
ASET: Representing Indeterminate Durative Tasks for Symbolic Fault Tolerant
Planning in Multi-Agent Domains∗

Rune M. Jensen, Manuela M. Veloso,and Sergey Shchukin
Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA 15213-3891, USA

Abstract

In this paper, we introduce a novel planning domain repre-
sentation called ASynchronous Evolving Tasks (ASET). The
main contribution of ASET is a representation of temporally
extended tasks that may be non-deterministic both with re-
spect to duration and effects. Like NADL, ASET represents
metric domain knowledge as state variables and explicitly
models the environment as a set of uncontrollable agents. We
formally define ASET descriptions and their transformation
to a non-deterministic planning domain. Using a Boolean
encoding of this transformation, ASET planning problems
can be solved efficiently using state-of-the-art symbolic non-
deterministic planning systems. In particular, we show howto
augment an ASET description to generate fault tolerant plans
via the strong planning algorithm.

Introduction
Real-world planning is often considered a two dimensional
challenge: we need powerful planning algorithms to scale
to the massive problems frequently encountered in practice,
and we need rich domain representations to capture the mul-
tifaceted nature of real scenarios. There is also, however,
a third dimension which is tointegrate planning and exe-
cution. This problem has been addressed by execution lan-
guages for autonomous agents like robots with limited world
state knowledge and short perceptual horizons (Georgeff &
Lansky 1986; Firby 1989; Simmons 1994). The focus in
this work has been on reacting to unexpected events while
overall acting deliberatively. Another aspect is to use the
planning and execution cycle tolearn domain knowledge
and adapt the planning domain to the execution environ-
ment. This is relevant for autonomous agents, but seems
particularly important for application areas in logistics, man-
ufacturing, and scheduling that often are characterized bya
large amount of domain knowledge that is costly to main-
tain (Sabin & Weigel 1998). Previous work in this direc-
tion is sparse, but includes the prodigy project (Wang 1994;

∗This research is sponsored by BBNT Solutions, LLC under
contract no. FA8760-04-C-0002 with the US Air Force. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the
sponsoring institutions, the U.S. Government or any other entity.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Yolanda 1992) and Haigh’s work on the Xavier robot (Haigh
& Veloso 1998).

The goal of our research is to investigatedomain model
adaptationin a closed-loop planning and execution frame-
work. The main difference between our approach and the
previous work mentioned above is that we depart from clas-
sical deterministic planning and instead base our work on a
novel planning domain representation that combines tempo-
ral and non-deterministic planning. This domain representa-
tion is the focus of the present paper.

The planning problems, we are interested in, can be illus-
trated by the following scenario. A manager is in charge of
a set of workers, but also observes a set of customers that
the manager is unable to control. The manager sits behind
a screen showing the current state of the world and is con-
nected to the workers by a telephone. Each customer and
worker is always in a state of activity executing some task.
When a worker finishes a task, the worker calls the manager.
It is then the manager’s responsibility to give the worker a
new task. The manager does this by taking a careful look
at the screen and observing the activities of both workers
and customers. Since the manager has a good idea about the
nature of the tasks of both customers and workers, the man-
ager assumes that it only is necessary to take action when
the phone rings.

We believe that this scenario captures a wide range of
real-world planning problems where some planning unit (the
manager) has gathered all world information necessary to
plan successfully (or at least assumes it has done so) and re-
lies heavily on models of the activities, it must deal with to
avoid getting overloaded by micro managing.

It may be claimed that the manager is facing a planning
problem with a natural representation in one of the current
planning languages. To our best knowledge, this is not the
case. There are several difficulties.

1. The manager only has a “good idea” about how tasks may
evolve. Exactly how they evolve is uncertain and leads
to non-determinism both with respect to duration and ef-
fects. Further, there are uncontrollable activities carried
out by customers.

2. Any time the phone rings, the manager takes a look at the
screen and observes the state of the world. No information
is hidden by workers or customers even if they are in the

process of changing this information.
The first point requires a domain representation with du-
rative non-deterministic actions. However, temporal plan-
ning languages have deterministic actions e.g. (Fox & Long
2003; Bacchus & Ady 2001; Laborie & Ghallab 1995) and
non-deterministic planning languages do not consider du-
rative actions e.g. (Piergiorgioet al. 2002; Giunchiglia,
Kartha, & Lifschitz 1997; Jensen & Veloso 2000). The
second point addresses a general problem of augmenting
first order logic with time for temporal planning. This of-
ten leads to information “holes” (Bacchus & Ady 2001;
Fox & Long 2003) caused by concurrent actions hiding the
state of domain knowledge they are currently changing.

It may also be claimed that the manager has misunder-
stood the situation and should decompose the tasks into start
and stop event actions. This, however, conflicts with the
model of control. The manager is not able to stop tasks in
the middle of their execution. A task is uninteruptable.

To model these domains, we have developed an action
representation called Evolving Tasks (ETs). ETs are, as far
as we know, the first action representation that can represent
temporally extended activities which are non-deterministic
both with respect to duration and effect. ETs are repre-
sented by unit time transition systems. They further define
the value of the state variables they effect at every time point.
This solves the problem mentioned under point two above.
The explicit representation of time and intermediate states
of ETs also address another requirement to our task repre-
sentation: it must be easy to access for humans participating
in the model adaptation process. To this end ETs can be
represented visually as graphs.

We consider multi-agent planning domains where each
agent is defined by a set of ETs it can apply. We call
these ASynchronous Evolving Tasks (ASET). Like NADL
(Jensen & Veloso 2000), ASET explicitly model the envi-
ronment as a set of uncontrollable agents (the customers).

In this paper, we formally define an ASET description and
its low-level semantics (unit time transition graph) and high-
level semantics (decision graph). The decision graph is a
non-deterministic planning domain which allows us to de-
fine solutions to ASET planning problems as strong, strong
cyclic, and weak plans (Cimattiet al. 2003). These plans
can be efficiently generated by state-of-the-art symbolic
non-deterministic planning systems (Cimattiet al. 2003;
Jensen, Veloso, & Bryant 2003). To this end, we define a
Boolean encoding of the unit time transition graph and a
transformation of this representation into a Boolean encod-
ing of the decision graph based on iterative squaring (Burch,
Clarke, & McMillan 1990).

A major motivation for transforming an ASET description
into a non-deterministic planning domain is to generate fault
tolerant plans for ASET planning problems (Jensen, Veloso,
& Bryant 2004). Fault tolerant planning is an alternative
approach to probabilistic planning, where a plan with high
probability of success is expressed as a plan with high level
of tolerance for failures occurring during execution. Thisno-
tion of fault tolerance is well-known from engineering and
control theory and in contrast to probabilistic plans, fault
tolerant plans bypass a complex manipulation of transition

probabilities. We show how to augment an ASET descrip-
tion to obtain a fault tolerant planning domain such that fault
tolerant plans can be generated via the strong planning algo-
rithm.

The remainder of the paper is organized as follows. We
first define ASET descriptions and discuss how they re-
late to other planning domain representations. We then
present the unit time transition graph of an ASET descrip-
tion and its Boolean encoding and show how to transform
the unit time transition graph into a decision graph which
is a non-deterministic planning domain. The following
section briefly reminds about the definition of strong non-
deterministic plans and shows how to represent fault toler-
ant planning domains in ASET. Finally, we conclude and
discuss plans for future work.

ASET Descriptions
An ASET description consists of aglobal clockwith a fi-
nite domain of discrete integer time points, a disjoint set of
system and environmentstate variableswith finite domains,
and a description ofsystemandenvironment agents.

The state variables can bemetric with finite integer do-
mains,Boolean, or enumerationswith finite domains. The
usual arithmetic and relational operations can be carried out
on metric variables. The set of state variable assignments
defines the state space of the world.

An agent’s description is a set oftasks. The agents change
the state of the world by executing tasks. Each agent is al-
ways in a state of activity executing some task. The agents
are asynchronous, they may start and stop tasks at different
time-points. The system agents model the behavior of the
agents controllable by the planner, while the environment
agents model the uncontrollable world. To ensure indepen-
dence of the system and environment agents, they affect a
disjoint set of state variables. Their tasks, however, may de-
pend on the complete state of the world.

A task has two parts: a set ofstate variablesthat the task
modifies and a set ofunit time transitionsthat defines how
the task evolves. Intuitively, the task is responsible of as-
signing new values to the variables it modifies. It further has
exclusive access to the modified variables, no other concur-
rent task can modify these variables as long as it is active.
Each agent is associated with a finite set of execution states.
These states are shared between the tasks of the agent and
define the transition states of the tasks. Each set of execu-
tion states has a specialidle state. A task is a transition sys-
tem where each transition has unit time duration. The out-
going transitions from the idle state are taken when a task
starts. The incoming transitions to the idle state are taken
when the task stops. The remaining transitions of a task
form a directed acyclic graph on the execution states caus-
ing all execution paths of the task to be finite. Each transi-
tion isguarded. The guard is an expression on the complete
state. This may include the current task and execution state
of any agent as well as the current value of any state variable.
The transition is only enabled if the guard expression is sat-
isfied. This allows rich behavior models including strong
synchronization schemes with other tasks. The effect of the
transition is given as an expression on the state variables it

modifies and its execution state. If this expression holds for
several assignments, one of these is non-deterministically
chosen as the effect of the transition. In this way, tasks are
non-deterministic both with respect to duration and effect
on modified variables. Notice that there is no need for an
explicit precondition. The precondition of a task is the dis-
junction of the guards of outgoing transitions from the idle
state.

Time advances in discrete integer time points. In each
unit time step, the currently active tasks perform a unit time
transition. Variables not modified by any task maintain their
value. The resulting unit time transition graph willblock if
no transition is enabled for some task.

Example 1 Chris and Kim are cave divers. Chris is initially
at the cave bottom at a depth of 20 yards with three units
of oxygen and mustsurfacebefore running out of oxygen.
Kim is initially at the surface and can eitherwait one minute
at the surface ordive for two minutes. The cave has a dif-
ficult passage at a depth of 10 yards. Chris’ surface swim
is non-deterministic, both with respect to time and amount
of oxygen consumed. It may either take one or two min-
utes. If no problems are encountered, it takes one minute
and two gallons of oxygen is consumed. Otherwise, it takes
two minutes, and two gallons of oxygen is consumed in the
first minute and either one or two gallons is consumed in the
second minute. The Initial situation is shown in Figure 1(a).

Chris

Kim

D
ifficult

p
assag

e
10

0

(b)(a)

variables

system

chris

surface (S)

clock [0..2]

ox [−1..3]

kim

dive (D) wait (W)

I q I

1

2

3

4

o
x
’

=

o
x
−
2

o
x

=

3

o
x
’

=

o
x
−
2

ox
’
=
ox
−1

ox
’
=
ox
−2

ox
 =
 3

Oxygen consumption

I

I

I

I

p

10 200

Distance

20

Figure 1: Initial situation (a) and ASET description (b) of
the diver domain.

An ASET description of this scenario is shown in Fig-
ure 1(b). The domain of the clock is{0, . . . , 2} and there is
a single state variableox with domain{−1, 0, . . . , 3} rep-
resenting the amount of oxygen Chris has left. To simplify
the presentation, we do not include state variables represent-
ing the position of Chris and Kim, but it is straight forward
to extend the example to include these. Chris and Kim are
assumed to be controllable system agents. The execution
states associated with Chris and Kim are{I, p} and{I, q},
respectively. The idle state is markedI. The guard and ef-
fect expression of a transition is written above and below
the transition arrow, respectively. To represent conditional
effects, unprimed variables refer to the current state of the
transition while primed variables refer to the next state. As
for the surface task, it may be helpful to use several copies
of the idle state, but each of these copies represents the same
idle state.

Notice that different formats of the task descriptions are
used to emphasize their meaning. For Chris’ surface task,
we choose to show the relation between traveled distance
and oxygen consumption, while automata models are more
appropriate for Kim’s simple wait and dive tasks.

Figure 2 shows the eight different ways the scenario can
evolve from the initial state. It can be seen, however, that
no matter how tasks are chosen for Chris and Kim, it cannot
be guaranteed that Chris has oxygen left when reaching the
surface. In non-deterministic planning terms, we say that
there is nostrongplan for reaching the goal. This will be
clarified in the following sections. 3

−1

0 1 2

Chris

Kim

3

−1

2

ox

Chris

Kim

3

−1

0 1 2

ox

Chris

Kim

3

−1

0 1 2

ox

Chris

Kim

3

−1

0 1 2

ox

Chris

Kim

divewait

surface

dive

surface

wait

surface

wait dive

surface

wait wait

3

−1

0 2

ox

Chris

Kim wait

surface

3

−1

0 1 2

ox

Chris

Kim

surface

dive

3

0 1 2

Chris

Kim

surface

dive

−1

3
ox

0

surface

1

wait

1

ox

time

time

time

time

time

time

time

time

Figure 2: Eight possible evolutions of the diver scenario.

Formally, a ASET description is defined as follows.

Definition 1 (ASET Description) An ASET description is
a tupleM = 〈C, V, E, T 〉, where

C is a finite domain of a global clock C =
{0, 1, . . . , cmax},

V is a finite domain ofns system state variablesand
ne environment state variablesV = V s × V e where
V x =

∏nx

i=1 V x
i for x ∈ {s, e},

E is a finiteexecution spaceof ms > 0 system agents
andme ≥ 0 environment agentseach associated with
a set of execution statesE = Es × Ee whereEx =
∏mx

i=1 Ex
i for x ∈ {s, e}. Each set of execution states

includes a special idle stateEx
i ⊇ {idle} for x ∈

{s, e} andi = 1 . . mx, and
T is a finite task spaceof a non-empty set of tasks as-

sociated with each agentT =
∏ms

i=1 T s
i ×

∏me

i=1 T e
i .

Each taskt ∈ T x
k is a pair〈Mx

t , Rx
t 〉, where

Mx
t is a set of indices of state variables modified

by the taskMx
t ⊆ {1, . . . , nx}, and

Rx
t is a set of guarded unit time execution transi-

tions of the task defining how modified vari-
ables are changed while the task is active
Rx

t ⊆ C × V × E × T ×
∏

i∈Mx
t

V x
i × Ex

k .

Compared with the durative action descriptions of
PDDL2.1, TLplan, and IxTeT (Fox & Long 2003; Bacchus
& Ady 2001; Laborie & Ghallab 1995), the most signifi-
cant difference of ASET descriptions is that tasks are du-
rative and non-deterministic. None of the above domain
descriptions consider non-deterministic actions. Actually,
we are not aware of any planning language with tempo-
rally extended and non-deterministic actions. Another im-
portant difference between ASET and the domain descrip-
tions above is the use of state variables. This provides metric
values, but so has PDDL2.1. What is probably more impor-
tant is that our state variables are defined at every time point
like state variables in physics and control theory (Cassan-
dras & Lafortune 1999). When augmenting first order logic
with time and preserving the precondition and effect notions
from classical planning, domain knowledge may only exist
at certain time points. An important exception from this,
however, are the continuous durative actions of PDDL2.1.
For these actions, update functions are provided to define
the change of metric information. This approach, however,
is not as general as ETs.

Another challenge for durative actions in the classical
precondition-effect format is how to handle conditional ef-
fects. The problem is that conditional effects require infor-
mation to be transfered from the state the action is being ap-
plied in, to the state the action is completed in. These states,
however, may not be adjacent in the planning domain. The
problem can be solved by introducing memory propositions
(Fox & Long 2003) or instantaneous effects of actions (Bac-
chus & Ady 2001). For ETs the problem is solved explicitly,
since conditional effects can be defined for each unit time
transition as shown in the diver example.

An important issue to address when introducing concur-
rent tasks is synergetic effects between simultaneously ex-

ecuting tasks (Lingard & Richards 1998). A common ex-
ample of destructive synergetic effects is when two or more
tasks require exclusive use of a single resource or when two
tasks have inconsistent effects likepos ′ = 3 andpos ′ = 2.

Like actions in NADL, ASET tasks cannot be performed
concurrently in the following two conditions: 1) they have
inconsistent effects, or 2) they modify an overlapping set of
state variables. The first condition is due to the fact that
state knowledge is expressed in a monotonic logic that can-
not represent inconsistent knowledge. The second condition
addresses the problem of sharing resources. Consider for
example two agents trying to drink the same glass of wa-
ter. If only the first condition defined interfering tasks, both
agents could simultaneously empty the glass, as the effect
glass empty of the two tasks would be consistent. With the
second condition added, these tasks are interfering and can-
not be performed concurrently.

We have chosen this definition of task interference due
to our positive experience with it in NADL. There are, how-
ever, several issues to address. First, we need to show how to
encode synergetic activity strong enough to solve Gelfond’s
soup problem (Gelfond, Lifschitz, & Rabinov 1991). The
problem is to lift a soup bowl without spilling the soup. Two
actions, lift left and lift right, can be applied to the bowl.If
either is applied on its own the soup will spill, but if they are
applied simultaneously then the bowl is raised from the ta-
ble and no soup spills. The problem is that we cannot model
the state of the soup bowl in ASET using just one state vari-
able, since two concurrent lift tasks then would be unable
to access that state variable. We can, however, represent
such synergetic activity by letting the state of the bowl be-
ing expressed by several state variables. If we introduce two
Boolean variablesforce left and force right the different
states of the bowl can be represented by

onGround = ¬force left ∧ ¬force right ,

spill = force left XOR force right ,

lift = force left ∧ force right .

Second, we need to address how to handle state variables
that represent shared resources. In (Bacchus & Ady 2001)
an example of a gas station with 6 refueling bays is given.
If this resource is represented by a single state variable in
ASET, we once more face the problem of at most one task
accessing the resource. Again, we can solve the problem
by using several state variables (e.g., a Boolean variable for
each refueling bay).

ASET Unit Time Transition Graphs
In order to transform an ASET description into a non-
deterministic planning domain, we first compute itsunit time
transition graph. The unit time transition graph is a tran-
sition system that represents the combined effect of active
tasks. As the name suggests, each transition in the unit time
transition graph advances the clock one time unit. There
is not, however, necessarily a planning decision associated
with each transition. It is only when one or more tasks of
controllable system agents terminate that there is a choice

for the planner of which new tasks to start. We call such
statesdecision states.

Example 2 Consider again the diver domain described in
Example 1. The initial state and goal states is not a part of
a ASET description, but we assume thatox = 3 in the ini-
tial state and the goal is to reach a state where Chris reaches
the surface before running out of oxygen. Figure 3 shows
the part of the unit time transition graph that can be reached
from the initial state. Each state is represented by a tripleand
a pair(ox , eChris , tChris) and(eKim , tKim), whereox is the
value of theox state variable, ande andt are the execution
state and current task of Chris and Kim. In the initial state,
we choosesurfaceandwait as dummy idle tasks. There are
boxes around the goal states (i.e. states where Chris has sur-
faced successfully). Each of these are decision states. Ad-
ditional decision states are marked by ellipses. Each path in
the graph corresponds to one of the eight scenarios shown in
Figure 2. 3

(1,p,S)(I,W)

(1,I,S)(q,D)

(1,p,S)(q,D)

(1,I,S)(I,W)

(−1,I,S)(I,W)

(0,I,S)(I,W)

(3,I,S)(I,W)

(0,I,S)(q,D)

(−1,I,S)(q,D)

(0,I,S)(I,D)

10 2 Clock

(−1,I,S)(I,D)

Figure 3: Unit time transition graph of the diver domain.

For an ASET descriptionM = 〈C, V, E, T 〉, let NC
denote non-conflicting tasks of system and environment
agents. We have, NC= NCs × NCe, where NCx =
{〈t1, . . . , tmx

〉 ∈ T x : Mx
ti

∩ Mx
tj

= ∅ for i 6= j}. We
can now define the unit time transition graph of an ASET
description as follows.

Definition 2 (Unit Time Transition Graph) A unit time
transition graph of an ASET descriptionM = 〈C, V, E, T 〉
is a transition systemT = 〈ST , RT 〉, where

ST is a finite set of statesST = C × V × E × NC, and
RT is a transition relationRT ⊆ ST × ST .

For

s = 〈c, vs
1..ns , ve

1..ne , es
1..ms , ee

1..me, ts1..ms , te1..me〉

s′ = 〈c′, v′s1..ns , v′e1..ne , e′s1..ms , e′e1..me, t′s1..ms , t′e1..me〉

We have〈s, s′〉 ∈ RT iff

1. Running tasks transition,

〈s, v′xp(1)..p(nx

t′x
i

), e
′x
i 〉 ∈ Rx

t′x
i

for x ∈ {s, e}, i = 1 . . mx,

whereMx
t = {p(1), . . . , p(nx

t)}.

2. Non-idle tasks continue,

(ex
i 6= idle) ⇒ (t′xi = txi) for x ∈ {s, e} and i = 1 . . mx.

3. Unmodified variables maintain their value, and

v′xi = vx
i for x ∈ {s, e} and i ∈ {1, . . . , mx} \ M,

whereM =
⋃mx

j=1 Mx
t′x
j

.

4. Time advances.
c′ = c + 1.

In order to use symbolic non-deterministic planners to
solve ASET planning problems, we need a Boolean encod-
ing of unit time transition graphs. This is achieved by defin-
ing thecharacteristicfunction of the set of state pairs inRT

of the unit time transition graph. Let~s and~s′ be two vectors
of Boolean variables representing the current and next state
of a unit time transition graph, where

~s = 〈~c, ~vs
1..ns , ~ve

1..ne , ~es
1..ms , ~ee

1..me,~ts1..ms ,~te1..me〉,

~s′ = 〈~c′, ~v′s1..ns , ~v′e1..ne , ~e′s1..ms , ~e′e1..me,~t′s1..ms ,~t′e1..me〉.

Our goal is to define a Boolean functionRT (~s,~s′) that is
true iff the variables of~s and~s′ are assigned values corre-
sponding to a transition inRT . For an ASET description
M = 〈C, V, E, T 〉, let ri represent requirementi of Defini-
tion 2

rx
1 =

mx

∧

i=1

∧

t∈T x
i

[

(~t′xi = t) ⇒ Rx
t (~s,~v′xp(1)..p(nx

t
), ~e

′x
i)

]

,

rx
2 =

mx

∧

i=1

[

(~ex
i 6= idle) ⇒ (~t′xi = ~txi)

]

,

rx
3 =

nx

∧

i=1

[

(
mx

∧

j=1

∧

t∈T x
j

(i)

~t′xj 6= t) ⇒ (~v′xi = ~vx
i)

]

,

r4 = ~t′ = ~t + 1,

whereMx
t = {p(1), . . . , p(nx

t)}, Rx
t (~s,~v′x

p(1)..p(nx
t
), ~e

′x
i) is

the characteristic function of the set of tuples inRx
t , and

T x
j (i) = {t ∈ T x

j : i ∈ Mx
t }.

Further, letNCdenote the non-conflicting tasks

NC x =
∧

i ∈ D1

j ∈ D2

∧

t1 ∈ T x
i

t2 ∈ T x
j

[Dx
t1
∩ Dx

t2
= ∅ ⇒

¬(~txi = t1 ∧ ~txj = t2)

]

.

whereD1 = {1, . . . , mx} andD2 = {1, . . . , mx} \ {i}.

We then have

RT (~s,~s′) = r4 ∧
∧

x∈{s,e}

rx
1 ∧ rx

2 ∧ rx
3 ∧ NC x.

ASET Decision Graphs
We now consider how to transform the unit time transition
graph of a ASET description into a non-deterministic plan-
ning domain that we can solve efficiently with a state-of-the-
art symbolic non-deterministic planning system. The non-
deterministic planning domains used by these systems are
a generalization of classical deterministic planning domains
where the effect of an action applied in some state is mod-
eled by a non-deterministic choice from a set of possible
next states.

Definition 3 (Non-Deterministic Planning Domain) A
non-deterministic planning domain is a tuple〈S, A, R〉
whereS is a finite set of states,A is a finite set of actions,
and R ⊆ S × A × S is a non-deterministic transition
relation of action effects.

A unit time transition graph is transformed into a non-
deterministic planning domain by removing states where no
planning decision can be made. As mentioned in previous
section, a planning decision can be made in states where
the task of one or more controllable agents is idle. LetDT

denote thesedecision statesof a unit time transition graph
T = 〈ST , RT 〉. We haveDT = {〈. . . , es

1..ms , . . .〉 ∈ ST :
es

i = idle for some1 ≤ i ≤ ms}.
The non-deterministic planning domain of an ASET de-

scription, however, also needs to includeblocking states
where some task is unable to transition. Without including
these states we may get an incorrect model that hides the fact
that some decision may lead to a dead end (e.g., causing two
tasks to “wait” on each other). LetBT denote the blocking
states of a unit time transition graphT = 〈ST , RT 〉. We
haveBT = {s ∈ ST : 〈s, s′〉 /∈ RT for all s′ ∈ ST }.

The non-deterministic planing domain associated with an
ASET description is called adecision graph. Each transition
in the decision graph corresponds to a path between decision
states and blocking states in the unit time transition graph.
For a set of statesQ and a transition relationU ⊆ Q ×
Q a path of lengthk from v to w is a sequence of states
q0q1 · · · qk such that(qi, qi+1) ∈ U for i = 0, . . . , k− 1 and
v = s0 andw = sk. We can now define the decision graph
as follows.

Definition 4 (ASET Decision Graph) Given an ASET de-
scription M = 〈C, V, E, T 〉 and a unit time transition
graph T = 〈ST , RT 〉 of M, an ASET decision graph of
M is a non-deterministic planning domainD = 〈S, A, R〉,
where

S is the union of the decision and blocking statesS =
DT ∪ BT ,

A is a finite set of actionsA = 2T s

, and
R is a transition relationR ⊆ S × A × S.

For

s = 〈c, vs
1..ns , ve

1..ne , es
1..ms , ee

1..me, ts1..ms , te1..me〉

s′ = 〈c′, v′s1..ns , v′e1..ne , e′s1..ms , e′e1..me, t′s1..ms , t′e1..me〉

We have〈s, a, s′〉 ∈ R iff

• there exists a paths0 · · · sk in RT betweens = s0 and
s′ = sk not visiting other states inS (si /∈ S for i =
1, . . . , k − 1), and

• the actiona is the set of system tasks started ins (a =
⋃

es
i
=idle{t

′s
i }).

If 〈s, a, s′〉 is a transition in a decision graph, the current
states is a decision state and the next states′ is the first
decision state or blocking state reached by some path from
s when starting the tasks defined bya in the current states.

Example 3 Figure 4 shows the decision graph of the unit
time transition graph of the diver domain shown in Figure 3.
Again, we only consider the subset of transitions reachable
from the initial state. The decision graph has only one state
less than the unit time transition graph. The reason is that
the diver example for sake of presentation only has tasks
with short duration. For more realistic domains, where most
tasks will have longer duration, a much larger fraction of
states will be abstracted away.

(1,p,S)(I,W)

(1,I,S)(q,D)

(1,I,S)(I,W)

(−1,I,S)(I,W)

(0,I,S)(I,W)

(3,I,S)(I,W)

(0,I,S)(q,D)

(−1,I,S)(q,D)

(0,I,S)(I,D)

10 2 Clock

(−1,I,S)(I,D)

{S,D}

{S,W}

{S,D}{S,D}

{S,W}

{D}
{D}

{W}
{W}

Figure 4: Decision graph of the diver domain.

The diver domain does not have any blocking states. We
can introduce one by changing thesurfacetask to the one
depicted in Figure 5. The difference is that the two top right
transitions are guarded by Kim executing thedive task and
being in execution stateq. This results in a blocking state if
Kim decides towait. Figure 6 shows the unit time transition
graph of the domain. The blocking state is indicated by a
sharp edged box. Figure 7 shows the corresponding decision
graph. 3

It is not obvious how to compute the decision graph, since
it is defined in terms of paths in the unit time transition
graph. For symbolic non-deterministic planning, though, the
decision graph can be efficiently computed usingiterative
squaring(Burch, Clarke, & McMillan 1990).
Let

B(~s) = ¬
[

∃~s′ . RT (~s,~s′)
]

, and

D(~s) =

ms

∨

i=1

~tsi = idle

1

2

3

4

o
x
’

=

o
x
−
2

o
x

=

3

o
x
’

=

o
x
−
2

ox
’
=
ox
−1

ox
’
=
ox
−2

ox
 =
 3

Oxygen consumption

I

I

I

I

p

10 200

Distance
(
q
,
D
)

(q
,D
)

Figure 5: The blockingsurfacetask.

(1,p,S)(I,W)

(1,I,S)(q,D)

(1,p,S)(q,D)

(1,I,S)(I,W)

(3,I,S)(I,W)

(0,I,S)(I,D)

10 2 Clock

(−1,I,S)(I,D)

Figure 6: The unit time transition graph of the diver example
with thesurfacetask shown in Figure 5.

(1,p,S)(I,W)

(1,I,S)(q,D)

(1,I,S)(I,W)

(3,I,S)(I,W)

(0,I,S)(I,D)

10 2 Clock

(−1,I,S)(I,D)

{S,D}

{S,W}

{S,D}

{S,W}

{S,D}

Figure 7: The decision graph of the unit time transition
graph shown in Figure 6.

denote the characteristic functions for the set of blocking
states and decision states of a unit time transition graph with
Boolean encodingRT (~s,~s′). Further, letRi(~s,~s′) be de-

fined recursively by

R0
T (~s,~s′) = RT (~s,~s′),

Ri
T (~s,~s′) = Ri−1

T (~s,~s′) ∨
(

∃~s′ . Ri−1
T (~s,~s′) ∧

¬(D(~s′) ∨ B(~s′)) ∧ Ri−1
T (~s′, ~s′′)

)

[~s′′/~s′],

for i > 0.

The operatore[~s′′/~s′] renames double primed variables to
single primed variables in the expressione. R0

T is the tran-
sition relation of the unit time transition graph.R1

T includes
the transitions ofR0, but adds a transition〈s, s′′〉 for every
pathss′s′′ wheres′ neither is a blocking state or decision
state. SimilarlyR2 adds transitions that may bypass two
such states, andR3 adds transitions that may bypass four
etc.. In this way, we can define a Boolean encoding of the
decision graph as

R(~s,~s′) = R
dlog de
T (~s,~s′) ∧ (D(~s) ∨ B(~s)) ∧

(D(~s′) ∨ B(~s′))

whered is the maximal duration of any task. Iterative squar-
ing is known to be computationally complex. In our case,
though, we only need to iterate to “compress” paths of length
d, which often will be much less than the diameter of the
transition graph. In addition, iterative squaring has been
shown to be fairly efficient for transition systems dominated
by clock counting (Gabodiet al. 1997).

Solving ASET Planning Problems
The transformation of an ASET description to a non-
deterministic planning domain and the Boolean encoding
of the decision graph, allows us to use efficient symbolic
non-deterministic planning algorithms (Cimattiet al. 2003;
Jensen & Veloso 2000) including heuristic symbolic search
algorithms (Jensen, Veloso, & Bryant 2003) to solve ASET
planning problems. In the remainder of this section, we ap-
ply the machinery developed for non-deterministic symbolic
planning to define ASET planning problems and solutions.

Definition 5 (Non-Deterministic Planning Problem) A
non-deterministic planning problem is a tuple〈D, s0, G〉
whereD is a non-deterministic planning domain,s0 is an
initial state, andG ⊆ S is a set of goal states.

For a non-deterministic planning domainD = 〈S, A, R〉,
the set of possible next states of an actiona applied in states
is given by NEXT(s, a) ≡ {s′ : 〈s, a, s′〉 ∈ R}. An action
a is calledapplicablein states iff N EXT(s, a) 6= ∅. The
set of applicable actions in a states is given by APP(s) ≡
{a : NEXT(s, a) 6= ∅}. A non-deterministic plan is a set of
state-action pairs(SAs).

Definition 6 (Non-Deterministic Plan) Let D be a non-
deterministic planning domain. A non-deterministic plan for
D is set of state-action pairs{〈s, a〉 : a ∈ APP(s)}.

The set of SAs define a function from states to sets of ac-
tions relevant to apply in order to reach a goal state. States

are assumed to be fully observable. An execution of a non-
deterministic plan is an alternation between observing the
current state and choosing an action to apply from the set
of actions associated with the state. Notice that the defini-
tion of a non-deterministic plan does not give any guarantees
about goal achievement. The reason is that, in contrast to de-
terministic plans, it is natural to define a range of solutions
classes. We are particularly interested in strong plans that
guarantee goal achievement in a finite number of steps. Fol-
lowing (Cimattiet al. 2003), we define strong plans formally
by as a CTL formula that must hold on a Kripke structure
representing the execution behavior of the plan.

A set of statescoveredby a planπ is STATES(π) ≡ {s :
∃a . 〈s, a〉 ∈ π}. The set of actions in a planπ associated
with a states is ACT(π, s) ≡ {a : 〈s, a〉 ∈ π}. Theclosure
of a planπ is the set of possible end states CLOSURE(π) ≡
{s′ 6∈ STATES(π) : ∃〈s, a〉 ∈ π . s′ ∈ NEXT(s, a) }.

Definition 7 (Execution Model) An execution model with
respect to a non-deterministic planπ for the domainD =
〈S, A, R〉 is a Kripke structureM(π) = 〈Q, U〉 where

• Q = CLOSURE(π) ∪ STATES(π) ∪ G,
• 〈s, s′〉 ∈ U iff s 6∈ G, ∃a . 〈s, a〉 ∈ π and〈s, a, s′〉 ∈ R,

or s = s′ ands ∈ CLOSURE(π) ∪ G.

Notice that all execution paths are infinite which is re-
quired in order to define solutions in CTL. If a state is
reached that is not covered by the plan (e.g., a goal state
or a dead end), the postfix of the execution path from this
states is an infinite repetition of it. Given a Kripke structure
defining the execution of a plan, strong plans are defined by
the CTL formula below.

Definition 8 (Strong Plans) Given a non-deterministic
planning problemP = 〈D, s0, G〉 and a planπ for D, π is
a strong plan iffM(π), s0 |= AFG.

The expressionM(π), s0 |= AFG is true if all execution
paths in lead to a goal state in a finite number of steps.

Example 4 There exists three non-deterministic plans for
the decision graph of the diver problem shown in Figure 4.

p1 = {〈(3, I, S)(I,W), {S, D}〉}

p2 = {〈(3, I, S)(I,W), {S, W}〉, 〈(1, p, S)(I, W), {D}〉}

p3 = {〈(3, I, S)(I,W), {S, W}〉, 〈(1, p, S)(I, W), {W}〉}

None of these, however, are guaranteed to reach a goal state.
Thus, as mentioned earlier, there does not exist a strong plan
for the diver problem. 3

Fault Tolerance
A weakness of strong plans is that they can be very conser-
vative. In real-world domains most actions may fail. If fault
behavior is modeled by non-determinism, a strong plan only
exists if the worst case behavior of the plan, where all actions
fail, still leads to a goal state. This is seldom the case. In-
stead it is natural to suggest a weaker requirement, which is
to guarantee goal achievement only if no more thann actions
fail during execution. Such plans are calledn-fault tolerant
plans (Jensen, Veloso, & Bryant 2004). Fault tolerant plans

can be computed via strong plans by adding fault counters
to the domain. This is also possible for ASET domains.

We define a failure of a task as a unit time transition lead-
ing to the idle state. In order to generaten-fault tolerant
plans, we add a special fault counter state variablefi for
each controllable agenti. For each task of agenti that can
fail, we extend the guard and effect of each unit time transi-
tion denoting failure with the expressionn >

∑ms

i=1 fi and
f ′

i = fi + 1, respectively. For the remaining transitions of
the task, we maintain the value offi by extending the ef-
fect with f ′

i = fi. Finally, the initial state is extended with
fi = 0 for i = 1 . . .ms and the goal states are extended with
n ≥

∑ms

i=1 fi.
In this way failures can only happen in the fault extended

problem if less thann failures have occurred so far. This
is precisely the assumption ofn-fault tolerant plans and en-
sures that a strong plan of the fault extended problem is a
valid n-fault tolerant plan.
Example 5 Consider a fault extended version of the diver
problem for generating 1-fault tolerant plans via strong plan-
ning. In this domain, we assume that the top-most unit tran-
sition of thesurfacetask is due to an unlikely equipment
failure. The new task is shown in Figure 8. Since Kim’s
wait anddive tasks are successful, it is sufficient just to add
a single fault counterf for Chris. The initial state is ex-
tended withf = 0 and the goals states are extended with
1 ≥ f .

1

2

3

4

Oxygen consumption

I

I

I

I

p

10 200

Distance

f

<

1

o
x
’

=

o
x
−
2

f
’

=

f
+
1

ox
’
=
ox
−1

f’
 =
 f

o
x
’

=

o
x
−
2

ox
 =
 3

ox
’
=
ox
−2

f’
 =
 fo

x

=

3

f
’

=

f

Figure 8: The surface task of the fault extended diver prob-
lem.

The decision graph of the fault extend problem is shown
in Figure 9. The value off has been added to the front of the
first state tuple. Since the structure of the fault extended de-
cision graph is identical to the decision graph of the original
problem shown in Figure 4, there does not exist a strong plan
and thus no 1-fault tolerant plan for this problem. Consider,
however, that the initial state is a state on an execution path
where one failure has already happened. Since the fault tran-
sition of thesurfacetask now can be assumed not to happen,
we get the new decision graph shown in Figure 10. The non-
deterministic plan{〈(1, 3, I, S)(I, W), {S, D}〉 is a strong
plan for this problem. Thus, under these assumptions, there
exists a 1-fault tolerant plan. 3

(0,1,p,S)(I,W)

(0,1,I,S)(q,D)

(0,1,I,S)(I,W)

(1,−1,I,S)(I,W)

(0,3,I,S)(I,W)

(0,0,I,S)(q,D)

(1,−1,I,S)(q,D)

(0,0,I,S)(I,D)

10 2 Clock

(1,−1,I,S)(I,D)

{S,D}

{S,W}

{S,D}{S,D}

{S,W}

{D}
{D}

{W}
{W}

(0,0,I,S)(I,W)

Figure 9: Decision graph of the fault extended diver prob-
lem.

(1,1,p,S)(I,W)

(1,1,I,S)(q,D)

(1,1,I,S)(I,W)

(1,3,I,S)(I,W)

(1,0,I,S)(q,D)

(1,0,I,S)(I,D)

10 2 Clock

{S,D}

{S,W}

{S,D}

{S,W}

{D}

{W}

(1,0,I,S)(I,W)

Figure 10: Decision graph of the fault extended diver prob-
lem assuming that one fault already has occurred.

Model Adaptation
ASET descriptions support model adaptation learning algo-
rithms by providing a low-level definition of task behavior.
Adapting the behavior of tasks to a real-world domain is a
structural learning problem, where transitions are added or
removed from tasks. In addition, guard and effect expres-
sions can be modified and task descriptions split. The idea
is to make a system more controllable by getting rid of non-
determinism.

Example 6 Assume that it has been learned that Kim al-
ways helps Chris when choosing to dive. In this case, at
most one unit of oxygen is consumed in the second time
unit of thesurfacetask. The learned surface task is shown in
Figure 11 and the corresponding decision graph is shown in
Figure 12. It is now possible always to save Chris if Kim de-
cides todive (e.g.,{〈(1, 3, I, S)(I, W), {S, D}〉 is a strong
plan for the problem). 3

Conclusion
In this paper, we have introduced a new multi-agent planning
domain representation called ASET. The main contribution
of ASET is Evolving Tasks (ETs). ETs are, as far as we

1

2

3

4

Oxygen consumption

I

I

I

I

p

10 200

Distance

o
x

=

3

o
x
’

=

o
x
−
2

ox
’
=
ox
−2

ox
 =
 3

ox
’
=
ox
−1

n
o
t

(
q
,
D
)

o
x
’

=

o
x
−
2

Figure 11: The learned surface task.

(1,p,S)(I,W)

(1,I,S)(q,D)

(1,I,S)(I,W)

(−1,I,S)(I,W)

(0,I,S)(I,W)

(3,I,S)(I,W)

(0,I,S)(q,D)

(−1,I,S)(q,D)

(0,I,S)(I,D)

10 2 Clock

{S,D}

{S,W}

{S,D}

{S,W}

{D}
{D}

{W}
{W}

Figure 12: The decision graph of the diver problem with the
learned surface task.

know, the first action representation that can represent tem-
porally extended activities which are non-deterministic both
with respect to duration and effect. ETs are represented as
unit time transition systems that in a natural way solves the
problem of representing conditional effects and intermediate
effects of durative actions. In addition, ETs are explicit and
structural representations that are easy to access for humans
and suitable for domain knowledge learning algorithms.

We have formally defined ASET descriptions and shown
how they can be transformed into non-deterministic plan-
ning domains. Using a Boolean encoding of these do-
mains, efficient symbolic non-deterministic planning algo-
rithms can be applied to ASET planning problems.

The ASET representation is currently being integrated as
the basic building block in a closed loop planning, execu-
tion, and learning framework. Our goal is to develop algo-
rithms that adapt ASET descriptions to real-world domains
by learning new domain knowledge from execution failures.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. InInter-
national Joint Conference on Artificial Intelligence (IJCAI-
01), 417–424.

Burch, J. R.; Clarke, E. M.; and McMillan, K. 1990. Sym-
bolic model checking:1020 states and beyond. InPro-
ceedings of the 5th Annual IEEE Symposium on Logic in
Computer Science, 428–439.

Cassandras, C. G., and Lafortune, S. 1999.Introduction to
Discrete Event Systems. Kluwer Academic Publishers.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking.Artificial Intelligence147(1-2). Elsevier
Science publishers.

Firby, R. J. 1989. Adaptive execution in complex dynamic
worlds. Technical Report YALEU/CSD/RR 672, Yale Uni-
versity.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research (JAIR)20:61–124.

Gabodi, G.; Camurati, P.; Lavagno, L.; and Quer, S. 1997.
Disjunctive partitioning and partial iterative squaring.In
Proceedings of the 34th Design Automation Conference
DAC-97.

Gelfond, M.; Lifschitz, V.; and Rabinov, A. 1991. What
are the limitations of teh situation calculus. InEssays in
Honor of Woody Bledsoe. Kluwer Academic. 167–179.

Georgeff, M., and Lansky, A. L. 1986. Procedural knowl-
edge.Proceedings of IEEE74(10):1383–1398.

Giunchiglia, E.; Kartha, G. N.; and Lifschitz, Y. 1997.
Representing action: Indeterminacy and ramifications.Ar-
tificial Intelligence95:409–438.

Haigh, K. Z., and Veloso, M. M. 1998. Planning, exe-
cution and learning in a robotic agent. InProceedings of
the 4th International Conference on Artificial Intelligence
Planning Systems (AIPS’98), 120–127. AAAI Press.

Jensen, R. M., and Veloso, M. M. 2000. OBDD-
based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intelligence
Research13:189–226.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2003.
Guided symbolic universal planning. InProceedings of the
13th International Conference on Automated Planning and
Scheduling ICAPS-03, 123–132.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2004.
Fault tolerant planning: Toward probabilistic uncertainty
models in symbolic non-deterministic planning. InPro-
ceedings of the 14th International Conference on Auto-
mated Planning and Scheduling ICAPS-04.

Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. InProceedings of (IJCAI-95), 1643–
1649.

Lingard, A. R., and Richards, E. B. 1998. Planning parallel
actions.Artificial Intelligence99:261–324.

Piergiorgio, B.; Bonet, B.; Cimatti, A.; Giunchiglia, E.;
Golden, K.; Rintanen, J.; and Smith., D. E. 2002. The
NuPDDL home page.http://sra.itc.it/tools
/mbp/#nupddl.

Sabin, D., and Weigel, R. 1998. Product configuration
frameworks-a survey.IEEE Intelligent Systems13(4):42–
49.
Simmons, R. 1994. Structured control for autonomous
robots. IEEE Transactions on Robotics and Automation
10(1):34–42.
Wang, X. 1994. Learning planning operators by observa-
tion and practice. InProceedings of the Second Interna-
tional Conference on AI Planning Systems, 335–340.
Yolanda, G. 1992.Acquiring Domain Knowledge for Plan-
ning by Experimentation. Ph.D. Dissertation, Carnegie
Mellon University. CMU-CS-92-175.

