot close enough to steal the ball. The final action
for A1 is to kick the ball to its teammate A2. The relevant-to is the sub-goal of placing the ball at
the location (B′x, B′y). This action is a joint action with A2 as they must work together to maintain
possession of the ball. The rationale for the effect of the new ball location is the precondition of
the RECEIVE action of A2. The constraint is that the path of the kick must remain open for the
action to be valid. The first action of A2 is to position itself at the new location (X,Y ). This is not
a joint-action and there are not extra constraints made by the centralized planner. The next action
is for A2 to receive the ball at its new location. This action is a joint action with A1, as previously
stated. The constraint added is the assumption that the path is open so that A2 can successfully
receive the ball. The final action of A2 is to kick the ball into the goal. The relevant-to is the
goal which is to score a goal, or get the ball into the goal box. This is not a joint action and the
constraint is that the path must be open for the kick to be successful.

28



Robot Attacker (A1)
Action DRIBBLE BALL

relevant-to LOC(B, Bx , By)
joint-with ∅
constraint has-ball

Action ROTATE

relevant-to HEADING(A1, θ)
joint-with ∅

constraints ¬possession-threat
Action KICK BALL (A2)

relevant-to LOC(B, B′x , B′y)
joint-with A2

effects Loc(B)→ A2, RECEIVE

constraint path-open

Robot Attacker (A2)
Action POSITION

relevant-to LOC(A2, X , Y )
joint-with ∅

Action RECEIVE

relevant-to LOC(B, B′x , B′y)
joint-with A1

constraint path-open
Action KICK BALL (Goal Shot)

relevant-to SCORE-GOAL

joint-with ∅
constraint path-open

A1

A2

GO

•
(X,Y )

(Bx, By)

(B′x, B′y)

Figure 3.4: Example to help illustrate Algorithm 3.3. The plan for A1 is: to dribble the ball, then
rotate, then kick the ball to A2. The plan for A2 is: to position itself at new location (X,Y ), then
receive the ball, then kick the ball into the goal. The relevant rationales have been added to each
action in their respective plans.
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3.3 Summary
In this chapter, we present algorithms that are the building blocks of a typical action-based planner,
and we demonstrate how the rationale for the rationale-driven plan can be extracted during these
critical parts of the planning process. Every planner is different and the exact method for getting
the rationale differ. Depending on the search method, some rationale information may not be
explored by the planner and therefore not added. The key concept of our rationale-driven plan is to
add the rationales that the centralized planner uses while checking applicable actions, selecting an
action to continue the search, and constructing the final plan, so that the rationales may be passed
along to the individual executing robot.

Given the rationale-driven plan, the individual robot is now better informed on the rationales of
why the actions and their parameters were chosen in the plan. The next major task of the individual
robot is use the rationale-driven plan to replan proactively and successfully. The individual robot
needs to monitor the rationale of the plan and then, if there is a failure, decide how to replan locally
using the rationale-driven plan. These questions are tackled in the next chapter.
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Chapter 4

Intra-Robot Replanning

In this chapter, we present our method for intra-robot replanning, i.e., how an individual robot,
provided a rationale-driven plan from a centralized planner, handles a failure locally during execu-
tion while remaining compliant with the centralized planner. We first formally define the problem
of intra-robot replanning to better understand the core concept of the problem. Next, we describe
the intra-robot replanning algorithm that we develop to tackle the intra-robot replanning problem.
Following the description, we provide a simplified example that walks through the algorithm to
help explain each part in concrete terms. Later chapters explore different domains that include
experimental results to justify the importance and benefits of our intra-robot replanning algorithm
with the rationale-driven plan. In this chapter, we only provide a simplified example to illustrate
the algorithm.

4.1 Problem Definition
We describe the intra-robot replanning problem as the following tuple 〈R,S,P, P,T , F 〉:

• R is the set of robots involved in the plan;

• S is the current state;

• P is the set of replan policies; where a policy Pj = 〈α, β, C〉:
– α are the input parameters to the replan policy,

– β are the rationales that can be enabled by this policy (effects),

– C are the constraints that the policy abides by during execution;

• P is the rationale-driven plan;

• T is a set of rationales for the current action;

• F ⊆ T are the rationales that are invalid.

We assume the individual robot has a set of replan policies, P, that can fix a set of invalid
rationale. We always assume there exists at least one replan policy that calls the centralized planner
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for a new plan; therefore, at least one replan policy exists that can handle all failure cases and
all invalid rationale. In other words, the individual robot calls the centralized planner if there is
no replan policy that can specifically handle a given invalid rationale that the robot is currently
attempting to fix. We also assume that a replan policy does not invalidate rationales that have
already been fixed by a previous replan policy.

There can be multiple replan policies that handle a single rationale. Therefore, when a rationale
becomes invalid, the individual robot can have multiple different policies that can potentially re-
enable the rationale. This leaves the individual with the task of picking a replan policy. We also
want the individual robot to pick the best replan policy (based on some known metric), and so,
we discuss the issue of sorting the replan policies to improve the performance of the intra-robot
replanning [Cooksey and Veloso, 2017, Cooksey and Veloso, 2018]. Moreover, there is another
concern to be addressed on sorting the rationales that are failing. First, we describe the intra-robot
replanning algorithm.

4.2 Intra-Robot Replanning Algorithm

Algorithm 4.1 Intra-Robot Replanning algorithm for selecting failing rationales of action a, sort-
ing the rationales, selecting applicable replan policies, sorting the replan policies, and then execut-
ing the policies until the rationales are true.
Require: a, P,S,R,P, P = {∅}

1: F ← {c |c ∈ a.constraints ∧c , true} # Find all invalid constraints
2: F ← {c |c ∈ a.why-this-action ∧c , true} # Find all invalid why-this-action
3: if a is not executed then # Has the action not been executed yet?
4: F ← {c |c ∈ a.preconditions ∧c < S} # Then find all invalid preconditions
5: else
6: F ← {c|c ∈ a.effects ∧c < S} # Else find all invalid effects
7: end if
8: F ←sort(F ) # Sort invalid rationales
9: for all Fi ∈ F do # Loop over all invalid rationales

10: for all Pi ∈ P do # Find applicable replan policies
11: if Fi ⊆ β ∈ Pi ∧ a.constraints ⊆ C ∈ Pi then
12: P.push(Pi) # Enables rationale and follows constraints
13: end if
14: end for
15: P← sort(P) # Sort applicable replan policies
16: repeat
17: execute(P.front(α)) # Execute replan policy (α ⊆ a ∩ P ∩ S ∩ R)
18: P.pop()
19: until Fi (p1, ..., pn) = true # End loop once rationale is valid
20: end for

Algorithm 4.1 is the intra-robot replanning algorithm that determines the invalid rationales,
stored in F , and determines the replan policies to fix the rationales. The algorithm requires the
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current action, a, the current state, S, the robots, R, and the replan policies, P. On line 1, all
the constraints of the action are tested and any invalid constraints are added to F . On line 2, the
reasons behind why this action was chosen are checked, and if any are no longer valid, they are
added to the list of invalid rationale, F . If the action has not yet been executed, line 3, then the
preconditions of the action are checked and invalid ones are added, line 4. Otherwise, the effects
are checked and invalid ones are added, line 6. The rationale are then sorted by some cost function
or known ordering, line 8. The next part of the algorithm determines the replan policies for the
invalid rationale.

For every invalid rationale (line 9), the applicable replan policies P are selected by checking that
the replan policy can enable the invalid rationale as provided in β of Pj in the problem definition
and that the replan policy can handle the known constraints of the current action (lines 10-11). If
Pj has the invalid rationale and can handle the constraints, then the replan policy is placed into the
P queue (line 12). In line 15, the replan policies are sorted provided there is some cost function
or predetermined ordering for the replan policies. While the rationale remains invalid, the replan
policies in P are executed and popped (lines 16-19). The replan policy is provided the failed action,
the failed plan, the current state, and the robots of the team. The replan policies are then tasked to
use the rationale provided by the centralized planner and repair the plan, if possible. As previously
stated, the assumed replan policy that calls the centralized planner ultimately ends the loop, if
needed. Assuming that sorting has time complexity n log(n) where n is the size of the array being
sorted, our algorithm has a running time complexity of F (log(F ) + P log(P)).

4.2.1 Illustrated Example

In this example, we use a simplified robot soccer domain to illustrate the intra-robot replanning
algorithm. We assume the rationale-driven plan has already been generated and provided to the
robots. Specifically, we look at a particular point in time during the execution of one action for
each robot. For clarity, we only add a sub-set of all the rationales that would normally be added to
the actions and as such only the rationales relevant to our example have been added.

See Table 4.1 for the actions and rationales for the defense robots (we have excluded the
goalie’s plan for simplicity). The relevant-to rationale for both defending robots is block-goal,
i.e., stop all possible incoming shots from opponents. The two defenders are executing a joint
action with different preconditions, effects, and the joint-with rationale. For an illustration of our
example scenario see Figure 4.1. The goalie is blocking the direct shot on goal, and the two de-
fenders are holding positions that block non-direct shots on the goal. They are holding a “gap
defense” such that if a shot is taken between them, then they can quickly close the gap and block
the shot before it enters the defense zone (the dashed rectangle in the figure). Another rationale
provided to the defenders is ball-far which means if the ball gets too close then the gap defense
action is no longer valid. The constraint both defenders have is not-in-defense-zone because the
defenders’ positions are restricted to be outside the defense zone.

Replan Policies

For our example, we describe a few replan policies that each individual robot has in case different
rationales become invalid during the execution of their plan.
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1. EXIT-DEFENSE-ZONE 〈β = not-in-defense-zone, ∀C〉: Takes shortest route to get outside
of the defense zone, so the robot exits to the nearest side of the rectangular defense zone.

2. SINGLE-GAP-DEFENSE 〈β = joint-block, ∀C〉: Blocks the direct heading of the opposing
robot (with the ball) towards the goal, but it does not go beyond its original gap defense
location and its teammates gap defense location.

3. MOVE-TO-LOC 〈β = LOC(...), ∀C〉: The robot moves to the location provided by the
location rationale, while abiding by the constraints provided by the centralized planner.

4. CENTRALIZED 〈∀β, ∀C〉: Continues current action and waits for centralized planner to
provide new plan.

Failure Scenario

Consider the scenario shown in Figure 4.2. D1 is positioned correctly to defend the goal from
its current location. Conversely, D2 is far from its correct position, which means the joint action
GAP-DEFEND is failing. For this situation, we discuss how the two defenders handle this failure
using the intra-robot replanning algorithm along with the previously described replan policies. We
assume for this example that the action, GAP-DEFEND, is being executed and therefore the effects
are being checked.

Defender 1 (D1): First the intra-robot replanning algorithm checks the rationales provided
with the action (rationales marked with ¬ are invalid).

• constraints: not-in-defense-zone

• why-this-action: ¬joint-block, ball-far, pre-current-loc, pre-current-angle

• effects: LOC(D1, X ′1, Y ′1), ANGLE(D1, θ′1)

Therefore, our set of invalid rationales is:

F = (¬joint-block)

For sorting the rationales, we only have one invalid rationale so nothing is sorted. The joint-
block rationale is invalid because its teammate, D2, is not in the correct position to block with
D1. The algorithm then loops over the four replan policies and finds SINGLE-GAP-DEFENSE and
CENTRALIZED can handle the invalid rationale and the constraints provided in the action.

Next, the replan policies are sorted. This sorting could cause vastly different outcomes for D1.
If CENTRALIZED was sorted to be first, then D1 would do nothing more than wait for the cen-
tralized planner to issue a new plan, while at the same time continuing to block its side of the gap
defense. This would be equivalent to not using intra-robot replanning and therefore not particularly
interesting. So for this example, SINGLE-GAP-DEFENSE is ordered first and therefore executed
by our intra-robot replanning algorithm. There is no way for D1 to explicitly re-enable joint-block
because it is a rationale involving another robot that is not in its control. Therefore, SINGLE-
GAP-DEFENSE attempts to block the direct angle of the opposing robot and thereby maintain the
objective of joint-block which is the goal of blocking goal shots, block-goal. Once the teammate,
D2, gets close enough to the correct position then SINGLE-GAP-DEFENSE repositions D1 into its
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previous position and the replanning loop ends because the rationale joint-block is valid. The al-
ternative is that the centralized planner provides a new plan while D1 is replanning, and this forces
D1 to execute the new plan instead. It is important to note that without the rationale joint-block,
D1 would never have known it was failing the joint action.

Table 4.1: Part of a team plan provided to the defense of a robot soccer team with rationales. For
simplicity, we only add rationales relevant to our example and exclude the numerous constraints
that would normally be in this plan.

Robot Defender 1 (D1) Defender 2 (D2)
Action GAP-DEFEND GAP-DEFEND

preconditions LOC(D1,X1, Y1) LOC(D2,X2, Y2)
ANGLE(D1, θ1) ANGLE(D2, θ2)

effects LOC(D1, X ′1, Y ′1) LOC(D2, X ′2, Y ′2)
ANGLE(D1, θ′1) ANGLE(D2, θ′2)

constraints not-in-defense-zone not-in-defense-zone
why-this-action joint-block joint-block

ball-far ball-far
pre-current-loc pre-current-loc
pre-current-angle pre-current-angle

relevant-to block-goal block-goal
joint-with D2 D1

G

D1

D2

O

Figure 4.1: The two defenders (D1 & D2)
are aligned with the goalie (G) to block shots
from the opposing robot, O, who is in con-
trol of the ball (orange circle).

G

D1

D2

O

• EXIT-DEFENSE-ZONE

•

MOVE-TO-LOC

•

SINGLE-GAP-DEFENSE

Figure 4.2: The defender D1 is positioned cor-
rectly, however its teammate D2 is not positioned
to defend the goal. The lines show the robots’
movements along with the replan policies that are
handling a particular failure.
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Defender 2 (D2): First the intra-robot replanning algorithm checks the rationales provided
with the action (rationales marked with ¬ are invalid).

• constraints: ¬not-in-defense-zone

• why-this-action: ¬joint-block, ball-far, pre-current-loc, pre-current-angle

• effects: ¬LOC(D1, X ′1, Y ′1), ANGLE(D1, θ′1)

Therefore, our set of invalid rationales is:

F = (¬not-in-defense-zone, ¬joint-block, ¬LOC(D1, X ′1, Y ′1))

The next step of sorting the rationales highlights the importance of the final order of the ra-
tionales. If the constraint not-in-defense-zone is not ordered first, then D2 may attempt to go to
its failing location while still being in the defense zone. This is a behavior we would not want in
our soccer robots because there would be a penalty if the robot touches the ball while inside the
defense zone. Then, depending on the ordering of joint-block and LOC, the robot either moves to
the failed location or attempts to block the direct angle of the opposing robot. For this example,
we assume the ordering constraints→ effects→ why-this-action.

Given the ordering, the next step is to loop over the replan policies for the rationale not-in-
defense-zone. This results in EXIT-DEFENSE-ZONE and CENTRALIZED. Shown in Figure 4.2,
D2 exits the defense zone which makes the constraint, not-in-defense-zone valid again. The next
step is to loop over the replan policies for the rationale LOC. This results in replan policies MOVE-
TO-LOC and CENTRALIZED. The replan policy MOVE-TO-LOC is then executed and D2 moves
to the location in the effect. The rationale LOC becomes valid, while coincidently, the rationale
joint-block becomes valid again because both D2 and D1 are close enough to block the opposing
robot using the gap defense. This ultimately end the replanning loop for D2 (and D1).

4.3 Summary
In this chapter, we present the intra-robot replanning algorithm. The algorithm uses the rationales
provided by the rationale-driven plan to determine when failures or changes in the environment
occur that invalidate the current plan of the robot. Using these rationales, the robot is able to
determine what replan policies can be used to fix the failure in the plan. With some sorting,
a replan policy is chosen and executed to fix the robot’s plan. We illustrate this entire process
through an example in the robot soccer domain with two defending robots, which highlights the
value of the individual robots having access to the rationale for replanning purposes.

So far in this thesis, we have introduced the rationale-driven plan and the intra-robot replanning
algorithm. We have provided examples to help illustrate and describe these different parts of the
intra-robot replanning problem. Going forward, we explore three domains and provide experimen-
tal evidence of the benefits of our approach. Chapter 5 explores the already familiar robot soccer
domain. Chapter 6 explores a domain with autonomous underwater vehicles in the ocean. Chap-
ter 7 explores a formally defined planning domain described in the Planning Domain Description
Language (PDDL) [Ghallab et al., 1998]. When combined, these chapters highlight the generality
of our approach and the unique benefits intra-robot replanning can have in different domains.
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Chapter 5

Robot Soccer Domain

In this chapter, we investigate how using our intra-robot replanning algorithm, along with some
replan policies specific to robot soccer, can enable conditions that are preventing the soccer robot
from succeeding at its assigned task. Cooperative multi-robot team planners in competitive robot
domains often have limited computational time, have poorly modeled dynamic objects, and have
incomplete knowledge of their environment. These issues remain with the individual robots, how-
ever we show that the robots can gather state information and improve their reaction to failures by
choosing the best replan policy to handle the failure. The centralized team planners could incor-
porate more information about every robot, but this is not effective or practical for highly dynamic
domains with potentially many robots. Likewise, centralized team planners often reduce informa-
tion and complexity in order to make team planning feasible within dynamic domains, so to much
additional information can hinder performance.

The standard approach to team planning in the literature is to use a hierarchy, thereby dividing
up the planning problem involved in controlling a team of robots [Yan et al., 2013], [Simmons
et al., 2002], [Pecora and Cesta, 2002]. We follow the Skills, Tactics, and Plays (STP) hierarchy as
described by [Browning et al., 2005]. This division of computation is used to simplify the problem
of controlling a team in dynamic, competitive environments and allows planning to happen at
different abstraction layers. Skills are low level repeatable algorithms that are specific to each
domain. Tactics combine skills towards accomplishing a more complex task using finite-state
machines, consider the Tactic passing the ball which includes Skills like driving into the ball,
positioning the ball, and kicking the ball. Plays guide the team towards their goal(s). The plays
define a Role for each robot that each include a series of Tactics and their input parameters, e.g.,
positions on the field. Plays are changed based on defined state variables, e.g., the number of robots
on the defense side of the field or the ball being on the offensive side. STP essentially separates
planning into two levels, global (Plays) and local (Tactics).

In competitive dynamic domains, the global planner assigns a Play using incomplete informa-
tion and simplified models of the environment. This missing information is often due to opponents’
adversarial behavior but can also be attributed to the simplified models of the team members’ abil-
ities. A Play only changes when new information is presented at the global level that triggers a
failure in its defined state variables, so failures at the local level might not be considered. This is
due to the different requirements of the global planner and the local planning robots with respect to
their abstraction in planning, i.e., due to local information gains and/or the global planner not fully
modeling the domain. We especially see this in competitive domains like the Small-Size Robot
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Soccer League (SSL).
The SSL league matches two teams of six omnidirectional robots and each team receives the

same information (positions and headings) provided by the Shared Vision System (SSL-Vision)
through overhead cameras [Zickler et al., 2009]. Any further information must be generated by
each team including velocities, predicting opponents, and the physics of ball movement at the
expense of each team’s computation. Our centralized planner replans at rate of 60 Hz however the
conditions that cause a change at the play level, i.e., the the higher level planner, may change at
a slower rate. In STP, a Play may assign a pass between two robots for reasons unknown to the
individual robot. Still, the robot is tasked with completing that pass using the assigned Tactic, and
opponents may make that exact pass impossible for the assigned robot. Therefore, we provide these
assumptions as rationale to the soccer robots, and we show that the soccer robots can monitor these
rationale and use the intra-robot replanning algorithm to enable failed conditions during execution
to make a more successful team.

Note that Plays provide a fully instantiated team plan for each robot, Ti, on the team. The
robots execute their Tactics according to their assigned variables. The global planner may at any
time change the Play due to new information, but there is no guarantee that changes observed only
at the Tactic level will cause a change at the Play level. The Play is created assuming optimal
conditions for the Tactics and that the robot can successfully execute its Role using the Role’s
Tactics and their respective parameters. An implicit assumption is that a failure to complete a
Tactic leads to a global failure, which the global planner then solves. If however a local failure
does not cause an immediate global failure, then the robot continues to fail until complete global
failure. In robot soccer, an example of a local failure is a robot maintaining control of the ball but
never finding an open pass, which results in it endlessly driving around in circles looking for an
open pass. A example of a global failure is a missed pass or stolen ball.

Replanning for individual robots has mostly been seen as a task of minimizing the changes
to the current plan, and this same idea has been applied to multi-robot systems. However, in
competitive domains, the robots have to compensate for the dynamic nature of the environment,
so replanning must be quick and should be focused on enabling failed conditions with the highest
chance of success. Optimality is often ill-defined in such complex domains so we focus on the
robot accomplishing its assigned Tactic rather than failing, which would subsequently cause a
failure of the team’s objective.

5.1 Experimental Problem Domain
Passing with marking, shown in Figure 5.1, is a sub-domain of robot soccer where the task is for
the robot with the ball, Tb, to pass the ball to the receiving robot, Tr , while opponents try to steal
and/or intercept the ball. During our experiments, one opponent is always placed near Tb to block
the initial pass. This sub-domain should be familiar as passing-with-marking was described in
Chapter 2. However, in this chapter, we have two opponents, Ob and Or , that are placed on the line
between the two Ti to block and intercept the direct pass. Specifically, the opponent Ob attempts to
steal the ball while the other opponent Or attempts to intercept passes.

An example Play generated by the global planner is given in Figure 5.2. The Play is made of
Tactics: Pass, Goto, and Receive; the Initial Position defines the robots’ starting positions. Each
Tactic has instantiated variables defining the assigned robot and the variable(s) for that Tactic. For
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(a, b, l,w)

Tb TrOb Or

Figure 5.1: Passing with marking: Tb needs to pass the ball to Tr within the zone (a, b, l,w). Tb is
facing the ball. Opponents Ob and Or try to remain on the line between the other robots to block
or intercept the pass. The top image is the physical robots, the middle image is the robots in the
physics-based simulator, and the bottom image is a simplified representation that we use in this
chapter.
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Initial Position
Robot: Tb

LOC(Tb, 0, 0)

Initial Position
Robot: Tr

LOC(Tr, 5, 0)

Pass
Robot: Tb

LOC(Ball, 5, 5)

Goto
Robot: Tr

LOC(Tr, 5, 5)
Zone(a, b, l,w)

Receive
Robot: Tr

KICKER

RECEIVER

Figure 5.2: A team plan for Tb to pass the ball to Tr .

Pass, Tb is assigned to kick the ball to (5, 5). For Goto, Tr is going to location (5, 5) to Receive
the ball and must stay within the Zone(a, b, l,w) defining a box with the left top corner at location
(a, b) with length l and width w.

The Play assigned the Role KICKER to Tb and RECEIVER to Tr . In this case, Tr is assigned
the best passing location within its zone (the dashed-dotted square in Figure 5.1), but clearly Or
will attempt to intercept the ball. The assignment for the best passing location and the generation
of the probability of success for that pass follows the approach in [Biswas et al., 2014]. The
location and probability are based on the probability that the receiver will successfully receive the
ball at that location and the probability that the receiver will successfully score a goal from that
location. Obtaining those exact probabilities in the highly dynamic and complex domain of robot
soccer is unrealistic, and therefore the authors make some simplifications and assumptions. For our
purposes, the rationale for the chosen location is the combined estimated probabilities, and a more
thorough understanding of the estimated probability can be found in [Biswas et al., 2014]. The
Play often fails from the opponents’ interferences. It also fails due to randomness in the robot’s
performance and kicking ability in the physics-based simulator. There have been attempts to solve
this issue in robot soccer as passing is a major requirement, and machine learning has been a major
focus of this research [Stone et al., 2006]. However, our approach is to use intra-robot replanning
with designed replanning algorithms (replan policies) that enable failed rationales provided by the
centralized team planner.

5.2 Individuals Enabling Conditions

In [Mendoza et al., 2016], they describe an approach called pass-ahead that tries to sync the ar-
rival of the receiver with the ball so that they arrive at the passing location at the same time. This
approach alone does poorly in the passing with marking domain because of the opponent Ob that
blocks or steals the ball. In Chapter 2, we demonstrate the requirement of opponent aware algo-
rithms for Tb to maintain possession of the ball, which improves pass-ahead’s performance in the
passing with marking domain (Dribbling-Move in Results Section 5.3) [Cooksey et al., 2016].
However, that algorithm does poorly in our example domain given that an opponent is added to
mark the receiving robot. The performance is poor because Dribbling-Move only focuses on re-
planning to enable one constraint of the Tactic Pass, which is ball possession (HasBall). HasBall
is defined as true for a robot if the ball is closer to it than any other robot. And, the condition being
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Pass
Robot: Tb

LOC(Tb, 0, 0)
LOC(Ball, 5, 5)

HasBall
Open

Dribbling-Move
Robot: Tb

LOC(Tb, 5, 5)

¬Open∨¬HasBall

Open∧HasBall

Figure 5.3: Intra-robot replanning to enable Pass’s rationale through dribbling. HasBall and Open
are conditional functions (T/F) and when either is invalid the replan policy Dribbling-Move is
executed to enable them.

failed is Open, which is defined as true if the pass can be successful. Open is ill-defined with-
out knowledge of the opponents’ intercept abilities and therefore is estimated by the centralized
planner. Another issue is in Tb’s ability to enable the Open condition.

Dribbling-Move enables the condition HasBall by dribbling – the robot has a rotating bar
in its forward direction that applies a back spin on the ball for maintaining possession – and can
implicitly enable the condition Open by moving the ball towards the passing location while cir-
cumventing nearby opponents. This does not solve the issue of opponents marking the receiver or
the ill-defined Open condition. For now, Open is defined as true if the probability of a successful
pass, given by the centralized team planner, is above the defined threshold γ. The flow diagram in
Figure 5.3 illustrates the intra-robot replanning for Tb using Dribbling-Move. The robot changes
its local position variable towards the passing location. As previously stated, the condition Open
is only being enabled implicitly as Tb is not attempting to find a new or better passing location.
The condition is enabled when the centralized planner declares the current pass probability above
γ given some assumptions and simplification based on the current state. Dribbling-Move gives a
relatively simple solution to enabling conditions HasBall and Open, however we show soon that
it performs poorly in our example domain.

HasBall can be defined as an independent condition. The ability to enable it is on a single
robot’s own ability to keep the ball or get the ball. Independent conditions can be enabled by
changes in the robot’s assigned variables to compensate for changes in the environment. Open can
be defined as a dependent condition. Its ability to be enabled is highly dependent on the other
teammate(s) and/or opponent(s). Dependent conditions can be enabled by changes in the variables
of the robots that are involved with enabling the condition. Obviously, the opponents’ variables
cannot be manipulated directly so it can be difficult to enable a dependent condition.

To enable Open, Tb needs to change its variables – this occurs through dribbling – and the
variable(s) of the teammate’s Tactic involved in the pass. Here, we add the action Adjust Team-
mate to Dribbling-Move which changes the Zone variable of the receiver’s Goto Tactic, shown in
Figure 5.4. This replan policy communicates the change of the zone variable with the other robot
while the other replan policy, Dribbling-Move, only dribbles the ball. Adjust Teammate is used if
Open is not enabled when dribbling. It places the zone in front of Tb and towards Tr as shown in
Figure 5.5. A new location is found within the new zone for the pass and provided to Tb and Tr . Tb
can now explicitly attempt to enable the Open condition by moving the teammate to a zone better
situated for its own dribbling abilities. This ultimately helps the robots work together towards their
shared goal of passing the ball.
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Robot: Tb

LOC(Tb, x, y)
LOC(Ball, px, py)

HasBall
Open

Dribbling-Move
Robot: Tb

LOC(Tb, px, py)

Goto
Robot: Tr

LOC(Tr, px, py)
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Zone(x, y + w

2 , l,w)¬Open∨¬HasBall

Open∧HasBall

¬Open

Zone

px, py

Figure 5.4: Intra-robot replanning to more explicitly enable Open by using the action Adjust
Teammate to change the zone variable.

(a, b, l,w)

Tb TrOb Or

(x, y + w
2 , l,w)

Tb TrOb Or

Figure 5.5: Demonstrating the Zone adjustment (dot-dash black square), resulting in a change in
pass location (dashed black circle), from the replan policy in Figure 5.4.

The Zone becomes a sliding window towards the right based on Tb’s location, shown in Fig-
ure 5.5. This ensures that Tb is always close to the passing Zone and the centralized planner finds
Tr a new pass location.

5.3 Experimental Results

5.3.1 Experimental Setup
We use the passing with marking domain as we describe in our example with a field size of 9 m
long by 6 m wide. Tb starts at (2 m, 3 m) with the ball directly in front of it at (1.9 m, 3 m) and
opponent Ob behind it at (2.4 m, 3 m). Teammate Tr starts at (7 m, 3 m) with the opponent Or in
front of it at (6 m, 3 m). The Play is always the same with Tb passing to Tr , however the passing
location changes quickly as the centralized planner attempts to find the best position within Tr’s
defined zone. The zone is defined as (x = 4.5 m, y = 0 m, l = 4.5 m,w = −6 m), so the zone covers
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half of the field.
The pass must happen within one minute or it is considered a failed pass. If the ball goes

outside field boundaries it is also considered a failed pass. Touching is defined as being within a
robot radius plus a ball radius of the center of a robot. If the ball is touching an opponent for five
video frames then it has been intercepted and the pass has failed. A pass succeeds if Tr is touching
the ball for five video frames.

The opponents place themselves in the direct line of sight between the two Ti. Ob maintains a
close distance of three robot radii (3 ∗ 0.09 m) from Tb. Or maintains a distance of 0.5 m from Tr .
When the ball is kicked, i.e., its velocity goes above 0.9 m/s and it is two robot diameters away
from Tb, Or attempts to intercept the ball.

Tr uses the pass ahead algorithm to receive the ball as previously referenced. We are introducing
Change-Zone which follows Figure 5.4. The zone parameters are determined by trial and error
for improving the performance of passing. We compare Change-Zone to three algorithms for Tb
with varying degrees of replanning to enable invalid rationale:

• Base Case: Positions to face the ball and pass location, then immediately kicks as planned
(no replanning).

• Dribbling-Move, D0
M , γ = 0: Previously referenced algorithm with γ set for any pass.

• Dribbling-Move, D1
M , γ = 0.15: Only passes if the pass probability is above γ.

• Change-Zone, CZ : Uses D1
M with the Adjust Teammate action to enable the condition Open

by altering the Teammate’s Zone using: (l = 2 m,w = 6 m).

5.3.2 Results
Each different replan policy for Tb is run five hundred times in a physics-based simulator starting
with the same formation of teammates, opponents, and the ball. The results are found in Figure 5.6.
Base Case fails almost every time and its few successes can be attributed to random chance as
the ball is often stolen or blocked. Both Dribbling-Move algorithms improve the chance of a
successful pass by enabling the constraint HasBall, but passes are often intercepted by Or . With
the higher γ, Dribbling-Move further increases the success rate by waiting for γ to improve (even
if just slightly as 0.15 is still very low). Change-Zone further increases the success rate by more
explicitly attempting to enable Open by moving Tr closer to find an open pass.

We use the binomial proportion test to verify that the different success rates of the algorithms
are not due to randomness or limited sampling. The binomial proportion test is, as defined in
[Ryan, 2008]: given a set of N1 observations in a variable X1 and a set of N2 observations in a
variable X2, we can compute a normal approximation test that the two proportions are equal, or
alternatively, that the difference of the two proportions is equal to 0. A standard approach is that
at a p value of less than 0.05, the null hypothesis can be rejected. In our case, the null hypothesis
defines that there is not enough evidence to show a statistically significant difference between the
results of the algorithms.

As shown in Figure 5.7, each improvement on the Base algorithm is statistically significant
when compared to previous algorithms. The initial change, D0

M , occurs when replanning enables
the condition HasBall by dribbling. Our contribution, CZ , shows further significant improvement
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Figure 5.6: Results for four different replan policies used by Tb in the passing with marking domain
shown in Figure 5.1.

Binomial Proportion Test (Two-Tailed)
Algorithm Algorithm P Value
Base Case D0

M < 0.0001

D0
M D1

M 0.0452

D1
M CZ < 0.0001

Figure 5.7: Testing for the null hypothesis that the two proportions are equal and the difference is
due to randomness.

by replanning to enable the condition Open by moving the teammate into a more beneficial zone.
Our data demonstrates the large improvement when individual robots within a team can replan to
enable all the conditions needed by their Tactics.

In Chapter 2, we show that the Dribbling-Move algorithm improves the success rate of passing
when marked by an opponent similar to Ob. With the inclusion of the second opponent, Or , the
success rate drops dramatically. We can see that the improvement of Dribbling-Move mainly
contributes to the enabling of the condition HasBall and its ability to handle the close opponent,
Ob. Changing-Zone’s improvement is in changing the teammate’s zone variable to support the
robot’s dribbling abilities. Changing the zone variable brings the passing location closer for tighter,
shorter passes and this helps improve the probability of enabling Open. Overall, this improvement
occurs because we provide the individual robot with a new replan policy that attempts to enable a
rationale that previous replan policies had not explicitly handled.

In Figure 5.8, we change the initial locations of the soccer robots. In this experiment, the suc-
cess rate of Dribbling-Move and Change-Zone are comparable, and the base case method performs
much better. This experiment is meant to demonstrate that the replan policies can be better or worse
in different states of the world. This further motivates our work in Chapter 8 in which we learn a
value metric for each replan policy in order to sort them and further improve team performance.
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Figure 5.8: Results for three different replan policies used by Tb in the passing with marking when
starting locations are randomly chosen in Figure 5.1.

5.4 Summary
In this chapter, we present experimental results in the passing-with-marking domain, a sub-domain
of the robot soccer domain, using intra-robot replanning. We discuss the inability for the previous
methods to successfully pass the ball because of the introduction of another opponent, which made
this sub-domain more closely resemble a realistic passing scenario in a robot soccer game. With
the introduction of a new opponent, the inability of previous methods to enable the open constraint
is clear. Therefore, we introduce a new replan policy that alters the zone variable of the receiving
teammate in order to make passing more successful. The results show a clear improvement over
the previous methods and highlight the importance of having replan policies that handle all the
rationales provided by the centralized planner.

In the next chapter, we explore a domain vastly different than the robot soccer domain; a do-
main where the vast, deep ocean is the environment, where the robots are autonomous underwater
vehicles (AUVs), and where communication between robots and the centralized planner happens
by a satellite link. Although the domain is different, our intra-robot replanning algorithm with our
rationale-driven plan improves the AUVs’ abilities to handle failures locally, and ultimately they
improve the team’s performance.
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Chapter 6

Autonomous Underwater Vehicle Domain

In this chapter, we consider multiple autonomous underwater vehicles (AUVs), shown in Fig-
ure 6.1, engaged in oceanic missions that require collaboration. We address the challenge of ef-
fective distributed multi-robot plan execution: when a failure occurs, an individual AUV needs to
decide how to proceed to maintain the success of the multi-robot plan. Failures occur when the
modeled actions of the AUVs fail to result in their expected outcomes, largely due in this domain
to the poorly modeled dynamics of the ocean. Intra-robot replanning is advantageous because
traditional purely centralized controlled methods use time-consuming and expensive satellite com-
munication in order to repair failures. We use our rationale-driven team plan representation that
explicitly includes the rationale of the individual robots’ planned actions to enable local replanning
without satellite communications. This chapter focuses on examples of concrete team missions and
the collaboration of AUVs that clearly demonstrate the effectiveness of our approach.

In the AUV domain, we assume that a centralized controller, located offshore, generates team
plans for a team of AUVs. Human operators create the team plans in this domain and add the
necessary rationales. We assume the AUVs are placed into the ocean having already received
the team plan, and from then on the only communication between the AUVs and the centralized
controller is through a satellite link which is expensive and time consuming to use. The AUVs can
quickly and cheaply communicate with each other over wifi if they are close enough in proximity

Figure 6.1: Three Light Autonomous Underwater Vehicles (LAUVs) from the Laboratório de Sis-
temas e Tecnologia Subaquática (LSTS) in Porto, Portugal that were used to gather the depth data
in Figure 6.4.

47



Figure 6.2: Coastal waters off of southern Portugal. Discoloration in the ocean, near bottom left
corner, shows the outline of an ocean front between river runoff and ocean water.

and are not underwater. To reiterate, the AUVs cannot communicate underwater or receive a GPS
signal for localization while underwater. The ocean also has many underwater currents that are
very hard to model and predict. Therefore, the AUVs often fail to arrive at their destination when
traveling underwater because they cannot correct for the unknown current without a GPS signal.
Ultimately, this causes the team plan to fail. Further discussion of the AUV domain is provided in
Section 6.1.

In order for autonomous intra-robot replanning to be successful within a team, the individual
AUV must understand the rationales of the centralized planner for the actions being executed.
Furthermore, once the rationales are known, the individual AUV must know which replan policies
can enable the failing rationales of the team plan. Finally, the individual robots must select a single
replan policy from those applicable ones with two considerations: most importantly, enable the
failing rationale given the state of the environment, and, secondly, do so in a cost-effective manner.

6.1 Domain
In this chapter, we are using a simulated AUV domain where two AUVs follow a defined path
together (simultaneously), criss-crossing the boundary line between fresh and salt water in order
to collect multiple data points in the water column for oceanography research. An example of such
a boundary line in the ocean is shown in Figure 6.2. The simulated path we use in our domain is
shown in Figure 6.3. The AUVs complete a yoyo maneuver by ascending and descending multiple
times between two points on the ocean surface. In order to collect more sensor data in the water
column, the AUVs time their movements to have inverse motion in the z-axis (depth). Shown
in Figure 6.4 is depth data collected by two real AUVs completing the described yoyo maneuver
between two points on the ocean surface. This data was collected using two of the AUVs shown in
Figure 6.1 through a collaboration with Laboratório de Sistemas e Tecnologia Subaquática (LSTS)
[Ferreira et al., 2018].

Our concerns with this domain are:

1. The AUVs must connect at each location in order to synchronize their movements so that
they can perform the behavior shown in Figure 6.4;
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Figure 6.3: A simulated environment where two AUVs criss-cross the boundary line of fresh water
(light blue) and salt water (dark blue) to gather scientific data about the boundary. At each location
the AUVs connect to each other and synchronize their movements and then they yoyo to the next
location. See Figure 6.4 for the yoyo maneuver between two points.
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Figure 6.4: Real depth data collected by two AUVs. They sync their movements before time step
50 then execute a yoyo maneuver where one AUV is at the top of the water column while the other
is at the bottom of the water column. After a set number of yoyos, they ascend at time step 200.
They must connect again after step 200 before moving to the next location.

49



2. Unknown water currents often push the AUVs off their intended course while they perform
the yoyo maneuver;

3. Communication for replanning between the AUVs and the centralized controller by satellite
communication is very costly.

To handle these concerns, we implement intra-robot replanning with our rationale-driven plan
representation to handle failures locally whenever possible.

6.2 Simulated Experiments

We develop a simulated environment in order to test the rationale-driven team plan representation
with the intra-robot replanning algorithm over multiple experiments with different environmental
conditions. In this section, we describe:

1. The constants of the experiments,

2. The actions used by the AUVs,

3. Examples of rationales used in the rationale-driven plan,

4. The replan policies used by the AUVs,

5. Computation and communication costs

6. The experiments and their results.

6.2.1 Constants

Everything in this simulation is defined in kilometers and seconds. The constants below are as-
sumed:

• AUV speed is 0.0128 km/s

• Wifi radius is 0.1 km

• Satellite cost is 600 seconds (10 mins)

• Wifi cost is 3 seconds

• Maximum wait time (W) for a wifi connection is 300 seconds (5 mins)
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6.2.2 Actions
The actions used in our experiments are:

• INITIAL: Starting action for the AUV.

• SYNC 〈ID〉: Connects over wifi to the AUV with the defined ID and synchronizes their next
action.

• GOTO 〈X〉 〈Y〉: The AUV travels along the surface and heads directly to the (X, Y) location.
We assume it can receive a GPS signal so it does not get lost. However, the AUV cannot
receive a wifi signal unless it stops because the AUV’s own motion and the surrounding
waves make it harder for the wifi signal to propagate horizontally.

• YOYO 〈X〉 〈Y〉: The AUV performs a series of descents and ascents in the water column
towards the (X, Y) location. As the AUV is underwater, it cannot receive a GPS or wifi
signal so the YOYO maneuver often fails to arrive at the destination location.

• SATELLITE: The AUV connects to the centralized controller through a satellite link.

6.2.3 Rationale
The rationales used in our experiments are provided by the human operator developing the team
plan. We describe some example rationales for the AUV domain. For our experiments, we use
only the last rationale described in this section, i.e., CANCONNECT.

Consider the AUV must take a water sample precisely AT {X = 1,Y = 2}, a typical constraint
in planning. We can define this constraint as the following rationale:

AT(X,Y, 1, 2) = X ≡ 1 ∧ Y ≡ 2 (6.1)

where X and Y are the location variables of the AUV. This rationale is only true if the AUV is at
that specific location. The two constants (1 & 2) can be replaced with any location if the rationale
for the plan defines that the AUV must be at a defined location.

Consider the human operator wants to be more lenient with the location and allows the AUVs
to be near enough to the location. We could define the NEAR rationale:

NEAR(x, y, lx, ly, dx, dy) =
(|x − lx | < dx) ∧ ( |y − ly | < dy)

(6.2)

where x, y are the AUV’s location, lx, ly is the destination location, and dx, dy are the distance
thresholds.

Consider two or more AUVs must connect over wifi to synchronize before moving to the next
location. We assume the AUV’s state (S) defines if the AUV is connected over wifi (C) and to a
defined ID (CID). We define the CANCONNECT rationale:

CANCONNECT(C,CID, ID) =
(C = true) ∧ (CID = ID)

(6.3)

These rationales add information about why certain locations were picked (to fulfill AT or
NEAR), or about an assumption made by the human operator regarding the ability of both AUVs
to connect with one another.
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6.2.4 Replan Policies
When designing the replan policies for the AUVs, the rationales need to be considered. There is an
assumption that there exists at least one replan policy that enables each rationale. The basic replan
policy simply calls the satellite, but we also considered another alternative:

R-SATELLITE 〈β = any rationale〉: Uses SATELLITE to receive a new plan from the current
robot’s location (A).

A
SATELLITE

R-GOTO-SATELLITE 〈β = any rationale〉: Uses GOTO to move the AUV to the correct location
(B) and then uses SATELLITE.

A B
GOTO

SATELLITE

In this chapter, we only consider the CANCONNECT rationale for the experiments. We provide
a few different options that attempt to reconnect with the other AUV when it fails to connect over
wifi:

R-GOTO 〈β = CANCONNECT()〉: Uses GOTO to move to the correct location (B) and then uses
SYNC to attempt to connect with its teammate over wifi.

A B
GOTO

SYNC

R-CONNECT-GOTO 〈β = CANCONNECT()〉: Attempts to use SYNC first, and then proceeds
like R-GOTO.

A B
SYNC

GOTO

SYNC

R-STAR-GOTO 〈β = CANCONNECT()〉: Attempts SYNC. Then centered at its current location,
it creates five evenly spaced points on the circumference of a circle with a radius equal to the
wifi distance. It will GOTO each location and attempt to SYNC. The first location is chosen at
random and then it always proceeds to the point farthest away from its current location until
all points have been attempted. If unsuccessful, it proceeds like R-GOTO. This is inspired
by the sector search pattern described in [Bernardini et al., 2017] for search and rescue, but
is modified to ensure that the AUVs always travel the same distance before attempting to
connect.

A B

1
2

3
4

5
SYNC

SYNC

SYNC

SYNC

SYNC

SYNC
GOTO

SYNC
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Table 6.1: Team Plan Provided to AUVs with Rationales

AUV1, ID = 1 AUV2, ID = 2
INITIAL INITIAL

SYNC 2 SYNC 1
YOYO 8 4; CANCONNECT(2) YOYO 8 4; CANCONNECT(1)
SYNC 2 SYNC 1
YOYO 1 5; CANCONNECT(2) YOYO 1 5; CANCONNECT(1)
SYNC 2 SYNC 1
YOYO 8 6; CANCONNECT(2) YOYO 8 6; CANCONNECT(1)
SYNC 2 SYNC 1
YOYO 1 7; CANCONNECT(2) YOYO 1 7; CANCONNECT(1)
SYNC 2 SYNC 1
YOYO 8 8; CANCONNECT(2) YOYO 8 8; CANCONNECT(1)
SYNC 2 SYNC 1
YOYO 1 9; CANCONNECT(2) YOYO 1 9; CANCONNECT(1)
END END

For the previous three replan policies, an attempted SYNC lasts 3 seconds and it uses the ID pro-
vided by the rationale.

6.2.5 Computation and communication costs

The intra-replanning algorithm is computationally efficient for an AUV. The replan policies are
simple state-machines that are selected by their applicability and their cost. This should not be very
taxing for the on-board computation of the AUVs. The communication cost is slightly increased
when the team plan is delivered to the AUVs due to the addition of rationales which come with each
action. Although, the communication cost saved from replanning is significant enough to outweigh
the addition of some communication overhead due to the addition of team plan rationales.

6.2.6 Experiments

For our experiments, we follow our example domain with two AUVs criss-crossing the ocean using
the team plan shown in Table 6.1 and assume the AUVs start at location (0, 0). A visualization
of the plan’s path is in Figure 6.3. We assume that there exists a current that pushes the AUVs
off course when they are performing the YOYO maneuver. The simulation uses a simplified model
of currents that are only applied to the AUVs’ locations after the simulation has determined the
YOYO maneuver finished. Consequently, the AUVs surface near the intended destination based on
the currents’ modeled distributions. There has been work on modeling ocean and wave currents
for real-time simulations, but this level of simulation goes beyond the scope and need of this
work [Omerdic and Toal, 2007].

In this domain, each AUV completes a set number of yoyos and then surfaces to connect with
the other AUV before beginning the next traversal. The only purpose of the specific locations is to
direct the AUVs in a certain direction and so the only rationale added to the team plan is that they
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need to be able to connect when they surface. The defined location does serve as a location known
by both AUVs in case they cannot connect where they surface, which is ultimately how our replan
policies are designed to connect the AUVs if all else fails.

We therefore add CANCONNECT to every YOYO tactic in the team plan shown in Table 6.1.
See below for a general example:

YOYO 〈X〉 〈Y〉; CANCONNECT(〈ID〉);

Experiment 1: Positive Y-Axis and X-Axis Currents

We assume there is an ocean current in the positive y-axis modeled by a normal distribution with
mean 2 and variance 0.1, and a uniform distribution from 0 to 0.1 in the x-axis. See Figure 6.3
for the orientation of the axes. Figure 6.5 shows the time taken by the AUVs to complete the team
plan using a specific replan policy for every CANCONNECT rationale that became invalid. The first
three replan policies have very consistent performances because they always go towards the failed
location and are affected only slightly by the ocean current. Relying on satellite communications
for every failure is clearly very costly. The intra-robot replanning policies that attempt to connect
over wifi perform much better. However, the AUVs have a limited wifi radius of 0.1 km and so
they cannot always connect when they surface. R-STAR-GOTO attempts to find the other AUV but
the search patterns can add more time, which is why its performance has a higher variance. On the
other hand, R-CONNECT-GOTO only adds wifi costs to its time in comparison with R-GOTO.
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Figure 6.5: Experiment 1, ocean current in both x- and y-axes directions: Average time and vari-
ance to complete the team plan 5,000 times using the stated replan policy.

Experiment 2: Only Positive X-Axis Current

We assume there is an ocean current in the positive x-axis modeled by a normal distribution with
mean 1 and variance 0.05, and no current (0) in the y-axis. Figure 6.6 shows that R-CONNECT-
GOTO and R-STAR-GOTO perform reliably better than R-GOTO because the two AUVs are often
within the wifi radius after surfacing from a yoyo. Similar to the previous experiment, R-STAR-
GOTO has a higher variance because of the extra search time. This experiment has a less aggressive
current and the variance is less, so the overall performances are much more consistent.
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Figure 6.6: Experiment 2, ocean current in the x-axis direction: Average time and variance to
complete the team plan 5,000 times using the stated replan policy.

Experiment 3: Wifi Not Available

We assume there is an ocean current in the positive x-axis and y-axis both modeled by a normal
distribution with mean 1 and variance 0.2. We are assuming the surface waves are so large that
connection over wifi cannot be established. The replan policies that try to connect always fail at
the maximum wait time on their final SYNC and then R-SATELLITE is executed. Therefore, their
average times are consistent, and the time variance is mainly due to the increase in the variance
of the ocean current. Shown in Figure 6.7, R-GOTO-SATELLITE is the best option because it first
moves to the correct location and then immediately calls the satellite. Because both AUVs are
together, the centralized controller connects them and they start their next yoyo. R-SATELLITE,
however, connects to the satellite at the failed location, receives a plan to go to the failed location
(to bring the AUVs together), and then cannot connect over wifi at the failed location. Therefore,
it must call the satellite again, causing it to be the worst option by far.
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Figure 6.7: Experiment 3, large ocean currents with no wifi connections: Average time and vari-
ance to complete the team plan 5,000 times using the stated replan policy.
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Review

These experiments show that a predetermined sorting of the intra-robot replanning policies in one
environment is not always the best option in another environment. Another challenge is handling
unknown variables when deciding the order of the replan policies. In the Chapter 8, we describe a
method to learn the predicted cost of each replan policy in order to more reliably select the lowest
costing one.

6.3 Understanding the Effects of the Constants
In this section, we explore the effects of the constants on the performance of the replan policies and
the AUVs’ plan completion time. First, we reiterate the assumed constants for the AUV domain
– please note that the AUV’s speed has been lowered for these experiments. The experiments are
as follows: (i) explore the effect of the satellite communication costs, (ii) explore the effect of the
modeled ocean variance, (iii) explore the effect of the maximum wait time, and (iv) explore the
effect of the wifi range.

6.3.1 Constants
Everything in the simulation is defined in kilometers and seconds. The constants below are as-
sumed unless otherwise discussed in each individual experiment:

• AUV speed is 0.00128 km/s

• Wifi radius (R) is 0.1 km

• Satellite cost (S) is 600 seconds (10 mins)

• Wifi cost is 3 seconds

• Maximum wait time (W) for a wifi connection is 300 seconds (5 mins)

6.3.2 Satellite communication costs
We run multiple experiments to test the effects of different satellite costs to show the increasing
benefits of intra-robot replanning. For each experiment, a single replan policy is run two hundred
times and then the team plan completion times are averaged. We assume the satellite replan policy
is still available if the other replan policies fail. The satellite cost is then changed and the process
repeated for each replan policy. The x-axis ocean current is modeled with a normal distribution
with mean 1 and variance 0.02, and the y-axis has no ocean current. The large x-axis current
pushes the AUVs off their intended target locations, forcing the AUVs to replan.

As shown in Figure 6.8, the cost of communicating with the satellite can greatly increase the
time for the AUVs to complete their assigned team plan. On the other hand, the costs of replan
policies R-GOTO, R-CONNECT-GOTO, & R-STAR-GOTO remain constant because they can suc-
cessfully replan without needing to connect to the satellite. Although, their costs could be affected
by the types of currents and their variances in our modeled ocean currents.
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Figure 6.8: The relationship between team plan completion time and the satellite cost used when
replanning for each replan policy. Brown and yellow lines are nearly identical, as are black and
red. See Section 6.3.2.

6.3.3 The effect of modeled ocean variance

In the previous experiment, we demonstrate that some replan policies can greatly reduce the time
it takes to complete a team plan, but in those experiments the ocean current’s variance is static
at 0.2 km. In this experiment, we vary the ocean current variance to see the effect on the overall
performance of each replan policy. We model both the x-axis and y-axis currents by a normal
distribution. Both have a mean of 0 and the variance goes from 0 to 0.5 km stepping by 0.02 km.
The experiment is run 400 times for each replan policy for each variance.

Shown in Figure 6.9, the increase in ocean variance steadily elongates the team plan completion
time. Of course, with more ocean variance the AUVs may have to travel farther, automatically
increasing the total time. The graph shows that as the ocean variance increases, the AUVs are
less likely to be successful when using the replan policy. The shaded area around the graph lines
show one standard deviation around the average, which increases as the ocean variance increases.
Surprisingly, the performance of R-STAR-GOTO degrades quickly, eventually crossing beyond R-
SATELLITE. This demonstrates that R-STAR-GOTO is not very useful with large variance in the
ocean currents. R-CONNECT-GOTO and R-GOTO never reach the cost of R-GOTO-SATELLITE so
we can assume they successfully replan sometimes even with the very large ocean variance. An
interesting aspect of the graph is the u-shaped curve between 0 and 0.2 variances for R-SATELLITE.
The initial sharp increase highlights the quick increase in cost when the ocean variances gets just
large enough to cause failures for the AUVs. However, the cost goes down afterwards for awhile
and then picks back up. We explore why in the next section.

6.3.4 Maximum wait time (W)

We notice a rather interesting phenomenon about the simple constantW. Maximum wait time (W)
is the time that the AUVs attempt to connect over wifi before failing and calling the satellite. In the
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Figure 6.9: The relationship between team plan completion time and variance of the ocean currents
for each replan policy. Highlighted areas show 1σ standard deviation. See Section 6.3.3.

previous experiment, we describe a u-shaped curve in the performance of R-SATELLITE that we
attribute toW in this section. For this experiment, we simplify the ocean current to only a normal
distribution on the x-axis with mean 0 and variance ranging from 0 to 0.25 km incrementing by
0.02 km. W varies from 30 seconds to 5 minutes incrementing by 30 seconds. The experiment is
run 400 times for each ocean variance andW.

In Figure 6.10, we show the results of R-SATELLITE where each line has a differentW value.
Reducing the ocean variance to one axis reduced the u-shape curve but it remains prominent.
Clearly,W causes the u-shape as it goes away once the value is very low. There are three cases to
consider: (i) both AUVs are near the target location, (ii) only one AUV is near the target location,
or (iii) both AUVs are far from the target location. Consider the cost of the two AUVs reuniting
using R-SATELLITE. The first case has cost zero because they are both correctly at the target
location, i.e., no reunion cost. The next two scenarios are more complicated and their combination
results in the u-shape curve. We assume thatW < S.

Consider the second scenario where one AUV is near the target location and the other is not.
Let T1 be the time it takes for the far AUV to get to the target location. For simplicity, we stop at
T1 ≤ 2W + S.

Cost =



W + S T1 ≤ W (6.4a)
T1 + S W < T1 ≤ 2W (6.4b)
T1 + 2S +W 2W < T1 ≤ 2W + S (6.4c)

There is a large initial cost for a higher wifi wait time in Equation 6.4a. Once T1 is larger thanW,
the cost increases with T1 until it passes 2W where the waiting AUV must then call the satellite
for the second time, greatly increasing the cost. With a small ocean variance, the cost is mostly
attributed to the first case.

Consider the third scenario where both AUVs are far away from the target location. Let T1
and T2 be the times it takes for the AUVs to get to the target location. Let Td = |T1 − T2 | and
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Figure 6.10: The relationship between team plan completion time, the variance of the ocean cur-
rents, and the wifi wait time for R-SATELLITE. The legend is wifi wait time in seconds. See
Section 6.3.4.

Tm = Max(T1,T2). For simplicity, we stop at Td ≤ 2W + S.

Cost =
{

Tm + S Td ≤ W (6.5a)
Tm + 2S +W W < Td ≤ 2W + S (6.5b)

In this scenario, W does not increase the cost for the first case (6.5a), while at the same time,
increasing W does increase the time threshold before the AUV jumps into the more costly case
(6.5b), which is beneficial. With these equations, we can give a simple intuitive example on why
the u-shape occurs.

Let S be 10 minutes andW be 5 minutes. For the second scenario, let T1 be 2 minutes. The cost
is thenW + S = 15 minutes. For the third scenario, let T1 be 3 minutes and T2 be 4 minutes. The
cost is then Max(T1,T2) + S = 14 minutes. Therefore, even though the AUVs are farther out in
the third scenario, the total cost for reuniting is less. The additional cost for the second scenario is
because the AUV at the target location wastes time trying to connect and then eventually connects
over satellite, which has a strict cost of 10 minutes.

6.3.5 Wifi range

The range of the wifi signal can have implications on the usability of intra-robot replanning with
AUVs. We have assumed that there exists a wifi signal with enough range that the AUVs can
communicate locally. However, the range of the signal may not be that far or non-existent at all,
e.g., on a very turbulent ocean surface.

In Figure 6.11, we show multiple experiments testing different wifi range values for all the
replan policies. The wifi range went from 0 to 0.3 km incrementing by 0.02 km. For ocean
currents, we have a normal distribution on the x-axis with mean 1 and variance 0.05 and no y-axis
current. Each replan policy is run 400 times for each wifi range.
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Figure 6.11: The relationship between team plan completion time and the wifi range for each
replan policy. Highlighted area shows 1σ. See Section 6.3.5.

Notably, R-GOTO-SATELLITE performs the best when the wifi range is zero. This is because
it goes immediately to the target location and then calls the satellite so that the AUVs sync over
the satellite without the need for wifi. On the other hand, R-SATELLITE performs worse because
in the worst case the AUVs call the satellite twice, first at the failed location and then at the target
location to sync. R-STAR-GOTO performs the worst because it wastes so much time attempting to
connect over wifi. As the wifi range expands, the improvements of R-GOTO, R-CONNECT-GOTO,
and R-STAR-GOTO can be seen. Therefore, it is important to understand the wifi capabilities of
the AUVs using intra-robot replanning and the effects the wifi range has on the performance of an
individual replan policy.

6.4 Summary
In this chapter, we show that intra-robot replanning can be very beneficial when considering re-
planning for multiple AUVs in the ocean. We show how replanning locally rather than calling the
satellite for every failure can greatly reduce the total time it takes for the AUVs to complete their
assigned team plan. We then demonstrate how different variables can have profound effects on
the performance of intra-robot replanning. The cost for communicating over satellite, the ocean
current variance, the maximum wait time for connecting over time, and the wifi range can change
the performance of individual replan policies, so the cost function for selecting replan policies
should attempt to take these variables into account if possible. Another option is to learn the cost
of each replan policy. Gathering enough data to properly learn the cost functions for each replan
policy can be arduous. On the other hand, with the rise in long-term autonomy, i.e., robots running
for months to years at a time, there may be enough time to let the AUVs gather data when using
different replan policies and to slowly learn an effective cost function.
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Chapter 7

Grid Domain

In this chapter, we explore the benefits of the rationale-driven plan with intra-robot replanning in a
targeted planning domain. We run multiple experiments testing different aspects of the problem of
replanning locally. In doing so, we attempt to highlight the key benefits of our approach and when
intra-robot replanning with a rationale-driven plan should be used. We first detail the Planning
Domain Definition Language (PDDL) domain that we use for our testing [Ghallab et al., 1998].
Then, we describe the planning algorithm we use for generating the rationale-driven plan. Lastly,
we investigate multiple experiments and the replan policies we use within them to demonstrate the
benefits of a rationale-driven plan.

7.1 Domain
The domain we use for our experiments is the Grid domain originally used in the AIPS-98 com-
petition [McDermott, 2000]. A visualization of an example problem we use in our experiments
is shown in Figure 7.1. A grid of rooms is kept at a size of 5 by 5 for a total of 25 rooms for
our experiments. Doors are placed between rooms with a connection, (conn ?x ?y) in the PDDL.
Within the rooms, there can be various keys with different shapes on the ground. Some of the
rooms are locked (room outlined in red in figure) and they have designated lock shapes (red shape
in the bottom left corner) that can be unlocked with the corresponding key. The goal(s) in this
domain are to place one or more keys at various locations in the grid. The robot’s actions are: (i) to
move from its current location to a neighboring room, (ii) pick up a key if the robot and the key are
in the same room, (iii) unlock a door if the robot is holding a key with the same shape, (iv) pick up
a new key and drop (or lose) its currently held key, and (v) put down the key it is currently holding.
The full PDDL description for the domain is shown in Figure 7.2.

7.2 Planning Algorithm
For this chapter, we use a forward search using the A∗ algorithm, [Hart et al., 1968], along with
the Fast-Forward heuristic, described in [Hoffmann and Nebel, 2001], for the estimated goal cost.
Depending on the planner, there can be variable amounts of information available in the final
plan. However, the constraints and why the action was chosen should be available across different
planners. These are vital to determining if a failure in the planner’s assumptions has occurred.
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Figure 7.1: Grid domain example visualization. Solid gray box is the robot, red shapes in the
centers are keys, shapes in the bottom left corners are lock types, rooms outlined in red are locked,
blue shapes in the upper right corners are goals, and arrows are allowed movements.

(define (domain grid) (:requirements :strips)
(:predicates (conn ?x ?y) (key-shape ?k ?s) (lock-shape ?x ?s) (at ?r ?x ) (

at-robot ?x) (place ?p) (key ?k) (shape ?s) (locked ?x) (holding ?k) (open
?x) (arm-empty ))

(:action unlock :parameters (?curpos ?lockpos ?key ?shape)
:precondition (and (place ?curpos) (place ?lockpos) (key ?key) (shape ?shape)

(conn ?curpos ?lockpos) (key-shape ?key ?shape) (lock-shape ?lockpos ?
shape) (at-robot ?curpos) (locked ?lockpos) (holding ?key))

:effect (and (open ?lockpos) (not (locked ?lockpos))))
(:action move :parameters (?curpos ?nextpos)
:precondition (and (place ?curpos) (place ?nextpos) (at-robot ?curpos) (conn ?

curpos ?nextpos) (open ?nextpos))
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos))))
(:action pickup :parameters (?curpos ?key)
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos) (at ?key ?

curpos) (arm-empty ))
:effect (and (holding ?key) (not (at ?key ?curpos)) (not (arm-empty ))))
(:action pickup-and-loose :parameters (?curpos ?newkey ?oldkey)
:precondition (and (place ?curpos) (key ?newkey) (key ?oldkey) (at-robot ?

curpos) (holding ?oldkey) (at ?newkey ?curpos))
:effect (and (holding ?newkey) (at ?oldkey ?curpos) (not (holding ?oldkey)) (

not (at ?newkey ?curpos))))
(:action putdown :parameters (?curpos ?key)
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos) (holding ?key

))
:effect (and (arm-empty) (at ?key ?curpos) (not (holding ?key)))))

Figure 7.2: Grid PDDL domain where a robot can move around, pick up and drop keys, and unlock
rooms [Ghallab et al., 1998].
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The preconditions and effects are added when the action is generated for a particular state in the
forward search. The parameters of the preconditions and effects are picked by applicability in the
state so there is no extra rationale for picking them. We explore extra rationales for the parameters
in Experiment 3. When the forward search finds the goal state, it generates the plan going from
the goal state back to the initial state. Important for this domain, we add the predicates that need
to remain valid, i.e., persistent conditions, as constraints to the action during this phase of the plan
generation, see Algorithm 7.1. Specifically, predicates like holding are added as constraints to the
move action if a key will eventually be needed to unlock a door. The assumption of the planner is
that nothing outside of the effects of actions changes the environment, therefore, there was never a
requirement to maintain an understanding that the planner assumed previously achieved predicates
would remain valid. However, in dynamic environments this assumption needs to be addressed
by adding them as constraints to the action. Also recall that in Algorithm 3.3, the planner labels
effects superfluous if they do not contribute to the outcome of the plan, meaning for all intents and
purposes the effect has been removed.

For our example, we add the persistent constraints and remove the superfluous effects with
Algorithm 7.1. The algorithm requires the plan, which is a list of actions starting with a null
action, and the goals. On line 1, the current action index j is set to equal i, the index of the last
action in the plan. A set of constraints is initialized on line 2. Then the algorithm starts the loop that
will loop over all the actions on line 3. For every effect of a j , line 4, if the effect is not an element
of the union of the goals or the constraints, line 5, then the effect is removed as superfluous, line 6.
If the effect is an element of the set of constraints, line 8, then the effect is removed from the set
of constraints, line 9. After all the effects are checked, the current set of constraints is added to a j ,
line 12. Then the preconditions of the current action, a j , are added to the set of constraints, line 13.
The current action index, j, is subtracted by 1 thereby updating the current action, line 14. Finally,
if the current action, a j , is equal to ∅, then the loop ends, line 15.

In Figure 7.3, we highlight two plans, one including only the preconditions and effects and
the other, our rationale-driven plan, using Algorithm 7.1. We specifically focus on the condition
holding and highlight the difference between the two plans when considering that constraint. We
can see that when going through the plan backwards that the condition holding is added as a con-
straint between an action with the precondition of holding and an earlier action with the effect of
holding. Note that we simplified the example by not including all of the preconditions, effects, and
constraints that would normally have been included in the example plans. The holding constraint
is a key addition to the rationale-driven plan in this domain and the addition of this constraint
improves the performance of our individual robot using our intra-robot replanning algorithm.

In regard to intra-robot replanning, the rationales are sorted by the ordering: constraints, why-
this-action, preconditions, and then effects. There are never multiple policies that handle the same
rationale in this chapter’s experiments so we do not sort them; the previous Chapters 5 & 6 explore
this area.

7.3 Experiment 1: Failures in the Grid Domain
We generate ten different problems in the Grid domain, each with one or two goals. For this
experiment, the cost of each action is 1 while the cost of communicating with the centralized
planner is 10. During the execution of each action in the plan, there is a 30% chance of failing to
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Figure 7.3: The example highlights the difference in the holding condition between the P & E plan
and the RDP plan. Specifically, the holding condition is added as a constraint to some actions in
the RDP plan based on Algorithm 7.1.
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Algorithm 7.1 Algorithm that adds the constraints that must remain valid during execution to
actions in the plan. This is a post-processing of the plan that requires the plan, P, that contains a
list of pointers to the actions of the plan and the set of goals, G.
Require: P = {a0 = ∅, a1, a2, . . . , ai},G

1: j = i
2: C = {∅}
3: repeat
4: for all e ∈ a j .effects do
5: if e < G ∪ C then
6: a j .effects = a j .effects \{e}
7: end if
8: if e ∈ C then
9: C = C \ {e}

10: end if
11: end for
12: a j .constraints = C
13: C = C ∪ a j .preconditions
14: j = j − 1
15: until a j ≡ ∅

move (robot remains in its current location) and of dropping a key, if a key is held. If the key is
dropped while the robot is moving, then the key is placed in the previous location of the robot, i.e.,
the robot left the key behind before moving.

7.3.1 Replan policies
1. Replan-Move 〈β = at-robot〉: Attempts to move directly to the failed location from its current

location.

2. Replan-Pickup 〈β = holding〉: If the key is at the robot’s current location it picks the key up,
otherwise it attempts to move directly to the key’s location. If the robot fails to move (no
connection between rooms) or fails to pick up the key once, then it fails.

The results for Experiment 1 are shown in Figure 7.4. The Plan Length is the original length of
the plan provided by the planner. Therefore if there were no failures, the cost of the plan should be
equal to the length of the original plan. The closer the robot’s final cost gets to the original length,
the better the robot is at handling failures. The performance of any approach will never reach the
Plan Length because of the high failure rate in this experiment.

For Centralized, the robot is provided the preconditions and effects, but only to detect imme-
diate failures in order to call the centralized planner for a new plan. Centralized clearly stands out
as the most expensive approach. The failure rate in this experiment is relatively high so the cost of
communicating adds up quickly.

For P&E (Preconditions and Effects), the robot is provided the preconditions and effects along
with the replan policies, previously described. P&E attempts to repair the plan using the replan
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Figure 7.4: Compares different approaches of replanning to the plan length which is the optimal
case when no actions fail, see Experiment 1. Values are an average of 100 runs.

policies, but some failures like dropping a key that is needed later in the plan are realized too late
and ends up making P&E call the centralized planner. P&E does better than Centralized but the
total cost is still rather expensive.

For RDP (Rationale-Driven Plan), the robot receives the rationale-driven plan and the replan
policies. Clearly RDP performs the best at solving the failures locally. The major difference
between P&E and RDP is that while moving, P&E may lose a key and then after finally getting
to the locked door realize that the holding predicate is false. In this case, P&E must call the
centralized planner since the key is too far away for Replan-Pickup to work. RDP is provided with
the constraint that the predicate holding must remain true while it moves to unlock or drop off a
key, and so it can replan and pick up the key immediately after it has fallen from the robot’s grip.
Ultimately this results in RDP rarely calling the centralized planner for a failure.

7.4 Experiment 2: The Effect of the Communication Cost
Next, we want to understand the effect of different communication costs on the performance of
each approach. We vary the cost from 0 to 20, shown in Figure 7.5. These results are generated
using problem number 1, from Figure 7.4. Interestingly, the rationale-driven plan can be beneficial
even with low communication costs.

When the communication cost is 0, the three approaches’ total costs are based purely on the
number of actions needed to reach the goal. Their ordering at 0 cost may seem surprising at first
because RDP still outperforms Centralized. We must first understand that P&E performs the worst
because when it drops a key and leaves it behind, it may attempt an infeasible move action trying to
get back to the key’s location, thereby wasting time rather than immediately calling the centralized
planner. Centralized does not attempt infeasible actions, but it still acquires the cost associated with
going back to pick up the key. On the other hand, RDP recognizes immediately that it dropped
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Figure 7.5: Compares different replan policies, for problem number 1, as the cost of communi-
cating with the centralized planner increases, see Experiment 2. Values are an average of 100
runs.

a required key and so it replans earlier. This specific rationale added to the rationale-driven plan
allows RDP to perform best, in total plan cost, even when the cost of communicating with the
centralized planner is 0.

As the cost increases, the performance of P&E matches that of Centralized for a short while as
the cost of calling the centralized planner matches the cost of sometimes failing to replan. However,
Centralized’s cost increases quickly as the communication cost increases beyond 4. P&E does
slightly better by handling immediate failures, like failing to move, without needing to add the
communication cost. RDP maintains the lowest cost because of its unique ability to handle almost
all the failures locally, so it rarely needs to call the centralized planner.

These results demonstrate that as the communication cost with the centralized planner in-
creases, implementing intra-robot replanning with a rationale-driven plan becomes more and more
cost-effective. The noticeably more striking point is that RDP performed better than Central-
ized even when the communication cost is 0 for this problem.

7.5 Experiment 3: Benefits while Communication Cost is Zero

In the previous experiment, we demonstrate for a single problem that RDP performed better than
Centralized when the communication cost is 0. So for this experiment, we test every problem from
Experiment 1 with communication cost 0 to see if this occurs in other problems. Additionally,
we make the environment more difficult by adding the possibility of failure when the robot places
a key down (putdown or pickup-and-loose). Specifically, there is a 60% chance that the key is
not placed at the correct location. Of these failures, 50% are placed near and 50% are placed far
from the location. In this case, the effect of the action is invalid and the robot needs to replan
accordingly. Also, two open connections to and from the new key location to the robot’s current
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Figure 7.6: Compares different approaches of replanning to the plan length which is the optimal
case when no actions fail, see Experiment 3. Values are an average of 100 runs.

location are added to the state after such a failure.
For our rationale-driven plan, we add the constraint near to all actions involving putting down

a key. Specifically, the constraint defines that the key must be at the correct location or the near
location. To handle the at failure, we introduce the replan policy:

• Replan-At 〈β = at, C = near〉: Attempts to move to the key location, pick it up, move back,
and drop the key. If near is provided and the key is near the location, then it replaces the
action’s effect and solves the failure.

In PDDL, the goal could be modified to:

(or (at key place) (at key near-place))

and then relevant-to would point to both goals. As such, the replan policy would need to be slightly
modified. However, the places in the state would triple and greatly increase the search problem for
the planner. We keep the problem simple, but in doing so the centralized planner always plans for
the exact location. We also do not take into account the time needed for the centralized planner to
replan, and depending on the planner this could make Centralized even worse in total plan cost.

Shown in Figure 7.6 are the results of this experiment. Clearly, the performance depends on
the problem, however for almost every problem, RDP has the lowest total plan cost. P&E has
the worst cost because it fails sub-optimally, i.e., too late after losing a key, and because using
the replan policies can be sub-optimal to the overall objectives of the centralized planner. Cen-
tralized also fails sub-optimally but it can replan with its own objectives and not waste time with
sub-optimal actions. Centralized is also slightly penalized because it requires the robot to place
the key on the exact spot whereas RDP can place it near the location. These results demonstrate
that RDP continues to outperform Centralized across most problems that we test and highlights
the effectiveness of the rationale-driven plan.
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7.6 Summary
In this chapter, we present multiple experiments within the grid domain that highlight the benefits
of intra-robot replanning and the rationale-driven plan. We use a forward search method to solve
the planning problem, and we generate the rationale-driven plan during the planning process. The
rationale-driven plan has a plethora of information about the centralized planner’s reasoning that
a typical plan would leave out. The added rationale facilitates intra-robot replanning without the
costly communication with the centralized planner. The more the cost of communicating with the
centralized planner rises, the greater the potential benefit. However, we demonstrate that even with
a very low cost there is a benefit for using intra-robot replanning with a rationale-driven plan.
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Chapter 8

Learning

In this chapter, we describe our method for choosing a score (or metric) for each replan policy
used in the intra-robot replanning algorithm described in Chapter 4. The scores are used to sort the
replan policies in the intra-robot replanning algorithm, and the final ordering can have a significant
effect on the overall performance. First, we describe an approach using the worst case analysis
for choosing the appropriate replan policy. Second, we describe a state based approach that learns
which replan policy to use given the robot’s current state of the environment. This approach allows
the robot to sort and ultimately select the best replan policy based on current environment variables.
We then describe some results in learning the predicted probabilities of success in the robot soccer
domain and in learning the predicted costs in the autonomous underwater vehicle domain.

8.1 Worst Case

Recall the robot soccer domain previously described in Chapter 5. The task of our robot is to pass
the ball to another teammate. This involves releasing the ball and losing all further control over
it. It is an irreversible action, which cannot be replanned or halted. With irreversible actions, we
prefer to choose a replan policy that minimizes the worst case failure rate of the robot, because
most of the failures cause the other team to obtain the ball.

Provided there is a problem, the individual robot must sort the replan policies and select one to
execute in order to accomplish the task of passing. We define a method of choosing an algorithm
based on the worst case. A standard approach for choosing one algorithm over another is if the
algorithm is better in the worst case independently of the worst case actually occurring. Let Z =
{0, 1}, where 0 is a failure and 1 is a success, and p be the function that gives the probability p(z),
where

∑
z∈Z p(z) = 1, for obtaining the failure or success in Z . We then assign a value v(z) to the

values of Z . We set v(z) to be the total number of successes for the algorithm, in Figure 5.6. We
use the definition in [Rubinstein, 2006],

p % q if min{v(z) |p(z) > 0} ≥ min{v(z) |q(z) > 0} (8.1)

Therefore, the algorithms are ordered CZ % D1
M % D0

M % BaseCase. So, the Change-Zone
algorithm has the largest minimum value and is chosen as the default algorithm.
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8.2 State Based
The worst case method chooses the algorithm that minimizes the worst case scenario, but by defini-
tion it does not consider the actual probability of the worst case happening. This can be seen as an
issue if the worst case rarely, if ever, happens. Another possible issue is that each of the replanning
algorithms alters the team plan causing changes that may be unnecessary. In a normal robot soccer
game, situations requiring complex replanning policies may not occur with high probability. In
other words, if there is no longer an open pass to our teammate but there are no opponents nearby,
then there would be no point in dribbling the ball and/or moving the teammate closer.

We argue that a better method of picking a replan policy is to base this decision on the state of
the world. Using the state information, it is possible to learn the likelihood that a replan policy will
be successful or to learn the estimated cost that the replan policy will have. Then we can order the
replan policies based on the learned score, e.g., likelihood of succeeding. We must reiterate that
because the domain is dynamic and adversarial, the probability of success or the estimated cost
varies even in the exact same state. For example, the soccer robots move with some randomness
which means that predicting the likelihood of an algorithm being successful at any given state is
probabilistic. The soccer robots likely diverge quickly into very different states in the future as
subtle differences and randomness influence their trajectories.

8.3 Learning Predicted Probabilities of Success
In this section, we detail our learning approach to sorting the replan policies in the robot soccer
domain. For each replan policy, we train a neural network to learn a function from the environment
state to the probability of success. The state is described in the reference frame of the robot using
the algorithm in order to help generalize different situations across the field.

Input State

• Tb: (X, Y) position and velocity of Tb.

• Ball: (X, Y) position and velocity of ball in robot’s frame of reference.

• Teammates: (X, Y) position and velocity of each teammate in robot’s frame of reference.

• Opponents: (X, Y) position and velocity of each opponent in robot’s frame of reference.

Output State

• Probability Value: Likelihood of input state leading to a successful pass using an algorithm.

The data needed to train the neural network is collected over many runs of each algorithm in
various scenarios. We simulate similar episodes in our example domain with variations on ball
location, opponent’s locations, and teammate’s locations. As an episode starts, we begin saving
state information for each video frame. Then once the pass is either received, intercepted, or out of
bounds (the episode ends), we label all the saved states with a success value of 1 or a failure value
of 0. As previously mentioned, even starting in the same state does not mean the robots execute
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the same path in the future even when using the same algorithm. There is therefore a probabilistic
nature to succeeding from a given state.

The neural network is then trained using a supervised learning method. Given that similar,
even the exact same, states are most likely labeled both success and failure, the network actually
learns the probability of succeeding from that particular state within the training data. Therefore,
the output is the likelihood of an algorithm succeeding from a given state.

Given that we train multiple neural networks, each trained on one replan policy, the intra-robot
replanning algorithm has the likelihood of success for each replan policy given a state. These
probabilities are then used to sort the replan policies so that the individual robot selects the one
with the highest probability.

8.3.1 Experimental Evidence

To test the state based method, we use the open source library OpenANN [Fabisch, 2017]. The
neural network has 20 inputs, see Input State above, and 1 output as the probability of success, see
Output State above. We use a fully-connected network with three hidden layers with 100 neurons
in each layer. We use LOGISTIC activators for the neurons and Mini-Batch Stochastic Gradient
Descent (MBSGD) to solve the supervised learning problem.

Our work focuses on determining the accuracy of predicting the success or failure of an al-
gorithm using our example domain. We use the D1

M algorithm and repeatedly run our example
domain roughly five thousand times, gathering over 4 million states. We use two hundred thou-
sand states to train the network over ten thousand iterations of MBSGD.

In Figure 8.1, we see that the accuracy of prediction is between 0.65 − 0.71. The low accuracy
can be attributed to the randomness of a state leading to a success or failure because of the inherit
randomness in the robot’s performance. For example, the starting position of our passing with
marking domain should be labeled as failure because on average it fails more often than it suc-
ceeds. This is confirmed as the start position produces the value 0.412. The neural network always
considers that position as a failure, which brings down the accuracy when the robot happens to
succeed. Recall that in Chapter 5, the replan policy Dribbling-Move (D1

M) had a success rate of
0.37 in Figure 5.6. Here, the neural network learns a similar approximation.

The low recall performance can be attributed to the large bias for failure in the dataset. The
individual robot is started in a disadvantaged position and the likelihood of succeeding is already
low. Similarly, when the robot actually succeeds in a given state it has probably failed multiple
times from that exact same state in the dataset. The negative examples (failures) then highly
outnumber the positive examples (successes) leading the neural network to perform poorly on

Predicting Success or Failure for D1
M

Data Sets Accuracy Recall Precision
Training Data 0.70 0.31 0.74
Next 200,000 0.65 0.26 0.65
Next 200,000 0.71 0.24 0.50

Figure 8.1: Accuracy of predicting successes or failures for our example domain using the algo-
rithm D1

M .
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recalling positive examples. A possible correction for this poor performance is to balance the
number of positive and negative samples in the training set, however, this new bias would likely
decrease the precision and accuracy of predicting if the algorithm will fail from a given state.

This work demonstrates the ability to learn the probability of success for a given state in the
robot soccer domain.

8.4 Learning Predicted Costs
In this section, we detail our learning approach to sorting the replan policies in our AUV domain.
We use the state based approach that learns a predicted cost for each replan policy given the current
state of the environment. We then demonstrate that learning the predicted costs can improve team
performance compared to a deterministic approach in Section 8.4.1.

We train the neural networks to learn a function from a state of the environment to a predicted
cost. The predicted cost is the time it takes for the replan policy to complete (successfully or
unsuccessfully) plus the time it takes to complete the next action in the team plan. Our predicted
cost is therefore a two step lookahead, i.e., what it costs to use this replan policy and what the next
action costs. For the AUV domain, we use the following:

Input State

• AUV’s current location (X,Y)

• AUV’s destination location (X,Y)

Output

• Predicted cost of replan policy and the next action

The data to train the neural networks is collected over multiple runs of the simulation. For
each replan policy, we order it first and run the entire team plan. We save the current state when
replanning starts, along with the cost it takes to replan plus the cost of the next action. Each AUV
collects its own state and cost during the execution of the team plan. A neural network is then
trained for each AUV for that particular replan policy using a supervised learning method. We
repeat until we have trained a neural network for every replan policy.

For the learning, we use the open source library OpenANN [Fabisch, 2017]. For each replan
policy, we use a full-connected network with one hidden layer with 50 neurons. We use RECTI-
FIER activators for the hidden layer and a LINEAR activator for the output. In the experimental
environment, we run each replan policy (ordered first) 5,000 times collecting training data. The
networks are trained using OpenANN’s built-in conjugate gradient method (max 5,000 iterations,
min error 10−8, mean squared error, and 35,000 samples each). The neural networks are then used
to sort the replan policies before execution by LEARNED.
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Figure 8.2: A simulated environment where two AUVs criss-cross the boundary line of fresh
water (light blue) and salt water (dark blue) to gather scientific data about the boundary. The
ocean is divided along the y-axis into areas with different ocean currents, and the type of current
corresponds to the experiment number. See Section 8.4.1.

8.4.1 Learning Costs for Autonomous Underwater Vehicle Domain

We combine the ocean currents of the autonomous underwater vehicle experiments in Chapter 6
separated by the locations shown in Figure 8.2:

• Locations 1 & 2 are Experiment 1: We assume there is an ocean current in the positive y-axis
modeled by a normal distribution with mean 2 and variance 0.1, and a uniform distribution
from 0 to 0.1 in the x-axis.

• Locations 3 & 4 are Experiment 2: We assume there is an ocean current in the positive x-axis
modeled by a normal distribution with mean 1 and variance 0.05, and no current (0) in the
y-axis.

• Locations 5 & 6 are Experiment 3: We assume there is an ocean current in the positive x-
axis and y-axis both modeled by a normal distribution with mean 1 and variance 0.2. We are
assuming the surface waves are so large that connection over wifi cannot be established (no
wifi connection).

Figure 8.3 shows that the LEARNED method (a learned ordering of the replan policies) outper-
forms a predetermined order of the replan policies in this complex environment. The improvement
is made on the last two locations, 5 & 6, where there is no wifi connection. The predicted cost of
using R-GOTO-SATELLITE is less than that of any other replan policy for those two locations. This
saves five minutes of wait time at each location, wasted by R-CONNECT-GOTO when it attempts
to connect over wifi but fails. Notably, we see a clear improvement of roughly ten minutes for the
LEARNED method. In this way, LEARNED effectively uses R-GOTO-SATELLITE only when it is
the best option given the state of the environment.
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Figure 8.3: Experiment, changing ocean currents for different locations: Average time and vari-
ance to complete the team plan 5,000 times using the stated replan policy. LEARNED performs
the best in this complex domain by combining the benefits of R-CONNECT-GOTO and R-GOTO-
SATELLITE.

8.5 Summary
In this chapter, we present our state based method for learning a score for each replan policy used
by the intra-robot replanning algorithm. The score is then used to sort the replan policies and to
improve the performance of the individual robot and the team. We present experimental results
in learning the predicted probability of success in the robot soccer domain and in learning the
predicted cost in the autonomous underwater vehicle domain.

In the next chapter, we discuss the related work to this thesis. Research is a process of building
on and adding to the research of others, and as such there has been plenty of research that has
inspired the approaches in this thesis. There are also many avenues for future work within the
intra-robot replanning problem that we consider interesting and worth pursuing, which can be
found in Chapter 10.
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Chapter 9

Related Work

In this chapter, we describe the related work on: team plan representations; execution, failures, and
replanning; and learning. The various team plan representations describe different approaches to
solving the multi-robot planning problem and the different considerations they take when creating
the plan’s representation. One such key consideration is the trade-off between using local infor-
mation and global information when solving the multi-robot problems [Parker, 1993]. In addition,
recent work has explored the formal conditions for required cooperation to solve a multi-robot
problem [Zhang et al., 2016]. In dynamic environments, there is no plan representation that can
guarantee zero failures, and so the next section focuses on the important step of actually executing
a plan and handling possible failure cases. Lastly, we explore some literature regarding machine
learning for multi-robot problems, where our focus is on improving the robots’ performance over
time.

9.1 Team Plan Representations

9.1.1 STEAM

STEAM, [Tambe, 1997], is a general model for teamwork and communication that provides the
team members with a way to reason about coordination and communication when completing
their tasks autonomously. STEAM uses the joint intentions theory, [Levesque et al., 1990], for
its teamwork and communication requirements. The joint intentions theory describes persistent
shared commitments between agents where they must agree on their commitment to a task and
agree on their dissolving of the commitment. The communication requirements are derived from
a mutual belief that must be met for persistent shared commitments. The key assumption with this
method is that team members will tell the truth and always attempt to share their intentions.

STEAM is used to execute hierarchical reactive plans and team operators (reactive team plans).
Within the plans, if one of the actions requires the whole team then the whole team must create
a joint intention to execute it. Similarly, if the action only requires a sub-team then that sub-team
must create a joint intention. This way the team works towards its goal(s) using the same reactive
solution, which given the joint intention theory is not a requirement. Individual agents can produce
different solutions that may cancel each other out.

Referring to team operators, they prescribe to a classical planning approach with: (i) precondi-
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tions rules, (ii) application rules, and (iii) termination rules. The particular instance of the operator,
team or individual, is determined dynamically by STEAM by how many agents are executing the
action.

STEAM also requires a certain level of communication between team members. They must
share their joint intentions so that the other team members can infer what step the sub-team intends
to execute. STEAM also checks that the canceling of any action does not affect the ability of
another action to be accomplished, otherwise, the information is shared to that sub-team(s).

9.1.2 Skills, Tactics, and Plays (STP)
In [Browning et al., 2005], STP is a hierarchical structure that decomposes the multi-robot problem
of team planning into Skills, Tactics, and Plays. Skills are the low level repeatable algorithms that
accomplish a very specific, sometimes complex, task. Tactics then combine skills using a skills
state machine (SSM) and define the transitions between each skill represented as the states within
the SSM. The Plays defines the team plans or the joint policies for the entire team.

The Plays, similar to classical planning, define: applicability conditions, termination condi-
tions, roles, and execution details. Applicability conditions are logical formulas based on the pred-
icates of the world, i.e., a set of preconditions for the Plays to be applicable. Given the dynamic
adversarial environment STP was designed to handle, the effects of the Plays cannot be known per-
fectly beforehand so termination conditions differ slightly from the conventional classical planning
effects. Termination conditions list some of the possible outcomes and assign them a result (Suc-
cess, Completed, Aborted, or Failure). The roles define temporally extended sequences of Tactics
and their respectively defined parameters. Lastly, execution details define the play’s timeout and,
if applicable, opponent roles.

It is infeasible to generate all possible states and state transitions for many complex domains
like robot soccer. Therefore, the STP solution is to generate multiple plays for certain conditions
of the world, i.e., ball on offensive side. This creates a new problem of picking a play but it
also demonstrates that there can be a mismatch between the applicability conditions and all the
true conditions of the world. The termination conditions too might be missing some valuable
termination criteria. This can lead to unknown failures for the team.

There has been recent work on extending STP to work in a decentralized method [de Koning
et al., 2017]. Agreement on plays and roles are accomplished through a voting system that is
communicated through shared information between robots.

9.1.3 Multi-Agent Simple Temporal Network (MASTN)
As defined in [Riley, 2005], MASTNs were introduced "as a plan representation for distributed
execution" and they built upon the Simple Temporal Network formulation in [Dechter et al., 1991].
The author needed a multi-agent plan representation that could be constructed in a centralized
manner and be executed by the agents in a distributed fashion. Therefore, MASTNs provided a
representation that could encode enough information for the individual robots to coordinate with
each other and to detect failures during execution.

More specifically, the formulation allows parallelism of actions and coordination between
agents through the temporal constraints provided by the Simple Temporal Network. In addition,
the nodes of the graph are events in the world but function similar to actions in classical planning.
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They can be parameterized, and they include the agents that are involved in bringing about the
events. The MASTN representation is a graph based multi-agent plan with temporal constraints
for synchronizing actions between agents.

Recent work in temporal planning has considered the problem of multi-robot symbolic plan-
ning with temporal uncertainty [Zhang et al., 2017]. It brings together classical conditions and
effects while including temporal uncertainty aspects to action completion and temporary effects.

9.1.4 Petri Nets
For Petri net team plan representation, we consider the research in Collaborative Agents for Sim-
ulating Teamwork (CAST) that uses Petri nets for their team’s cognitive model [Yen et al., 2001].
The Petri net’s framework relates to classical planning in: (i) the transitions can be considered
actions, (ii) the inputs as preconditions, and (iii) the outputs as post-conditions. The authors then
extend the model to have control nodes that maintain the beliefs about the current team goal(s) and
the actions of others, and belief nodes that maintain the belief about the world. Monitoring and
tracking the execution of the team is easily captured by the tokens that move through the Petri net.

The focus of this research is on anticipating the information needs of the other team members,
i.e., a proactive approach to the information exchange process between individual agents. The in-
formation needs are gathered through the preconditions and post-conditions of the actions. Precon-
ditions illuminate the information needed by an agent(s) to complete the action. Post-conditions
produce new information and so can be used to proactively send information required by some
precondition to that agent. It also checks for any new important information found that might be
relevant to the preconditions of another agent. Before sending the information, the agent tries to
figure out if the other agent already knows the information.

Recent work with Petri nets handles interruptions from outside sources, like human operators,
within team plans [Farinelli et al., 2017]. It has shown a decrease in time to complete plans and
decrease in the human operator load.

9.1.5 Market-Based Multi-Robot Coordination
Market-based multi-robot coordination covers a large area of research in coordinating teams or
individual agents to accomplish tasks together, see review article [Dias et al., 2006]. First, there is
an objective that can be broken down into sub-objectives or tasks. This component relies on some
way to divide the objective, e.g., centralized algorithm or humans. In addition, the agents also
have a finite set of resources that can be used. There is a global function that defines a value for
all the possible solutions for the objective. Each agent has its own individual utility function that
produces a value given the available resources to itself and its ability to contribute to the objective.
Lastly, there is a mechanism for distributing the objective or sub-objectives, commonly auctioning.

In auctioning there is an auctioneer that takes the bids produced by the individuals during the
bidding phase, and then it decides the winning bid and assigns the task to the winning individual.
Prior to this step, the individuals often generate a plan for the task that is then used to produce a
value, i.e., their bid. This solution to coordination can be interpreted as a mixture between fully
centralized and fully distributed planning. It should be noted that in either of those extremes the
market-based approach often performs worst due to the communication overhead (for distributed)
or sub-optimal local planning (for centralized).
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Ultimately, team planning in a market-based approach is distributed throughout the team mem-
bers but there are some critical points to consider. The mechanism for sub-tasking the objective is
very similar to the high levels of any hierarchical approach such that planning for the division of
work must still be accomplished in a centralized way. The difference lies in that the market-based
approach allows the sub-tasking algorithm to make no commitments on to whom the tasks are as-
signed. The assignment problem is pushed to the auctioneer and the individual robots’ abilities to
solve the sub-task (encompassed in their bids). The authors in [Schneider et al., 2014] demonstrate
that there are trade-offs to consider for different auctioning algorithms based on optimality and the
number of tasks to allocate. As is the general way of market-based coordination, the individuals
are implicitly self-interested agents and this aspect hinders this method’s general ability to handle
tightly coordination tasks.

9.1.6 Decentralized Sparse Interaction Markov Decision Processes
Markov Decision Processes (MDPs), [Puterman, 1994], provide a way of modeling decision mak-
ing in environments where the outcomes of actions can be random. MDPs are described with a
finite set of states, a finite set of actions, a probability function that an action from some state will
lead the agent to a certain new state, a reward function for transitioning into the new state, and a
discount factor. Ultimately, the goal is to produce a policy that the agent can follow to maximize
the reward function.

In the case of team planning, Multiagent Markov Decision Processes (MMDPs) are a gener-
alization on MDPs to include multiple agents. MMDPs add a finite number of agents, add finite
actions for each agent, change the probability function to be defined by the joint action space from
one state to another, and change the reward function to be the expected reward received by all the
agents taking the joint action. From a centralized planner’s point of view solving a MMDP is no
different from a MDP. In [Spaan et al., 2002], the authors included the notion of roles into their
definition. Roles allowed for specific domain knowledge to be integrated into the MMDP and also
reduce the complexity of the problem. Future work was left to actually learning the policies.

On the other hand, a Decentralized MMDP (Dec-MMDP) is where each agent observes local
information but together they fully describe the state. This of course adds a problem of commu-
nication and the assumption that the state will be fully observable with all the local observations.
There are some similarities between this direction of research and our own in considering the indi-
vidual agent’s (robot’s) perspective within a team, but it does not join team planning and individual
planning as policies are meant to be learned and solved for a problem. Replanning for all purposes
is considered irrelevant however feasible that consideration might be in working with real robots.
In general, solving Dec-MMDP problems is computationally expensive, NEXP-hard [Bernstein
et al., 2000]. Therefore, there has been some work in improving the computational complexity by
breaking apart the problem.

The [Melo and Veloso, 2011] assumption is that coordination only happens sparsely in the state
space. The agents, for the most part, act independently from the other agents in the environment.
Therefore, the authors described Decentralized Sparse Interaction MDPs (Dec-SIMDPs) where
the problem is broken down into individual MDPs and Dec-MMDPs. The assumption is that the
Dec-MMDPs will be smaller and therefore easier to solve while the remaining individual MDPs
will be easily solved.

The research in Dec-SIMDP utilizes a property within team planning in which the individual
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team member can often plan independently of the team without explicit coordination. This property
helps improve the computational complexity of solving the Dec-MMDP. In a similar perspective,
we want to understand the role of the individual robot and proactively check if it can replan locally
without the team planner in order to reduce communication, computation, and failing.

9.1.7 Rationale
Rationales have been described as the reasoning behind the choices made by the planner. They
can be viewed as goals, decisions, or constraints used by the planner [Polyak and Tate, 1998].
The majority of previous work on rationales has been investigated in single robot domains. The
work has focused on validating the rationales of a plan, monitoring the rationales of a plan, and
updating the plan when the rationales change [Kambhampati and Kedar, 1991], [Veloso, 1996],
[Veloso et al., 1998]. An approach to speed up planning introduced by [Veloso and Carbonell,
1993] uses problem solving cases which store the reasoning and rationale of previous planning
problems. The rationale are entirely derived from the planning process. This approach does not
consider replanning, adding this information to the plan, or the addition of multiple robots within
the plan. Preliminary work has been done in distributed multi-robot domains using rationales.
The multi-robot research focused on each robot creating a rationale graph of relevance to other
robots, sharing it with other robots, and updating robots when a rationale is violated [Coltin and
Veloso, 2013]. The work did not fully explore the implications for replanning, tightly coordinated
individuals, or the distribution of different rationales among other robots.

9.2 Execution, Failures, and Replanning
The function of execution is to take a generated plan and physically achieve the actions within the
plan. Specifically, execution is the realization of a plan in the physical space of the robot. This
realization can include model errors, changed variables, and/or impossible or infeasible actions
that make the plan fail. The standard solution is planning again or repairing the existing plan,
both considered under the umbrella term replanning. However, early attempts at handling these
inconsistencies between planning and execution focused on eliminating the need for replanning.

9.2.1 Policies
In [Schoppers, 1987], Schoppers formulated Universal Plans for controlling robots in dynamic, un-
predictable environments. To create a Universal Plan, the goal conditions must be fully described,
and from these conditions a Universal Plan is generated using backward-chaining to create a plan
from all possible initial conditions of the world. Universal Plans can then be thought of as a de-
cision tree that describes what action should be executed when certain conditions are met by the
world. By another definition, they are a MDP generated through planning and it simply creates
a complete Finite State Machine (FSM) for the environment. Universal Plans are reactive plans
but have strong guarantees that the reactive nature is always progressing towards the goal condi-
tions. Another benefit is that Universal Plans are automatically generated compared to hard-coded
FSMs. The core problem of classical planning in Schoppers’ opinion is that of its choice to over-
commitment when planning. Any failures or sabotage leads to replanning which is not an issue
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with Universal Plans. However, there have been multiple issues taken with Universal Plans, for
example the storage of a plan for any large scale problem would grow exponentially and become
infeasible [Ginsberg, 1989].

Research into conditional planning continued as [Nourbakhsh, 1997] demonstrated the theory
and practical side of interleaving conditional planning and execution for autonomous robots. His
research focused on advanced conditional planning with the assumption that the solution must have
a known maximum execution length. Advanced conditional planning creates a conditional plan
for every possible event/change in the world using forward-chaining as compared to back-chaining
from the goals like Universal Plans. Interleaving is essentially a way of solving only part of the
problem before fully planning out the solution, thereby, attempting to reduce the computational
cost of generating a conditional plan. There are three ways by which Nourbakhsh accomplishes this
with advanced conditional planning: (i) Information gain in the way of longitudinal simplifications,
i.e., the robot must do this step in all conditional parts of the plan and therefore can execute the
action immediately; (ii) Assumptions in the way of lateral simplifications, i.e., simplifying the
initial state by making assumptions about the environment or robot that does not lead the robot
to failures; (iii) Lastly, Abstractions which define ways of looking at the planning problem at
different levels. The research demonstrates that by interleaving planning and execution together
the computation cost of the robot can be greatly reduced while not significantly moving further
from optimality. However, this work, to the author’s knowledge, has never been implemented
on a multi-robot system in part due to the branching computational cost of advanced conditional
planning, which is only further exacerbated by multiple robots.

The research into MMDPs and Dec-MMDPS, see Section 9.1.6 in Team Plan Representations,
is also focused on generating all possible actions and states of the world. Therefore, the necessity
of replanning is removed as all the agents must do is select the appropriate joint action for a given
state. However, more research is needed in reducing the complexity of the problem for MMDPs
to become feasible for more complex domains. Another limiting factor is the assumption that the
team can determine what state they are in together, which it is not always possible to do because
of communication limitations. We did see an improvement in Dec-SIMDPs towards this direction
but it has yet been shown to work on large scale problems.

9.2.2 Replanning
All replanning algorithms boil down to monitoring the conditions of the plan that make the current
action, or team action, achievable. The differences between the approaches depend on the type of
conditions they monitor and who detects the failure.

Centralized

The centralized method has a global view of all the robots, and, provided good communication,
can monitor the execution of every robot. The general approach is to let the centralized algorithm
detect failures and replan accordingly, e.g., STP, [Browning et al., 2005], MASTNs, [Riley, 2005],
and CAST [Yen et al., 2001]. However, in the MASTNs case the individual robot can monitor the
time constraints and detect those failures. Similarly, in CAST the Petri nets provide conditional
constraints that can be monitored by the individual robot but efforts towards replanning were left
to future work.
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In [Jensen and Veloso, 1998], the authors describe a method for interleaving deliberative and
reactive planning together in highly dynamic multi-robot domains. In such domains, like robot
soccer, there is a need for immediate action, and reactive planning with FSM is highly effective.
Specifically, reactive planning defines a set of hard coded sensor-action rules that are intended to
guide the robot to the goal state. However, there is no guarantee that the goal state can even be
reached by the robot given the local nature of reactive planning (and they are often hand coded
FSMs). This is where deliberative planning helps as it takes the current state, and it generates a
set of actions to get to the goal state. However, deliberative planning is expensive, and, in a highly
dynamic domain, the robot might not have enough time to create a plan. Therefore, the authors
inter-leave the processes together, allowing the robot to be reactive when in a highly demanding
situation and deliberative when the robot has more time. It is still an open problem to automatically
determine when to switch without the author’s hand-coded conditions. It should be noted that
replanning in this work is synonymous with switching the type of planning as the conditions of the
environment changed.

Mixed Centralized & Decentralized

In general, communication is used in one way or another to coordinate a decentralized planning
team of robots. In STEAM, [Tambe, 1997], the reactive plans are all the same, implying some level
of centralized creation before execution, and the robots declare their intention to execute some plan,
which must be agreed upon if multiple robots are involved. Replanning then only occurs when the
individual declares its intention to replan to every robot on the team, and they work together to
solve the issue. Market-based multi-robot coordination, [Dias et al., 2006], functions as centralized
when the team objective is divided into smaller jobs and when the auctioneer must collect all the
bids to decide who is given each task. The computation of the bids is the decentralized part of
the market-based approach. Replanning can occur when the individual recognizes its inability to
complete the task. However, this can create a ripple effect if the information known to the failing
robot is not known to the other robots so each robot consequently will generate an incorrect bid
thereby continuing until all team members have been exhausted. For other robots to declare re-
auction of an individual’s task, they must monitor their progress or heartbeats [Gerkey and Mataric,
2002] [Dias et al., 2004]. This leads to some challenges: trading off the duration of a heartbeat,
too short too many auctions, too long no progress; trading off opportunistic auctioning, again too
many auctions; and how to communicate progress, forcing some type of team plan representation.

There has been working on implementing on-board replanning [McGann et al., 2008]. The
authors have built a frame-work for centralized control while allowing for local replanning on-
board of the autonomous underwater vehicles (AUVs). However this work has assumed that the
planner and the models used by the centralized planner are already on-board the AUVs. The AUVs
are also only replanning for temporal disturbances in the plan rather than rationale-driven choices
made by the centralized planner.

9.2.3 Generalization of Replanning
Replanning can be considered as all together a different problem from planning as argued by [Tala-
madupula et al., 2013] in their general theory of intra-agent replanning. There are two approaches
to replanning that have been the focus of the research: replanning, which has been defined as com-
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pletely starting over the planning process, and plan repair, which attempts to reuse old parts of the
plan for various reasons, e.g., to make replanning easier. Replanning can then be interpreted as a
sub-problem of plan repair, as we will discuss, and so the authors focus on defining a general theory
for plan repair. Although the research literature has focused strongly on the idea of minimizing
the changes between the broken plan and the new plan generated after plan repair, minimizing
changes is only one way of handling the plan repair problem. For example, minimizing the dif-
ference between plans can be changed into constraints on what should remain the same after the
replanning phase. These constraints can be turned into soft goals and a partial satisfaction planner
can be used to plan for the original goals and the soft goals. Thereby, it attempts to satisfy the
replanning constraints, but removes those that cannot be achieved as they are soft, and ensures the
plan achieves the goal state. Given this definition the restart planning approach is just replanning
without any constraints, or soft goals.

9.3 Learning
Learning in multi-robot problems has grown in part to the numerous parameters that can be
changed when considering the problem of controlling multiple robots, see review articles [Stone
and Veloso, 2000], [Panait and Luke, 2005]. Supervised learning is not often used because it is dif-
ficult to label examples in the complex domains involving multiple robots. Reward-based learning
is often used as it can be easier to develop for a domain. In general, the problem of learning for
multi-agents is vast, so we explore a select few that have attempted to solve the problem of team
planning and individual planning within dynamic environments.

9.3.1 Team-Partitioned, Opaque-Transition Reinforcement Learning (TPOT-
RL)

TPOT-RL works within dynamic adversarial and cooperative environments that result in the prob-
lem of opaque-transitions where the team does not know when it has transitioned into a new state
[Stone and Veloso, 1999]. This makes the problem different from the standard POMDP where the
assumption is that the transition to a new state is known. Their approach is layered learning where
they build up learned behaviors from the hardware level to the team level. The assumption is that a
layered approach reduces the complexity of solving the direct mapping from sensors to outputs for
a team of robots. They attempt to reduce the state vector by using action dependent variables for
each individual (each robot only needs to learn locally), then they compute the reward given that
vector, and then select an action, thereby updating the learned values. The approach uses interme-
diate rewards to help the learning process. Although it can help the learning process, it is hand
designed and is not guaranteed to lead to optimal learning.

9.3.2 Multi-layered Neural Networks
Neural networks have gained traction in many domains as a method for approximating complex
functions that cannot easily be computed by a human designed algorithm [Schmidhuber, 2015].
Multiple layered networks and advances in training them have increased neural network’s usabil-
ity in real domains, including robotic domains. They can be trained online or offline with data
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collected during the robot’s execution. In our case, they are very useful for approximating com-
plex functions like predicting the probability of success of an algorithm given continuous variables
that represent the robot’s current state.

9.4 Robot Soccer Dribbling
Research into accurate dribbling has been previously studied as a way of maintaining control over
the ball while navigating. Researchers have used modified potential fields to avoid non-moving
obstacles along with constraints on motion to dribble in the RoboCup Middle-Size League [Damas
et al., 2002]. Similar to our omnidirectional soccer robots, researchers have analyzed the kine-
matics and control needed for dribbling a ball along a path [Li et al., 2007]. The only research
that models the dynamics of a multi-body environment uses a physics-based robot motion planner
[Zickler and Veloso, 2009]. The downfall of this approach is the enormous computational cost of
modeling and predicting every robot in the environment. Our work is unique in that it focuses on
developing a method of ball-manipulation with opponent awareness while still being computation-
ally feasible in real-time.
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Chapter 10

Conclusion and Future Work

In this chapter, we review the contributions of this thesis, then discuss potential avenues for future
work, and finally we conclude with a summary of the thesis.

10.1 Contributions

The key contributions in this thesis are:

Rationale-Driven Plan We introduce the rationale-driven plan that includes the rationale for why
actions and their parameters are chosen by a centralized planner. It is critical for the individual
executing robot to have access to these rationale so that it can successfully replan locally. We
introduce multiple algorithms that can be added at critical points within the search process that
add the rationale to the plan. The rationale we introduce are the processing rationale, i.e., why an
action and its parameters are chosen, what goal this action is relevant to, and what other robots are
involved in this action, and the constraint rationale, i.e., any fact or assumption that restricts the
robot or its possible actions and parameters during the planning process.

Intra-Robot Replanning Algorithm We introduce the intra-robot replanning algorithm to han-
dle the issue of locally replanning within a centralized controlled multi-robot team. Provided the
rationale-driven plan, the algorithm determines the invalid rationales of the plan. These rationales
are then sorted by some predetermined order. Then the applicable replan policies, i.e., the replan
policies that can enable the invalid rationale, are stored in a list and when all of them are deter-
mined, the list is sorted based on some metric, learned or predetermined. The replan policies are
then executed one after another until the rationales become valid again.

Experimental results in the small-size robot soccer domain We present results within a sub-
domain of the robot soccer domain where two robots attempt to pass the ball to each other while
one or more opposing robots, placed in locations disadvantageous for the passing robots, attempt
to steal or intercept the ball. Using the intra-robot replanning algorithm and some rationales related
to passing the ball, we evaluate the success of our approach of using multiple replan policies to
enable the rationale. We show significant improvements in the ability of the robots to successfully
pass the ball to each other when they consider the rationale of the plan.
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Experimental results in an autonomous underwater vehicle domain We present results in a
simulated environment of the ocean. In this domain, the autonomous underwater vehicles (AUVs)
need to travel together in order to sample the water efficiently. However, the ocean currents un-
known to the centralized planner often lead to navigation errors for the AUVs as they travel under-
water. We show that by using our intra-robot replanning algorithm and different replan policies,
we can significantly reduce the total cost of completing the team plan for the AUVs.

Experimental results in a grid domain We present results in a targeted planning domain de-
scribed in the Planning Domain Description Language. We describe the planning algorithm used
to generate the rationale for the rationale-driven plan that is provided to the robot in the domain.
We show that the robot can significantly reduce the overall cost of executing the plan if it replans
locally using our intra-robot replanning algorithm. We also demonstrate that even with zero cost
for communicating with the centralized planner, our method is still more advantageous than simply
relying on the centralized planner to solve every failure.

Improve intra-robot replanning through learning We present our method for improving the
intra-robot replanning algorithm by sorting the replan policies based on a state-based metric for
each replan policy. We train neural networks to learn a function that takes the state of the envi-
ronment and produces a score for a replan policy. Provided each replan policy has its own trained
neural network, we are able to sort the replan policies based on their outputs in order to improve
the selection of the best replan policy for the current state of the environment. We present results
that clearly show an improvement over using a predetermined order for the replan policies.

10.2 Future Work
In this section, we discuss the many avenues for future work within the intra-robot replanning
problem that we consider interesting and worth pursuing.

Alternative Rationale The rationale we focus on in this thesis are related to providing the indi-
vidual with enough information to handle potential failures while executing the plan. We do not
however delve into the rationales of why the other actions are not chosen to be in the plan, why
actions are pruned from the planning process, why the goals are ordered in the plan the way they
are, or in general, the rationales behind why this plan is chosen rather than an alternative plan. We
consider these the alternative rationale and we see them as an opportunity for improving the team
beyond failures. The alternative rationale can be used to improve the team’s performance when
opportunities arise that make other actions or goals feasible when the centralized planner assumed
they were not. For example, a door may have been assumed to be closed by the centralized plan-
ner, which therefore makes the robot take the longer way around to another door that leads into the
room. However, when the robot moves past the door, it sees that the door is not closed, making
the alternative rationale invalid. The robot then has a choice to replan locally like our method or
call the centralized planner to update it with the new information. Both cases may be seen as an
improvement over the simple case of ignoring the change and successfully completing the previ-
ously provided plan of using another door that is farther away. Although, determining when such
a change would be beneficial requires a thorough analysis of the rationale within the plan; similar
research can be found in [Sellner and Simmons, 2006, Schermerhorn et al., 2009].
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Sorting the rationale In our intra-robot replanning algorithm, we sort the rationale based on
some assumed ordering. However, there may be some benefits to an alternative method for sorting
the rationale. Similar to the sorting of the replan policies, there may be a method for learning a
better sorting that can improve the individual robot’s performance. However, such an approach
most likely would need to take into account the replan policies that can enable the rationale. This
may change the initial flow of the intra-robot replanning algorithm as the replan policies and the
rationales may need to be determined together and then sorted together.

Generating the replan policies In this thesis, we focus on domain-specific replan policies to en-
able the invalid rationales. An alternative may be to generate the replan policies from the planning
domain or description. However, this research may cross the line into generating the entire condi-
tional planning tree to handle all potential failures. We discuss such research in our related work
in Chapter 9. An effective method would need to concentrate on generating replan policies for
failures and rationales in a general way and not be specific to a single part of the planning tree.
This research could help with further automating the process of using intra-robot replanning in
complex domains.

Reinforcement learning In this thesis, we focus on supervised learning where we collect data
from multiple runs using a particular replan policy. However, the robot could attempt to learn
a value metric for the replan policy online using reinforcement learning. Going this route would
bring up relevant questions of exploration and exploitation when using the multiple replan policies.
Balancing those factors, this method would be of value for most likely using less data while still
improving team performance.

10.3 Summary
This thesis introduces the rationale-driven plan, several key algorithms for generating rationales,
and the intra-robot replanning algorithm. The rationale-driven plan includes the rationales on why
the centralized planner chooses the actions and their parameters within the provided plan. The
algorithms we introduce for generating the rationales are used at key points within a typical action
based planner. The rationale-driven plan is provided to the individual robots that then uses our
intra-robot replanning algorithm to solve failures during the execution of the plan. Along with
the rationale-driven plan and domain-specific replan policies, the individual robots replan locally
and can improve the team performance over the previous method of relying on the centralized
planner for fixing failures. We demonstrate our approach in three different domains to highlight
the generality of our approach and the benefits across different domains. We further improve our
results by learning a value metric for each replan policy using trained neural networks, specifically
in the autonomous underwater vehicle domain. Ultimately, we tackle the problem of replanning
locally within a centralized controlled team by providing each individual robot with the rationales
of the centralized controller, with the ability to replan locally using our intra-robot replanning
algorithm, and with a set of domain-specific replan policies.
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