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Abstract

By now Artificial Intelligence (AI), Theoretical Computer Science (CS theory) and Opera-
tions Research (OR) have investigated a variety of search and optimization problems. However,
methods from these scientific areas use different problem descriptions, models, and tools. They
also address problems with particular efficiency requirements. For example, approaches from
CS theory are mainly concerned with the worst-case scenarios and are not focused on empirical
performance. A few efforts have tried to apply methods across areas. Usually a significant
amount of work is required to make different approaches “talk the same language,” be suc-
cessfully implemented, and, finally, solve the actual same problem with an overall acceptable
efficiency.

This thesis presents a systematic approach that attempts to advance the state of the art in the
transfer of knowledge across the above mentioned areas. In this work we investigate a number
of problems that belong to or are close to the intersection of areas of interest of AI, OR and CS
theory. We illustrate the advantages of considering knowledge available in different scientific
areas and of applying algorthms across distinct disciplines through successful applications of
novel hybrid algorithms that utilize benefitial features of known efficient approaches. Testbeds
for such applications in this thesis work include both open theoretical problems and ones of
significant practical importance.

We introduce a representation change that enables us to question the relation between the
Pigeonhole Principle and Linear Programming Relaxation. We show that both methods have
exactly the same bounding power. Furthermore, even stronger relation appears to be between
the two methods: The Pigeonhole Principle is the Dual of Linear Programming Relaxation.
Such a relation explains the “hidden magic” of the Pigeonhole Principle, namely its power in
establishing upper bounds and its effectiveness in constructing optimal solutions.

We also address various groups of problems, that arise in agent-centered search. In particu-
lar, we consider goal-directed exploration, in which search by a physical or fictitious agent with
limited lookahead occurs in partially or completely unknown domains. The resulting Variable
Edge Cost Algorithm (VECA) becomes the first method of solving goal-directed exploration
problems that incorporates strong guidance from heuristic knowledge, yet is still capable
of providing linear worst-case guarantees, even for complex search domains and misleading
heuristics.

This work aims at expanding the handset of AI tools that concern search efficiency and
provides the foundation for further development of hybrid methods, cross-fertilization and
successful applications across AI, CS theory, OR and other Computational Sciences.
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Chapter 1

Introduction

From the very first days, Artificial Intelligence (AI) experienced rapid growth and development.
On its earlier stages, AI heavily relied on ideas and techniques from other areas including
Mathematics, Psychology, and Biology. Although AI continued incorporating and interpreting
knowledge from other scientific disciplines that were developed in parallel with it, such as
Operations Research (OR), Theoretical Computer Science (CS theory), Statistics, etc., AI was
especially active and successful in building its own models, tools for attacking and efficient
methods of solving its problems.

“Re-utilization” of the existing knowledge, cross-applications of already developed methods
to new problems and hybrid solutions have been always considered as the first thing to do for
novel problems. It usually takes longer time to develop independent methods with fresh ideas
tailored towards solving newly stated problems. It is especially hard to come up with efficient
methods, when the problem instances are real-world complex AI domains. Furthermore, AI
seems to be concerned with a wide variety of aspects – from employing Linear Programming
techniques that is traditionally considered as the territory of Operations Research, to analyzing
worst-case scenarios that is usually attributed to CS theory, to acquiring prior knowledge and
building heuristic-guided algorithms. Thus, hybrid solutions with a variable mix of algorithms
from different scientific areas is a natural approach in solving AI problems.

However, it takes a certain amount of modeling effort to state a realistic problem in the form
amenable to specific methods from particular areas of Science. Usually such a reduction implies
some sort of simplification, as the result, the derived solutions are only the approximations of
the realistic processes. Nonetheless, more and more often such approximations are very close
to the processes they model and serve as good indications of the expected results. In this
thesis work we discuss a wide variety of traditional and untraditional models and methods
from different scientific areas with the emphasize on AI, OR and CS theory. We hope that
the adequacy of the problem representation is reflected in the variety of considered areas and
methods.

1
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There has been a noticeable raise of interest recently to hybrid solutions and cross-
applications of the most efficient methods from various scientific areas to practical AI problems.
In particular, several recent efforts have tried to merge methods of OR, CS theory and AI. These
efforts indicate that it is challenging to identify and compare the strengths of existing approaches
from different areas, to attempt to combine them in a single, hybrid method in order to extract
the best from many worlds. However, methods from the above mentioned scientific areas use
different problem descriptions, models and tools. They also address problems with particular
efficiency requirements. For example, algorithms from CS theory are mainly concerned with
the worst-case scenarios and are not focused on empirical performance. Usually a significant
amount of work is required to make different approaches “talk the same language,” be suc-
cessfully implemented, and, finally, solve the actual same problem with an overall acceptable
efficiency.

This thesis constitutes a systematic approach that attempts to advance the state of the art in the
transfer of knowledge across the above mentioned areas. In this work we investigate a number
of problems that belong to or are close to the intersection of areas of interest of AI, OR and
CS theory. Hybrid approaches developed in the thesis work, are illustrated through successful
applications to several groups of problems that include both open theoretical problems and ones
of practical importance. In each case, we demonstrate how the representation of each specific
group of problems can be changed to create a multi-linguistic environment, so that methods
from distinct scientific areas can be applied to the problems under investigation. Throughout the
thesis work we emphasize on selecting or designing those kinds of representation changes for
every group of problems that could be utilized by automated reasoning, planning or scheduling
systems.

The methodology of hybrid approaches introduced later in this chapter, distinguishes two
main cases.This stratification is due to the drastic difference in the way of initializing the
strategy of research. Although the initial phase is extremely important and probably makes the
major contribution to the global success of the approach, in either case it is extremely important
to perform thorough analysis along different directions to identify the most effective methods of
solving the group of problems under the scope. Finding an appropriate representation that would
allow methods from distinct areas to be applied to the same group of problems, is a keystone
step that proceeds the analysis. Furthermore, when possible, we recommend to combine the
most beneficial features found during the analysis phase, thus, utilizing the advantage of the
common representation developed.

Though both cases differ from each other in the problem selection and the performance
analysis, they have a lot in common regarding the concluding phase of constructing hybrid
solutions. We consider that the global approach succeeds, if we are able to come up at least
with the classifications of a certain group of problems and state recommendations on effective
usage of particular methods depending on properties of the problem domain. The ultimate goal
of the hybrid approach is to combine the best features of the analyzed algorithms in a single
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framework with an internal, self-regulating process. For example, if a physical or fictitious
agent with limited lookahead performs search in an initially unknown domain, the issue of
“exploration versus exploitation” becomes a keystone of the efficiency of search. We propose
a mechanism of regulating reasonable balance between “rushing to the goal” driven by prior
knowledge and “learning more” for reversible1 domains in Chapter 3.

1.1 Retrospectives of Hybrid Approaches
Hybrid efforts and cross-fertilization between distinct scientific areas have a long-standing
history. Even Archimedes was not, probably, the first scientist to apply knowledge across
distinct disciplines. The following phrase is the interpretation of the excitement of this great
Greek scientist about the power of levers: “Give me a lever long enough, and a place to
stand, and I will move the Earth." This scientific idea illustrates a particular application of
cross-fertilization between Mechanical Engineering and Astronomy.

In this sneak preview of the thesis, we would like to refer the reader to the main quotation
of the thesis due to René Descartes: “Each problem I solved became a pattern, that I used later
to solve other problems.” It brings up the take-home idea that both the re-utilization of already
acquired knowledge, and reductions to already solved problems form the basis of applications
within a sole discipline, as well as across distinct areas of Computational Sciences.

Speaking about Artificial Intelligence, efforts of bringing techniques and ideas from other
areas of Science to AI, in particular, to search and optimization problems, have been attempted
multiple times throughout the history of AI. In this thesis work, we are concentrated on hybrid
efforts between Computational Sciences, namely, AI, OR and CS theory. Researchers from
these three disciplines attempted multiple times to re-apply the most efficient methods to
solve problems from other areas, including AI search and optimization problems. Moreover,
these efforts have been organized lately in a well-structured form, and were divided in topics
corresponding to specific groups of search problems.

The First International Workshop on AI and OR, Portland, OR, June 95, highlighted the
achievements and cutting-edge technologies from both disciplines and drew possible successful
directions of combining their beneficial features. Job-Shop scheduling with constraints of
various types [10, 22, 45] was identified as one of the testbed areas suited for attacking by AI
and OR methods or their combinations. The Workshop concluded with a set of open problems
that were supposed to shed a light on relations between techniques from AI and OR, such as
the bounding power of the Pigeonhole Principle (PHP) and Linear Programming Relaxation
(LPR), the complexity of identifying symmetries and its impact on reducing the complexity of

1Domain is reversible if it can be represented as an undirected or bi-directed graph. For a detailed discussion,
see Chapter 3.
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search, among others. In this work we give an answer to the first open problem, namely, we
demonstrate the duality relation between PHP and LPR.

Recent surge in interest to methods of solving satisfiability problems was due to the success
of local hill-climbing procedures. GSAT [34, 64] and similar procedures – TSAT, CSAT, DSAT,
HSAT [27, 29], WSAT [66], WGSAT, UGSAT [18], etc. – have attracted a lot of attention
from AI researchers, because they appeared to be capable of finding satisfiable assignments for
some large-scale practical problems that cannot be attacked by conventional resolution-based
methods. In Chapter 6 we discuss the relations between local hill-climbing procedures and
agent-centered search methods.

An effort of bringing graph-theoretical ideas into planning resulted in an attractively simple
partial-order planner –Graphplan [9]. This planner utilizes models and fundamental methods
from the Graph Theory, for example, shortest paths on the directed graph that represents the
planning domain, and network broadcasting of the alternative partial plans. Although the
current version of Graphplan does not incorporate prior knowledge that might effectively
lead search towards the acceptable plan, Graphplan guarantees at least to construct planning
domain graphs in time that is polynomial on the size of the input [9].

The idea of enriching the area of efficient search control (planning) by bringing ideas
from related areas of Science to search (planning) problems has been implemented in various
modifications. For example, the implementation of the set differencing heuristic from Number
Theory implied an elegant polynomial algorithm that approximates the NP-hard problem of
2-machine job scheduling and outperforms known greedy polynomial approximations[44].

In the following chapters we present several groups of problems that initiated a strong
interest from an interdisciplinary point of view. They are of the particular interest to our
current work, because they admit untraditional methods with highly developed techniques
from distinct areas of Science. Chapter 2 illustrates a method-driven hybrid approach, where
two well-known efficient methods are analyzed and compared along different dimensions. In
Chapters 3-6, we apply the problem-driven hybrid approaches, which implies that we need
to add the identification of relevant methods prior to the analysis phase. According to the
methodology that we develop in this work, in such case, for every group of problems we, first,
identify relevant known methods for solving these problems. Then, we analyze their advantages
and drawbacks, and, when possible, propose novel hybrid algorithms to solve the considered
problems efficiently.

1.2 The Choice of the Areas
The choice of Artificial Intelligence, Theoretical Computer Science and Operations Research
has not been accidental. These three areas often attack close problems and are concerned with
either the efficiency of deriving solutions or the efficiency of solutions themselves. Nonetheless,
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even a problem statement may contain a big difference for distinct disciplines. Furthermore,
differences in terms, existing techniques and efficiency foci can place the success of a naïve
hybrid effort into a doubtful position.

Table 1.1 lists some advantageous features of AI, CS theory and OR. This table does not
pretend to be a complete list of all beneficial features, it only highlights some of already
identified ones within the considered areas. For example, AI researchers have long realized
that prior knowledge can significantly improve empirical performance in practical applications.
A solution to the problem, found with the help of the prior knowledge guidance, serves as a
benchmark for methods from other areas. Moreover, it can also carry an additional bounding
value, for example, any feasible solution establishes an upper bound on the value of the goal
function in a minimization problem.

Preprocessing Data
Structures

Linear
Programming

   Changes
- Representation

- Prior
   Knowledge

Empirical
Performance

Worst-Case
Analysis
Optimal
Algorithms
Approximate

Programming
Integer

- Modeling

- Methods of
   Solving

Machine
Learning

AI CS Theory OR

Algorithms

Table 1.1: Advantageous Features of AI, CS Theory and OR

Artificial Intelligence has also accumulated an extended library of AI problem-tailored
algorithms that are carefully selected from a wide pool of solutions, based on their empirical
performances. Since deriving an exact average-case complexity is usually a very hard task that
depends both on the domain features and the initial distribution of the problem instances, such
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an extensive AI algorithmic library is of high value. Empirical performances of its algorithms
serve as approximations of otherwise hard-to-derive average-case complexity justifications.

In its turn, CS Theory possesses deep knowledge on data structures that are used in optimal
or approximating algorithms. The worst-case analysis concludes with a justification of the
optimality of a given algorithm or a guaranteed approximation of the optimal solution that this
algorithm provides. From the point of view of hybrid algorithms, the strength of CS theory
lies exactly in providing worst-case guarantees. This means that no matter how misleading
in specific cases heuristic values may represent actual distances to the goal, the complexity
of achieving the goal is not worse than a certain cut-off level established by algorithms from
CS theory. Deriving average-case complexity is also often attributed to CS theory, as it is
usually built upon and relies on classical CS theory data structures and methods of analysis.
Unfortunately, prior knowledge is a rare guest in theoretical algorithms, because it seldomly
improves the worse-case complexity or an approximation ratio.

Operations Research is known for the strength of its methods from Linear and Integer
Programming. Some researchers believe that methods of solving Linear Programming problems
are currently the cutting-edge polynomial methods, i.e. they provide polynomial-time solutions
for the most sophisticated problems. OR has also accumulated a broad experience in modeling
various problems in a Linear, Non-Linear or Integer Programming form to apply already
well-established techniques and solve those problems efficiently. Recent efforts in developing
Mixed-Logical Linear Programming [21] constitute another example of a cross-fertilization
approach between AI and OR that attempts to capitalize on advantageous features from both
areas.

Machine Learning attracted a lot of attention recently from researchers from different
disciplines. Sub-areas of Machine Learning, such as Neural Nets, PAC-learning, Reinforcement
Learning employ drastically different data structures and techniques varying from decision trees,
rules, neurons, perceptrons, -error, -confidence to (Partially Observable) Markov Decision
Processes, etc. As such, we placed Machine Learning in between AI and CS theory. Some
of the Machine Learning technologies are capable of deriving solutions of significantly better
quality than traditional statistical methods in the domains, where accounting all domain states
is impossible.

1.3 The Problems
One of the goals of this thesis is to demonstrate how some of the existing methods from AI, CS
theory and OR can be applied to solve the same problems along different efficiency dimensions.
We consider several groups of problems that include various scenarios arising in agent-centered
search [38], namely, the problem of goal-directed exploration, sensor-based planning and search
by local hill-climbing procedures. For every problem discussed under this scope, we analyze
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the efficiency of known algorithms amenable to these problems. Worst-case complexity for
some of them has been an open problem before our investigation, for some – the average-case
complexity is still an open problem.

Chapter 2 presents a discussion on the bounding power and a close relation between the
Pigeonhole Principle and methods of Integer Programming. This discussion is illustrated
through a series of combinatorial optimization problems with gradually increasing complexity.

For some problems, the worst-case complexity of a particular algorithm does not predict its
average-case (empirical) performance well. On the contrary, some of the algorithms with either
worse or still unknown worst-case complexities demonstrate better empirical performances. For
example, for randomly generated 2D Traveling Salesman problem, the furthest insertion and
nearest neighbor methods construct shorter in average Hamiltonian cycles than the cheapest
insertion or spanning tree-based methods [62]. The worst-case complexity of the solution
derived by the furthest insertion is still an open problem, the ratio of the length of the solution
produced by the nearest neighbor method to the length of the optimal solution is not bounded
in the worst-case. Both the cheapest insertion and the spanning tree-based method guarantee
a low approximation of two times the length of the optimal solution. Nonetheless, in practical
applications both methods with the guaranteed low ratio produce Hamiltonian cycles of longer
length.

Another similar example comes from Operations Research. Popular in practical implemen-
tations, the Simplex method has an exponential worst-case complexity, whereas the Ellipsoid
method [36] provides polynomial worst-case guarantees, but loses to the Simplex method in
practice. We explain the above phenomenon the following way: Methods that are concerned
with the worst-case complexity are too cautious, they do not follow risky alternatives, but rather
search the state space methodically. In their turn, risky methods may lose much in the case
when their selected alternatives are misleading and the cost of recovery is high.

Therefore, in this thesis we investigate both the worst-case complexity and the empirical
performance of considered algorithms. While developing new hybrid methods, we also cover
both performance metrics. In Chapters 2-6 we develop interdisciplinary representations, cross-
apply existing problem solving methods, and analyze the performance of efficient solutions to
the following set of problems:

1. Combinatorial optimization problems – in this group of problems we are mainly focused
on the bounding power competition between the Pigeonhole Principle and methods of
Integer Programming, such as Linear Programming Relaxation and Integer cuts. In
addition to it, we argue about the duality relation between the Pigeonhole Principle and
Linear Programming Relaxation. In Chapter 2 we illustrate this relation through a series
of combinatorial optimization problems.

2. Goal-directed exploration – search in partially or completely unknown domains by an
agent with limited lookahead. From this large set of problems, we extract several sub-
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groups of problems with related problems scenarios that present the major interest to
hybrid approaches:

(a) Treasure Hunt - search for a goal state by an agent whose lookahead is limited to the
set of available actions at its current state in an unknown, reversible (undirected or
bi-directed) state space. We also assume that prior knowledge is provided for every
instantiation of an action at a particular state in the form of heuristic values. The
initially unknown state space is either static or changes at discrete points in time.

(b) Sensor-Based Planning - search for a goal vertex by an agent whose lookahead is
limited to the neighbors of its current vertex. The map of the problem domain is
provided to the agent, however, traversability to each vertex is unknown unless the
agent senses it from one of the neighboring vertices.

(c) Local Hill-Climbing Procedures - search for a satisfiable assignment on an -
dimensional cube by a fictitious agent whose lookahead is limited to the neighbors
of its current vertex. Prior knowledge is provided for every vertex (corner) of the
cube, but it may be neither consistent, nor admissible.

First group of problems brings back the discussion on the difference between human-derived
and computer-oriented solutions. The “Mutilated Checkerboard” problem introduced in 60’s
[47, 55] raised a lot of interest in Mathematical, Logical and AI communities. The development
of Operations Research and the introduction of Linear Programming methods with polynomial
complexity, automatically added OR researchers to the above discussion. Do there exist any
complexity barriers? Can a problem solution benefit from a specific presentation and the
application of one of the traditional methods from the correspondent area of Science? Is any
area of Science more preferable in deriving approximate solutions?

Second group of problems concerns the trade-offs between acquiring more knowledge about
the surrounding environment and moving to the goal. The initial uncertainty of an agent about
the domain, where one is supposed to live and to act in, is a realistic assumption in many
real-world problems. Such an assumption stimulated our efforts in developing goal-directed
exploration methods with the emphasis on the empirical performance.

1.4 Methodology of Hybrid Approaches
The development of classical, theory-oriented Computational Sciences and of novel, more
application-oriented branches of Science, such as Artificial Intelligence, has arranged a fruitful
background for designing new generations of efficient solutions for challenging problems. The
whole pool of problems, models and technologies from AI, CS theory and OR seems to promote
the idea of hybrid approaches based on achievements of these disciplines.
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The methodology of designing hybrid solutions that we follow throughout the thesis work
consists of several phases. We distinguish two main types: Problem-driven and method-driven
hybrid approaches. In the former case, hybrid efforts start with the identification of efficient
methods amenable to the given problem. In the latter case, two or more methods are already
provided, hence, the method-driven hybrid approaches skips the first phase. Nonetheless, a
certain research often has to be performed in such a case, for example, in finding challenging
common applications, where the provided methods can be applied to. Overall, hybrid ap-
proaches consist of the following phases:

Phase 1 (Selection). Identification of efficient methods of solving given problems.

Phase 2 (Creating the Environment). Development of an interdisciplinary problem envi-
ronment, so that methods from different scientific areas can be applied to the same problems.

Phase 3 (Analysis). Analysis of all selected methods along different efficiency dimensions,
and the identification of their beneficial features.

Phase 4 (Problem Classification). Classification of the problem instances to be attributed
to particular algorithms for the best efficiency.

Phase 5 (Constructing Hybrid Methods). Construction of novel hybrid methods to utilize
the identified beneficial features of the selected methods.

Thus, a problem-driven hybrid approach begins with the analysis of a particular problem
or group of problems along different directions to identify efficient methods of solving these
problems. In parallel, for every group of problems discussed in this work, we design an
interdisciplinary problem environment, so that methods from different scientific areas can “talk
to each other,” be applied to the same problems, and, finally, be compared in the Analysis Phase.
Phase 4 (Problem Classification) concludes with recommendations on matching problems with
the most efficient methods of solving. When possible, we proceed to the Constructing Hybrid
Methods Phase, i.e. we combine the most beneficial features found during the Analysis Phase,
thus, utilizing the advantage of the common representation developed.
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1.5 Contributions of the Thesis
This thesis expands the handset of AI tools for solving search problems efficiently, and demon-
strates the correctness of the methodology of hybrid approaches through successful applications
to various groups of problems.

Through bringing problems and methods from different areas of Science to a common testing
field, we show that there exists a room for mutual enrichment, that already developed, efficient
methods of solving particular problems can be re-applied to new problems in an untraditional
fashion, and that the best features of certain solutions can be re-utilized in designing novel
efficient methods. In this thesis such testing fields include a) combinatorial optimization
problems and b) deterministic on-line search. Already these two fields cover a substantial
variety of problems. However, in our extended research we discuss c) the complexity of on-line
search and relate it to other known results. The latter development links nicely both directions
a) and b).

Concerning combinatorial optimization problems, we consider problems that are tradition-
ally amenable to the Pigeonhole Principle (PHP). We show that if a problem can be transformed
in a Integer Programming form, then an application of a Linear Programming Relaxation (LPR)
establishes the same bound for the solution value as the PHP. Whereas the PHP often provides
the most elegant and efficient solutions, for many combinatorial optimization problems it is
hard to come up with a proper heuristic that would hint on finding the desired mapping between
the pigeons, the holes, their capacities and the objects of the problem. On the other hand, LPR
automatically narrows its consideration to tight constraints that can be viewed as the desired
mapping for the PHP. Thus, the PHP and LPR establish the same bounds for the values of
combinatorial optimization problem’s solutions. Moreover, the relation between the PHP and
LPR corresponds to the duality relation in Linear Programming.

Concerning on-line search, we show that the most beneficial features of CS theoretical
algorithms - the worst-case guarantees - and of AI algorithms - a heuristic guidance - can be
combined in a single hybrid method that preserves both the heuristic guidance and optimal or
sub-optimal worst-case guarantees. Such a hybrid approach, thus, inherits strong empirical
performance from heuristic-based algorithms and does not lose much to algorithms from CS
theory when the heuristic appears to be misleading.

Scalability of methods applicable to on-line search and satisfiability problems, attracted
recently a lot of attention. Certain on-line search methods have been successfully applied
to challenging large-scale off-line problems and derived efficient solutions. In this thesis we
discuss known results about the complexity of some on-line search methods, that include, for
example, random walk. Guided by this knowledge, we introduce a novel parameter for search
domains – “oblongness” – and argue about the place of successful on-line search methods in
the global spectrum of the introduced parameter.



Chapter 2

Combinatorial Optimization Problems

The First International AI and OR Workshop held in Portland, OR, June 95, initiated a dispute
on the competitive power of two drastically different methods of deriving upper bounds for
combinatorial optimization problems: Pigeonhole Principle (PHP) and Linear Programming
Relaxation (LPR).

The Pigeonhole Principle (PHP) has been one of the most appealing methods of solving
combinatorial optimization problems. Variations of the Pigeonhole Principle often produce
the most elegant solutions to non-trivial problems. However, some Operations Research ap-
proaches, such as the Linear Programming Relaxation (LPR), are strong competitors to the
PHP: They can also be applied to combinatorial optimization problems to derive upper bounds.
Note, that throughout this chapter we use the notion of an upper bound to determine the quality
of a solution and not the time complexity of deriving it. For example, an upper bound of value

, where is a constant, means that the value of an optimal solution is less or equal to .
It has been an open question whether the PHP or LPR establish tighter upper bounds, when

applied to the same problems. Challenged by this open question, we identify that the main
reason for the lack of ability to compare the efficiency of the PHP and LPR is the fact that
different problem representations are required by the two methods.

We introduce a problem representation change into an Integer Programming form which
allows for an alternative way of solving combinatorial problems. We also introduce a series
of combinatorial optimization problems, and show how to perform representation changes to
convert the original problems into the Integer Programming form. Using the new problem
model, we re-define the Pigeonhole Principle as a method of solving Integer Programming
problems, introduce the “Hidden” Pigeonhole Principle (HPHP) and determine the difference
between PHP and HPHP, show that PHP is the dual of LPR, and demonstrate that HPHP and
Integer cuts are actually similar representation changes of the problem domains.

The Pigeonhole Principle is usually attributed to human-derived proofs. Automatic reason-
ing, planning or scheduling systems seem to have it hard-coded or not implemented, because

11
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of the variable nature of the matchings between the objects of the problem and PHP objects
(pigeons, holes and their capacities) that is needed for a successful application of the PHP.
On the other hand, methods of Linear and Integer Programming look more favorable for the
computer-oriented implementations. In this chapter, we consider both approaches, compare
their bounding power and propose an alternative way of implementing the Pigeonhole Principle.

2.1 Pigeonhole Principle
Though sounding very simple in its initial form, the PHP is “one of the most simpleminded
ideas imaginable, and yet its generalizations involve some of the most profound and difficult
results in all of combinatorics theory” [78]. It is a simple and an extremely effective method
of deriving upper bounds for combinatorial optimization problems. If empowered additionally
by appropriate heuristics or mtching between the pigeons, the holes and the objects of the
problem, the PHP often provides the easiest way of proving the optimality of a particular
feasible solution or impossibility of attaining a certain value. Most commonly the PHP is
introduced in the following way:

Pigeonhole Principle: It is impossible to place 1 pigeons into holes so
that there is at most one pigeon in each hole.

In this original formulation the PHP looks like a naïve kindergarten-level rule. It appeared
in the literature also as a Dirichlet’s Drawer Principle, and was used by Dirichlet in his study of
the approximations of irrational numbers by rationals [14] in 1879. However, Gauss used it in
1801 [26], and it is likely that the principle in some form occurred in the literature even earlier.

When taken to a higher level of multiple objects per abstract unit or participating as a part
of a multi-step logical proof, the Pigeonhole Principle quickly loses the nuance of obviousness,
its applications involve some of the most profound and difficult results in combinatorics.
Sometimes, the PHP is stated as providing an answer to the following not-so-trivial question
about a finite set of elements and categories, with every element belonging to one of the
categories:

Pigeonhole Principle 2: What is the smallest set of elements such that there
is guaranteed to be 1 elements in the first category, or 2 elements in the second
category, or elements in the -th category?

In this form the PHP is viewed as the base case of Ramsey’s Theorem. Furthermore, under
this scope, Ramsey’s Theorem itself is often perceived as a vast generalization of the Pigeonhole
Principle [32]:
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Ramsey’s Theorem: Let 1 2 and be positive integers with
1 . There exists a least positive integer 1 2 ;

such that if the -subsets of a finite set with cardinality at least 1 2 ;
are placed into categories, then for some there exists a subset of size
( ) which have all of its -subsets in the -th category.

Figure 2.1 shows the reduction of the Pigeonhole Principle 2 to the capacity argument:
1 2 3 and 4 are the thresholds of four shown categories. To stay below the threshold level,

each bin should be filled up by at most 1. Hence, 1 1 is the maximum capacity
of such a multi-bin system. Therefore, any quantity above this capacity will saturate at least
one of the categories, and the answer to the Pigeonhole Principle 2 question is 1 1 1 .
When the number of categories is one, the two Pigeonhole Principle definitions coincide. Thus,
the two historical definitions of the the PHP are equivalent.

n  = 5

n  = 6n  = 4

n  = 3

1

2

3 4

Figure 2.1: Illustration of the Pigeonhole Principle

With respect to a particular problem, we associate the Pigeonhole Principle with labeling
some of the original objects of the problem with numbers, called capacities. If an upper bound
provided by a capacity argument for such a labeling equals to the value of an optimal solution,
we tell that the application of the PHP established the tight upper bound. For some combinatorial
optimization problems, none of the labelings of the original objects lead to establishing the tight
upper bound. Such problems may require representation changes that would enable labeling
complex structures built upon the original objects of the problems. We call such extended
applications of the PHP as the “Hidden” Pigeonhole Principle (HPHP). In a certain sense this
split between the PHP and HPHP is similar to the difference between resolutions and extended
resolutions (see Section 2.7), between solving Integer Programming problems by LPR and by
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the combinations of integer cuts and LPR (see Section 2.2). We give precise definitions of PHP
and HPHP in Section 2.3.

To solve a combinatorial optimization problem by the PHP, one needs to represent a problem
in such a way that the principle can be applied, i.e. to identify what in the problem should
be mapped into objects (pigeons) and units (holes), and what their capacities are. For simple
problems, the applications of the PHP are almost straightforward and are obtained directly
from the nature of the problems. However, often a proof by the PHP requires additional
heuristic knowledge that would allow to perform this type of mapping effectively. For some
combinatorial optimization problems, one has to come up with pigeons and holes that are
different from the original objects of the problem. Were this combination of the representation
change and the mapping known in advance, the PHP would easily derive the tight upper bound
and construct an optimal solution. For many combinatorial optimization problems, however, it
is a very challenging task to find such a representation change and a mapping. The difficulty
of this task complicates implementations of the PHP in AI reasoning, planning or scheduling
systems, and encourages researchers to look for alternative methods.

The introduction of polynomial-time algorithms solving Linear Programming problems al-
lows some Operations Research methods to be applied in an efficient manner to combinatorial
optimization problems and establish upper bounds for such problems. For example, Linear
Programming Relaxation (LPR) method can be applied effectively to solve some Integer Pro-
gramming (IP) problems. LPR can be seen as requiring less effort to apply than the PHP,
because in general, unlike the PHP, it does not need any additional knowledge or representation
changes to derive upper bounds for IP problems.

The two approaches, namely PHP and LPR-based methods can be seen as “competitors” for
solving combinatorial problems. It has been an open question1: Which method provides tighter
upper bounds, when applied to the same combinatorial optimization problems. In this chapter,
we report on our work in solving this open question. As hinted so far, our work analyzes carefully
the problem representation issues involved in the two approaches. We formally introduce an
appropriate representation change that makes the comparison and analysis possible. To clarify
the status of the PHP in a non-traditional field of Integer Programming (IP), we re-define it as
a particular method of solving IP problems.

Thus, our work includes:

1. Re-defining the PHP as a method of solving Integer Programming problems.

2. Proving that both the PHP and LPR establish the same upper bounds for problems stated
in the Integer Programming form.

1Identified at the First International Workshop on AI and OR, Portland, OR, June, 1995.
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3. Providing an alternative approach to solving combinatorial optimization problems for
which the effective representation change required by the PHP is hard to find. The
alternative approach consists of the following steps:

(a) Convert a combinatorial optimization problem into an Integer Programming form.
(b) Apply LPR to obtain an upper bound which, as we will prove, is the same as the

upper bound obtained by PHP.
(c) Construct an optimal solution of value .

2.2 Linear Programming Relaxation
Linear Programming Relaxation (LPR) is an effective Operations Research method of estab-
lishing upper bounds for Integer Programming problems [54]. The efficiency of its main
calculation engine is supported by the discovery of polynomial methods of solving Linear
Programming problems, such as the Ellipsoid algorithm [36]. Actually, LPR is a two-step
procedure consisting of relaxing integer requirements and solving the corresponding Linear
Programming problem.

Simplisticly, LPR can be viewed as a black-box with a particular instance of an Integer
Programming problem as an input and a calculated upper bound as an output. From this point
of view, LPR looks preferable to the PHP, because it does not need any heuristic knowledge to
derive upper bounds. LPR can be applied to any instance of an Integer Programming problem
without additional representation changes. Thus, the main questions of the competitive analysis
between the PHP and LPR can be stated as the knowledge representation problem: Which form
of presenting combinatorial optimization problems allows to establish tighter bounds?

2.2.1 Important Facts from Linear Programming
In this section we introduce basic definitions and facts from the theory of Linear and Integer
Programming. Readers familiar with this subject may skip this section.

A particular instance of a Linear Programming (LP) problem consists of the goal function
and the set of inequalities (constraints). Both the goal function and the constraints depend
linearly on each variable. Throughout this section we consider variables to be real-valued, and
their number is finite, the number of inequalities is also finite. Thus, a typical LP problem is of
the following type:

goal function :
1
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constraint set :
1

1

1

Usually coefficients , and are rational, it allows to limit our consideration to
rational-valued variables 1 . To simplify further discussion, we introduce
a particular LP problem which will help to illustrate the discussion:

goal function : (2.1)
constraint set : 0 (2.2)

0 (2.3)
1 (2.4)
3 (2.5)

2 8 (2.6)
(2.7)
(2.8)

Figure 2.2 shows the feasible region, optimal solution 1 2 , and the goal vector
corresponding to the goal function (2.1). Theory of Linear Programming states that for any
optimal solution there exists a subset of constraints, called tight constraints, such that:

Inequalities representing tight constraints are actually equalities for , or, equivalently,
there is no slack for tight constraints with respect to .

The number of tight constraints can vary from 1 to .

Goal function is a positive combination of the left-hand sides of tight constraints.

It is always possible to represent the goal function as a positive combination of at most
tight constraints.

In our example (2.1-8) inequalities (2.4) and (2.5) form the set of tight constraints with
respect to the optimal solution 1 2 . Thus, the goal function (2.1) can be presented as a
positive combination of (2.4) and (2.5): 1

2
1
2 .

If we vary inequality (2.6), it may also become a tight constraint. For example, inequality
2 5 is a tight constraint with respect to the optimal solution 1 2 . If added to

the existing set of tight constraints (2.4) and (2.5), it would constitute a redundancy: Left-hand
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Figure 2.2: A Particular Instance of a LP Problem

sides of any two out of three inequalities can be used in a positive weighted sum to obtain
the goal function. On the other hand, the goal function may also vary within a certain range
to preserve the same optimal solution and the set of tight constraints. In problem (2.1-8) for
any goal function of the form with 1 1 , the set of tight constraints consists of
(2.4) and (2.5). For the extreme values of 1 1 one of the tight constraints becomes
redundant, since the goal function coincides with the left-hand side of the other tight constraint.
Moreover, in both extreme cases there exists an infinite number of feasible solutions attaining
the same optimal value. These optimal solutions form a face of a polyhedron of feasible
solutions defined by the IP problem’s constraints. For example, in problem (2.1-8) the set of
feasible solutions forms a 2D tetragon (see Figure 2.2), and the set of optimal solutions is either
a zero-dimensional face (a single 2D point) or a one-dimensional face (one of the tetragon’s
sides).

Thus, on one hand, a positive weighted sum of left-hand sides of tight constraints establishes
an upper bound: Since , where 0, and , then

. On the other hand, any feasible solution ¯ sets a lower bound for the goal
function ¯ . Furthermore, tight constraints have no slack with respect to optimal solution

, therefore, the lower bound provided by coincides with the upper bound established by
the positive weighted sum of tight constraints and both are equal to the optimal value .

2.2.2 Definition of Linear Programming Relaxation
Compared with Linear Programming problems, Integer Programming (IP) problems have an
additional requirement that some of its variable are integer-valued. Throughout this chapter
we consider only those IP problems that have linear goal functions and linear constraints. In
general, an addition of integer-valued variables makes an Linear Programming problem NP-
hard [25]. However, in some particular cases, it is possible to solve IP problems efficiently,
by applying Linear Programming Relaxation (LPR) or a combination of Integer Cuts and LPR
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[54]. Since Integer cuts result in adding new feasible constraints that take into account the
integrality of variables, we view such a technique as performing a representation change on
the problem domain. As we show in Section 2.5, such a perception corresponds completely to
traditional representation changes for combinatorial optimization problems that can be stated
in the Integer Programming form.

Linear Programming Relaxation is a simple procedure that consists of two steps:

1. Drop (relax) integrality requirements for all variables.

2. Solve the correspondent LP problem.

For some IP problems, like problem (2.1-8) introduced earlier, LPR outputs an integer
feasible solution, thus, solving such IP problem. In other cases, when LPR outputs a fractional
optimal solution , it establishes an upper bound for the goal function. In such cases,
LPR is usually not very helpful in indicating the tightness of the upper bound. One has to come
up with a feasible integer solution that matches the derived upper bound to prove that the bound
is tight.

Integer cuts produce additional constraints that utilize the integral nature of a subset of
variables. Additional constraints can be derived in many different ways, Integer cuts produce
ones that cannot be obtained by taking positive weighted sums of the existing inequalities.
In conjunction with LPR, Integer cuts are capable of solving IP problems, whereas the effi-
ciency of this combination in obtaining tight upper bounds relies on the “quality” of newly
created constraints constructed by Integer cuts techniques. Examples of the Hidden Pigeonhole
Principle’s applications, namely the “Mutilated Checkerboard” problem and the Firm Tiling
problem discussed in Section 2.5, illustrate an alternative way of solving these problems through
Chvatal-Gomory’s (Integer) cuts and LPR.

2.3 Converting Problems into the Integer Programming Form
We identified that the main reason of the lack of ability to compare the efficiency of PHP
and LPR is that different problem representations are required by the two methods. Our work
consisted of developing appropriate changes of representations that made possible a competitive
analysis of the efficiency of these two methods.

To make both PHP and LPR applicable to the same combinatorial optimization problems,
we perform representation changes for each problem discussed in this paper to convert them
into Integer Programming problems of the following form:

goal function :
1
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constraint set :
1

1

integrality requirements : 1

A combinatorial optimization problem is defined as finding a solution 1
that is feasible, i.e. satisfies all the constraints from and the integrality requirements, and also
attains the best value of the goal function among all feasible solutions.

We considered a series of known combinatorial optimization problems, to which the Pi-
geonhole Principle is traditionally applicable. The empirical evidence obtained through this
study suggested that the following definition reflects correctly the combinatorial nature of the
Pigeonhole Principle.

Definition 2.3.1 We say that the upper bound for an IP problem is derived by
the Pigeonhole Principle, if there exists a subset of constraints ˆ , such that
the sum of the left-hand sides of the inequalities from ˆ (repetitions are allowed in
ˆ) is a multiple of the goal function

ˆ 1 1 ˆ

and the derived bound is the smallest scaled down sum of right-hand sides
1

ˆ .

In other words, the PHP establishes an upper bound for an IP problem that corresponds
to the smallest value min ˆ

1
ˆ , such that ˆ 1 1 holds

for some positive 0. If it happens that a feasible solution is known, which attains the
derived value , then we say that the PHP establishes a tight upper bound. Whenever the PHP
establishes a tight upper bound, we say that a problem admits a proof by the PHP.

In general, the procedure of considering a subset of constraints and summing them up
(possibly with positive weights) results in setting upper bounds for the value of an optimal
solution. Any feasible solution provides a lower bound for the optimal value of the problem.
We identify applications of PHP with finding a subset of constraints and obtaining the optimal
value of the goal function. In this case, the established upper bound matches the lower bound
provided by the found optimal solution.

Definition 2.3.2 If a set of constraints added to an Integer Programming prob-
lem converts the original IP problem into another IP problem that admits a proof
by the Pigeonhole Principle, we say that the original problem admits a proof by
the Hidden Pigeonhole Principle (HPHP).
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Additional constraints can be obtained in many different ways. Weighted positive sums,
for example, can simplify some of the existing constraints, but they would not contribute any
restrictions on fractional optimal solutions obtained by Linear Programming Relaxation. In
Section 2.4 we consider an Integer cuts technique that allows to derive tighter valid inequalities
and to keep all integer solutions feasible. Constraints obtained from Branch-and-Bound meth-
ods can also be sought as an addition to the existing set of constraints. We consider the way of
constructing additional constraints and the sanity check that an optimal integer solution has not
been cut off to be the responsibility of the problem solver.

The introduced representation change allows to re-formulate the original PHP statement
with 11 pigeons and 10 holes as the following IP problem:

11

1

10

1
11

1
1 1 10

0 1

where represents the amount of the th pigeon in the th hole. If we drop integer requirements
and sum up all the constraints, we obtain an upper bound: 11

1
10

1
10

1
11

1
10. Since an obvious solution 1 for 1 10; 0 for provides the
same value, we proved it to be optimal. For this simple problem, PHP and LRP approaches are
identical.

In most obvious cases, the desired subset of constraints is the whole set of original inequal-
ities. Consider, for example, the problem of placing chess kings on a circular chessboard with
even number of squares (see Figure 2.3). One is supposed to find the maximal number of kings
that can be placed on such a board so that no king is attacking another. Recall that a chess king
attacks all its adjacent squares. For the board presented in Figure 2.3, we get the following IP
problem:

1

1 2 1
2 3 1

1 1
1 1

0 1
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Figure 2.3: Chess kings on a circular chessboard.

If we sum up all the inequalities, we get 2 1 , which is equivalent to 1
2. The same upper bound can be obtained from applying a combination of two-coloring

and PHP: if we color the circular board with even number of squares in alternating black and
white colors, we can place kings on either color attaining the optimum value of 2 derived
this way by PHP. Thus, the upper bounds are the same, however, the application of LPR seems
to be easier, as it does not need any additional heuristic knowledge.

The case when a proper subset of constraints is involved in obtaining a tight upper bound
is more complicated. To apply the Pigeonhole Principle in the original combinatorial form,
one has to find which problem’s objects should be matched with pigeons and which - with
holes. In the Integer Programming form it means that one has to come up with a rule (heuristic)
of finding a desired subset of constraints to sum them up. For some problems, it is easy to
find such a subset, whereas for others it is not obvious. For example, the popular -Queen
problem [24, 53], which is the problem of placing the maximal number of chess queens on

x -chessboard, so that no queen is attacking another, can be represented as the following IP
problem:
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1 1

for each 1

and 1

1 1

1 1

1

1

0 1

where and are the sets of squares which a chess queen threatens along two
diagonals from the square , including the square . In this form we have four groups
of constraints: row, column, and two diagonal constraints, one of each type per square. For
this problem it is easy to find a subset of constraints that provides the tight upper bound. If we
sum up inequalities corresponding only to row constraints for squares from different rows,
we get as the upper bound: 1 1 . Beginning with 4, the problem has
an -Queen solution [24] (see Figure 2.4).

Figure 2.4: N-Queen Problem Solutions for N = 4, 5, 6

Though PHP readily provides the tight upper bound, it is not always immediately clear how
to construct an optimal solution that will attain the obtained bound. The -Queen problem
stimulated the development of a generation of backtracking algorithms constructing optimal
solutions for the -Queen problem, which is a hard problem itself. The Chess Knight problem
[4] is one of the jewels of PHP applications; it is the one for which the selection of a constraint
subset is a challenging task. We discuss this problem in the following section in detail.
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2.4 PHP is the Dual of LPR
In this section, we discuss the duality relation between the Pigeonhole Principle and the Linear
Programming Relaxation. As we concluded in the previous section, for some problems, it is
tempting to apply LPR in a brute-force manner. Instead of requesting additional heuristics that
will suggest how to select the desired subset of constraints, one can apply already developed
methods of Linear Programming with the hope of deriving the same or even better bound. This
brings us back to the main question of this chapter: Is it true that PHP and LPR always provide
the same upper bound? The following theorem answers this question:

Theorem 2.1 If an Integer Programming problem admits a proof by the Pigeonhole Principle,
then LPR provides the same optimal value. Conversely, a bound derived by LPR can be matched
by PHP.

Proof: The re-defined in Section 2.3 Pigeonhole Principle is exactly the statement of the
non-degenerous dual problem. Indeed, if an IP problem admits PHP in deriving the tight upper
bound, then there exists a feasible integer solution attaining the derived bound. On the
other hand, there exists a subset of constraints ˆ, sum of the left-hand sides of which is an
integer multiple of the goal function: ˆ , and the value of is the
same multiple of bounding constants: ˆ .

If we apply LPR to the IP problem, it will provide an integer or a fractional optimal solution
for a relaxed problem. Since PHP has derived the tight upper bound, and the relaxed

problem is obtained from the original IP problem by dropping integrality requirements, was
one of the candidates for LPR’s optimal solution, and the value of LPR’s solution is equal
to PHP’s tight upper bound: 1 1 .

According to the theory of Linear Programming, there exists a subset of the constraint
set, called tight constraints, such that the goal function is a positive weighted sum of the
left-hand sides of the constraints from this subset ˆ . Moreover, an
optimal solution has no slack for each of the constraints from ˆ, that is, satisfies them
as equality for ˆ. Since all the coefficients in the constraints and the
goal function are integer, all the weights 0 (positive coefficients) of the weighted sum
are rational. We can find an integer to scale all rational coefficients up and make
all of integer. In this case, plays the role of a scaling coefficient, integer tells how
many times should the tight constraint ˆ be used in an “unweighted” sum of left-hand
sides ˆ . Hence, the upper bound 1 ˆ can be
matched by PHP.

Therefore, the set of tight constraints forms the desired subset ˆ and positive integer weights
determine the number of repetitions in ˆ. Therefore, the value of the solution derived by LPR
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does not improve the upper bound provided by PHP and, conversely, it can be mimicked by
PHP to establish the same upper bound.

Theorem 2.1 provides the following answer to the main question of the chapter: If the
optimal value is obtained by PHP for a combinatorial optimization problem stated in the
Integer Programming form, LPR provides the same bound as PHP.

Corollary 1 The Pigeonhole Principle is the Dual of Linear Programming Relaxation.

Thus, Definition 2.3.1 from Section 2.3 enabled us to state an interesting relation between
two very different approaches. How legitimate is Definition 2.3.1, aren’t we pushing the
envelope too much? We place this discussion after presenting the results and the proof of
Theorem 2.1, because we need to use them in our discussion. We identify the Pigeonhole
Principle for IP problems with establishing a set of objects (holes) with associated capacities.
From the proof of Theorem 2.1, it immediately implies that such PHP is as powerful in
establishing upper bounds as LPR: Tight inequalities constitute holes, their right-hand sides
determine holes’ capacities, sum of the capacities of holes produce the same upper bound
as LPR. On the other hand, the Pigeonhole Principle was defined (see Section 2.1) as the
principle dealing with the objects of the problem. Therefore, if the problem is stated in the IP
form, PHP cannot produce a tighter upper bound than LPR, other than through changing the
problem statement, because none of the combinations of the IP problem objects – variables,
inequalities, goal function – can improve LPR’s bound. By performing representation changes,
for example, Integer cuts, a problem solver changes the problem statement, hence, such an
improved bound and the solution itself, should be attributed to the “Hidden” Pigeonhole
Principle (see Definition 2.3.2). Such a split between PHP and HPHP is similar to the difference
between the techniques of resolutions and extended resolutions (See Section 2.7).

For example, the Firm Tiling problem with the double-firm requirement (see Section 2.5)
can be trivially shown to be infeasible by the Pigeonhole Principle. Single-firmness does not
imply non-feasibility immediately. One needs to perform a representation change or to come up
with a powerful heuristic that would reduce single-firmness to double-firmness, hence, change
the problem statement. Furthermore, a simple application of the Pigeonhole Principle is not
capable of showing infeasibility in the single-firm problem version. This argument confirms
the correctness of our definition that draws a splitting line between PHP and HPHP, with the
former one thus becoming the dual of Linear Programming Relaxation.

The discussion on the duality relation became possible after bringing both methods to the
common ground of Integer Programming. We demonstrate that the above result is non-trivial
by solving the Chess Knight problem [4]: “What is the maximal number of chess knights that
can be placed on the 8x8 chessboard in such a way that they do not attack each other?” The
classical elegant solution relies on the existence of a Hamiltonian tour of length 64 following
the knight moves. One of such tours is presented in Figure 2.5.
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Figure 2.5: Hamiltonian Tour on a Chessboard for the Knight

One can split the tour into 32 pairs of chess squares that are adjacent in the sense of the
knight move, and apply PHP: Each pair can contain at most one knight, otherwise two knights
would attack each other. For example, consider pairs of squares 1 2 , 3 4 ,..., 63 64 . None
of them can accommodate more than one knight (see Figures 2.5 and 2.6). Thus, 32 pairs of
adjacent squares can accommodate at most 32 knights. Although this simple proof does not
provide us with a solution to the problem, (for example, it allows to place knights on squares 4
and 5 from pairs 3 4 and 5 6 ), it provides a tight upper bound.

Moreover, this proof gives an impression of using a “hidden” application of the Pigeonhole
Principle, whereas the Hamiltonian tour is just a heuristic for finding a subset of the constraint
set. The Chess Knight problem for the standard chessboard can be presented as the following
Integer Programming problem:

8

1

8

1

1 1 8 1 8
0 1

where represents the amount of knights in the square ; is the set of squares on
the chessboard which a chess knight threatens from the cell (see Figure 2.6).

If applied to the Chess Knight problem, the Linear Programming Relaxation method pro-
vides the same upper bound of 32. Unlike PHP, LPR does not require heuristics to identify any
subset of constrains, its calculational routine considers tight constraints inside the solving pro-
cess. However, LPR is likely to produce fractional solutions, say 1/2 for 1 2 64.
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Figure 2.6: The Set of Adjacent Squares for the Knight on a Chessboard

Theorem 2.1 shows that, if applied, the original Pigeonhole Principle will provide the same
value. So, if the Hamiltonian tour heuristic were not known, the application of LPR would
tell that 32 is the best upper bound that can be obtained by the original PHP. Since a chess
knight alternate colors (see Figure 2.6), one can place 32 knights on the chess squares of the
same color, thus attaining the optimal value and constructing the optimal solution for the Chess
Knight problem.

From the duality relation, it follows that, if an optimal solution of value for a combinatorial
optimization problem is derived by the Pigeonhole Principle, an optimal solution for the last
problem in the following chain of representation changes has the same value :

Original combinatorial problem IP problem Linear Programming problem.

Examples discussed in this section showed that an additional effort is needed to apply the
Pigeonhole Principle. For some problems it is easy to match problem’s objects with pigeons
and holes, in some cases it is a state of the art. Often PHP applications hint on how to construct
optimal solutions, though for some problems it is an independent difficult problem.

In its turn, LPR can be applied to any instance of an IP problem without need in additional
knowledge. Unfortunately, LPR often outputs a fractional optimal solution, which does not
shed any light on how to transform it into an integer one of the same value. We continue the
discussion on benefits and disadvantages of PHP and LPR in the next section.
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2.5 More Complicated Applications of PHP
In the previous sections, we were able to apply PHP and LPR in a brute-force manner, because
each Integer Programming problem contained a subset of constraints, sum of which provided
the desired bounds for values of the goal functions. We call such a case a regular application
of PHP, as opposed to the “Hidden” Pigeonhole Principle (HPHP) that requires additional
representation changes and heuristic knowledge to fulfill a similar task.

This section is devoted to the discussion on HPHP and its relation to the original Pigeonhole
Principle. To make it more intuitive, we illustrate the discussion by the classical Mutilated
Checkerboard [55] and the Firm Tiling problems:

Figure 2.7: A Mutilated Checkerboard

Mutilated Checkerboard Problem: Consider an NxN checkerboard with two
opposite corners removed (see Figure 2.7). Can one cover this “mutilated” checker-
board completely by non-overlapping domino pieces, each of the size of two squares
of the checkerboard?

Firm Tiling Problem: Consider a checkerboard of size 6x6 made of a soft
square cloth and 18 hard tiles of size 1x2. Can one glue all 18 tiles to such a
checkerboard, so that the “middle-cut” requirement is satisfied, i.e. each splitting
line inside the checkerboard goes through the middle line of at least one tile?

Figure 2.8 shows a firm 17-tile solution. The “middle-cut” requirement for a particular
splitting line restricts the cloth to be folded along this splitting line: If the line crosses the
middle of at least one tile, the cloth cannot be folded along this line unless the tile is broken.
This is what we call a “single-firm” tiling. A more restrictive “double-firm” tiling requires
each splitting line to cross middle lines of at least two tiles. In this section we show that a
“single-firm” complete tiling implies a “double-firm” tiling in the Firm Tiling problem.
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Figure 2.8: Firm 17-Tile Solution.

Following the proposed approach, the first step needed is the representation change con-
verting the above problems into Integer Programming problems. To accomplish this step, one
needs to model the fact that domino pieces do not overlap in the Integer Programming form.
We assign variables to vertical splits, where is the row number and is the split in th row
between squares and 1 . In the same way, we define variables for horizontal
splits between squares and 1 . One-valued variables 1 model the horizontal
placement of a domino piece (tile) in such a way so that its middle line is located at th vertical
splitting line and th row; one-valued variables 1 model the vertical placement of a
domino piece (tile) with its middle line at th horizontal split in th column. In these terms,
non-overlapping can be represented by the following set of constraints:

1 1 1 1 1 1 1 (2.9)

1 1 1 1 1 (2.10)

Figure 2.9 demonstrates a part of a checkerboard and the correspondence of domino pieces
(tiles) placing to 0/1-variables and splits.

In the Mutilated Checkerboard problem the goal function is the unweighted sum of all
domino-piece variables: . It is easy to guess one of the fractional optimal
solutions produced by LPR: 1 2. It tells that if applied, PHP will provide the same
bound of 31 (which is not tight). Furthermore, an optimal fractional solution does not help to
find an optimal integer one, even when the upper bound is tight.

If the original checkerboard is of size NxN with N odd, a simple PHP application shows
that one can use at most 2 3

2 domino pieces for a non-overlapping covering of the mutilated
checkerboard: Each piece contains two squares, and there are 2 2 squares in the mutilated
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Figure 2.9: Modeling Domino Overlap as a Set of Inequalities

checkerboard. Therefore, one can put at most 2 2
2

2 3
2 non-overlapping domino pieces.

Actual attempts to cover the mutilated checkerboard with odd sizes readily give an optimal
solution of the above value.

If N is even, the original PHP does not put any additional restrictions on the number of
pieces. However, none of the attempts to cover the mutilated checkerboard by domino pieces
achieves the desired bound of 2 2

2 , all constructed solutions provide at most 2 4
2 pieces.

Neither PHP nor LRP provide a tight upper bound for even-sized mutilated checkerboards.
Nonetheless, the heuristic of two-coloring the mutilated checkerboard and applying PHP to the
monochrome set of squares of smaller size completes the proof of the fact that 2 4

2 is actually
the optimal value for covering the mutilated checkerboard with even sizes. If we color the
original checkerboard in usual black-and-white chess colors (see Figure 2.7) and then cut off
2 opposite corner squares (of the same color), the remaining mutilated checkerboard contains
unevenly colored square sets. The checkerboard presented in Figure 2.7, for example, has 30
black squares and 32 white squares. Since each domino piece contains 2 squares of the opposite
colors, applying PHP to a smaller set of black or white squares, we obtain the tight upper bound
of 2 4

2 . This argument completes the proof of the Mutilated Checkerboard problem by HPHP.
Such a modification of PHP is favorable in comparison with LPR and the original PHP, because
it is capable of deriving the optimal value of the goal function. As we mentioned before,
Linear Programming Relaxation provides 2 2

2 as an upper bound. According to Theorem 1,
if applied, PHP outputs exactly the same upper bound.

The idea of two-coloring is a simple elegant heuristic that allows to apply the Hidden
Pigeonhole Principle and derive the tight upper bound. After being known for several dozen
years, this application of HPHP might seem to be too simple to stimulate the development of
alternative methods. We introduce the Firm Tiling problem as an example of a problem which is
hard to solve without prior knowledge of the appropriate heuristic. For example, multi-coloring
does not help to find the desirable matching between tiles, checkerboard squares, pigeons and
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holes.
Theory of Integer Programming suggests to apply Integer cuts, for example, Chvatal-

Gomory’s cuts, to extend the set of valid inequalities. The main idea of Chvatal-Gomory’s cut
(CG-cut) is to use the integrality of variables in feasible solutions. If a weighted sum of the
inequalities derived so far contains the left-hand side with integer coefficients, the right-hand
side can be rounded down to the nearest integer: 1 implies 1 , for
integer and 1 . In a certain sense CG-cuts look as simple as the original
Pigeonhole Principle. However, CG-cuts allow to derive constraints that cannot be obtained
from the initial set of inequalities by taking weighted positive sums.

We, first, demonstrate the correctness of the Integer Programming formulation of the
Mutilated Checkerboard problem and then derive an upper bound for it by means of Chvatal-
Gomory’s cuts and the Hidden Pigeonhole Principle.

Since we are about to apply some of the techniques of Integer cuts to the Mutilated
Checkerboard problem, we first demonstrate simple reductions from Integer Programming
theory. For example, Lemma 1 builds a reduction from the set of pairwise constraints with
0/1-vertex variables to the Exclusive Rule for a clique , where a clique is a complete graph
with 2 vertices.

Lemma 1 If a clique admits exclusively 0/1-assignments to its vertices 1 and, for
each pair of vertices , at most one vertex can be assigned to 1, then there is at most one
vertex assigned to 1 in the whole clique .

Proof: There are 1
2 inequalities of the type 1. We would like to prove that

this collection of constraints implies a single clique inequality 1 1 (Exclusive Rule) for
0/1-variables 0 1 1 . We prove it by induction on the number of vertices.
Induction Base: If 2, the given inequality and the clique inequality 1 2 1 coincide.
Induction Step: Suppose that we can derive all clique inequalities for each of the
sub-cliques of size 1. If we sum them up, we get:

1 1
1

which implies that 1 or, equivalently, 1 . Since 2,
1 1 1

1 1. If we apply CG-cut to the last inequality, we get the desired -clique
inequality:

1 1 (2.11)
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Four (or less) splits that form the border of the square correspond to four variables
that model placing of domino pieces (tiles). Corner or side squares border with only two
or three internal splits. According to Lemma 1, if we consider all six (or less) pairwise
inequalities (2.9-10) involving four variables bordering a checkerboard square, CG-cuts provide
the Exclusive Rule for the clique associated with the square. This Exclusive Rule corresponds to
the requirement of non-overlapping of domino pieces over the square . The addition of the
clique inequalities derived by CG-cuts to the initial set of constraints constitutes a representation
change of the IP problem.

Lemma 2 If clique inequalities for all squares of the NxN mutilated checkerboard (N is even)
are added to the set of constraints, the optimal value of the relaxed Linear Programming
problem is 2 4

2 .

Proof: Consider the following subset of clique constraints: Pick a monochrome subset of
squares of smaller size and sum up all the clique constraints corresponding to these squares (of
the same color). Each clique constraint is an unweighted sum of four (or less) clique variables

1 2 3 4 1. Since squares of the same color do not share sides, the sum of all clique
constraints corresponding to squares of the same color is an unweighted sum of variables. On
the other hand, all variables are presented in the final sum, because a legitimate placement of a
domino piece covers squares of both colors. Since the number of clique constraints corresponds
to the number of monochrome squares of smaller size, the sum of the constraints establishes a
tighter bound for the goal function 2 4

2 . Knowing this bound, it is easy to come up
with a solution for an even-sized Mutilated Checkerboard problem that attains this value.

Thus, the proof that uses HPHP, relies on additional knowledge that each domino piece
covers a bi-chromatic configuration, whereas the combination of LPR with CG-cuts takes into
account this argument automatically. CG-cuts expand the set of constraints by adding clique
inequalities for all checkerboard squares. After that LPR solves the new Integer Programming
problem. We identify the expansion of the constraint set with the representation changes for
the original Integer Programming problem. If the two-coloring heuristic were not known, then
LPR with CG-cuts could be used to obtain the tight upper bound of 2 4

2 . After that, it is
relatively easy to construct a solution attaining this value, which is proven to be optimal. The
relations between HPHP and LPR with Integer cuts in solving the Mutilated Checkerboard
problem are very similar to those between PHP and LPR.

The Firm Tiling problem does not admit the proof by the original PHP, because an obvious
fractional solution 1 2 is feasible for a relaxed LP problem and the “middle-cut”
requirement

6
1

6
1

1
2 3 1 1 2 5

6
1

6
1

1
2 3 1 1 2 5
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Figure 2.10: Modeling a Firm Tiling of a 6x6 Checkerboard.

is satisfied for all internal splitting lines. However, brute-force attempts to construct a complete
firm tiling fail to provide an optimal 18-tile solution. The best firm tiling consists of at most 17
non-overlapping tiles, Figure 2.8 shows one of such tilings.

Nonetheless, the Hidden Pigeonhole Principle is capable of setting the tight upper bound of
17 tiles for this problem. To preserve the beauty of the elegant solution by HPHP for now, we
first establish the tight upper bound through the combination of LPR and CG-cuts. We show
that if one more constraint

17 (2.12)

is added to the original IP problem, the set of feasible integer solutions becomes empty.
Figure 2.10 presents 6x6 checkerboard with 0/1-variables assigned to its internal splits. To

avoid superscript notations we denote as and as . Since and are integer,
inequality (2.12) implies

18 (2.13)

In its turn, the latter inequality implies that the whole checkerboard should be covered
by tiles. Since clique inequalities prohibit tiles from overlapping, each square is covered
exactly by half-a-tile2. This is not a surprising conclusion, as we are attempting to cover a 6x6
checkerboard by 18 non-overlapping tiles.

Lemma 3 Inequality (2.13) and clique inequalities (2.11) for all squares of the 6x6 checker-
board imply “double-firm” tiling.

2This fact can be proved by considering a subset of clique constraints corresponding to a monochrome set of
checkerboard squares in the way similar to the Mutilated Checkerboard problem.
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Proof: We prove the statement of the Lemma by induction. In the induction base, we show
it for the leftmost vertical splitting line. Due to the symmetry this proof remains unchanged for
horizontal splitting lines.

Induction Base: If we consider the leftmost column of a checkerboard presented in Fig-
ure 2.10, inequalities (2.9-10) and (2.13) imply the following six equalities:

11 11 1 21 11 21 1 31 21 31 1 (2.14)
61 51 1 41 31 41 1 51 41 51 1 (2.15)

The “middle-cut” requirement for the leftmost vertical splitting line corresponds to the follow-
ing inequality:

6
1 1 1 (2.16)

Sum of equalities (2.14) and (2.15) produces a new constraint:
6

1 1 2 5
1 1 6 (2.17)

Now we can subtract (2.16) from (2.17) and divide it by two:

2
5

1
1 5

5

1
1 2 5 (2.18)

Since all 1 in the left-hand side of inequality (2.18) are integer variables, we can apply CG-cut
to obtain a new (tighter) inequality:

5
1 1 2 (2.19)

In its turn, constraints (2.17) and (2.19) imply
6

1 1 2 (2.20)

Induction Step: Suppose that we have proved that inequalities (2.11) and (2.13) imply the
“double-firm” tiling for 0 1 leftmost columns of the checkerboard (1 0 1 4). It
implies that

6
1 2 1 0 1 (2.21)

Consider the tiling of left 0 columns. All tiles 1 with 0 cover two checkerboard
squares in left 0 columns, the same is true for tiles 1 with 0. These tiles contribute
two to the amount of covered squares in the discussed portion of the checkerboard. Tiles
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0 1 contribute one to the number of tiled squares in left 0 columns. If we count the
number of tiled squares in left 0 columns according to the above observation and take into
account that each square should be covered by a tile, we get the following equation:

0

1

5

1
2

0 1

1

6

1
2

6

1
0 6 0 (2.22)

Since a “single-firm” tiling requires 6
1 0 1, equality (2.22) and “firmness” imply

0

1

5

1
2

0 1

1

6

1
2 6 0 1 (2.23)

Inequality (2.23) can be divided by two:

0

1

5

1

0 1

1

6

1
3 0 1 2 (2.24)

If we apply CG-cut to inequality (2.24), we get a tighter constraint:

0

1

5

1

0 1

1

6

1
3 0 1 (2.25)

which together with equality (2.22) imply the “double-firm” tiling of 0th vertical splitting
line:

6
1 0 2 (2.26)

Lemma 3 constitutes the hardest part of the Firm Tiling problem. Were we given the
“double-firm” tiling requirement as the part of the initial problem, a simple application of
the Pigeonhole Principle would provide the negative (infeasible) answer: Since there are ten
splitting lines, each passing the middle line of at least two tiles, and none of the tiles can be
shared by splitting lines in such counting, one needs at least 20 tiles for a “double-firm” tiling,
in which case they would overlap. The Integer cuts technique demonstrated in Lemma 3 proves
infeasibility through deriving the “double-firm” tiling requirement from a required “single-
firmness” and the completeness of tiling (2.13). Since inequality (2.13) is actually an equality
for the 6x6 checkerboard, the “double-firm” tiling inequalities make the Firm Tiling problem
infeasible.

From a glance, Integer cuts seem to be manipulating with halves and other fractionals in
a beneficial manner. However, it is not just a game with fractionals. Integer cuts perform
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methodological “squeezing” of the polygon of feasible solutions remaining all integer solutions
feasible. Moreover, new constraints obtained through Integer cuts can not be derived by taking
positive weighted sums of the existing constraints.

Although both problems presented in this section do not admit proofs by the original
Pigeonhole Principle, it is possible to perform a representation change of the problem statements
and transform both problems into ones that admit proofs by the Pigeonhole Principle. We call
such method of solving Integer Programming problems as the Hidden Pigeonhole Principle
(HPHP).

Such application of HPHP are useful mainly for deriving the tight upper bound. However,
for some problems precise knowledge of the optimal value allows AI planning systems to
construct an optimal solution. For the problems presented in this section this can be done,
for example, by placing domino pieces randomly or greedily and applying the backtracking
techniques when necessary. Success in constructing an optimal solution from the optimal value
depends heavily on planning domain properties. Nonetheless, without a HPHP application the
optimal value would be unknown, and any attempts to construct a solution attaining non-tight
upper bound would fail.

2.6 HPHP Mimicking LPR with Chvatal-Gomory’s Cuts
In this section we give an example of a simple problem illustrating how the “Hidden” Pigeonhole
Principle can mimic the combination of Chvatal-Gomory’s cuts and Linear Programming
Relaxation.

Air Traffic Problem: Suppose that there are airports in the country, each is
capable of routing flights to at most destinations. What is the maximum number
of flights throughout the country?

There is no issue in determining the maximal number of flights for the whole country as
long as either or is even, and the answer is 2. However, as soon as both and
are odd, at least one of the airports has to schedule strictly less than flights.

In Integer Programming, the above argument would be resolved through Chvatal-Gomory’s
cut. If denotes the presence of a flight between cities and , then

1 1 (2.27)

due to double-counting flights originating from two different cities3, implies

2
1
1 2 (2.28)

3It would be unwise to route a flight from city back to city .
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If one applies a CG-cut to inequality (2.28), the resulting inequality

2
1
1 2

would imply that for the case when both and are odd, one of the airports is running strictly
under the full-scale loading.

The Pigeonhole Principle would imitate Integer cuts by deriving the contradiction. Suppose
that all airports are fully loaded, i.e. flights are scheduled for each of them. We show that
in this case, one of the airports is scheduled for at least 1 flights. Note, that 2 is
not integer. Suppose that every airport is loaded with at least flights. Then, consider the
overall assignments with 1

2 flights (create the hole of this capacity). Such a loading is
impossible according to the Pigeonhole Principle. In this application of PHP, outbound flights
are the pigeons, overall number of flights is the hole of capacity 2 . Thus, the artificially
created hole does not have enough capacity, hence, there are routed 2 1 or more flights
overall. Now we use PHP again: Since every flight connects two destinations, there will be
at least 1 destinations accounted from all flights. Now the overall number of flights
contains at least 1 pigeons, each airport is the hole of capacity . Contradiction.

Note, that in the above application of PHP, one can notice an elegant swap between the
pigeons and the holes. Even for such a simple task as the Air Traffic problem, the application
of the Pigeonhole Principle is “hidden” according to our classification, as we had to come with
a non-existing hole of capacity 1

2 .

2.7 Implications for Resolution-Based Proof Methods
If we introduce variables indicating that pigeon is in hole , then the Pigeonhole Principle
with pigeons and holes can be modeled by two groups of constraints:

1 2 1 (2.29)
1 (2.30)

First group of constraints forces every pigeon to be placed in at least one hole. Second
group of constraints does not allow any pair of pigeons to occupy the same hole. Thus, PHP
is re-stated as a conjunction of all disjunctive clauses (2.29-30), i.e. in a standard Conjunctive
Normal Form (CNF).

Resolutions of clauses is one of the most common methods of simplifying boolean CNF
formulae. It looks for a variable that is shared by two clauses with different polarities and
combines these clauses without the shared variable. For example, for the following formula
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1 2 4 2 3 5 (2.31)

the resolvent is

1 3 4 5 (2.32)

Statement (2.32) is implied by the original clauses of (2.31). Extended resolution is a
generalization of the resolution method that allows the introduction of new variables as the
combination of existing ones. It has been shown that if one applies the resolution method to
the Pigeonhole Principle stated in (2.29-30), for it would require exponential number
of resolutions [1]. This is, the shortest length of the sequence 1 2 , where each

is either the original clause or the resolution of two clauses from the prefix sub-sequence
1 2 1, is exponential on .

Some Linear Programming methods, on the other hand, guarantee polynomial worst-case
complexity. Furthermore, it has been shown that the constraints of a 0-1 IP problem can be
expressed in a logical form [33]. The Pigeonhole Principle stated in (2.29-30) is exactly a 0-1 IP
problem. However, a brute-force mimicking of LP constraints possesses an explosive danger,
as some of compactly written inequalities from Linear Programming would require much more
space, if interpreted in a boolean form. Table 2.1 illustrate the danger of blind copying methods
of Linear Programming.

Linear Programming Logic
1 2 3 4 3 1 2 3 4

1 2 3 1 2 4
1 2 3 4 2 1 3 4 2 3 4

1 2 1 3 1 4

1 2 3 4 1 2 3 2 4 3 4

Table 2.1: LP and Logic Constraints.

McKinnon and Williams suggested a compact way of bookkeeping [48]. The “greater or
equal” boolean predicates (possibly nested) 1 2 mean “ or more propo-
sitions 1 2 are true.” Using this notation one can re-write Table 2.1 in a compact
Logical form, see Table 2.2.

Hooker [20] and Ginsberg [31] considered -predicates and showed that extended resolu-
tions can be used effectively in processing logical theories. In particular, Ginsberg showed that
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Linear Programming Logic
1 2 3 4 3 1 1 2 3 4

1 2 3 4 2 2 1 2 3 4

1 2 3 4 1 3 1 2 3 4

Table 2.2: LP and Compact Logic Constraints.

in such case, the Pigeonhole Principle stated in (2.29-30) can be proved to be unsatisfiable in
5 steps [31]. -predicates look very much like inequalities from Linear Programming.

This fact stimulated our efforts in applying both the Pigeonhole Principle and Linear Program-
ming Relaxation to problems stated in the Integer Programming form. The other stimulus in
bringing knowledge from Logic to Integer Programming was to change the direction of the
usual research flow, as the vast majority of attempts tries to bring techniques from Integer or
Linear Programming into Logic, thus, not so much has been done in the opposite direction [81].

2.8 Tough Nuts for the Pigeonhole Principle
Not every problem that is traditionally attributed to the Pigeonhole Principle can be represented
in the Integer Programming form. In this section we introduce two problems that can be solved
by the PHP after sophisticated representation changes. However, modeling them as IP problems
is a challenge for a problem solver. First problem has a continuous nature that prevents it to be
modeled as an IP problem, second problem possesses an explosive combinatorial nature in its
description. These two problems are aimed on demonstrating that the length of the description
of the problem itself and its solutions might determine the success of applying the Pigeonhole
Principle.

Circle Covering Problem: One is given a circle of the diameter 10 and 10 rect-
angular strips, nine of which have the unit width and tenth has the width of 1
with 0. Is it possible to cover the entire circle by these ten strips?

The amount of circle covered by a unit-wide strip in the circle covering problem depends
on the location of the strip. In particular, the area of the intersection of the circle with the strip
is maximal, if the center (symmetry) line of the strip goes through the center of the circle. To
apply the Pigeonhole Principle, one needs to apply a representation change to create standard
pigeonhole pigeons and holes whose capacity would not depend on the location of the holes
(strips) relatively to the center of the circle. The additional complication in this problem is that
pigeons (circle area) can contribute simultaneously to several holes (when strips intersect).
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Figure 2.11: Re-distributing the Measure of the 2D Circle

Fortunately, it is possible to perform a simple representation change, so that to create a
certain measure that is invariant to the placement of the strip. Figure 2.11 illustrates the idea
of re-distributing an initial uniform measure of the circle. If we intersect a 3D sphere with two
parallel hyperplanes, unit distance apart, the surface area of the sphere between the hyperplanes
is invariant to the actual intersection, as long as the intersection of each hyperplane with the
sphere is not empty. This property hints on how we to re-distribute the measure of the circle:
We weigh every strip by the surface area of the projection of the strip on the surface of the 3D
sphere (or half-sphere for the simplicity of the picture). Thus, each unit strip (hole) has the
capacity of at most 1 10 of the whole circle’s amount, no matter how it intersects the circle.
The last, tenth strip has the capacity of 1 10 , with 0. Hence, the overall capacity that
all strips (holes) can hold is at most 1 1.

Triangle Cutting Problem: One is given an equilateral triangle, which is split into
smaller triangles by three sets of equi-distant lines, parallel to each side of the
triangles. Can one cut a set of parallelograms out of such triangle if cutting only
along the splitting lines?

The problem of solving the Triangle Cutting problem appears to lie in modeling it in
an acceptable way. The enormous amount of possible scenarios in cutting the triangle into
parallelograms seems to stop any initial attempt of accounting them all. Nonetheless, the
Triangle Cutting problem admits a simple solution by the Pigeonhole Principle after an elegant
representation change that identifies the invariant of the cutting procedure. Figure 2.12 shows
one of the possible cuttings of a parallelogram off a triangle with 5. Note, that the
described splitting of the triangle produces a family of identical (smaller) triangles with two
different orientations. Figure 2.12 also shows smaller set of shaded triangles.

In a certain sense, the proof of the Triangle Cutting problem mimics the proof of the
Mutilated Checkerboard problem (see Section 2.5). Each parallelogram contains equal number
of triangles of both orientations. Since one of the equi-oriented sets is strictly smaller initially,
it is impossible to cut the triangle into parallelograms along the splitting lines. The Triangle
Cutting problem hints on how to generalize the Mutilated Checkerboard problem: If one
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Figure 2.12: Cutting a Parallelogram from a Triangle with N=5

is allowed to cut off rectangles of any finite, connected subset of squares on the infinite
checkerboard with at least one side of each rectangle of even size, such cutting procedure can
succeed only if the sizes of monochrome sets of squares in are the same.

2.9 Summary

In this chapter we considered different methods of attacking combinatorial optimization prob-
lems. Although the Pigeonhole Principle and Linear Programming Relaxation seem to live in
completely different worlds, we showed that PHP and LPR have the same bounding power.
Moreover, one is the dual of another. Such an unpredictable relation became possible after we
brought both methods to the “common ground” of Integer Programming and drew a splitting
line between the applications of the Pigeonhole Principle that deal with the original objects
of the problem and the applications of the Hidden Pigeonhole Principle that deal with various
extensions or constructions based upon the original objects of the problem. In its turn, we
demonstrated that proofs by the Hidden Pigeonhole Principle are in many ways similar to
combinations of Integer cuts and Linear Programming Relaxation.

The results of this chapter enable us to state the following conclusions:

Resolution-based methods keep pigeons integer, whereas extended resolutions may “cut”
pigeons into pieces, manipulate with fractional pigeons and perform a “reconstructive
surgery” in the end, if necessary. Such a “cruel” treatment of pigeons sometimes results in
a huge performance win, for example, the complexity of the logical proof of the simplest
formulation of the Pigeonhole Principle goes down from exponential to polynomial.

Linear Programming Relaxation applied to a minimization Linear Integer Programming
problem is actually a Linear Programming analogue of the Pigeonhole Principle. As a
consequence, it is the dual of a correspondent maximization IP problem.
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The “Hidden” Pigeonhole Principle has the same nature as the combinations of Integer
cuts and LPR. For example, HPHP can mimic the sequence of Chvatal-Gomory’s cuts
and LPR.

Through the set of successes and failures demonstrated in this chapter, one can witness
the Occam’s Razor Principle in action: In multi-disciplinary approaches, those methods
of modeling problems and deriving solutions that require shorter descriptions are more
preferable.
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Chapter 3

On-Line Search

In this chapter we apply the methodology of hybrid approaches to the on-line search problem.
Whereas in Chapter 4 we will be focused on the concluding Constructing Hybrid Methods
phase, the current chapter contains Selection, Creating the Environment and Analysis phases.

The on-line and off-line search problems are concerned with search in partially or in
completely known domains by an agent with limited lookahead. Since problem domains
are not known in advance in the on-line version of the problem, the path finding algorithms
amenable for this problem need to gather information in the surrounding world to locate a
goal state and a path leading to it. Since for this type of problems an agent needs to explore
the environment as well as to look for a goal, and agent’s knowledge about the surrounding
world is limited by a neighborhood centered at the current state of the agent, we call search
problems of this kind goal-directed exploration problems or, alternatively, agent-centered
search problems. Examples of such problems include:

Autonomous mobile robots that have to find the office of a given person in an initially
unknown building, or a previously known building which is currently under repairs.

Software agents that have to find World Wide Web pages containing desired information
by following links from their current page. CMU’s Web Watcher, for example, complies
with this agent-centered strategy [2].

Both AI and Theory researchers have investigated the problem of reaching a goal by an
agent with limited lookahead in an initially unknown domain. Difference in terms, the variety of
scenarios, different foci make it difficult to extract the most beneficial features from approaches
that belong to differentareas. Table 3.1 shows a relevant fraction of Table 1.1 regarding the goal-
directed exploration problem. In particular, prior knowledge can be a powerful tool in cutting
down the search effort, but it usually have little influence on the worst-case complexity. On the

43
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Preprocessing Data
Structures

   Changes
- Representation

- Prior
   Knowledge

Empirical
Performance

Worst-Case
Analysis
Optimal
Algorithms
Approximate
Algorithms

AI CS Theory

Table 3.1: Advantageous Features of AI and CS Theory for On-Line Search

other hand, the algorithms that achieve the worst-case complexity seem to be too “cautious” and
do not demonstrate strong empirical performance, when applied to on-line search problems.

In Chapter 4 we show how some of CS theory and AI algorithms can be combined to get
the best of both worlds: Theoretical component contributes worst-case guarantees, whereas AI
component of the hybrid method enables an agent to utilize prior knowledge to guide search
until it proves to behave poorly. The current chapter introduces the problem, the terminology,
assumptions and overviews existing algorithms from CS theory and AI.

3.1 Agent-Centered Technologies for On-Line Search
A variety of approaches from AI and CS theory are applicable to the problem of goal-directed
exploration [71]. However, methods from distinct scientific areas often use different languages
and are focused on finding answers to different questions even within the same problem
framework. Table 3.2 provides a brief comparison of CS Theory and AI terminologies and foci
regarding the goal-directed exploration problem.

An abstract version of the goal-directed problem has been known to the theoretical com-
munity as Treasure Hunt. Various modifications of the problem of exploring unknown graphs
has been also considered in CS theory. Deng and Papadimitriou [13] discovered the depen-
dencies between the worst-case complexity of exploring a directed unknown graph and the
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Aspect CS Theory AI

Learning Unknown Graphs, Exploration of
Problem On-Line Chinese the Environment,

name Postman Problem, Goal-Directed
Treasure Hunt Exploration

Vertices, Edges, States, Actions,
Terms Untraversed Edges, Limited Lookahead,

Paths Prior Knowledge

Worst-Case Complexity Empirical
Foci Average-Case Performance

Complexity

Table 3.2: CS Theory and AI Terminologies.

deficiency – the measure of how close the unexplored graph is to being Eulerian. Awerbuch
et al. [3] investigated the worst-case complexities of “piecemeal” learning and Treasure Hunt
problems, where an agent is required to return to the starting position for recharging every so
often. However, researchers from CS theory has been mainly concerned with the worst-case
complexities of solving static problems of Graph Theory, almost completely ignoring the fact
that the empirical performance and the worst-case complexity can differ significantly. Another
issue of real-life goal-directed exploration problems is prior knowledge that is often readily
available in form of heuristic values. This knowledge can essentially cut down the (empirical)
search time, but existing theoretical approaches are often not able to utilize heuristic values,
because they were not designed with this thought in mind.

On the other hand, prior knowledge has been known as providing good guidance and cutting
down search time in practical AI algorithms. Theoretical analysis of on-line search methods
seems to ignore prior knowledge, because it does not improve the worst-case complexity.
Furthermore, theoretical analysis of the average-case complexity is known to be a hard task
that depends on two factors - the domain instance and the initial distribution. A slight change
in any of them can transform the problem from “solvable” into “very hard” and vice versa.

The strength of AI methods comes from their “natural selection” out of the wide pool
of heuristic-guided empirical algorithms. However, finding a proper heuristic function is a
difficult task for complicated problem domains. In this chapter we show that the domain-
heuristic relation is even more sensitive for on-line search than that for off-line search. In
Section 3.4.1 we present an example of the problem domain, where a very efficient in general
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AI algorithm guided by a consistent, admissible heuristic can lose to uninformed algorithms,
including itself1. In Chapter 6 we argue why the number of satisfied/unsatisfied clauses is not
always efficient in guiding local hill-climbing procedures towards a satisfying assignment, after
we interpret such procedures as agent-centered search methods.

We need to note that the goal-directed exploration problem is different from off-line search
problems, because off-line search algorithms are concerned with finding action sequences that
reach goal states from start states in completely known state spaces. Since real-world AI
problems are often too big to fit the memory of the computer, or downloading the problem
domain completely may significantly slow down the performance, not all off-line algorithms
consider the whole domain as represented in Memory. Moreover, several agent-centered
methods has been successfully applied to and solved large off-line search problems, as if they
were on-line search problems. This fact encourages us to study properties of on-line search.

As we mentioned before, in the goal-directed exploration problem, the domain is not known
in advance, and path finding algorithms need to gather information in the world to locate a goal
state and a path leading to it. Besides this difference with off-linesearch problems, “teleporting”
is not allowed in the on-line version of the problem and the complexity is measured as the length
of the continuous walk performed by an agent until it reaches the goal state. Already these two
features make goal-directed exploration very different from off-line search.

Therefore, in order to solve this problem efficiently, it can be of high interest to combine
heuristic-based search approach providing good performance for the cases when heuristics are
reliable with exploration that will provide suboptimal performance guarantees, if heuristics are
misleading. Thus, we can outline two paradigms of goal-directed exploration: pure exploration
and heuristic-driven exploitation. Pure exploration approaches explore the state space using
only knowledge of the physically visited portion of the domain. Heuristic-driven exploitation
approaches, on the other hand, totally rely on heuristic knowledge in guiding the search
process towards a goal state. Both approaches in their purity have disadvantages in solving
goal-directed exploration problems: the first approach does not utilize available knowledge to
cut down the search effort, the second approach follows the guidance of prior knowledge, even
if it is misleading. In each particular scenario of on-line search we perform careful analysis of
heuristic-driven exploitation algorithms in order to find out how much they may lose to pure
exploration algorithms and to identify classes of problems, where the latter algorithms would
consistently outperform the former ones.

1See Section 3.2 for the description of the goal-directed exploration problem and the definition of the heuristic
types.
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3.2 Goal-Directed Exploration Problem
In this chapter we consider problems with reversible domains, i.e. those problems whose
domains can be represented as undirected or bi-directed graphs. The latter means that every
directed edge (action) has an opposite directed edge (reverse action), but by traversing an edge
the agent does not automatically learn how to traverse the opposite edge unless it has traversed
it before. The concept of goal-directed exploration corresponds to the behavior of a new-born,
who has no initial knowledge about the surrounding world and explores it through acting.
Some of the actions, like setting something on fire, does not immediately imply knowledge on
stopping the fire, although we assume in this chapter that every action is reversible.

We use the following notation: denotes an unknown undirected graph,
is the start state (vertex), and is the non-empty set of goal states.

is the set of edges adjacent to vertex . For simplicity, edges are assumed to be of
unit length 1, although all the results can be easily extended to graphs with
edges of arbitrary non-negative length. The goal distance is the length of the shortest
path following which an agent can reach a goal state from . The weight of the graph is

1 2 – the sum of the lengths of all edges, which in our case
coincides with the number of edges .

If has not been learned, then , the successor of such that , is
unknown. To learn the edge, the algorithm has to traverse it. Initially, heuristic knowledge
about the effects of traversing edges is available in form of estimates of the goal distances.
Classical AI search algorithms attach heuristic values to states. This would force us to evaluate
untraversed edges in according to the heuristic value of , since the successor of
is not yet known. We therefore attach heuristic values to edges instead; they are estimates
of , the shortest length of getting from to a goal state when first
traversing . If all are zero, we say that the algorithm is uninformed. The algorithm is
completely informed, iff for all and . We say
that heuristic values are consistent iff min for all
and . They are admissible iff for all and

.
The goal-directed exploration problem can now be stated as follows:

The Goal-Directed Exploration Problem: Get an agent from to a vertex
in if all edges are initially unknown, but heuristic estimates are provided
upon request.

We measure the performance of goal-directed exploration algorithms by the length of
their paths from the start vertex to a goal vertex. This performance measure is realistic, since
usually the time of executing walk dominates significantly the deliberation time of goal-directed
exploration algorithms.
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In Section 3.3 and Section 3.4 we describe several approaches relevant to goal-directed
exploration as examples: pure exploration algorithms and heuristic-based exploitation
algorithms.2 Our selection was based primarily on the efficiency of these algorithms along
different dimensions.

3.3 CS Theory Approaches
Theoretical approaches are usually Pure exploration approaches that explore unknown graphs
completely. They have no notion of a goal and consequently do not use any prior knowledge to
guide search towards a goal location. However, they can be used for goal-directed exploration,
since they visit all states during their exploration, including the goal vertices. One can then
simply stop the algorithm when it accidentally hits a goal. Conversely, goal-directed exploration
approaches explore all edges, if there is no goal. Thus, they can be used as exploration
algorithms. Depth-First-Search (DFS) is one of such methods, it can be applied to the problem
of exploring unknown, undirected graphs and guarantee that each edge is traversed at most two
times. For Eulerian graphs, a simple algorithm of building a Eulerian tour (BETA) has been
known since Euler [15] and Hierholzer [23]. Recently several researchers re-considered it as a
graph-learning algorithm with linear worst-case complexity [41, 13].

Building a Eulerian Tour algorithm (BETA): Traverse unexplored edges
whenever possible (ties can be broken arbitrarily). If all edges emanating from the
current vertex has been explored, re-traverse the initial sequence of edges again, this
time stopping at all vertices that have unexplored emanating edges, and applying
the algorithm recursively from each such vertex.

Deng and Papadimitriou [13] showed that BETA traverses every directed edge at most twice
in Eulerian domains (a superset of undirected domains). This implies the following theorem:

Theorem 3.1 BETA reaches a goal state of a given goal-directed exploration problem with a
cost that is at most 1 (to be precise: at most 2 ).

No uninformed goal-directed exploration algorithm can do better than BETA in the worst
case. Consider, for example, the graph shown in Figure 3.1, whose directed edges are annotated
with their lengths.

Any goal-directed exploration algorithm can first traverse all edges with length by travers-
ing an edge adjacent to the start vertex and then (by chance) traversing the opposite directed

2Other approaches have for example been discussed in CS theory [6, 8, 12], robotics [60, 46, 61] and AI
[77, 76, 51].
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Figure 3.1: A Worst-Case Example for all Uninformed Algorithms

edge back. After that, it is in its starting vertex and cannot traverse unexplored edges any
longer. It then has to re-traverse every edge of length to be able to execute the last two
unexplored edges at the end of each “ray,” after which it is forced to execute the other edge of
length a second time to return to the starting vertex. Assume that there are rays and the
last ray traversed contains the goal vertex at its end. In this case, the total length of the path
is 4 1 1 , the weight of the graph is 2 2 , and the ratio of the two quantities
approaches 2 for large . This implies the following theorem:
Theorem 3.2 The worst-case complexity of uninformed goal-directed exploration algorithms
is O 1 (to be precise: 2 ).

BETA has the disadvantage that it does not make use of any prior knowledge to guide the
search towards the goal. Given such knowledge, it is often unnecessary to explore all edges.
However, BETA provides a gold standard for other goal-directed exploration algorithms.

3.4 Heuristic-Driven Approaches
AI researchers have long realized that heuristic knowledge can be a powerful tool to cut down
search effort – and such knowledge is often readily available. Heuristic-driven exploitation
approaches rely on heuristic knowledge to guide the search towards a goal state.

3.4.1 Agent-Centered A* Algorithm
Among heuristic-driven exploitation approaches, A* is one of the most popular off-line search
algorithm that exploits heuristic knowledge. However, if applied in its original form to goal-
directed exploration problems A* becomes very inefficient as it incurs new costs for moving
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an agent from one place to another instead of “teleporting”. Moreover, since the agent has
to perform a continuous travel to a new location, the strategy of A* does not produce the
best available action sequence for agent-centered search. Nonetheless, the “greedy” idea
of performing the best currently available step appeared to be tempting and was repeatedly
utilized in various heuristic-driven exploitation approaches. The list of such algorithms includes
Incremental Best-First Search by Pemberton and Korf [58], the Dynamic A* algorithm (D*) by
Stentz [72], the Learning Real-Time A* (LRTA*) algorithm by Korf [42], Prioritized Sweeping
by Moore and Atkeson [50], the navigation method by Benson and Prieditis [5], etc.

Thus, instead of minimizing at every step the sum of the distance from the starting node to a
fringe node and the heuristic value at that node, as A* does, the agent-centered
algorithm can minimize the sum of the distance from the current node to a fringe node
and the heuristic value ( ). This tiny change
produces an extremely efficient agent-centered version of the A* algorithm, but drastically
changes the flow of the exploration, thus, leaving the main question of this algorithm’s efficiency
completely open. Therefore, this agent-centered version of A* uses similar to A* minimization
(greedy) step to find a path to the next unexplored edge in the currently known part of the graph,
then moves the agent to that edge, traverses it, and repeats the process. We call this algorithm
AC-A*:

AC-A* (Agent-Centered A* Algorithm): Consider all paths that include
traversed edges from the current vertex to an untraversed edge emanating from
already visited vertex . Select a path with minimal expected length from these
paths, where the expected length of a path is defined to be the sum of the length
of the path from the current vertex to plus (ties can be broken arbitrarily).
Traverse the chosen path and the unexplored edge , and repeat the process until a
goal state is reached.

AC-A* is very versatile: It can be used to search completely known, partially known, or
completely unknown, undirected, Eulerian or non-Eulerian, even dynamically changing graphs
and is able to make use of knowledge that it acquires during the search. For example, if it is
informed about the effects of some actions, it automatically utilizes this information during the
remainder of its search.

AC-A* is known to be efficient under different problem scenarios. If AC-A* is totally
informed, for example, it finds a goal state with cost and thus cannot be outperformed
by BETA or any other goal-directed exploration algorithm. Figure 3.2 shows the performance of
AC-A*, BETA, BETA with short-cuts [71] and 4-VECA3 in exploring rectangular, bi-directed
mazes of size 32 32 and variable density: 0% correspond to a random tree, 100% - to a
complete rectangular maze. AC-A* outperforms all other algorithms in average with the only
exception: it loses to VECA (see Chapter 4) on “hard-to-explore” sparse tree-like mazes.

3See Chapter 4 for the description of VECA.
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In the next two sections we discuss the disadvantages of AC-A* regarding the efficiency of
search.

3.4.2 AC-A* Can Be Misled by Heuristic Values
We show that it is possible that consistent, admissible heuristic values can degrade the perfor-
mance of AC-A* so much that its performance is worse than (a) the one of uninformed AC-A*
for the same goal-directed exploration problem and (b) the one of BETA (an uninformed algo-
rithm) for all goal-directed exploration problems of the same size. The goal-directed exploration
problem shown in Figure 3.3 is such a scenario.

The problem domain is a bi-directed (Eulerian) graph which has the form of a tree and
consists of a “stem” with several “branches.” All edges are annotated with their lengths. (For
convenience, we replaced each pair of directed twin edges by an undirected edge.) The stem
has length for some integer 1 and consists of vertices 0 1 . The following
table enumerates all branches.

number of branches cost of each branch states at which branches attach to the stem
1 1 2 3
2 1 2 2 2 2 0
3 2 1 3 2 3 3 3
4 3 2 1 4 2 4 4 0



Figure 3.3: A Bad State Space for AC-A* (here: 3)

In Figure 3.3, for example, the stem has length 27, and there are 9, 3, and 1 branches,
respectively, of cost 1, 4, and 13. In general, for each integer with 1 there are
branches of length 1

0 each. These branches attach to the stem at vertices for integers
; if is even, then 0 1, otherwise 1 . The starting vertex is 0 and

the goal vertex is the terminating vertex of the longest branch. The weight of this graph is

4 2 6 1 2
1 2

This graph is sparsely connected and has a large diameter. Although it has been artificially
constructed, our experiments show that similar situations can occur quite frequently in sparsely
connected domains with large diameters.

Now assume that . These heuristic values are consistent, and therefore
admissible. AC-A* can then exhibit the following behavior: It starts at 0, travels along the
stem to its end and then returns along the stem to its starting vertex. Next, it travels along the
whole stem again (in the original direction) and visits the terminating vertices of all branches
of length 1 on the way (in the order in which they are listed in the table above). It then
switches directions again, travels along the whole stem in the opposite direction, and visits the
terminating vertices of all branches of cost 1 on the way (again, in the order in which they
are listed in the table above), and so forth. When it visits the terminating vertex of the longest
branch, it has found the goal and terminates. Thus, AC-A* traverses the stem 2 times and
each branch twice (once in each direction), except for the longest branch, which it traverses
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only once. The total length is

3 2 2 6 1 1
1 2

The ratio of and approaches 1 4 7 8 for large . Thus, and also
the worst-case performance of AC-A* grows faster than the weight of the graph.

We have already shown that the worst-case performance of BETA is always linear in the
weight of the graph. For this particular example, the worst-case performance of uninformed
AC-A* also grows linearly in the weight of the state space, if is even: In this case, the branch
that contains the goal attaches to the stem at the starting vertex. This property ensures that,
no matter which edges uninformed AC-A* traverses, it can traverse every edge at most once
before it reaches the goal. This is so, because in every undirected (bi-directed) graph the first
vertex that BETA encounters in which it can no longer traverse an unexplored edge is the start
state. But before this is the case, it must have explored the edge that leads from the starting
vertex to the goal. Thus, it cannot traverse any edge more than once before it reaches the goal.

This example shows that the domain-heuristic relation is more sensitive for the goal-
directed exploration problem. The fact that a heuristic function majorizes the other one does
not necessarily lead to a better performance for a heuristic-driven algorithms that uses the
majorizing heuristic. Moreover, the guidance of a consistent, admissible heuristic in some
domains can be even worse than the uninformed exploration (that ignores prior knowledge) for
agent-centered search. In Chapter 7 we discuss the influence of some domain features on the
complexity of search and the sensitivity of the the domain-heuristic relation.

3.4.3 AC-A* is not Globally Optimal
The actions of AC-A* are greedy, every time AC-A* provides the best available action, given
the lack of information it has about the domain. Some authors even stated the hypothesis that
the behavior of AC-A* optimal. We demonstrate, however, that its behavior is not globally
optimal by showing that the worst-case performance of uninformed AC-A* over all goal-
directed exploration problems of the same size is worse than that of BETA – a fair comparison,
since both algorithms are uninformed. This issue, as well as the average-case complexity of
AC-A*, were raised in [13] as an open problem.

Uninformed AC-A* always moves the agent to the unexplored edge that it can reach by a
path of the smallest length, traverses that edge, and repeats the process until the goal is reached.
We can easily construct a graph on which uninformed AC-A* behaves (almost) identically to
the partially informed AC-A* of the previous section. We use the state space from the previous
section, but add an additional vertex to the end of every branch, as shown in Figure 3.4.



Figure 3.4: Another Bad State Space for AC-A* (here: 3)

Uninformed AC-A* can then exhibit the following behavior in this graph: It starts at 0 and
travels along the stem to its end. Then, it returns along the stem to its starting vertex and visits
the non-terminating vertex of every branch on the way (after each of which it immediately
returns to the stem). From then on, it can behave identically to the partially informed AC-A* of
the previous section after it had traversed the stem twice: It now knows the lengths of entering
the branches whereas the partially informed AC-A* had only heuristic values available, but
these coincided with the lengths. For this example,

4 2 4 1 2 2 4
1 2

3 4 2 6 1 3 2 4
1 2

and the ratio of to approaches 1 4 5 4 for large . Thus,
O . This implies the following theorem, since 1 log log log :
Theorem 3.3 The worst-case complexity of the uninformed AC-A* for a goal-directed explo-
ration problem is 1 log

log log .
This theorem provides a lower bound on the worst-case performance of uninformed AC-A*.

It shows that the worst-case performance increases faster than the weight of the state space. We
can also prove an upper bound, using – as part of the proof – a previous result in [62, 39].
Theorem 3.4 Uninformed AC-A* reaches a goal state of a goal-directed exploration problem
with a performance of log .
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3.4.4 Learning Real-Time A* Algorithm
Learning Real-Time A* Algorithm (LRTA*) [42] is known as a real-time search method whose
efficiency depends on the quality of prior knowledge. It can be applied both to off-line search
problems and to goal-directed exploration. LRTA* looks for the most promising vertex among
neighbors of the current vertex and updates heuristic values, if necessary. If heuristic values
are close to goal distances, or maintain similar quantitative relations, LRTA* (see Table 3.3)
may find a goal state after exploring only a tiny fraction of the problem domain.

procedure LRTA*
Initially, : for all .
LRTA* starts at vertex :

1. : the current vertex.
2. If , then STOP successfully.
3. : .
4. : 1 .
5. Traverse edge , update : .
6. Go to 2.

Table 3.3: Learning Real-Time Algorithm (LRTA*).

LRTA* was designed as a simple reactive algorithm with the guaranteed convergence.
Unlike local hill-climbing procedures (see Chapter 6), LRTA* requires memory to keep the
updated heuristic values. If heuristic values are close to the goal distance for all domain states,
LRTA* may find the optimal path to the goal from any start state. Whereas some problem
domains amenable to LRTA* can be often attributed to A* as well, the advantage of LRTA* is
that it does not require to search the whole domain in the way A* does. LRTA* may construct
a suboptimal solution first, and then improve it through repeated trials, so that the portion of
explored state space is still tiny compared with the part of the domain that A* needs to explore
to derive a solution [42].

However, there is a price that one can pay for a heedless use of LRTA*: Misleading heuristic
values may steer away the search process up to the point, when LRTA* becomes very inefficient.
This is especially problematic for the cases when prior knowledge is neither consistent, nor
admissible. -search and -search are both modifications of LRTA* [35] that were designed
to reduce the inefficiency of LRTA* for problems of this type. In Chapter 4 we compare the
behavior of LRTA*, AC-A* and other search algorithms for different heuristic functions. In
Chapter 6 we discuss the relations between local hill-climbing methods, LRTA* and one of its
versions – -search.
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3.5 Summary
In this chapter we demonstrated that the domain-heuristic relation is more sensitive for on-
line search problems than for off-line ones. Even a consistent, admissible heuristic can be
more misleading for some on-line search algorithms than no prior knowledge. We also gave a
negative answer to the open question on the optimality of AC-A*. Although it is a very efficient
empirical algorithm, it loses to other uninformed exploration algorithms over all problems of
the same size, and thus is not optimal.



Chapter 4

Variable Edge Cost Algorithm

In the previous chapter we introduced the goal-directed exploration problem and several al-
gorithms from the literature amenable to this problem. We considered two paradigms of the
goal-directed exploration problem: Pure exploration and heuristic-driven exploitation. Algo-
rithms attributed to the former paradigm, usually come from CS theory and are focused on the
complete exploration of the problem domains. Heuristic-driven exploitation algorithms usually
come from AI and establish strong empirical performance. However, in some complicated
domains they can lose to pure exploration algorithms.

Chapter 3 finished the first three phases of the methodology of of hybrid approaches applied
to on-line search, namely, Selection, Creating the Environment and Analysis. We start this
chapter with the conclusion remarks on the analysis of existing algorithms, then we switch to the
Constructing Hybrid Algorithms phase, leaving the discussion on the Problem Classification
phase for Chapter 7.

4.1 The Drawbacks of Existing Algorithms
In Chapter 3 we introduced algorithms from CS theory (BETA, Chronological Backtracking)
and AI (AC-A*, LRTA*) that can be applied to on-line search problems. Theoretical algorithms,
like BETA, do not make use of heuristic values to guide the search towards a goal state. AC-A*
does utilize heuristic values, but can be misled by them up to the point where its performance
is worse than the performance of BETA (an uninformed algorithm). This does not mean, of
course, that one should never use AC-A*. If AC-A* is totally informed, for example, it finds
a goal state with the cost that corresponds to the length of the shortest path from the starting
location to the goal and thus cannot be outperformed by BETA or any other goal-
directed exploration algorithm. The problem with AC-A* is that it takes the heuristic values at
face value, even if its experience with them shows that they should not be trusted.

57
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Of course, AC-A* does not know whether it should rely on the given heuristic values
before it has gained experience with the state space and the values. We would therefore like
to modify AC-A* so that it relies on the heuristic values until they prove to be misleading.
It should then gradually rely less and less on the values, by switching from exploitation to
exploration. This should be done in a way that would guarantee that the resulting worst-
case performance over all goal-directed exploration problems of the same size can never be
worse than that of the uninformed goal-directed exploration algorithm with the best possible
performance guarantee (BETA). In this case, the misleading heuristic values do not help to find
a goal state faster, but they don’t hurt either. In the following, we describe how a variety of
heuristic-driven exploitation approaches (AC-A* being one of them) can be modified to achieve
such a performance guarantee.

The complexity analysis of selected algorithms obtained from the Analysis phase of the
hybrid approach is likely to produce a picture similar to one shown in Figure 4.1. In the goal-
directed exploration problem, the worst-case complexity of BETA or Chronological Backtrack-
ing is better than the worst-case complexity of LRTA* or AC-A*. However, for a sequence
of experiments performed in unknown domains with some common features like graphs of
similar size, density, diameter, etc., the empirical efficiency of heuristic-driven algorithms can
compare favorably with one of BETA. Figure 4.1 shows a typical picture that represents both
possible range of particular runs, from the shortest path to the worst-case scenario, and the
average empirical performances for BETA, LRTA* and AC-A* search for a goal in sparsely
connected domains.

Performance

AlgorithmsBETA LRTA* AC-A*

Empirical
Performance

Average

Figure 4.1: Worst-Case and Empirical Performances

The goal of this chapter is to demonstrate how the best features of methods from AI and CS
theory can be combined in a hybrid framework.
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In Chapter 3, after completing the Analysis phase, we identified that pure exploration
algorithms do not search for a goal, but they establish strong upper bounds. For the problem
of goal-directed exploration such a bound is linear on the weight of the graph, the property
that we would like to re-utilize in efficient combinations with heuristic-driven algorithms. On
the other hand, heuristic-driven algorithms, for example, LRTA* and AC-A*, establish strong
empirical performance unless the combination of the domain and heuristic values appear to
mislead search up to the point when the chosen heuristic-driven algorithm may lose noticeably
to a pure exploration algorithm. Therefore, we view the behavior of BETA on bi-directed
domains (or one of Chronological Backtracking on undirected domains) as the leftmost bar in
Figure 4.1, and complete the Constructing Hybrid Algorithms phase by combining it with
either LRTA* or AC-A*. In the next section we introduce such an algorithmic framework
that is built upon a beneficial combination of pure exploration algorithms with heuristic-driven
algorithms.

4.2 Our Approach: The VECA Framework
We have developed a framework for goal-directed exploration of undirected or bi-directed

domains, called the Variable Edge Cost Algorithm (VECA) [71], that can accommodate a wide
variety of heuristic-driven exploitation algorithms (including AC-A* and LRTA*). We first
describe a simpler version of VECA that applies to undirected domains, then we show how
to generalize it for the bi-directed case. VECA relies on the exploitation algorithm and thus
on the heuristic values until they prove to be misleading. VECA monitors the behavior of the
exploitation algorithm and uses a pre-set parameter to determine when the freedom of the
exploitation algorithm should get restricted. VECA does it by establishing positive costs for
frequently traversed edges. As soon as an undirected edge has been traversed times or more,
VECA restricts further traversals of this edge by the exploitation algorithm through establishing
a positive cost for this edge. This action forces VECA to concentrate more on exploring a certain
portion of the graph. As a result, VECA switches gradually from exploitation to exploration
and relies less and less on misleading heuristic values.

We describe VECA in two stages. We first discuss a simple version of VECA, called Basic-
VECA, that applies to undirected domains, i.e. it assumes that an edge traversal identifies the
twin of the edge, even if the twin has not been traversed before. Later, we drop this assumption.
Throughout this chapter for any edge we call the opposite edge as the
twin, whether the domain is undirected or bi-directed.

Basic-VECA is described in Figure 4.2. It maintains a cost for each edge that
is different from . These VECA costs guide the search. Initially, all of them are
zero. Whenever VECA traverses an undirected edge for the first time, it reserves a positive
VECA cost for it that will later become its assigned positive cost. First such edge gets a cost
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Input:
a goal-directed exploration problem,

the value of Basic-VECA’s parameter (a non-negative, even integer),
and a heuristic-driven exploitation algorithm (to be used in step 3).

Basic-VECA uses three variables for each edge : keeps track of how many
times this edge has been traversed, is its reserved VECA cost, and is its
actual VECA cost.

1. Set : : 0 for all . Set : 0 and : .

2. If , then stop successfully.

3. Consider all acyclic paths starting at and ending at a vertex with an emanating
untraversed edge. Select a path with minimal VECA cost from these paths, using
the heuristic-driven exploitation algorithm to break ties.

4. Consider all edges in the chosen path, one after another. For each edge in the
sequence, do:

(a) Traverse from to .
(b) Set : 1.

(c) If 1, then set : 1 and afterwards : 2 .
(d) If and 0, then set : .
(e) If 1, then set : .
(f) Set : .

5. Go to step 2.

Alternatively, step 3 can be replaced by:

3’ Consider all acyclic paths starting at and ending at a vertex with an emanating edge
whose VECA cost is zero. Select a path with minimal VECA cost from these paths,
using the heuristic-driven exploitation algorithm to break ties.

Figure 4.2: The Basic-VECA Framework

of 1/2 reserved, second - 1/4, third - 1/8, and so on. Figure 4.3 shows the spanning tree of
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Vstart

Figure 4.3: A Tree of the Highest VECA Cost

maximum VECA cost. Whenever VECA reaches an unvisited vertex, the just traversed edge
should be included in the spanning tree. Inclusion of any other edge of the graph (dashed lines
in Figure 4.3) would strictly decrease the VECA cost of the spanning tree.

VECA assigns the reserved cost to an edge when it traverses it for the th time (or, if
0, when it traverses an edge for the first time). Whenever an edge is traversed 2

times, VECA assigns an infinite VECA cost to this edge, which effectively removes it from
further consideration. The VECA costs are used as follows: VECA always chooses the least
expensive path in terms of VECA cost that leads from its current state to an unexplored edge
or, alternatively, to an edge with zero VECA cost. The exploitation algorithm is used to break
ties. Initially, all VECA costs are zero and there are lots of ties to break. The more edges are
assigned positive VECA costs to, the fewer ties there are and the less freedom the exploitation
algorithm has.

To gain an intuitive understanding of the behavior of Basic-VECA, consider a simple
undirected graph which is a tree, and assume that Basic-VECA uses step 3. Figure 4.4 shows
an undirected edge that connects two components of the tree, X and Y, with X containing the
starting vertex. To reach component Y, Basic-VECA has to traverse edge first. Thus, will
get a reserved cost 2 that is strictly bigger than the cost of any edge within component Y and
the cost of any acyclic path within Y, because of the tail majorizing property: 2 2 .

Therefore, the exploitation algorithm can traverse freely until it has been traversed
times. Then, Basic-VECA assigns this edge some positive VECA cost. At this point in time,
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Vstart
V

e

Component X Component Y

Figure 4.4: A Simple Example State Space

the agent is located in X (the component that contains the start state), since is even and the
agent alternates between both components. If Y does not contain any more untraversed edges,
there is no need in traversing anymore. Otherwise there is a point in time when Basic-VECA
traverses again to reach one of those untraversed edges in Y. When this happens, Basic-VECA
prevents the exploitation algorithm from leaving Y until all edges in Y have been learned (this
restriction of the freedom of the exploitation algorithm constitutes a switch from exploitation
to more exploration): Because Y can only be entered by traversing , this edge was traversed
before any action in Y. Consequently, its positive VECA cost, when assigned from its reserved
cost, is larger than the sum of reserved or assigned VECA costs of edges along any acyclic
path in Y, because of the tail majorizing property. Thus, Basic-VECA cannot leave Y until all
of Y’s edges have been traversed. When Basic-VECA finally leaves Y, the VECA costs of is
infinite, but there is no need to come back to Y again.

In general, Basic-VECA traverses every undirected edge at most 2 times before it finds
a goal state [71]. This implies the following theorem:

Theorem 4.1 Basic-VECA with even parameter 0, solves the goal-directed exploration
problem for any undirected, unknown graph with the complexity of 1 (to be
precise: at most 2 ).

A larger allows the exploitation algorithm to maintain its original behavior longer, whereas
a smaller forces it earlier to explore the problem domain more. The smaller the value of ,
the better the performance guarantee of VECA. If 0, for example, VECA severely restricts
the freedom of the exploitation algorithm and behaves like Chronological Backtracking. In this
case, it executes every edge at most twice (once in each direction, with the total complexity
under 2 ), no matter how misleading its heuristic knowledge is or how bad the choices
of the exploitation algorithm are. No uninformed goal-directed exploration algorithm can do
better in the worst case. However, if the heuristic values are not misleading, a small value of
can force the exploitation algorithm to explore the state space unnecessarily. Thus, a stronger
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performance guarantee might come at the expense of a decrease in the empirical performance.
The experiments in Section 4.4 address this issue.

By now, we would like to discuss the effects of dropping the requirement of learning the
twin edge after traversing one in bi-directed domains. This type of relaxation might force an
algorithm to perform an additional exploration procedure every so often to actually learn the
twin before assigning both edges the same positive cost. Thus, we apply almost the same
framework to bi-directed domains.

VECA is very similar to Basic-VECA, see Figure 4.5. In contrast to Basic-VECA, however,
it does not assume that by traversing a directed edge one identifies its twin. This complicates
the algorithm somewhat: First, the twin of an edge might not be known when VECA reserves
a VECA cost for the pair. This requires an additional amount of bookkeeping. Second, the
twin of an edge might not be known when VECA wants to assign it the positive VECA cost.
In this case, VECA is forced to identify the twin: Step 4(e) explores all untraversed edges
emanating from the same vertex as the twin edge (thus, including the twin) and returns to that
state. This procedure is executed seldomly for larger , since it is a rare case that a directed
edge is traversed times and the twin of that edge has not yet been learned. Because of this
step, though, VECA can potentially execute any directed one more time than Basic-VECA,
which implies the following theorem:

Theorem 4.2 VECA, with even parameter 0, solves any bi-directed goal-directed ex-
ploration problem with a cost of 1 (to be precise: with a cost of at most

2 2 ).

For 0, VECA traverses every directed edge at most twice. Thus, its worst-case
performance is at most 2 and equals the worst-case performance of BETA. No
uninformed goal-directed exploration algorithm can do better in the worst case if traversing a
directed edge does not identify its twin in a bi-directed domain.

Both Basic-VECA and VECA apply to goal-directed exploration in dynamically changing
domains that change seldomly at discrete points in time. Basic-VECA provides a variety of
scenarios for possible continuation after each domain change. For the case, when the agent is
informed about all (visited) vertices with (new and old) unexplored emanating edges, the two
main alternatives are:

Increase the parameter of VECA by two, change all positive VECA costs, continue
exploration according to Basic-VECA with parameter 2.

Re-start goal-directed exploration from the current vertex by Basic-VECA with the lowest
possible parameter 0.
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Input:
a goal-directed exploration problem,

the value of VECA’s parameter (a non-negative, even integer),
and a heuristic-driven exploitation algorithm (to be used in step 3).

VECA uses four variables for each directed edge : keeps track of how many times this edge has been traversed, is its reserved
VECA cost, is its actual VECA cost, and remembers whether it has already been traversed as part of step 4(e).

1. Set : : : 0 for all . Set : 0 and : .

2. If , then stop successfully.

3. Consider all acyclic paths starting starting at and ending at a vertex with an emanating untraversed edge. Select a path with minimal VECA cost from
these paths, using the heuristic-driven exploitation algorithm to break ties.

4. Consider all edges in the chosen path, one after another. For each edge in the sequence, do:

(a) Traverse from to .

(b) Set : 1.

(c) If 1 and the twin of is not yet known, then set : 1 and afterwards : 2 .

(d) If 1 and the twin of is known, then let be the twin of . If 0, then set : 1 and afterwards
: 2 , else set : .

(e) If and the twin of is not yet known, then do:

i. Set : .

ii. Select an edge with 0. If there is no such edge, then go to step 4(f) (comment: it holds that
).

iii. Traverse .
iv. Set : 1.

v. Set : .
vi. Go to step 4(e)ii.

(f) If the twin of is known, then let be the twin of and do:

i. If and 0, then set : : .

ii. If , then set : .

(g) Set : .

5. Go to step 2.

Alternatively, step 3 can be replaced by:

3’ Consider all acyclic paths starting at and ending at a vertex with an emanating edge whose VECA cost is zero. Select a path with minimal VECA cost
from these paths, using the heuristic-driven exploitation algorithm to break ties.

Figure 4.5: The VECA Framework

First alternative shows that Basic-VECA is consistent with respect to exploration in dynam-
ically changing environments. The increase of the parameter’s value and, consequently, of the
worst-case guarantee is an inevitable price that one have to pay for arbitrary domain changes.
Had the change taken part in an unexplored portion of the domain, for example, there would be
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no need in the increase of VECA’s parameter.
If the agent is performing goal-directed exploration in a bi-directed domain and informed

about all (visited) vertices with (new and old) unexplored emanating edges, the two main
alternatives for VECA are as follows:

Increase the parameter of VECA by two, change all positive VECA costs, continue
exploration according to VECA with parameter 2.

Consider a connecting component containing the current vertex. Build a Eulerian tour
on the component starting (and finishing) at the current vertex. Assign positive VECA
costs according to 0-VECA and the constructed Eulerian tour, continue exploration from
the current vertex by VECA with parameter 0.

If the agent is not informed about where new unexplored edges has been added to the domain,
one can either re-start exploration from scratch or attempt to re-utilize already acquired map
of the explored portion of the domain. In Chapter 5 we discuss the applications of VECA for
the goal-directed exploration problems, when the map of the problem domain is provided in
advance, but some vertices (edges) from the map can be blocked (untraversable) in the real
domain.

Theorem 4.1 and Theorem 4.2 stated the worst-case complexity of Basic-VECA and VECA
in terms of the weight of the graph. It is possible to improve these worst-case guarantees
through a simple trick: One considers a spanning tree of the explored portion of the domain,
sets positive VECA costs and decides where to go next according to the spanning tree VECA
costs. Since the weight of a spanning tree is O , we can state the following corollary:

Corollary 2 Spanning-Tree-Basic-VECA with even parameter 0, solves the goal-directed
exploration problem for any undirected, unknown graph with the complexity of 1 (to
be precise: at most 2 ).

Spanning-Tree-VECA, with even parameter 0, solves any bi-directed goal-directed
exploration problemwith a cost of 1 (to be precise: with a cost of at most 4 ).

Chapter D-star contains a detailed discussion on the spanning tree improvement of VECA.

4.3 Implementation
Since the VECA costs are exponentially decreasing and the precision of numbers on a computer
is limited, Basic-VECA cannot be implemented exactly as described. Instead, we represent
sequences of edges in candidate paths as lists that contain the current VECA costs of the edges
in descending order. All paths of minimal VECA cost then have the smallest lexicographic
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order. Since this relationship continues to hold if we replace the VECA costs of the edges with
their exponent (for example, we use 3 if the VECA cost of an action is 1 8 2 3), we can
now use small integers instead of exponentially decreasing real values, and steps 3 and 3’ can
be implemented efficiently using a simple modification of Dijkstra’s algorithm in conjunction
with priority lists. Table 4.1 presents the description of the modified Dijkstra’s algorithm.

procedure Modification of Dijkstra’s Algorithm, G=(V,E)
Algorithm starts at :

1. Initialize Single Source
2.
3.
4. Path-cost
5. while
6. if (there exists a non-stack edge such that , )
7.
8.
9. parent
10. Path-cost Path-cost
11. else begin pop edge (x,y) from the stack
12. while (it is not true that , )
13. pop edge (x,y) from the stack
14.
15.
16. parent
17. Path-cost Path-weight
18. restore stack without (x,y)
19. end

Table 4.1: Modification of Dijkstra’s Algorithm for Path Costs.

We gave two choices of step 3 to VECA to accommodate a wider variety of exploitation
algorithms. For example, when implemented with AC-A*, VECA would use step 3 from
Figure 4.2 and Figure 4.5 to search for the least expensive path from the current vertex to an
untraversed edge. When implemented with LRTA* or Random Walk, VECA would use step 3’
to find the cheapest path to an edge with zero VECA cost. These ways of integrating AC-A*
and LRTA* with VECA are natural extensions of the stand-alone behavior of these algorithms.
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4.4 Experimental Results
We augment our theoretical worst-case analysis with an experimental average-case analysis,
because the worst-case complexity of an algorithm often does not predict its empirical per-
formance well. For the experiments, we use an implementation of the VECA framework that
allows for easy selection of setups through a graphical user interface, Figure 4.6 shows a screen
dump.

Figure 4.6: The Graphical User-Interface of the VECA System

The task that we study here is finding a goal state in mazes. The mazes were constructed
by first generating an acyclic maze of size 64 64 and then randomly removing 32 walls. The
edge lengths correspond to the travel distances; the shortest distance between two junctions



68 CHAPTER 4. VARIABLE EDGE COST ALGORITHM

counts as one unit. We randomly created five mazes with start location (62,62), goal location
(0,0), a diameter between 900 and 1000 units, and a goal distance of the start state from 650
to 750 units. For every goal-directed exploration algorithm tested, we performed 10 trials in
each of the five mazes (with ties broken randomly). We measure their performance as the total
travel distance (cost) from the start state to the goal state averaged over all experiments.

Here, we report our experiments with two heuristic-driven exploitation algorithms, namely
AC-A* and Learning Real-Time A* (LRTA*) [42] with lookahead one. These algorithms are
integrated into the VECA framework as follows: AC-A* is used with step 3 of VECA. It breaks
ties among action sequences according to their cost (see the definition of AC-A*). LRTA* is
used with step 3’ of VECA. It breaks ties according to how promising the last action of each
action sequence is. These ways of integrating AC-A* and LRTA* with VECA are natural
extensions of their stand-alone behavior.

In our experiments, we vary both the value of VECA’s parameter and the available heuristic
values. We noticed that the assignment of positive VECA costs after odd number of traversals
improves the empirical performance of VECA in conjunction with LRTA* or AC-A*. Thus,
unless VECA’s parameter is zero, we assign a reserved positive cost to a pair of twin edges
after it has been traversed 1 (odd) times. The flexibility of VECA allows one to exploit any
search rules before the pair of edges is traversed times, including assigning positive costs one
step earlier.

To create heuristic values 1 of different quality for edges , we combine
the goal distance with the Manhattan distance (the sum of the x and y distance
from vertex to the goal state) using a parameter 0 1 ( determines how misleading the
heuristic values are; the smaller , the lower their quality):

1 1

Figure 4.7, for instance, shows two example runs of AC-A* without VECA: The left figure
shows which actions AC-A* explored for 1 until it reached the goal state. A thin line means
that an action has been executed at least once; a bold line means that both the action and its twin
have been executed at least once. AC-A* moves the agent with minimal cost to the goal. If we
increase the contribution of the Manhattan distance to the heuristic values, the total cost of the
actions executed from the start state to the goal state increases. The right figure, for example,
shows which actions AC-A* explored for 0. In our experiments, we also use heuristic
values 2 that were derived by combining the goal distance with the heuristic
(the maximum of the x and y distance from state to the goal state), again using parameter .
Both 1 and 2 are consistent and thus admissible.

Figure 4.8 shows the empirical performance of AC-A* with and without VECA. In the left
diagram, the heuristic values 1 were used; the right diagram shows the same results for the
heuristic values 2 .
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Figure 4.7: Exploration Behavior of AC-A* with Different Heuristics
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AC-A* with VECA for k=4 and Manhattan Distance

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

Av
er

ag
e 

Pe
rfo

rm
an

ce
 (C

os
t)

Percentage of Goal Distance (100 t)

(b)

AC-A* for Max(X,Y)
AC-A* with VECA for k=4 and Max(X,Y)

Figure 4.8: Empirical Performance of AC-A* with and without VECA

In both cases, the x axis shows our measure for the quality of the heuristic (100 times the
value of ) and the y axis shows the average cost for one run. All graphs tend to decrease for
increasing , showing that the quality of the heuristic values increases, as expected. AC-A*
without VECA is already efficient – it does not execute the same action a large number of
times. Thus, VECA does not change the behavior of AC-A* if is large – it turns out that
the behavior of AC-A* with VECA for 10 is already the same as the behavior of AC-A*
without VECA. The graphs for 4 suggest that AC-A* with VECA now outperforms AC-A*
without VECA. The abnormal behavior of AC-A* for the Max(X,Y) heuristic around 0 5
can be explained as follows: Equal amounts of the goal distance and the Max(X,Y) heuristic
produce many ties between different directions. AC-A* then does not follow one direction, but
tends to alternate between them.

Figure 4.9 shows the empirical performance of LRTA* with and without VECA. The
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qualitative behavior is the same for 1 and 2 . Again, the larger is, the better is the
quality of the heuristics, and all graphs are monotonically decreasing. Only for misleading
heuristic values (small ) does LRTA* with VECA outperform LRTA* without VECA. This is
so, because VECA forces LRTA* to explore the state space too much if the heuristic values
are only moderately misleading. For the same reason, the LRTA* VECA combination with a
small outperforms this combination with a large only if is small.

For heuristic values of “high” quality, all considered algorithms establish either optimal
or near-optimal behavior. We noticed that LRTA* remains near-optimal the longest, until
the contribution of the goal distance is at least 40%. However, when the heuristic became
misleading, LRTA* established the worst performance among the above algorithms. The
combination of VECA with LRTA* loses to LRTA* for a certain interval of values of , the
range of the interval depends also on the value of VECA’s parameter . For lower (like 2 or
4), VECA with LRTA* begins losing earlier to stand-alone LRTA*, but gains a win of several
multitudes when heuristic values become pure Manhattan distance. VECA with higher values
of parameter deviates later from LRTA*, but the amount of win for misleading heuristics is
significantly less. These facts provide an intuition to the dependency of the efficiency of VECA
to the value of parameter .
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LRTA* with Max(X,Y)
LRTA* and VECA with k=4 and Max(X,Y)

LRTA* and VECA with k=10 and Max(X,Y)
LRTA* and VECA with k=20 and Max(X,Y)

Figure 4.9: Empirical Performance of LRTA* with and without VECA

When comparing the behavior of AC-A* with that of LRTA*, we notice that AC-A* is more
efficient. This is to be expected, since LRTA* deliberates much less between action executions
– it has been designed for the case that action executions and deliberation are about equally
fast, which is not the case here. Thus, VECA is able to improve the empirical performance of
LRTA* more than that of AC-A* if the heuristic values are misleading. Also, AC-A* is more
brittle than LRTA* towards variations in the quality of heuristic values, since AC-A* makes
more global decisions about where to move in the state space and is thus much more affected
by a wrong decision.
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We also ran experiments with other goal-driven exploitation algorithms, such as biased
random walks and an algorithm that moves the agent so that it expands the states in the same
order as the A* algorithm does. The results are qualitatively similar, but more impressive: Since
both of these goal-driven exploitation algorithms are inefficient to start with, VECA achieves a
much larger improvement in the empirical performance if the heuristic values are misleading.

We also performed experiments in different domains, because the performance of goal-
directed exploration algorithms does not only depend on the heuristic values used, but also
on the properties of a domain. The results show that the following factors have a significant
influence on the performance of goal-directed exploration algorithms: the goal distance of
the start state, the density of the state space, its connectivity, and a new feature that we
call oblongness (the ratio of its diameter to the number of states). For example, goal-directed
exploration algorithms exhibit similar performance for exploration problems whose oblongness
and goal distances of the start state are similar. Our current work focusses on studying the
influence of such domain properties on the efficiency of goal-directed exploration in more
detail.

4.5 Multiple Agents
In this section we discuss the goal-directed exploration problem in multi-agent domains. The
multi-agent exploration is a rich area by itself. It involves such fundamental issues as cooper-
ation, information exchange and non-determinism among others. In this section we show that
VECA can be applied to multi-agent scenarios as well.

In general, hybrid approaches provide a fruitful arena for the multi-agent behavior. Several
agents may follow different strategies simultaneously as long as they do not compete for
resources. If the strategies were selected to cover different efficiency dimensions, such a setting
may cover efficiently both “hard” and “easy” cases. In particular, regarding the goal-directed
exploration problem, one of the agents (“cautious”) may follow one of the strategies from
CS theory that would provide strong performance guarantees. Second agent (“optimist”) may
try one of more risky AI strategies, third agent (“pragmatist”) may choose VECA with one’s
favorite value of , etc.

Is this multi-agent setting too prudent? What if one considers the best possible scenario
of having powerful “optimists” on the team, who would cooperate in their joint search for a
goal in an unknown environment? AC-A* is one of those advanced “optimists” that exploits
an efficient strategy even for a single-agent domain. Can it be the case that the team of an
arbitrary many cooperating “optimists” would follow the AC-A* strategy and lose to a single
“cautious” agent? Unfortunately, the answer is negative. Whatever number of “optimists”
decide to cooperate completely and follow the AC-A* strategy, even if they do not compete
for resources, i.e. they are allowed to be simultaneously at the same time at the same location
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and can share edge traversals, there exists a domain in which a single “cautious” agent would
outperform the whole “optimistic” team.

One can come up with a modification of Figure 3.3 for the counter-example of the multi-
agent exploration scenario. Number of branches of each size is multiplied by – the number of
agents. An example of such graph is presented in Figure 4.10. The team of “optimists” would
start at 0, travel along the stem times, each time attempting to traverse identical branches
that share a common stem vertex , until one of the agents discovers the goal at the end of one
of the longest branches. On the other hand, if the “cautious” agent that follows Chronological
Backtracking or DFS, starts at the stem vertex attached to the goal stem, it will not traverse
more than the weight of the graph before reaching the goal. Simple calculations show that each
“optimist” would traverse less than a single agent in graph shown in Figure 3.3:

“

3 2 4 1 1
1 2

The “cautious” agent would traverse the length of at most the weight of the graph:

“
3 1 2 4 2 1 1 2

1 2

Thus, as soon as the graphs parameter satisfies 3 1, the “cautious” agent would
experience a sweet victory over the team of “optimists.” This facts emphasizes the importance
of considering worst-case scenarios, since the price that an “optimistic” team may pay, can be
multiplied by the number of the agents, besides simply losing to a single agent in time.

Fortunately, VECA provides a good solution to the multi-agent variant of the goal-directed
exploration problem. VECA with low parameter establishes strong performance guarantees
for an arbitrary reversible domain. One of the agents may follow such VECA for a “backup.”
We also found that when VECA’s parameter is equal to 2 or 4, it outperforms all other known
goal-directed exploration algorithms in sparse tree-like mazes. Such a “super-cautious” agent
might be very helpful in “hard” search problems.

This simple example shows the importance of the team diversification, as one may perceive
life as a sequence of goal-directed exploration problems in a partially unknown world.

4.6 Summary
We introduced an application-independent framework for goal-directed exploration, called
VECA, that addresses a variety of search problems in the same framework and provides good
performance guarantees. VECA can accommodate a wide variety of exploitation strategies that
use heuristic knowledge to guide the search towards a goal state. For example, in Chapter 5
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Figure 4.10: A Bad Graph for the “Optimistic” Team

we discuss the application of VECA to the sensor-based planning problem. VECA monitors
whether the heuristic-driven exploitation algorithm appears to perform poorly on some part
of the state space. If so, it forces the exploitation algorithm to explore the state space more.
This combines the advantages of pure exploration approaches and heuristic-driven exploitation
approaches: VECA is able to utilize heuristic knowledge and provides also a better performance
guarantee than previously studied heuristic-driven exploitation algorithms (such as the AC-A*
algorithm). VECA’s worst-case performance is always linear in the weight of the state space.

Thus, while misleading heuristic values do not help one to find a goal state faster, they
cannot completely deteriorate its performance neither. A parameter of VECA determines when
it starts to restrict the choices of the heuristic-driven exploitation algorithm. This allows one to
trade-off stronger performance guarantees (in case the heuristic knowledge is misleading) and
more freedom of the exploitation algorithm (in case the quality of the heuristic knowledge is
good). In its most stringent form, VECA’s worst-case performance is guaranteed to be as good
as that of BETA, the best uninformed goal-directed exploration algorithm. Our experiments
suggest that VECA’s strong worst-case complexity does not greatly deteriorate the empirical
performance of the combinations of previously studied heuristic-driven exploitation algorithms
if they are used in conjunction with VECA. Furthermore, in many cases VECA even improved
their performance.
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Chapter 5

Agent-Centered Approach for
Sensor-Based Planning

In this chapter, we analyze a navigation problem in which a robot has to navigate from a given
start location to a given goal location in an unknown terrain. We model this navigation problem
as finding a path from a start vertex to a goal vertex in an initially partially or completely
unknown graph that represents the terrain. This path planning problem is complicated by
the fact that the sensors on-board a robot can typically sense the environment only near its
current position, and thus the robot has to interleave planning with moving to be able sense
its environment. As the robot moves, it acquires more knowledge about the terrain and
consequently reduces its uncertainty about the environment, which also reduces the number of
contingent obstacle configurations that the planner has to consider. In the simplest setting we
assume that the domain is static and robot’s actions are deterministic. Even such a generate
scenario prompts for further investigations concerning efficient strategies that would balance
action execution and exploring the domain. Thus, sensing during plan execution and using the
acquired knowledge for re-planning (often called “sensor-based planning”) makes the planning
problem tractable.

The above sensor-based planning problem and the goal-directed exploration problem intro-
duced in Chapter 3, are somewhat similar. Robot’s sensor limit lookahead of the robot, one’s
knowledge about the environment is incomplete, one has to explore it sufficiently to reach the
goal. However, in the sensor-based planning problem, one has an additional knowledge in a
form of already provided map that imperfectly represents the problem domain. The presence
of this knowledge promoted the hopes that the sensor-based planning problem is essentially
easier than the goal-directed exploration problem.

In this chapter we show that two problems are indeed close and accept variations of VECA
as efficient solutions. Furthermore, we modify an example from Chapter 3 to demonstrate that a
popular technique of planning with the freespace assumption is not optimal for the sensor-based
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planning problem, although it provides strong empirical performance. Thus, the presence of
the map seems not to facilitate agent’s task.

5.1 Sensor-Based Planning with the Freespace Assumption
A popular technique for sensor-based planning is planning with the freespace assumption [17]
[56] [73] [82]: The robot assumes that the terrain is clear unless it knows otherwise. It always
plans a shortest path from its current location to the goal location. When it detects an obstacle
that blocks its path, it replans a shortest path from its current location to the goal location using
its knowledge about all obstacles encountered so far. It repeats this procedure until it reaches
the goal location or realizes that reaching the goal is impossible. Planning with the freespace
assumption has been used both on grids and visibility graphs. This approach allows to omit an
expensive procedure of modeling all obstacles of the problem domain and introduce them in a
simplified form upon sensing.

In the literature, it has been conjectured that this sensor-based planning approach might be
optimal[82], given the lack of initial knowledge about the environment. We show that this is
not the case. In particular, we demonstrate that planning with the freespace assumption can
make good performance guarantees on some restricted graph topologies (such as grids), but is
not optimal in general. For situations in which its performance guarantee is not sufficient, we
also describe an algorithm, called Basic-VECA, that exhibits good average-case performance
and provides performance guarantees that are optimal up to a constant factor.

5.2 Problem Description
In this section, we formalize the navigation problem that we study and show how it has been
used on actual robots. We state the sensor-based planning problem as follows:

Sensor-Based Planning Problem: An agent is given an undirected, finite
graph with positive edge lengths and vertices that are either blocked or unblocked
(their status does not change over time). One unblocked vertex is labeled the
starting vertex; one vertex is labeled the goal vertex. The agent can move from
its current vertex to any unblocked neighboring vertex. Initially, it does not know
the status of all vertices. However, it always senses the status of its neighboring
vertices. The agent is started at the starting vertex and has to either move to the
goal vertex, or recognize that this is impossible.

This sensor-based planning problem can be pictured as follows: A robot is given a map
and has to move from its current location to a given goal location. Intersections can be



Figure 5.1: Outdoor robot navigation with NAVLAB II

blocked by construction sites, but the robot does not have complete prior knowledge about
which intersections are blocked. It can, however, observe the status of all its neighboring
intersections.

In the literature, the sensor-based planning problem has been studied in the context of
actual robot navigation problems. One of the applications of sensor-based planning problems
is an outdoor navigation problem that has been used to formalize the mission of NAVLAB II,
Carnegie Mellon’s robot HMMWV (high mobility multi-wheeled vehicle) [74].

Outdoor Navigation Problem: An unmanned ground vehicle has to reach
specified coordinates in an unmapped static terrain. To do so, it discretizes the
unknown area into a coarse-resolution map of square cells. Each cell is either
traversable or untraversable. The vehicle always occupies exactly one cell and
can move in all eight compass directions to traversable adjacent cells. Its sensor
always detects which of its eight adjacent cells are traversable, and integrates all
new information into the map.1

This outdoor navigation problem is a special case of the sensor-based planning problem on
regular 8-connected grids. For example, a vehicle that operates in the terrain of Figure 5.1 ini-
tially has the knowledge shown in Figure 5.2. Figure 5.3 shows the corresponding traversability
graph.

Another application of sensor-based planning problems is an indoor navigation problem
that has been implemented by [56].

1NABLAB II does not only distinguish between traversable and untraversable cells, but differentiates more
fine-grained by assigning traversal costs to them. It takes a robot, for example, longer to traverse a stretch of
uneven or muddy terrain than it takes it to traverse a stretch of paved road of the same length. Re-planning
occurs whenever a new traversal cost is assigned to a cell. Our description is a special case of this approach that
distinguishes only two traversal costs, one of which is infinite. This does not affect our conclusions, because a
sensor-based planning algorithm that is inefficient for the special case is also inefficient in general.



Figure 5.4: Indoor robot navigation with a Nomad

Indoor Navigation Problem: A Nomad-class mobile robot has to reach a
goal position in an unknown static maze with walls. The robot can move in the
four main compass directions to adjacent cells if no wall blocks its path. Its sonar
sensors always detect the presence of walls adjacent to the robot, and integrate all
new information into the map.



Figure 5.6: Initial graph (2)

This indoor navigation problem is a special case of the sensor-based planning problem on
regular 4-connected grids with extra vertices. For example, Figure 5.5 shows the traversability
graph that corresponds to the initial knowledge of a Nomad robot that operates in the maze
of Figure 5.4. The extra vertices are necessary to convert the sensor-based planning problem
from one where the edges are blocked or unblocked to one where the vertices are blocked or
unblocked.

As an example for how to model holonomic, but not omni-directional mobile robots with
limited sensing direction, we consider a robot that can only sense the wall directly in front
of it and solves the indoor navigation problem by repeatedly moving forward, turning left 90
degrees, and turning right 90 degrees. Figure 5.6 shows the corresponding traversability graph.
In this case, the edge lengths are not necessarily uniformly one (not shown in the figure), since
turning and moving forward can take different amounts of time.
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5.3 D* Algorithm
In this section, we describe planning with the freespace assumption as a greedy way of solving
sensor-based planning problems. Planning with the freespace assumption can be stated as
follows:

Planning with the Freespace Assumption: The robot always makes the
optimistic assumption that vertices are unblocked if it does not know their status. It
uses this assumption to plan a shortest traversable path (a path that does not contain
vertices that are known to be blocked) from its current vertex to the goal vertex
and traverses it until it learns about a blocked vertex on the path. At this point, it
repeats the procedure, taking into account its knowledge about which vertices are
blocked. If it reaches the goal vertex, it stops and reports success. If, at any point
in time, it fails to find a traversable path from its current vertex to the goal vertex,
it stops and reports that the goal vertex cannot be reached.

The D* algorithm assumes that re-planning takes finite amount of time at any point in time.
Since the re-planning step is based on finding a shorting path, the finite assumption is thus based
on the finite size of the graph that models the problem domain, which is a common assumption.
The most time-consuming step of planning with the freespace assumption is re-calculating a
shortest path when new knowledge about obstacles has been acquired. The Dynamic A* (D*)
algorithm [72] does this without unnecessary re-calculations.

Theorem 5.1 Planning with the freespace assumption terminates in finite time and is correct.

Proof:

Termination: Every time when the robot cannot follow a planned path, it has learned
about at least one additional blocked vertex, and there are only a finite number of them,
implying that planning with the freespace assumption terminates in finite time, provided
that a re-planning method is used that is capable of re-planning in finite time.

Correctness: Planning with the freespace assumption reports success only if it is at the
goal vertex and thus has solved the sensor-based planning problem. If reports failure
only if there is at least one blocked vertex on every path from its current vertex to the
goal vertex and thus no traversable path from its current vertex to the goal vertex exists.
Since there is a traversable path from its current vertex to the starting vertex (the robot
was able to reach its current vertex from the starting vertex and this path can be traversed
in reverse since the graph is undirected), there is no traversable path from the starting
vertex to the goal vertex either. Consequently, reaching the goal vertex is impossible.
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Planning with the freespace assumption has been used on actual robots. For example,
it has been applied to the outdoor [74] and the indoor [56] navigation problems described
above. Planning with the freespace assumption has several advantages: It is easy to implement.
Its computations can be done efficiently. It takes advantage of newly acquired knowledge
immediately and always uses all of its knowledge. Without any changes to the algorithm, it is
able to use prior knowledge about blocked vertices. It learns an optimal trajectory over multiple
trials with the same starting and goal vertices, since the freespace assumption encourages the
exploration of vertices with unknown status. It exhibits a reasonable goal-oriented behavior
in practice. Finally, when it is used in conjunction with grids (as in the outdoor navigation
problem), it does not need to make assumptions about the shapes of obstacles.

5.4 Complexity Analysis
We measure the performance of sensor-based planning algorithms by the distance that the
robot has to travel before it reaches the goal vertex or discovers that this is impossible. Since
the environment is not completely known initially, we cannot expect the robot to follow the
omniscient best path. However, it is a common assumption in the literature that planning with
the freespace assumption is optimal given the lack of initial knowledge (in other words, that no
other uninformed sensor-based planning can do better) [82] [73] [56], although no analytical
results to this effect have been reported.

In the following section, we assume completely uninformed sensor-based planning algo-
rithms. We provide lower bounds on the performance guarantee of planning with the freespace
assumption (measured as the length of the robot’s path until one reaches the goal orfinds that the
goal is unreachable) and show that, contrary to the existing belief, planning with the freespace
assumption is not optimal, since there exists another uninformed sensor-based planning algo-
rithm that provides a better performance guarantee. Section 5.4.2 contains upper bounds for
the length of robot’s path. (Further research involves closing the gap between the upper and
the lower bounds.) In both sections, we need the following notation: denotes the
weight of graph (the sum of all its edge lengths), and 1 2 denotes the
length of a shortest path between 1 and 2 in .

5.4.1 Lower Bounds

In this section, we use two examples to establish lower bounds on the performance guarantee of
planning with the freespace assumption when it is completely uninformed. These lower bounds
demonstrate that planning with the freespace assumption is not optimal, in the following way:
Consider the following uninformed sensor-based planning algorithm.
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Chronological Backtracking: The robot always selects an edge that leaves its
current vertex and traverses it, according to the following restrictions: If possible,
the robot traverses an edge that leads to an unblocked vertex and that it has not
yet traversed. If there is no such edge, it instead traverses the edge in the opposite
direction with which it entered its current vertex for the first time (“backtracking”).
If the robot reaches the goal vertex, it stops and reports success. If, at any point in
time, the robot is at the starting vertex and has already traversed all of the edges
that leave the starting vertex and lead to unblocked vertices, it stops and reports
that the goal vertex cannot be reached.

Chronological backtracking solves any sensor-based planning problem with at most
two traversals of every edge. Consequently, it provides a tight performance guarantee of
O , and no uninformed sensor-based planning algorithm can do better in the worst
case.2 The performance guarantee of planning with the freespace assumption has to be judged
against this benchmark. We show that the performance guarantee of planning with the freespace
assumption is superlinear in the weight of the graph (even for planar graphs) and thus worse
than that of chronological backtracking. Hence it is not optimal.

Our example is a planar graph, because maps are usually planar. It is a simple modification
of a graph from Figure 3.33.

The example is shown in Figure 5.7: The graph 1 1 1 consists of a stem with
several branches that connect the goal vertex with the stem. All edge lengths are one. The stem
has length for some integer 1 and consists of the vertices 0 1 , where 0 is the
starting vertex. For each integer with 1 there are branches of length 1 1

0
each. These branches attach to the stem at the vertices ˙ for integers ; if is even, then
0 1, otherwise 1 . All vertices that are not directly connected to the
goal vertex are unblocked, and so are the goal vertex and the vertex on the longest branch that
is directly connected to the goal vertex. All other vertices are blocked.

Planning with the freespace assumption can behave as follows if it has no initial knowledge:
It starts at 0 and traverses along the whole stem, trying to use the branches of length 2 to
get to the goal vertex only to discover that they are blocked. It then switches directions and
travels along the whole stem in the opposite direction, this time trying to use the branches of
length 2 to get to the goal vertex (to discover again that they are blocked), and so forth,
switching directions repeatedly. It succeeds when it finally attempts to use the longest branch.

2Chronological backtracking is often stated as follows: It always traverses untraversed edges that lead to
unblocked and previously unvisited vertices, and backtracks if such edges do not exist. This improves the
average-case performance, but does not change the performance guarantee.

3We have assumed that the robot is only able to sense the status of its neighboring vertices. The examples of
this section can easily be adapted to sensors with larger lookaheads, say of vertices, by replacing each edge with

consecutive edges that are connected via 1 unblocked intermediate vertices.



Figure 5.7: Graph 1 for 3

To summarize, the edges connected to the goal vertex are tried out in the order indicated in
Figure 5.7.

To calculate the performance of planning with the freespace assumption for this behavior,
we need the following relationships: First, the total travel distance is at least 1 1 , since the
stem of length is traversed times. Second, the weight of the graph is tight at 1

1 O . Finally, is at least 1 log 1
log log 1

. Put together, it follows that the total travel
distance is at least 1 1 1 1 1 log 1

log log 1 1 . Since
this is superlinear in 1 , the performance guarantee of planning with the freespace
assumption is worse than that of chronological backtracking and thus not optimal.

Perhaps, the graph constructed in Figure 5.7 looks very artificial. It was, indeed, a chal-
lenging task to come up with an example of the domain where the planning with the freespace
assumption algorithm establishes a superlinear behavior, because, in general, this algorithm
is very efficient. However, we found that any graph of the type presented in Figure 5.8 is
somewhat misleading for the planning with the freespace assumption algorithm. Dashed lines
represent non-intersecting paths with at least one vertex blocked along the paths. As long as the
sum of the length of the traversable path between vertices and and the goal distance from

is greater than the sum of the distance from the current vertex on the upper stem to a dashed
path, the length of a dashed path and the distance from a connecting vertex of the dashed path
on the lower stem to the goal vertex, the planning with the freespace assumption algorithm will
try all dashed paths before traversing the -path.
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Figure 5.8: A Tough Graph

5.4.2 Upper Bounds
In this section, we prove upper bounds on the performance guarantee of planning with the
freespace assumption. We state a bound that holds for all graphs and show how this bound can
be improved for some restricted graph topologies, such as grids, that have often been used in
conjunction with the freespace assumption. We proceed in two steps: First, we prove properties
of the multiple shortest path algorithm, and then we apply them to planning with the freespace
assumption.

The multiple shortest path algorithm is defined as follows: The algorithm is given an
undirected, finite graph with positive edge lengths and a sequence 1 of
different vertices . When it is started at 0, it moves on a shortest path to 1, then
moves on a shortest path to 2, and so forth until it reaches and stops. Any path that can
result from this behavior is called a 1 path.

We make use of the following properties of the multiple shortest path algorithm:

Theorem 5.2 Any 1 path on any tree contains any edge at most
min 2 1 2 2 times, where 1 1 2 and 2 2 2 are the two disconnected
graph components that are obtained from by removing .

Proof: Without loss of generality, assume that 1 2 . The multiple shortest path
algorithm traverses towards 1 only when it takes a shortest path from a vertex in 2 to a
vertex 1 in 1. Since the graph is a tree, the traversals of alternate directions. If

0 1, then the edge is traversed at most 1 1 times towards 1 and 1 times towards
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2. If 0 2, then the edge is traversed at most 1 times towards 1 and 1 times towards
2.

Theorem 5.3 Let 1 1 and 2 2 be any two graphs with 1

2 for all vertices . Then, the length of any 1 1 path is at most as
long as the length of the correspondent 1 2 path.

Proof: Since 1 2 for all vertices , the length of any
shortest path in 1 from any vertex to a vertex is at most as long as the length of any shortest
path in 2 between the same vertices.

We now show how these properties of the multiple shortest path algorithm can be applied
to planning with the freespace assumption:

Consider the sequence 1 of vertices where 0 is the starting vertex of planning with the
freespace assumption, for 2 1 are the vertices at which it successfully re-plans
paths, and is either the goal state or the state at which it realizes that reaching the goal
state is impossible. The vertices are pairwise different, since planning with the freespace
assumption only re-plans paths at vertices at which it has never been before. This is the case
because it only re-plans when it realizes that its current path is blocked and it would have
known that the path was blocked had it been at that vertex before. Furthermore, it moves on
shortest paths to vertices , since it always plans shortest paths to the goal. (If the path to
vertex were not optimal, neither would be the path to the goal.) Put together, it follows
that planning with the freespace assumption on a graph is a multiple shortest path
algorithm on the graph that is obtained from by removing all edges that border on at least
one blocked vertex. For example, the performance guarantee of planning with the freespace
assumption is no worse than on any graph. This follows by summing the values
of Theorem 5.2 over all edges, since min 2 1 2 2 .

Theorem 5.2 can also be used to prove better performance guarantees for restricted graph
topologies. The graph shown in Figure 5.9 gives a general idea how one can apply Theorem 5.2
to particular graphs. For example, the shown graph is a spanning tree of a square grid with
edge lengths one that does not contain blocked vertices. Summing the values of Theorem 5.2
over all edges results in a bound of 3 2 3 2 for this graph. A square
grid with edge lengths one is supergraph of this graph and thus Theorem 5.3 applies: For each
sequence 1 of vertices, the travel distance of planning with the freespace assumption on
the grid is at most as large as that on the spanning tree. Thus, the maximum travel distance on
the grid over all sequences 1 is at most as large as that on the spanning tree. It follows
that the performance guarantee of planning with the freespace assumption on square grids with
edge lengths one (or any supergraph of such grids) is 3 2 , and planning with
the freespace assumption is optimal up to a factor of at most 1 2 on these graphs.



Figure 5.9: Subgraph of a square grid

In general, to determine an upper bound on the performance of planning with the freespace
assumption for a given graph topology, one first removes all edges from the graphs that border
on at least one blocked vertex. Then, one selects a spanning tree of the resulting graph and
sums the values of Theorem 5.2 over all edges of the tree. The resulting bound is also an upper
bound for the given graph topology. We found that the diameter of the spanning tree plays an
important role in deriving an upper bound through applications of Theorem 5.2. Among all
spanning trees containing non-blocked vertices, ones with smaller diameters are usually more
preferable.

5.4.3 Applying VECA to Improve Performance Guarantees
In this section, we re-apply Basic-VECA to a sensor-based planning problem and show that
it exhibits good empirical performance and provides performance guarantees that are optimal
up to a constant factor. We have shown that chronological backtracking can provide a better
performance guarantee than planning with the freespace assumption. On the other hand,
planning with the freespace assumption exhibits a much better average-case performance than
chronological backtracking in typical domains, since chronological backtracking does not
actively search for the goal vertex.4 Basic-VECA is an algorithmic framework that is capable

4Experimental results for planning with the freespace assumption are reported in [72]. Its average-case
performance is very good, although recent experimental evidence [75] suggests that, at least in some domains, one
can improve the total travel distance slightly by assuming that the status of a vertex is similar to the status of its
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of accommodating both sensor-based planning algorithms. Its performance guarantee is better
than that of planning with the freespace assumption, and its average-case performance is better
than that of chronological backtracking (although it can be worse than that of planning with the
freespace assumption).

Basic-VECA with behaves identically to the goal-directed planning algorithms. On
the other hand, Basic-VECA with 0 behaves identically to chronological backtracking.
Values of between these two extremes produce behaviors that mediate between the goal-
directed planning algorithms and chronological backtracking. In all sensor-based planning
problem domains, Basic-VECA guarantees that edges are traversed at most 2 times each
and thus a total travel distance of at most 2 . Hence, the performance guarantee
is O , independent of the value of . But there is a trade-off: The smaller the value
of , the better is the performance guarantee. A small value of , however, also restricts the
goal-directed planning algorithms earlier. This can force them to explore parts of the graph
unnecessarily and increase the average-case performance.

Figure 5.10 shows a version of Basic-VECA that uses planning with the freespace assump-
tion as the goal-directed planning algorithm. In the actual implementation, we use priority
lists instead of exponentially decreasing edge costs. Basic-VECA can be used even if no graph
is available initially. If Basic-VECA is supplied with a graph, it can use this information to
improve its performance. For a more detailed description of VECA and empirical results, see
Chapter 4.

Basic-VECA presented in Figure 5.10 guarantees the worst-case complexity of
O . For dense graphs with 1 such a guarantee may not be satis-
factory. There exists a way of improving the worst-case complexity of Basic-VECA for dense
graphs, so that it can guarantee : one should keep track and consider costs only for edges
of some spanning tree of the explored portion of the problem domain. Step 3 of Basic-VECA
would consider in this case only those paths leading from the current vertex to the goal vertex
that can be split into two sub-paths, with the first path containing already visited vertices and
edges of the spanning tree, and the second sub-path that goes exclusively through unvisited
vertices. Figure 5.11 illustrates the spanning tree improvement of Basic-VECA. The agent
is currently at vertex . The shortest path from to the goal goes through vertices
and . However, according to the spanning tree modification, since vertex has been already
visited, Basic-VECA ignores two-edge sub-path and considers a sub-path to that is
routed through already constructed tree, i.e. that goes to through . After reaching
Basic-VECA traverses , includes in , and then senses the status of vertex in the
attempt to traverse edge . If is not blocked, Basic-VECA adds this edge to spanning tree

too, since it will be the first visit of vertex . If Basic-VECA decides to go to the goal along
the path , for the sake of efficiency, the agent may actually move to through

neighbors instead of assuming that it is unblocked.
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Given a graph , Basic-VECA uses the following variables for all with : keeps track of how often the edge has
been traversed from to , is the reserved VECA cost for its traversal from to , and is the actual VECA cost for its traversal
from to .

Basic-VECA always makes the optimistic assumption that vertices are unblocked if it does not know their status. Consequently, we call a path traversable if it does not
contain vertices that are known to be blocked.

1. Set : : 0 for all . Set : 0 and to the starting vertex.

2. If is the goal vertex, then stop and report success.

3. If no traversable path from to the goal vertex exists, stop and report that the goal vertex cannot be reached. Otherwise, consider all traversable paths that
start at , end in an untraversed edge, and contain only traversed edges in between. (At least one such path exists. All these paths are guaranteed to contain
only unblocked vertices.) Select a path with minimal actual VECA cost from these paths. Break ties by selecting the path with the smallest value, where
the value of a path is the length of the shortest traversable path from to the goal vertex that contains the path as prefix (at least one such path exists).

4. Repeat the following steps until the selected path has been traversed:

(a) Let be the next edge on the path.

(b) Traverse the edge by moving to vertex .

(c) Set : 1.

(d) If 1, then set : 1 and afterwards : : 2 .

(e) If and 0, then set : : .

(f) If , then set : .

(g) Set : .

5. Go to step 2.

Figure 5.10: Basic-VECA

vertex .
Theorem 4.1 guarantees that Basic-VECA with the spanning tree modification has the

worst-case complexity of . Theorem 5.3 allows us to perform “short-
cuts,” i.e. to move robot actually along the shortest path to the last vertex of spanning tree
and then to the goal after the path has been chosen. In our example in Figure 5.11, it would
correspond exactly to going to vertex first, then - to , and then - to , instead of the estimated
detour through . The introduction of the spanning tree changes the process of reserving
and assigning positive edge costs and thus effects the whole search process.

5.5 Summary
In this Chapter, we investigated goal-directed navigation in unknown environments. A common
approach to solving this navigation problem is planning with the freespace assumption, where
the robot always plans a shortest path to the goal, assuming that the terrain is clear unless it
knows otherwise. It had been conjectured in the literature that this planning approach was
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Figure 5.11: Improving Worst-Case Complexity through a Spanning Tree

optimal, given the lack of initial knowledge about the environment. Our results show that this is
not the case: Its performance guarantee is not optimal. For situations in which its performance
guarantee is not sufficient, we showed how Basic-VECA, a hybrid method based on techniques
from AI and CS theory, can be applied to exhibit good empirical performance and provide
performance guarantees that are optimal up to a constant factor.
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Chapter 6

GenSAT as Agent-Centered Search

GenSAT is a family of local hill-climbing procedures for solving propositional satisfiability
problems. In order to “re-utilize” knowledge accumulated about agent-centered search (see
Chapters 3-4), we restate it as a navigational search process performed on an -dimensional
cube by a fictitious agent with limited lookahead. Several members of the GenSAT family
have been introduced whose efficiency varies from the best in average for randomly generated
problems to a complete failure on some realistic, structured problems, hence raising the inter-
esting question of understanding the essence of their different performances. In this paper, we
show how we use our navigational interpretation to investigate this issue. We introduce new
algorithms that sharply focus on specific combinations of properties of efficient GenSAT vari-
ants, and which help to identify the relevance of the algorithm features to the efficiency of local
search. In particular, we argue for the reasons of higher effectiveness of HSAT compared to the
original GSAT. We also derive fast approximating procedures based on variable weights that
can provide good switching points for a mixed search policy. Our conclusions are validated by
empirical evidence obtained from the application of several GenSAT variants to random 3SAT
problem instances and to simple navigational problems.

6.1 GenSAT
Recently an alphabetical mix of variants of GSAT [34, 64] has attracted a lot of attention from
Artificial Intelligence (AI) researchers: TSAT, CSAT, DSAT, HSAT [27, 29], WSAT [66],
WGSAT, UGSAT [18] just to name few. All these local hill-climbing procedures are members
of the GenSAT family. Propositional satisfiability (SAT) is the fundamental problem of the class
of NP-hard problems, which is believed not to admit solutions that are always polynomial on
the size of the problems. Many practical AI problems have been directly encoded or reduced to
SAT. GenSAT (see Table 6.1) is a family of hill-climbing procedures that are capable of finding
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satisfiable assignments for some large-scale problems that cannot be attacked by conventional
resolution-based methods.

procedure GenSAT (Y)
for i:=1 to Max Tries

T:= Y
for j:=1 to Max Flips

if T satisfies Y then return T
else poss-flips := - Y

; compute best local neighbors of
V := poss-flips ; pick a variable
T := T with V’s truth assignment inverted

end
end

return “no satisfying assignment found”

Table 6.1: The GenSAT Procedure.

GSAT [34, 64] is an instance of GenSAT in which initial (see Table 6.1) generates a random
truth assignment, hill-climb returns all those variables whose flips1 give the greatest increase
in the number of satisfied clauses and pick chooses one of these variables at random [27].
Previous work on the behavior of GSAT and similar hill-climbing procedures [27] identified
two distinct search phases and suggested possible improvements for GenSAT variants. HSAT
is a specific variant of GenSAT, which uses a queue to control the selection of variables to flip2.
Several research efforts has attempted to analyze the dominance of HSAT compared with the
original GSAT for randomly generated problem instances. We have developed a navigational
search framework that mimics the behavior of GenSAT. This navigational approach allows us
to re-analyze the reasons of higher effectiveness of HSAT and other hill-climbing procedures
by relating it to the number of equally good choices. This navigational approach also suggests
strong approximating SAT procedures that can be applied efficiently to practical problems. An
approximation approach can be applied to both “easy” and “hard” practical problems, in the
former case it will likely to produce a satisfiable assignment, whereas in the latter case it will
quickly find an approximate solution. For a standard testbed of randomly generated 3SAT
problems, the transition phase between “easy” and “hard” problem instances corresponds to
the ratio value of 4 3 between the number of clauses to the number of variables [49, 11].

1Flip is a change of the current value of a variable to the opposite value.
2See Section 6.3 for the definition of HSAT.
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Figure 6.1: The transition phase for random 3SAT problems.

Figure 6.1 demonstrates the probability of generating a satisfying assignment for random 3SAT
problems depending on the -ratio.

An approximate solution can be utilized in problems with time-critical or dynamically
changing domains. Interestingly, we found that it also provides a good starting point for a
different search policy, i.e. serves as a switching point between distinct search policies within
the same procedure. Such an approach can be utilized beneficially in multi-processor/multi-
agent problem settings.

Our experiments with randomly generated 3SAT problem instances and realistic naviga-
tional problems confirmed the results of our analysis.

6.2 GenSAT as Agent-Centered Search
State spaces for boolean satisfiability problems can be represented as -dimensional cubes,
where is the number of variables. We view GSAT and similar hill-climbing procedures as
performing search on these high-dimensional cubes by moving a fictitious agent with limited
lookahead. For efficiency reasons, the majority of GSAT-like procedures limit the lookahead of
the agent to the neighbors of its current state, i.e., to those vertices of the cube that are one step
far from the current vertex. An edge of the cube that links two neighboring vertices within the
same face of the cube, corresponds to the flip of a variable. Thus, we reduced the behavior of
GSAT to agent-centered search on a high-dimensional cube. Recall, in agent-centered search
the search space is explored incrementally by an agent with limited lookahead. Throughout the
paper we refer to this navigational version of GenSAT as to NavGSAT.

The worst-case complexity of both informed and uninformed agent-centered search is
of the order of the number of vertices, i.e. 2 . Moreover, unlike classical AI search
where A* is an optimal informed algorithm for an arbitrary admissible heuristic, there are
no optimal algorithms for agent-centered search problems[71]. Furthermore, as we have
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shown in Chapter 3, even a consistent, admissible heuristic can become misleading, and an
efficient informed agent-centered search algorithm can demonstrate worse performance than
the uninformed (zero heuristic) version of the same algorithm [39].

From the algorithmic point of view, the behavior of LRTA* [42], one of the most efficient
agent-centered search methods, is close to NavGSAT’s behavior. Both methods look for the
most promising vertex among neighbors of the current vertex. In addition to selecting a neighbor
with the best heuristic value, LRTA* also updates the heuristic value of the current vertex (see
Table 3.3). The efficiency of LRTA* is known to depend on how closely the heuristic function
represents the real distance [71]. The vast majority of GSAT-like procedures use the number
of unsatisfied (or satisfied) clauses as the guiding heuristic. In general, this heuristic is neither
monotone, nor admissible. However, for the most intricate random instances of SAT problems
with , this heuristic is an approximation of the real distance. -search has
been introduced in [35] as a modification of LRTA* [42] that can utilize the guidance of non-
admissible, non-monotone prior knowledge and still guarantee convergence to a solution that
would be a certain approximate of the optimal solution. The convergence requirement is that
given heuristic values are at most 1 times the goal distance for some 0, i.e.

1

Table 6.2 presents the description of the -search modification of LRTA*. Thus, -search
[35] applies to SAT problems.

procedure -search
Initially, : for all .
-search starts at vertex :

1. : the current vertex.
2. If , then STOP successfully.
3. : .
4. : 1 .
5. Traverse edge , update : .
6. Go to 2.

Table 6.2: -Search Modification of LRTA*.

The description of -search may represent LRTA* as well, because the only difference
between those two methods is step 4. Since LRTA* deals with monotone heuristics, for which
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1 holds for all vertices and adjacent edges , the current
heuristic value is at most the estimate for any of its neighbors – 1 .
Lemma 4 After repeatedproblem-solving trials of a soluble propositional satisfiability problem
with variables and clauses, the length of the solution of -search converges to 2 .

Proof: After repeated problem-solving trials the length of a solution of -search converges
to the length of the optimal path multiplied by 1 [35]. On one hand, the length of the
optimal path for a soluble propositional satisfiability problem is . On the other hand, for
problems with approximating factor is also . These two facts imply 2

complexity of the final solution after an unknown number of repeated trials.
Even though the length of a solution of -search converges to 2 for satisfiable problem

instances, several initial trials can have exponential length. Thus, this approach can be applied
only in special circumstances: One is provided possibly exponential memory and possibly ex-
ponential time for pre-processing to re-balance the heuristic values, after that the complexity of
solving of the pre-processed problem is 2 . Unfortunately, the effort spent on preprocess-
ing and knowledge acquired about a particular problem instance seems not to be automatically
transferred to other problem instances. Since such an “exponential” pre-processing scenario
is not always what AI researchers keep in mind when applying GenSAT, we do not consider
-search as a general navigational equivalent of GenSAT. However, in Section 6.3 we show

that one (first) run of -search coincides completely with the run of HSAT for the majority of
soluble SAT problem instances.

The approach of possibly “exponential” pre-processing is not completely hopeless, one
can try to reduce the problem by considering smaller number of variables (projection on the
correspondent face of the cube), acquire knowledge about the projected problem, and then to
expand this knowledge (lifting from the face on the whole cube) to the original problem instance.
This can be a promising direction for a series of problems that share common sub-structures.

Thus, the question of the efficiency of GSAT and similar procedures is reduced to the
domain-heuristics relations that guide agent-centered search on an -dimensional cube. Recent
works on changing the usual static heuristic – the number of unsatisfied (satisfied) clauses – to the
dynamic weighted sums [18] produced another promising sub-family of GenSAT procedures.
Our experiments showed that the “quality” of the usual heuristic varies greatly in different
regions of the -dimensional cube, and as the ratio of to grows, this heuristic becomes
misleading in some regions of the problem’s domain. These experiments identified the need to
introduce novel heuristics and better analysis of the existing ones.

6.3 New Corners or Branching Factor?
We conducted a series of experiments with the -search version of LRTA* and the number
of unsatisfied clauses as the heuristic values for each vertex (corner) of the -dimensional
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cube. We found that the combination of a highly connected -dimensional cube and such prior
knowledge forces an agent to avoid vertices with updated (increased in step 4 of Table 6.2)
heuristic values. Exactly the same effect has been achieved by HSAT, a variant of GenSAT, for
randomly generated 3SAT problems with a low ratio of the number of clauses to the number
of variables. In HSAT flipped variables form a queue, and this queue is used in (see
Table 6.1) to break ties in favor of variables flipped earlier until the satisfying assignment is
found or the amount of flips has reached the pre-set limit of . Thus, we consider
-search as a navigational analogue of HSAT for soluble problem instances.

Previous research identified two phases of GenSAT procedures: steady hill-climbing and
plateau phases [27]. During the plateau phase these procedures perform series of sideway flips
keeping the number of satisfied clauses on the same level. The reduction of the number of
such flips, i.e. cutting down the length of the plateau, has been identified as the main concern
of GenSAT procedures. Due to high connectivity of the problem domain and the abundance
of equally good choices during the plateau phase, neither HSAT nor -search re-visit already
explored vertices (corners) of the cube for large-scale problems. This property of HSAT has
been stated as the reason of its performance advantage for randomly generated problems in
comparison with GSAT [29].

To re-evaluate the importance of visiting new corners of the -dimensional cube, we
introduced another hill-climbing procedure that differs from GSAT only in keeping track of all
visited vertices and Never Re-visiting them again, NRGSAT. On all randomly generated 3SAT
problems, NRGSAT’s performance in terms of flips was identical to GSAT’s one. Practically,
NRGSAT ran much slower, because it needs to maintain a list of visited vertices and check
it before every flip. Based on this experiment, we were able to conclude that exploring new
corners of the cube is not that important. This increased our interest in studying further reasons
for the performance advantage of HSAT over GSAT.

We focused our attention on poss-flips – the number of equally good flips between which
GSAT randomly picks [28], or, alternatively, the branching factor of GSAT search during
the plateau phase. We noticed that on earlier stages of the plateau phase both GSAT and
NRGSAT tend to increase poss-flips, whereas HSAT randomly oscillates poss-flips around a
certain (lower) level. To confirm the importance of poss-flips, we introduced variable weights3
as a second heuristic to break ties during the plateau phase of NavGSAT. NavGSAT monitors
the number of flips performed for each variable and among all equally good flips in terms of the
number of unsatisfied clauses, NavGSAT picks a variable that has been flipped the least number
of times. In case of second-order ties, they can be broken either randomly, fair – NavRGSAT,
or deterministically, unfair, according to a fixed order – NavFGSAT.

Both NavRGSAT and NavFGSAT allow to flip back the just flipped variable. Moreover,
3Weight of each variable is the number of times this variable has been flipped from the beginning of the search

procedure. Each flip of a variable increases its weight by one.
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Problem Algorithm Mean Median St.Dev.
100 GSAT 12,869 5326 9515

vars, HSAT 2631 1273 1175
430 NavFGSAT 3558 2021 1183

clauses NavRGSAT 3077 1743 1219
1000 GSAT 4569 2847 1863
vars, HSAT 1602 1387 334
3000 NavFGSAT 1475 1219 619

clauses NavRGSAT 1649 1362 675
1000 GSAT 7562 4026 3515
vars, HSAT 3750 2573 1042
3650 NavFGSAT 3928 2908 1183

clauses NavRGSAT 4103 3061 1376

Table 6.3: Comparison of number of flips for GSAT, HSAT, NavRGSAT and NavFGSAT.

the latter procedure often forces to do so due to the fixed order of variables. However,
the performance of both NavRGSAT and NavFGSAT is very close to HSAT’s performance.
Table 6.3 presents median, mean and standard deviation of GSAT, NRGSAT, HSAT, NavRGSAT
and NavFGSAT for randomly generated 3SAT problems with 100 and 1000 variables and
different ratios to . We investigated problems of this big size, because they represents
the threshold between satisfiability problems that accept solutions by conventional resolution
methods, for example Davis-Putnam procedure, and ones that can be solved by GenSAT hill-
climbing procedures.

In the beginning of the plateau phase both NavGSAT methods behave similarly to HSAT:
Variables flipped earlier are considered last when NavGSAT is looking for the next variable to
flip. As more variables gain weight, NavGSAT methods’ behavior deviates from HSAT. Both
methods can be perceived as an approximation of HSAT.

We identified that a larger number of poss-flips is the main reason why GSAT loses to HSAT
and NavGSAT on earlier stages of the plateau phase. As the number of unsatisfied clauses
degrades, there are less choices for equally good flips for GSAT, and the increase of poss-
flips is less visible. However, during earlier sideway flips GSAT picks equally good variables
randomly, this type of selection leads to the vertices of the cube with bigger poss-flips, where
GSAT tends to be “cornered” for a while. Figure 6.2 presents average amounts of poss-flipswith
the 95%-confidence intervals. The poss-flipswere summed up for each out of four hill-climbing
procedures for every step in the beginning of the plateau phases (from 0 25 to ) for a range
of problem sizes. Since the number of variables and the interval of measuring grow linearly
on , we present sums of poss-flips scaled down by 2. As it follows from Figure 6.2, the
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Figure 6.2: Comparison of Poss-Flips for GSAT, HSAT, NavRGSAT and NavFGSAT.

original GSAT consistently outnumbers all other three procedures during that phase, although
its confidence intervals overlap with NavRGSAT and NavFGSAT’s confidence intervals.

Figure 6.3 presents the dynamics of poss-flips during a typical run of GSAT. It is easy to
see that on early plateaux poss-flips tend to grow with some random noise, for example, in
Figure 6.3 second, third and fifth plateaux produced obvious growth of poss-flips until drops
corresponding to the improvement of the heuristic values and, thus, the end of the plateau.
During the first and fourth plateaux, the growth is not steady though still visible. Even though
flips back are prohibited for NRGSAT, it maintains the same property, because of the high
connectivity of the problem domain and the abundance of equally good choices.

Figure 6.4 represents the average percentage of ties for a 3SAT problem with 100 variables
and 430 clauses over 100 runs for GSAT and HSAT, and for GSAT and NavRGSAT. The
average number of poss-flips for GSAT dominates the analogous characteristic for HSAT by
a noticeable amount. This type of dominance is similar in the comparison of GSAT with
NavRGSAT in the beginning of the plateau phase. In the second part of the plateau phase the
number of poss-flips for HSAT or NavRGSAT approaches the number of poss-flips for GSAT.
Lower graph represents second-order ties for NavRGSAT that form a subset of poss-flips.
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Figure 6.3: Dynamics of Poss-Flips for GSAT.

Our experiments confirmed the result obtained in [27] that the whole picture scales up
almost linearly in the number of variables and the number of poss-flips, although we noticed
a tendency of earlier beginning of the plateau phase as the number of variables grew from
several hundred to several thousand. In our experiments, the plateau phase began after about
0 2 0 25 steps. By that moment at most a quarter of the variable set has been flipped,
and thus NavFGSAT mimics HSAT up to a certain degree. After 2 or 3 flips, both versions
of NavGSAT diverge significantly from HSAT. After these many steps both NavRGSAT and
NavFGSAT still maintain random oscillation of poss-flips, whereas GSAT tends to promote
higher levels of poss-flips. Unfortunately, for problems with larger ratio of the number of
clauses to the number of variables NavFGSAT is often trapped in an infinite loop. NavRGSAT
also may behave inefficiently for such problems: From time to time the policy of NavRGSAT
forces it to flip the same variable with a low weight several times in a row to gain the same
weight as other variables from the set of poss-flips.

Thus, NavGSAT showed that the number of poss-flips plays an important role in improv-
ing the efficiency of GenSAT procedures. HSAT capitalizes on this property and therefore
constitutes one of the most efficient hill-climbing procedures for random problem instances.
However, many real-world satisfiability problems are highly structured and, if applied, HSAT
may easily fail due to its queuing policy. NavGSAT suggests another sub-family of GenSAT
hill-climbing procedures that does not tend to increase the number of poss-flips. Weights of
variables and their combinations can be used as a second tie-breaking heuristic to maintain
lower level of poss-flips and find exact or deliver approximate solutions for those problems for
which HSAT fails to solve.

For randomly generated 3SAT problems HSAT proved to be one of the most efficient
hill-climbing procedures. There have been reports on HSAT’s failures in solving non-random
propositional satisfiability problems [29]. We view the non-flexibility of HSAT’s queue heuristic
as a possible obstacle in solving over-constrained problems. This does not happen in solving
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Figure 6.4: Percentage of Poss-Flips for GSAT with HSAT and GSAT with NavRGSAT.

random 3SAT problems with low -ratio.

6.4 Approximate Satisfaction
While running experiments with GSAT, HSAT and other hill-climbing procedures, we noticed
that GSAT experiences biggest loss in the performance in the beginning of the plateau phase
where the amount of poss-flips can be as high as 20-25%. On the other hand, HSAT, NavFGSAT
and NavRGSAT behave equally good during the hill-climbing phase and the beginning of the
plateau phase. We thus concluded that any of the latter three procedures can be applied to provide
fast approximate solutions. For some problems, versions of NavGSAT are not as efficient as
HSAT. Nonetheless, we introduced NavFGSAT and NavRGSAT to show that HSAT’s queuing
policy is not the unique way of improving the efficiency of solving propositional satisfiability
problems.

Approximate solutions can be utilized in time-critical problems where the quality of the
solution discounts the time spent for solving the problem. NavGSAT can be also applied to
problems with dynamically changing domains, when the domain changes can influence the
decision making process. Finally, approximate solution provide an excellent starting point for
a different search policy. For example, WGSAT and UGSAT [18] utilized a promising idea
of the instant heuristic update based on the weight of unsatisfied clauses. An approximate
solution provided by HSAT or NavGSAT constitutes an excellent starting point for WGSAT,
UGSAT or another effective search procedure of a satisfiable solution, for example, -search
(with heuristic updates). Among others we outline the following benefits of employing HSAT
or NavGSAT to deliver a good starting point for another search method:

Perfect initial assignment with a low number of unsatisfied clauses.

Absence of hill-climbing phase that, for example, eliminates noise in tracking clause
weights.



6.5. NAVIGATIONAL PLANNING PROBLEMS 101

Efficient search in both steps of policy-switching approach.

Convenient point in time to fork search in multi-agent/multi-processorproblem scenarios.

Although HSAT, itself, is an efficient hill-climbing procedure for randomly generated problems
with a low clause-variable ratio, we expect that HSAT might experience difficulties in more
constrained problems. NavGSAT provides another heuristic that guides efficiently in the initial
phases. On the other hand, the hill-climbing phase may either produce noise in the clause
weight bookkeeping or a redundant list of vertices with updated heuristics that slows down the
performance of -search. Search with policy switching can benefit significantly from employing
efficient procedures in all of its phases.

6.5 Navigational Planning Problems
To confirm the results of our navigational approach to GSAT, we applied all the discussed above
hill-climbing procedures to the following simple navigational problem:

Navigational Problem (NavP): An agent is given a task to find the shortest path
that reaches a goal vertex from a starting vertex in an “obstacle-free” rectangular
grid.

NavP is a simplistic planning problem. It can be represented as a propositional satisfiability
problem with variables, where is the set of vertices in the rectangular grid and

is the shortest distance between starting vertex and goal vertex . In a correct solution,
a variable is assigned True ( 1), if is th vertex on the shortest path from to ,
and False otherwise. There can be only one variable with the True value among variables
representing grid vertices that are -far from starting vertex . This requirement implies

1 O 2 pigeonhole-like constraints:

1

1 1 2
1 2

Already these constraints make the domain look “over-constrained,” since the ratio of 1 to
is not asymptotically bounded. Another group of constraints has to force True-valued variables
to form a continuous path. There can be different ways of presenting such constraints, we chose
the easiest and the most natural presentation that does not produce extra variables:

1

2

1
1

1
2

1
3

1
4
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Vertices 1 2 3 4 are the neighbors of vertex in the rectangular grid. To reduce
the number of variables and clauses, the initial and the goal states are represented by stand-alone
single clauses:

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

Vertices 5 6 7 8 are the neighbors of the starting vertex, 9 10 11 12 are the
neighbors of the goal vertex.

Second group of constraints is not presented in the classical CNF form. It is possible
to reduce it to 3SAT, but such a reduction will introduce a lot of new variables and clauses
and will significantly slow down the performance without facilitating search for a satisfiable
assignment. From the point of view of hill-climbing procedures that track clause weights, this
would mean only a different initial weight assignment and a linear change in counting clause
weights. Therefore, we decided to stay with the original non-3SAT model and considered each
complex conjunction 1

1
1

2
1

3
1

4
as a single clause. Together

with the starting and goal vertex constraints, the second group contains 2 O constraints
that force True-valued variables to form a continuous path.

It is fairly easy to come up with an initial solution, so that all but one constraint are satisfied.
Figure 6.5 shows one of such solutions that alternates between the goal vertex and one of
its neighbors, and the final path that satisfies all the constraints. The original GSAT has the
complexity that is exponential on . It performs poorly for such domains, because at every
step it has more equally good chances than any other algorithm. HSAT was able to solve “toy”
problems with less than 200 variables until its search was under the influence of initial states.
For larger problems, after an initial search HSAT used to switch to a systematic search that
avoided changing recently changed vertices. Since HSAT re-started search from both starting
and goal vertices on a regular basis, all the variable corresponding to their neighboring vertices
has frequently changed their values. Therefore, paths from the opposite direction attempted to
avoid changing these variables again. This was one of the domain where the queuing policy of
HSAT played against it.

A slightly modified versions of NavFGSAT and NavRGSAT were capable of solving larger
problems using Top-Down Depth-First-Search (TDDFS). TDDFS traverses repeatedly the
search tree (the set of vertices reachable in steps) from the root down, each time attempting
to visit the least visited vertex from the current vertex or, if possible, unvisited vertex. The only
modification of this behavior was that NavGSAT methods alternated roots between the starting
vertex and the goal vertex while performing such search.
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Figure 6.5: Initial and final solutions for NavP.

6.6 GenSAT Conclusions
We showed that GenSAT hill-climbing procedures for solving propositional satisfiability prob-
lems can be interpreted as navigational, agent-centered search on a high-dimensional cube,
NavGSAT. This type of search heavily depends on how well heuristic values represent the
actual distance towards the set of goal states. HSAT, one of the most efficient GSAT-like
procedures, maintains low level of poss-flips. We identified this property as the main benefit of
HSAT in comparison with the original GSAT. However, the non-flexibility of HSAT’s queuing
policy can be an obstacle in solving more constrained problems. We introduced two versions
of NavGSAT that also maintain low level of poss-flips and can be applied as approximating
procedures for time-critical or dynamically changing problems, or serve as a starting phase in
search procedures with switching search policies.
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Chapter 7

Further Insights into On-Line Search
Complexity

In this chapter we discuss a few issues of on-line search that follow directly from the thesis
work. A full investigation of these issues constitutes an interesting direction for future work.
In particular, in this chapter we argue how some of the domain features may influence the
complexity of on-line search. In a certain sense this discussion is also relevant to a much wider
spectrum of problems. For example, as we noticed in Chapter 2, precise knowledge of the tight
upper bound does not always provide an enlightening hint on constructing an optimal solution
for combinatorial optimization problems. Similarly, if one is informed about the existence of a
plan of a certain length, for some planning problems it is easy to come up with a feasible plan
of this length, whereas for other problems this type of information would not help much.

Thus, we would like to estimate the complexity of building feasible plans in deterministic
planning problems too, as some incremental forward or backward-chaining planners that repair
plans by backtracking and branching, can be perceived as search controlling mechanisms that
move a fictitious agent through a set of feasible plans.

What makes some domains harder to search than others? What are the relevant domain
features that make search so hard? Are there any relations between identifying the complexity
of search and other methods from different scientific areas? Of course, we are not going to
provide full answers to all of these questions. In this chapter we attempt to answer only some
of the above question, especially those relevant to on-line search and constructing optimal
solutions for combinatorial optimization problems.

There exist an additional interest to this topic, as there have been already several successful
efforts in solving classical situated off-line search problems by on-line agent-centered search
methods. Recall that in agent-centered search agent’s lookahead is limited by a neighborhood
of its current location. Among others, such problems include 5x5-puzzle solved by Korf’s
LRTA* [43] and 3SAT satisfiability problems, with the success in solving which attributed
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recently to the family of hill-climbing procedures (see Section 6). These “stories of success”
have much in common:

Agent-centered search achieves a reasonable balance between exploration (considering
valid plans) and exploitation (selecting and executing sub-plans, acquiring knowledge,
and resolving uncertainties).

Problem domains are well-connected, the cost of recovery from making a wrong decision
is low.

Given an admissible, monotone heuristic and unlimited resources, A* search algorithm
cannot be outperform by any other algorithm [57]. And, indeed, agent-centered search methods
appear to be less efficient than search-in-memory for many modestly sized problems. The
benefit of A* algorithm is that it “teleports” its fictitious agent from one location to another for
free.

As we emphasized before, unlike the classical approach of situated search-in-memory, in
agent-centered search the sequence of executed actions induce a continuous path on the problem
domain. Such a difference impose a necessary change of the goal function. Usually the length
of this path is viewed as the prime efficiency characteristic, since often the deliberation time is
negligible in comparison with time needed to move the agent along the path.

All successful agent-centered search replacements of situated search-in-memory seem to
share two common features: Problem domains have relatively small diameters, but are too
big for attacking by A*. Therefore, in our research we included the diameter of the problem
domain in the list of relevant features. It appears that the diameter, indeed, has an impact on
the complexity of on-line search in reversible domains.

7.1 The Oblongness Factor
In off-line search “teleporting” is allowed for a fictitious agent. Problems of this kind accept
a greedy approach in exploring promising locations. Exploiting this strategy A* algorithm
guarantees at most the same number of explored states in the worst case as any other search
algorithm for the same domain and the same admissible heuristic function [57]. In this sense,
search-in-memory is a homogeneous search environment with a domain-independent search
tool. Furthermore, given a set of admissible heuristic functions, one achieves better efficiency
by selecting majorizing heuristic values.

In Chapter 3 we showed that heuristic values provide a slightly different type of guidance
for agent-centered search. For example, for some problems an agent would achieve better
efficiency with zero heuristic values than with a monotone, admissible heuristic that may be
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more misleading. Thus, the principle of selecting majorizing heuristics does not extend to
agent-centered search.

We would like to find a simple way of estimating the complexity of on-line search problems
that would tell us about the chances for agent-centered search to succeed in solving these prob-
lems. The empirical evidence obtained from the experiments for the goal-directed exploration
problem suggested that the size of the problem domain, its diameter and the distance from
the starting state to the goal can affect the efficiency of search. Moreover, we found that for
the goal-directed problems with the goal distance from the starting state being of the order of
the diameter of the problem domain, the following feature that we call oblongness, seems to
capture the complexity of agent-centered search. The choice of this feature was not accidental.
There have been plenty of on-line search techniques of completely different natures, whose
worst-case complexity on undirected graphs is proportional to the product of the size of the
graph (number of vertices) and the diameter of the graph. The list of such algorithms include
Smell-Oriented Search [80], discounted and undiscounted zero-initialized Q-learning [37] and
edge counting [38], in next section we consider random walks, the expected complexity of
visiting all vertices for which approximates the same product. Since both the diameter and the
size of the graph grow linearly on the number of vertices, to make the complexity parameter
scalable, we introduce the following feature:

Definition 1 Oblongness is the ratio of the diameter of an undirected graph to the number of
vertices.

Figure 7.1 shows the dependency of the performance of efficient agent-centered search
methods, such as AC-A*, on the value of the oblongness. In a certain sense this picture is
the inverse to one shown in Figure 3.2 from Chapter 3, where we were gradually changing
the density of the domain by adding undirected edges to a maze that initially was a tree. The
diameter of the domain was shrinking along with the growing density – from being a constant
fraction of the whole domain to becoming a square root of the number of vertices for the
complete rectangular maze. In Figure 7.1 we go even further and continue adding edges until
the domain becomes a complete graph.

We confirm the relevance of the oblongness factor to the complexity of on-line search
by considering a series of AI domains that have been studied in the literature. Our analysis
of reversible AI domains identified three major groups of problems with drastically different
oblongness. To make them comparable, we consider the following problems either with O !
the size of the problem domain or adjust them to this size for scalable domains.

1. BlocksWorld, Pancake and Burnt Pancake problems, Signed and Unsigned problems of
Genetic Mutations by Inversion. In the Pancake problem the task is to sort an arbitrarily
shuffled pile of pancakes of different sizes with a help of a spatula that can reverse the
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Figure 7.1: The Efficiency of Agent-Centered Search and Oblongness

sequence of pancakes from the top to the place of insertion. In the Burnt Pancake problem
one should also preserve the proper orientation of all pancakes in the final sorted sequence
(for example, burnt side down). In the Genetic Mutation problems one can create new
mutations by extracting an arbitrary subsequence and reversing its order to transform
the mouse’s gene into the elephant’s gene. In the signed version of the problem, both
genes have all the proteins specifically oriented in the same sense as in the Burnt Pancake
problem.

2. -puzzle, SAT. The size of the SAT problem domain is 2 , to make it O ! ,
one should scale up the diameter of the problem by O log .

3. Planar mazes, Navigational problems.

First group of problems has domains with the diameters of size O . The diameter of the
-puzzle is both 1 and , the same is true for SAT. Third group has

the biggest variety of oblongness values ranging from 1 to 1. Thus, first and second group
of problems are located on the same side of the oblongness spectrum. Figure 7.2 shows the
location of the problems relatively the range of the oblongness values of their domains.

7.2 Complexity of On-Line Search
Some search domains are so easy that arbitrary prior knowledge cannot mislead the search
process completely. In such domains even Random Walk would easily find a goal. And this is
not a coincidence, as we relate the “hardness” of search domains to the complexity of Random
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Figure 7.2: Problems and their Oblongness Ranges.

Walk on these domains. Throughout this thesis we consider reversible domains, where each
action has an opposite (anti)-action. For the sake of simplicity, in this chapter we limit ourselves
to undirected graphs that represent problem domains.

Figure 7.3 demonstrate two extreme undirected graphs that are easy to search even without
prior knowledge - almost a complete graph and a caterpillar with a long stem and short branches.
Easiness of search in such domains comes from low cost of recovering from errors, in the former
case an agent is always close to the goal, in the latter case short branches allow the agent to
recover and come back to the stem in a relatively small number of steps. This is not accidental
that these two extreme cases are coupled together. For a Random Walk that chooses at random
any edge emanating from the current location, it takes 2 in average to reach the goal
from any starting vertex on these domains [52].

However, the expected time of reaching vertex from vertex in the lollipop graph
presented in Figure 7.4 is O 3 [52]. It shows that lollipop graphs and graphs with build-in
lollipopsmight be hard domain instances for on-line search. The value of the oblongness factor
for for the caterpillar is close to one, for the clique - 1 , for the lollipop graph - 1 2. These
domains also confirm the correctness of our oblongness hypothesis.

If one skips the heuristic update step in LRTA* algorithm (step 4 in Table 3.3) and heuris-
tic values are the same for all vertices (edges), such “circumsized” LRTA* would coincide
completely with Random Walk. Moreover, since in the beginning of on-line search the prob-
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Figure 7.3: Undirected Graphs that Are Easy for Search.
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Figure 7.4: A Lollipop Graph

lem domain is not known, first agent’s actions have to imitate Random Walk due to the limit
of agent’s knowledge about the domain, even according to more sophisticated on-line search
algorithms. However, efficient agent-centered search methods use memory to keep already
acquired knowledge about the domain, either completely or partially. The presence of such
knowledge forces the flow of on-line search to deviate from Random Walk.

However, since in its initial phase, on-line search is similar to Random Walk, it can be
useful to overview a related work on Random Walk in undirected graphs. In their work on
probabilistic algorithms [52], authors drew an analogy between a Random Walk on the graph
and the resistance of an electric scheme, where each unit edge is replaced by a unit resistor.
This is a nice example of cross-fertilization between the Probability and Electrical Network
Theories. We introduced the oblongness parameter in Section 7.1. In the nest section, we
overview the theory of Random Walk on undirected graphs to use it as an approximation of
the agent-centered search procedures, to justify the correctness of the chosen feature and of the
identified relation.

Since the variety of algorithmic strategies amenable to on-line search does not allow to
put all domain features under a common denominator, i.e. to relate exactly the complexity of
search with the shape of the domain for every possible on-line algorithm, we limit ourselves to
a more modest problem of the identification of relevant features and stating recommendation
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on choosing efficient search algorithms.

7.2.1 Resistive Networks
If every undirected edge of the graph is replaced by a unit resistor (see two examples in
Figure 7.5), then such an electrical scheme obeys Kirchhoff’s and Ohm’s Laws. Kirchhoff’s
Law interprets the electric current as an electric flow by stating that the sum of the currents
entering a node in the network equals the sum of emanating currents. Ohm’s Law regulates
voltages, resistances and currents by stating that the voltage across a resistance equals to the
product of the resistance and the current through it.

b

a

b

d

a

d

c c

1 1

11

1

1 1

11

Figure 7.5: Examples of Resistive Networks

If a current of one amper is injected into node in the left network example in Figure 7.5
and removed from node in this network, according to Kirchhoff’s and Ohm’s Laws: Half of
the ampere of the current flows through the path , and the other half ampere through
[52]. Interestingly, if we add an edge between nodes and , as shown in the right network of
Figure 7.5, there is no current along branch due to the symmetry of the network and equal
voltage levels at nodes and .

Effective Resistance: The effective resistance between any two nodes
and in a resistive network is the voltage difference between them when one amper
is injected into and removed from .

Network Resistance: The network resistance for an arbitrary undi-
rected graph is the maximum effective resistance for all pairs of nodes:

As the networks in Figure 7.5 show, an additional edge does not always reduce the resistance
of the network, although it never increase it. The opposite is also true: Removing an edge never
increases the resistance, although it may remain the same after the removal.
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The introduced “electrical” parameters can be utilized in establishing bounds for Random
Walk. If we define the commute time between two nodes and as the expected time
for Random Walk starting at to come back to after visiting at least once, the following
theorem ties the value of the commute time with the effective resistance [52]:

Theorem 7.1 For any two vertices and , the commute time 2 .

In on-line search an agent is supposed to reach the goal state. Since Random Walk is
not goal-directed (it only approximates on-line search on earlier search stages), we might be
interested in estimating the cover time – the expected time for Random Walk to visit all
nodes of graph including the goal node(s) [52]:

Theorem 7.2 2 3 ln .

The diameter of the graph determines the upper bound for the resistance, because the
effective resistance between nodes and is at most the distance between them .
Hence, for any pair of nodes and , the effective resistance is at most . Consequently,
the network resistance of the whole graph is at most . The cover time for such a
graph is thus ln .

7.2.2 Simplifying the Estimates
In Section 7.2.1 we showed that the expected time for Random Walk to visit all vertices of the
graph is ln , where is the diameter of the graph. The resistance of the network
was used to derive this upper bound. Since the actual resistance is often much better than the
diameter of the graph and this bound is asymptotically tight for dense graphs, for which the
network resistance is much lower than the diameter of the graph, for our purposes we will omit
the ln -factor.

We would like to simplify the situation even further. The cover time for Random Walk
has been shown to belong to the interval 2 3 ln . For a fixed
number of vertices , bigger number of edges implies lower expected resistance. This
is may not be true for particular graph instances, but in average the resistance of graphs with
bigger number of edges is lower than that of graphs with the same number of vertices and
smaller number of edges. Since the actual resistance varies for different graphs and is a
computationally-consuming parameter even for moderately sized graphs, for practical purposes
we introduced another feature – oblongness – that seem to capture the complexity of on-line
search.

The motivation of this feature is the following: Both the number of edges and the
resistance of the network grow linearly on the number of vertices for the same type
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of graphs. Therefore, to make an estimate scalable over domains of different size, we should
divide it by 2. Furthermore, for the simplicity reasons, we substitute the product
by , where is the diameter of the graph. The argument in favor of this substitution
is that more edges reduce both the resistance of the network and the diameter of the graph.
The presence of memory and the memorization process during on-line search improves the
efficiency of search algorithms in comparison with Random Walk. Thus, we have to re-caliber
the scale based on values of anyway. In our estimate we reflect this by changing

for , which is a fair substitute for regularly structured on-line search problem
domains. These simplifications imply exactly the definition of the oblongness parameter.

7.3 Estimating Complexity of Planning Problems
We were able to relate the complexity of specific search problem to the oblongness factor in
Section 7.2, because for many considered problems the domains had a regular structure, the
branching factor was within a certain interval, i.e. the number of available actions at every state
was approximately the same. Many planning problems demonstrate the same property, the
oblongness factor can be applied to them as well. However, for some planning problems, the
value of the branching factor depends on the stage of the planning process. For example, while
solving the -Queen problem, one can place the first Queen in any square of the chessboard.
The more Queens are committed to squares, the less variants are left for the remaining Queens.
Nonetheless, we would like to extend the relevance of the oblongness factor to such planning
problems too.

7.3.1 Using Oblongness to Compare Search Complexities

Thus, according to Section 7.2, we can compare the complexities of on-line search problems by
estimating the values of their oblongness parameters. We extend this comparison to planning
domains and illustrate it through comparing the -Queen and the “Mutilated” Checkerboard
problems. The domain of the -Queen problem contains 2 squares, where one is supposed
to place Queens. Hence, the size of the domain is roughly

0
2

In the above estimate we ignore symmetries and allow non-feasible partial solutions,because
some algorithms may use them too. The estimated length of the -Queen problem solution

is .
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The size of the “Mutilated” Checkerboard problem is approximately
1

2

0

To make the comparison fair,we count intersecting configurations for too. The estimated
length of the “Mutilated” Checkerboard problem solution is also . When these two
problems are considered for approximately the same size of the chessboard, for example ,
then is significantly bigger than , therefore 1

2. After the comparison of the oblongness values has been completed, we need
to place problems in a proper oblongness spectrum region. It is easier to perform such a
placing action for the “Mutilated” Checkerboard problem: is approximately a half of

0 2 .
Hence, if compared with the domains from Figure 7.2, the “Mutilated” Checkerboard

problem should be placed between the BlocksWorld and SAT. The -Queen problem should
be placed slightly further in the oblongness spectrum picture, between SAT and -puzzle.
Indeed, finding a solution for the -Queen problem is known to be a hard task, it was one of
the problems that stimulated the development of backtracking methods in AI.

In Chapter 7.2 we introduced the oblongness parameter and two threshold level that de-
termine the expected complexity of on-line search. First threshold level 1 can be defined
as containing problems with the diameters that are linear on some parameter and domains
of size !. Second level 2 determines the problems that are easy in navigating, although
their diameters are relatively large. For problems of this type, the diameter spans a big portion
of the domain. Thus, 2 can be defined as a constant close to one. For the problems with
the oblongness value below 1 or above 2, even non-monotone, non-admissible heuristics
could be utilized efficiently, if they provide at least some “guidance” towards the goal. For
domains with the oblongness values within the interval between 1 and 2, the “quality” of
heuristics is crucial, as it determines the efficiency of search algorithms.

We do not determine what the term “quality” means regarding heuristic values, because for
different approaches it can possess completely different meanings. For example, for off-line
search, the “quality” of the heuristic would mean how close the heuristic values are to the
goal distances. For on-line search, it is more important to have heuristic values balanced with
respect to guiding a physical or fictitious agent towards the goal. Furthermore, distinct on-line
search algorithms need different type of guidance. In our experiments with planar mazes we
found that the Manhattan distance is more misleading for LRTA* than the MAX(X,Y)-distance,
whereas for AC-A* algorithm it is exactly the opposite.

With respect to deterministic planning problems, we relate the complexity of building a
feasible plan with the expected length of the plan and the size of the planning domain. In
this estimate we assume that the length of the plan is of the same order as the diameter of the
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graph representing the planning domain. Thus, the search entropy is similar to the oblongness
parameter of search problem domains.

There exists another reason of splitting search problems into ones with the oblongness
value within the interval 1 2 and out of it. Polemics on the difference between human
reasoning and computer-oriented proofs, see for example [68, 63, 30], tend to place the strength
of human reasoning in either “easily” navigated, highly connected problem domains, where a
human does not need extensive modeling of all the contingencies and is able to recover from
making mistakes “en-route,” or heavily constrained domains with few branching points. The
domains of the intermediate type with a lot of branching and “costly” recovery from making
wrong decisions are amenable to computer-oriented search.

Another example of domains with highly variable oblongness comes from regulating de-
partmental schedules: The “secretarial” task of assigning conference rooms is easy in the case
when a department has an abundance of rooms. If there exists a unique room, this task can
be also resolved on the “first to come – first to serve” basis. When the number of conference
rooms does not easily satisfy the number of incoming requests, scheduling meetings becomes
a challenging task [7].

7.3.2 Using Oblongness in Agent-Centered Search

The classification of problem domains based on the value of their oblongness value has an
impact on the efficiency of agent-centered search. Recall, in agent-centered search a physical
or fictitious agent has limited lookahead, and agent’s actions form a continuous path through
the problem domain.

Several off-line planning problems have been solved by introducing a fictitious agent and
artificially limiting its lookahead by the immediate neighbors of the current state. Those
problems have common features: Their oblongness parameter lies near or slightly above the

1 boundary. The further the the value of the oblongness exceeds 1, the more necessity
is for careful selection of prior knowledge. Further increase of the oblongness leads to a
strict dependency of the efficiency of agent-centered search on the “quality” of the prior
knowledge guidance, unless the domain approaches the caterpillar-like shape with the value of
the oblongness being a constant close to one.

Thus, to estimate the efficiency of agent-centered search for a particular problem, one
should just figure out the oblongness factor of the problem domain. Based on such an estimate,
the need for better heuristics becomes urgent for moderately “oblong” domains. For off-line
problems of this type, standard non-agent-centered techniques of “teleporting,” rejecting partial
solutions and “island search” can be more efficient than applications of agent-centered guided
by skewed heuristic values.
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7.4 Promising Directions for Cross-Fertilization
In this section we consider both method-driven and problem-driven hybrid approaches and sug-
gest hints on building new successful examples of hybrid algorithms or untraditional application
across distinct disciplines.

7.4.1 Problem-Driven Cross-Fertilization
Recall that problem-driven type of the hybrid approach starts with the problem that one is
supposed to solve. This is, probably, the most realistic practical application of the hybrid
approach. According to the methodology presented in Chapter 1, in such a case one should
begin with identifying methods from different scientific areas that are relevant to the problem
under investigation. This phase is based solely on the experience of the researcher, we cannot
suggest valuable hints on selecting relevant methods besides trying to be creative and keeping
all methods that can somehow relate to the given task.

Given a particular problem, one is usually interested in the efficiency of its solution. Very
often different methods are focused on different types of efficiency, sometimes their foci
are contradicting. For example, reasonably risky algorithms can establish strong empirical
performance, but lose to more cautious ones in the worst-case. Even more risky procedures can
be sharply focused on specific problem domains and lose a lot when the domain is changed.
There also exists a difference between the complexity of deriving the solution and the complexity
of the solution itself. Some real-time algorithms can guarantee the convergence, but the
solutions that they construct may be much worse than ones obtained by more computationally
expensive procedures.

7.4.2 Hints on Building Hybrid Solutions
One of the possibilities for the hybrid approach is to combine methods with different efficiency
foci in a single hybrid framework. Usually “cautious” procedures that provide worst-case
guarantees, search the problem domain methodically without leaving a room for an uncontested
opportunity. They do it either by chopping off guaranteed portions of the domain or by repeating
certain steps.

A good opportunity for the Constructing Hybrid Algorithms phase is to relax one of such
“cautious” procedures. It can be done, for example, through mixing its steps with more risky,
more efficient in average (or for this type of problems) procedure by executing steps of the
“cautious” procedure every so often. In this case, it will still chop off guaranteed portions of
the domain, the described combination with another procedure would only offset its guarantees
by a constant. In other cases, a “cautious” procedure may contain an obvious or a hidden
parameter that can be relaxed to allow this procedure to be combined with another algorithm.
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This was exactly the case with designing VECA, where instead of immediate backtracking
we introduced parameter and allowed the algorithm to traverse edges repeatedly without
penalizing its actions until traversals.

In Chapter 7 we discussed the relation between some features of the problem domain and the
efficiency of search. We introduced oblongness as a simple feature of the domain that seems to
capture the search complexity. By estimating the value of this feature for a particular problem
domain, one gets a clear picture about the need in prior knowledge and the type of methods that
can be applied efficiently to solve this problem. Some off-line search or deterministic planning
problems can be solved effectively by agent-centered methods, i.e. by introducing a fictitious
agent with limited lookahead (for the efficiency purposes) and forming a continuous path to the
goal state through the problem domain. As we concluded in Chapter 7, such problem domains
should have either very low or very high values of their oblongness, or the heuristic values
should provide an excellent guidance towards the goal.

Another direction for the problem-driven hybrid approach is to combine some of the methods
amenable to the discussed with known strong methods from other Sciences that are not tradi-
tionally related to the problem. In the next section we overview some of such non-traditional
applications across different disciplines.

7.4.3 Method-Driven Hybrid Approach
Unlike the problem-driven hybrid approach, the method-driven approach starts from having
methods already selected. Although those methods may come from distinct Scientific areas,
can use very different vocabularies and even solve different problems, the intersection of their
task directions should hint multi-disciplinary researchers on applying them in a beneficial way.

Our experience shows that the more difference between those methods are, the more exciting
can the result of Classification or Constructing Hybrid Algorithms phases be. However,
bigger difference between the selected methods imply possibly much more work in Creating
the Environment and Analysis phases, success of which, in its turn, can result in a big payback
from the concluding Constructing Hybrid Algorithms phase.

In this section we present hybrid applications that involve two drastically different principles
from Mechanical Physics and Mathematics, namely the perpetual motion and Binary Division.
These principles belong to the basis of both disciplines. Nonetheless, hybrid applications that
include these principles, provide nice visual interpretations to otherwise cumbersome solutions.

Perpetual Motion

Even such a “non-computational” concept as the perpetual motion can be utilized in the hybrid
approach. We introduce a geometrical problem that seems not to relate directly neither to
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Physics, nor to Mechanics. However, a simple and nice reduction to the perpetual motion
elegantly establishes the desired property.

Consider a convex 3D polyhedron. Every internal point may be projected either onto the 2D
face of the polyhedron or on the extension of the face. Figure 7.6 shows a 2D slice containing
the point in the case when the projection is located on the extension of the polyhedron’s face.

Definition 2 Internal point of a convex polyhedron is stable, if there exists a face of the
polyhedron, such that this point is projected onto this face.

Theorem 7.3 All internal points of a convex 3D polyhedron are stable.

Proof: Suppose that there exists a point, which is not stable. Make a firm model of the
polyhedron with the mass center at the point under investigation. Put this model on an even
surface. If none of the projections of this point get onto a face of the polyhedron, such a model
would perform the perpetual motion over the surface, which is not possible.

M

Proj(M)

Figure 7.6: Projection of the Mass Center on the Face of a Polyhedron

Binary Division in Evaluating Sums of Two Arrays

Binary Division is another simple, but powerful principle that can be easily overlooked in
designing optimal algorithms. In this section we describe applications of Binary Division in
two optimal algorithms solving the Two Array Sums problem and Random Access Memory
(RAM) troubleshooting. Recall, Binary Division uses the minimum number of binary queries
to select the desired element out of a set with complete order.
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Two Array Sums Problem: For how many pairs of indices the relation
holds, where and are two equi-sized arrays of real

(not necessarily positive) numbers.

If we denote the size of arrays as , the number of pairs of indices is 1 2. The
brute-force solution that accounts all such pairs would have a quadratic complexity. However,
an application of Binary Division cuts down the complexity of the Two Array Sums problem
to log , as the following theorem shows:

Theorem 7.4 The worst-case complexity of the Two Array Sums problem is log .

Proof: Consider third array of the same size , which is the difference of and :
1 . With the help of array we reduce the two-array problem

to a single array problem, since implies ,
which in its turn implies 0.

With array we perform the following counting procedure:

1. Sort all elements of array .

2. Apply Binary Division for each 1 to determine – the number of indices ,
so that .

3. Sum up 1 .

Steps 1-3 require only log 1 – the complexity of step 1 (sorting) and step 2 ( Binary
Divisions).

Within the same counting procedure, we accomplished even more than promised: For every
fixed index 1 , we counted the number of indices , so that 0, which is
equivalent to .

To prove that log is tight, we reduce the Two Array Sums problem to sorting: If we
set 1 so that negative elements are alternating with the negations of positive
ones, and positive elements are alternating with the negations of negative ones (for example,

2 2 2 2 1 3 2 3 2 1 ), then counting the number of indices
satisfying 0 for every 1 is equivalent to sorting the array , because
for every fixed index this number is different and corresponds to the order of this element in
the array.

1Moreover, all steps can be parallelized, the same procedure can be performed in log time by
processors.
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Binary Division in RAM Troubleshooting

Random Access Memory (RAM) became an essential part of the hardware design. Higher
degree of integration allows to place larger memory configuration on the same physical space.
However, closer placement of memory transistors make them vulnerable to affecting each other,
thus destroying information that memory cells are supposed to keep. Typical memory faults on
the cell level are:

Inability of a particular cell to store a low or high level (0/1 bits).

Pairwise influence of memory cells.

Hence, for RAM troubleshooting one is supposed to check that both low (0) and high (1)
levels can be written to and read from every cell, that all four combinations of low and high
levels can be written to and read from all possible pair of cells, since a particular layout of
the chip can place distant memory cells (in terms of the address space) as physical neighbors.
Second requirement seems like demanding a lot of writing and reading tests. However, we
show that an application of Binary Division can significantly cut down the amount of writes
and reads. We show that for the simplest case of register memory that can be easily generalized
for arbitrary RAM configurations.

Theorem 7.5 Troubleshooting registers requires O log writes and reads.

Proof: We assume that all registers can be accessed simultaneously, i.e. in a single write
we can attempt to change values of any of them, during a single read we get stored information
from all registers. Figure 7.7 illustrates an application of Binary Division to troubleshooting

registers. Exactly 2 log 1 writes and reads are needed to check whether all pairs
of registers can store all possible pairs of low and high levels, during the last two write/read
tests, all but two cells can be assigned arbitrary values (highlighted in golden color). Thus, the
complexity of troubleshooting registers is O log .

7.5 Summary
In this chapter we considered the efficiency of solving search and planning problems and
attempted to relate some features of the problem domains with the complexity of on-line
search. We argued that the complexity of on-line search in a certain sense is similar to random
walk, we linked our new introduced parameter with relevant on-line search techniques of
different nature. These facts allowed us to bring already developed theory about the expected
complexity of random walk and confirm the correctness of the novel feature.



7.5. SUMMARY 121

Figure 7.7: Troubleshooting registers

We went through a sequence of simplifications, because we wanted to consider problems
of different sizes, and, hence, to come up with a parameter that could be easily calculated in
order to estimate the expected complexity of on-line search problems. Since search methods
are very different in their nature, and the dependency of their efficiency on heuristic values
varies from one method to another, we were interested only in approximate estimates. Such
an estimation is expected to result in recommendations on method selection, whether to spend
an extra effort on coming up with “high-quality” heuristics or acquiring more prior knowledge
about the domain, on setting up internal parameters of search procedures, etc.

We found that the oblongness parameter captures well the complexity of search. It is a
simple parameter of the problem domain that splits the domains into three categories. According
to two threshold levels 1 and 2, problems with the values of the oblongness between these
levels are complicated search problems that require prior knowledge with strong guidance
towards the goal(s). On the other hand, problems with the values of the oblongness outside the
interval 1 2 can rely efficiently on heuristic values even with a “weak” guidance. For
problems of this kind, even a non-monotone, non-admissible heuristic that reflect “common
sense” for distantly related types of problems is likely to guide the search process efficiently.

In Section 7.4 of this chapter we considered both the problem-driven and method-driven
hybrid approaches and stated a series of hints on building successful hybrid applications.
Besides providing various examples of untraditional interdisciplinary applications that involve
basic principles from distinct areas of Science, this chapter also states suggestions on how one
can actually build hybrid algorithms, and how to utilize the results from Chapter 7 and attack
on-line/off-line search/planning problems by agent-centered methods.
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Chapter 8

Conclusions

In this thesis work we introduced the methodology of the inter-disciplinary hybrid approaches
to solving various groups of problems from different areas of Sciences. We focused the de-
velopment specifically on hybrid algorithms between Artificial Intelligence, CS theory and
Operations Research. Such an approach enabled us to achieve the mutual enrichment and
better understanding of many efficient methods that can be applied across distinct disciplines.
Enlightened by new vision that comes from multi-facet consideration, we were able to solved
several open problems by improving the worst-case and/or average-case (empirical) complex-
ities, in some cases we performed competitive analysis and concluded with the directions of
beneficial using known techniques.

Two methods of deriving upper bounds for the values of combinatorial optimization problem
solutions – the Pigeonhole Principle and Linear Programming Relaxation – appear to have the
same bounding power. Whatever established by either of them, can be derived by the other
one. Moreover, these two methods are dual to each other in the sense of Linear Programming.
Nonetheless, traditional applications of the Pigeonhole Principle carry more intuitive sense and
indicate whether the upper bound is tight, whereas Integer Programming Relaxation can be
applied automatically to any instance of Integer Programming problem. The latter approach
provides an alternative way of solving combinatorial optimization problems.

For the goal-directed exploration problem we proposed a new systematic, application-
independent framework, called VECA. VECA can accommodate a wide variety of exploitation
strategies that use heuristic knowledge to guide the search towards a goal state. VECA monitors
whether the heuristic-driven exploitation algorithm appears to perform poorly on some part of
the state space. If so, VECA forces the exploitation algorithm to explore the state space
more. This way VECA combines the advantages of both pure exploration approaches and
heuristic-driven exploitation approaches: It is able to utilize heuristic knowledge, but, as
opposed to existing heuristic-driven exploitation algorithms, it provides a good performance
guarantee: Its worst-case performance over all state spaces of the same size – no matter how
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misleading the heuristic knowledge is – cannot be worse than that of the best uninformed
goal-directed exploration algorithm. Thus, VECA provides better performance guarantees than
previously studied goal-directed exploration algorithms, such as the AC-A* algorithm. Our
experiments showed that this guarantee does not come at the cost of a deterioration in average-
case performance for many previously studied exploitation algorithms: In many cases when
used in VECA, their performance even improved.

I considered future work throughout the thesis, the concentration of hints and ideas to be
discussed in future can be easily found in Chapter 7 on further insights into on-line complexity.
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