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Abstract Yolanda 1992) and Haigh'’s work on the Xavier robot (Haigh

In this paper, we introduce a novel planning domain repre- & Veloso 1998). . . . .

sentation called ASynchronous Evolving Tasks (ASET). The The g_oa_l of our research is to _Investlgaikamalr_] model
main contribution of ASET is a representation of temporally adaptationin a closed-loop planning and execution frame-
extended tasks that may be non-deterministic both with re-  work. The main difference between our approach and the
spect to duration and effects. Like NADL, ASET represents previous work mentioned above is that we depart from clas-
metric domain knowledge as state variables and explicitly  sjcal deterministic planning and instead base our work on a
models the environment as a set of uncontrollable agents. We  novel planning domain representation that combines tempo-

formally define ASET descriptions and their transformation ral and non-deterministic planning. This domain represent
to a non-deterministic planning domain. Using a Boolean tion is the focus of the present paper.

encoding of this transformation, ASET planning problems

can be solved efficiently using state-of-the-art symbotin-n The planning pro_blems, we are interested in, can be illus-
deterministic planning systems. In particular, we show tmw trated by the following scenario. A manager is in charge of
augment an ASET description to generate fault tolerantsplan a set of workers, but also observes a set of customers that
via the strong planning algorithm. the manager is unable to control. The manager sits behind
a screen showing the current state of the world and is con-
Introduction nected to the workers by a telephone. Each customer and

worker is always in a state of activity executing some task.
When a worker finishes a task, the worker calls the manager.
It is then the manager’s responsibility to give the worker a
new task. The manager does this by taking a careful look
at the screen and observing the activities of both workers
and customers. Since the manager has a good idea about the
nature of the tasks of both customers and workers, the man-
ager assumes that it only is necessary to take action when
the phone rings.

We believe that this scenario captures a wide range of
real-world planning problems where some planning unit (the
manager) has gathered all world information necessary to
plan successfully (or at least assumes it has done so) and re-

and adaptthe planning domain to the execution environ- lies heavily on models of the activities, it must deal with to
ment. This is relevant for autonomous agents, but seems av0id getting overloaded by micro managing. .
particularly important for application areas in logistiosan- It may be claimed that the manager is facing a planning
ufacturing, and scheduling that often are characterizea by problem with a natural representation in one of the current
large amount of domain knowledge that is costly to main- Planning languages. To our best knowledge, this is not the
tain (Sabin & Weigel 1998). Previous work in this direc- Ca@Se. There are several difficulties.

tion is sparse, but includes the prodigy project (Wang 1994; 1. The manager only has a “good idea” about how tasks may
“This research is sponsored by BBNT Solutions, LLC under ~ €volve. Exactly how they evolve is uncertain and leads
contract no. FA8760-04-C-0002 with the US Air Force. The to non-determinism both with respect to duration and ef-

Real-world planning is often considered a two dimensional
challenge: we need powerful planning algorithms to scale
to the massive problems frequently encountered in practice
and we need rich domain representations to capture the mul-
tifaceted nature of real scenarios. There is also, however,
a third dimension which is tintegrate planning and exe-
cution This problem has been addressed by execution lan-
guages for autonomous agents like robots with limited world
state knowledge and short perceptual horizons (Georgeff &
Lansky 1986; Firby 1989; Simmons 1994). The focus in
this work has been on reacting to unexpected events while
overall acting deliberatively. Another aspect is to use the
planning and execution cycle fearn domain knowledge

views and conclusions contained herein are those of theomuth fects. Further, there are uncontrollable activities eatri
and should not be interpreted as necessarily represemigngffi- out by customers.

cial policies or endorsements, either expressed or imptiéthe . .

sponsoring institutions, the U.S. Government or any othétye 2. Any time the phone rings, the manager takes a look at the
Copyright © 2004, American Association for Artificial Intelli- screen and observes the state of the world. No information

gence (www.aaai.org). All rights reserved. is hidden by workers or customers even if they are in the



process of changing this information. probabilities. We show how to augment an ASET descrip-

The first point requires a domain representation with du- tion to obtain a fault tolerantplann_ing domain such th_attfau
rative non-deterministic actions. However, temporal plan tolerant plans can be generated via the strong planning algo
ning languages have deterministic actions e.g. (Fox & Long rithm. ) ) )
2003; Bacchus & Ady 2001; Laborie & Ghallab 1995) and _ The remainder of the paper is organized as follows. We
non-deterministic planning languages do not consider du- first define ASET descriptions and discuss how they re-
rative actions e.g. (Piergiorgiet al. 2002; Giunchiglia, late to other planning domain representations. We then
Kartha, & Lifschitz 1997; Jensen & Veloso 2000). The Present the unit time transition graph of an ASET descrip-
second point addresses a general problem of augmentingtion and its Boolean encoding and show how to transform
first order logic with time for temporal planning. This of- the unit time transition graph into a decision graph which
ten leads to information “holes” (Bacchus & Ady 2001; IS @ non-deterministic planning domain. The following
Fox & Long 2003) caused by concurrent actions hiding the Section brle_fly reminds about the definition of strong non-
state of domain knowledge they are currently changing. determlm_stlc plans_and_ shows hov_v to represent fault toler-

It may also be claimed that the manager has misunder- ant planning domains in ASET. Finally, we conclude and
stood the situation and should decompose the tasks into star discuss plans for future work.
and stop event actions. This, however, conflicts with the .
model of control. The manager is not able to stop tasks in ASET Descriptions
the middle of their execution. A task is uninteruptable. An ASET description consists of global clockwith a fi-

To model these domains, we have developed an action nite domain of discrete integer time points, a disjoint det o
representation called Evolving Tasks (ETs). ETs are, as far system and environmestate variablesvith finite domains,
as we know, the first action representation that can represen and a description afystenmandenvironment agents
temporally extended activities which are non-determioist The state variables can Imeetric with finite integer do-
both with respect to duration and effect. ETs are repre- mains,Boolean or enumerationsvith finite domains. The
sented by unit time transition systems. They further define usual arithmetic and relational operations can be carnigd o
the value of the state variables they effect at every timetpoi  on metric variables. The set of state variable assignments
This solves the problem mentioned under point two above. defines the state space of the world.
The explicit representation of time and intermediate state An agent’s description is a settafsks The agents change
of ETs also address another requirement to our task repre- the state of the world by executing tasks. Each agent is al-
sentation: it must be easy to access for humans particgpatin  ways in a state of activity executing some task. The agents
in the model adaptation process. To this end ETs can be are asynchronous, they may start and stop tasks at different
represented visually as graphs. time-points. The system agents model the behavior of the

We consider multi-agent planning domains where each agents controllable by the planner, while the environment
agent is defined by a set of ETs it can apply. We call agents model the uncontrollable world. To ensure indepen-
these ASynchronous Evolving Tasks (ASET). Like NADL dence of the system and environment agents, they affect a
(Jensen & Veloso 2000), ASET explicitly model the envi- disjoint set of state variables. Their tasks, however, meay d
ronment as a set of uncontrollable agents (the customers). pend on the complete state of the world.

In this paper, we formally define an ASET description and A task has two parts: a set sfate variableghat the task
its low-level semanticaupit time transition graphand high- modifies and a set afnit time transitionghat defines how
level semanticsdecision graph The decision graph is a  the task evolves. Intuitively, the task is responsible of as
non-deterministic planning domain which allows us to de- signing new values to the variables it modifies. It furthes ha
fine solutions to ASET planning problems as strong, strong exclusive access to the modified variables, no other concur-
cyclic, and weak plans (Cimattt al. 2003). These plans  rent task can modify these variables as long as it is active.
can be efficiently generated by state-of-the-art symbolic Each agentis associated with a finite set of execution states
non-deterministic planning systems (Cimattial. 2003; These states are shared between the tasks of the agent and
Jensen, Veloso, & Bryant 2003). To this end, we define a define the transition states of the tasks. Each set of execu-
Boolean encoding of the unit time transition graph and a tion states has a specidle state A task is a transition sys-
transformation of this representation into a Boolean encod tem where each transition has unit time duration. The out-
ing of the decision graph based on iterative squaring (Burch going transitions from the idle state are taken when a task
Clarke, & McMillan 1990). starts. The incoming transitions to the idle state are taken

A major motivation for transforming an ASET description  when the task stops. The remaining transitions of a task
into a non-deterministic planning domain is to generatééfau  form a directed acyclic graph on the execution states caus-
tolerant plans for ASET planning problems (Jensen, Veloso, ing all execution paths of the task to be finite. Each transi-
& Bryant 2004). Fault tolerant planning is an alternative tion isguarded The guard is an expression on the complete
approach to probabilistic planning, where a plan with high state. This may include the current task and execution state
probability of success is expressed as a plan with high level of any agent as well as the current value of any state variable
of tolerance for failures occurring during execution. Tinds The transition is only enabled if the guard expression is sat
tion of fault tolerance is well-known from engineering and isfied. This allows rich behavior models including strong
control theory and in contrast to probabilistic plans, faul synchronization schemes with other tasks. The effect of the
tolerant plans bypass a complex manipulation of transition transition is given as an expression on the state variables i



modifies and its execution state. If this expression holds fo
several assignments, one of these is non-deterministicall
chosen as the effect of the transition. In this way, tasks are
non-deterministic both with respect to duration and effect
on modified variables. Notice that there is no need for an
explicit precondition. The precondition of a task is the-dis
junction of the guards of outgoing transitions from the idle
state.

Time advances in discrete integer time points. In each
unit time step, the currently active tasks perform a unittim
transition. Variables not modified by any task maintaintthei
value. The resulting unit time transition graph vblbck if
no transition is enabled for some task.

Example 1 Chris and Kim are cave divers. Chris is initially
at the cave bottom at a depth of 20 yards with three units
of oxygen and mussurfacebefore running out of oxygen.
Kim is initially at the surface and can eitheait one minute

at the surface odive for two minutes. The cave has a dif-
ficult passage at a depth of 10 yards. Chris’ surface swim
is non-deterministic, both with respect to time and amount
of oxygen consumed. It may either take one or two min-
utes. If no problems are encountered, it takes one minute
and two gallons of oxygen is consumed. Otherwise, it takes
two minutes, and two gallons of oxygen is consumed in the
first minute and either one or two gallons is consumed in the
second minute. The Initial situation is shown in Figure 1(a)
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Figure 1: Initial situation (a) and ASET description (b) of
the diver domain.

An ASET description of this scenario is shown in Fig-
ure 1(b). The domain of the clock {9, ..., 2} and there is
a single state variablez with domain{—1,0,...,3} rep-
resenting the amount of oxygen Chris has left. To simplify
the presentation, we do not include state variables reptese
ing the position of Chris and Kim, but it is straight forward
to extend the example to include these. Chris and Kim are
assumed to be controllable system agents. The execution
states associated with Chris and Kim &dep} and{I, ¢},
respectively. The idle state is markedThe guard and ef-
fect expression of a transition is written above and below
the transition arrow, respectively. To represent condélo
effects, unprimed variables refer to the current state ef th
transition while primed variables refer to the next stats. A
for the surface task, it may be helpful to use several copies
of the idle state, but each of these copies represents thee sam
idle state.

Notice that different formats of the task descriptions are
used to emphasize their meaning. For Chris’ surface task,
we choose to show the relation between traveled distance
and oxygen consumption, while automata models are more
appropriate for Kim’s simple wait and dive tasks.

Figure 2 shows the eight different ways the scenario can
evolve from the initial state. It can be seen, however, that
no matter how tasks are chosen for Chris and Kim, it cannot
be guaranteed that Chris has oxygen left when reaching the
surface. In non-deterministic planning terms, we say that
there is nostrong plan for reaching the goal. This will be

clarified in the following sections. <&
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Figure 2: Eight possible evolutions of the diver scenario.

Formally, a ASET description is defined as follows.



Definition 1 (ASET Description) An ASET description is
atupleM = (C,V, E,T), where

C

is a finite domain of aglobal clock C
{Oa 17 ] Cmax}n

is a finite domain ofn® system state variablesnd
n® environment state variablés = V° x V¢ where
Ve =T, V= forz € {s,e},

is a finite execution spacef m® > 0 system agents
andm¢ > 0 environment agentsach associated with
a set of execution statds = E° x E° whereE” =
[T~ E? for x € {s,e}. Each set of execution states
includes a special idle statg? O {idle} for z €
{s,e}andi =1..m", and

is a finitetask spacef a non-empty set of tasks as-
sociated with each ageift = [/, T x [/, T¢.
Eachtask € T}F is a pair(M}, RY), where

|4

M} is a set of indices of state variables modified
by the taskM* C {1,...,n"}, and
R? is a set of guarded unit time execution transi-

tions of the task defining how modified vari-
ables are changed while the task is active
R} C CxVxExTxHierfoE,f.

Compared with the durative action descriptions of
PDDL2.1, TLplan, and IxTeT (Fox & Long 2003; Bacchus
& Ady 2001; Laborie & Ghallab 1995), the most signifi-
cant difference of ASET descriptions is that tasks are du-
rative and non-deterministic. None of the above domain
descriptions consider non-deterministic actions. Adyal
we are not aware of any planning language with tempo-
rally extended and non-deterministic actions. Another im-
portant difference between ASET and the domain descrip-
tions above is the use of state variables. This providedenetr
values, but so has PDDL2.1. What is probably more impor-
tant is that our state variables are defined at every time poin
like state variables in physics and control theory (Cassan-
dras & Lafortune 1999). When augmenting first order logic
with time and preserving the precondition and effect nation
from classical planning, domain knowledge may only exist
at certain time points. An important exception from this,
however, are the continuous durative actions of PDDL2.1.

ecuting tasks (Lingard & Richards 1998). A common ex-
ample of destructive synergetic effects is when two or more
tasks require exclusive use of a single resource or when two
tasks have inconsistent effects liges’ = 3 andpos’ = 2.

Like actions in NADL, ASET tasks cannot be performed
concurrently in the following two conditions: 1) they have
inconsistent effects, or 2) they modify an overlapping et o
state variables. The first condition is due to the fact that
state knowledge is expressed in a monotonic logic that can-
not represent inconsistent knowledge. The second conditio
addresses the problem of sharing resources. Consider for
example two agents trying to drink the same glass of wa-
ter. If only the first condition defined interfering taskstivo
agents could simultaneously empty the glass, as the effect
glass_empty of the two tasks would be consistent. With the
second condition added, these tasks are interfering and can
not be performed concurrently.

We have chosen this definition of task interference due
to our positive experience with itin NADL. There are, how-
ever, several issues to address. First, we need to show how to
encode synergetic activity strong enough to solve Geltond’
soup problem (Gelfond, Lifschitz, & Rabinov 1991). The
problemis to lift a soup bowl without spilling the soup. Two
actions, lift left and lift right, can be applied to the bow.
either is applied on its own the soup will spill, but if theyar
applied simultaneously then the bowl is raised from the ta-
ble and no soup spills. The problem is that we cannot model
the state of the soup bowl in ASET using just one state vari-
able, since two concurrent lift tasks then would be unable
to access that state variable. We can, however, represent
such synergetic activity by letting the state of the bowl be-
ing expressed by several state variables. If we introduoe tw
Boolean variablegorce_left and force_right the different
states of the bowl can be represented by

onGround = —force_left N —force_right,
spill = force_left xor force_right,
Lft = force_left N force_right.

Second, we need to address how to handle state variables
that represent shared resources. In (Bacchus & Ady 2001)
an example of a gas station with 6 refueling bays is given.

For these actions, update functions are provided to define If this resource is represented by a single state variable in

the change of metric information. This approach, however,
is not as general as ETs.

Another challenge for durative actions in the classical
precondition-effect format is how to handle conditional ef
fects. The problem is that conditional effects require tinfo
mation to be transfered from the state the action is being ap-
plied in, to the state the action is completed in. Thesestate
however, may not be adjacent in the planning domain. The
problem can be solved by introducing memory propositions
(Fox & Long 2003) or instantaneous effects of actions (Bac-
chus & Ady 2001). For ETs the problem is solved explicitly,
since conditional effects can be defined for each unit time
transition as shown in the diver example.

An important issue to address when introducing concur-
rent tasks is synergetic effects between simultaneously ex

ASET, we once more face the problem of at most one task
accessing the resource. Again, we can solve the problem
by using several state variables (e.g., a Boolean variable f
each refueling bay).

ASET Unit Time Transition Graphs

In order to transform an ASET description into a non-
deterministic planning domain, we first computeuitst time
transition graph The unit time transition graph is a tran-
sition system that represents the combined effect of active
tasks. As the name suggests, each transition in the unit time
transition graph advances the clock one time unit. There
is not, however, necessarily a planning decision assatiate
with each transition. It is only when one or more tasks of
controllable system agents terminate that there is a choice



for the planner of which new tasks to start. We call such 1.

statesdecision states

Example 2 Consider again the diver domain described in
Example 1. The initial state and goal states is not a part of
a ASET description, but we assume that = 3 in the ini-

the surface before running out of oxygen. Figure 3 shows

the part of the unit time transition graph that can be reached 3.

from the initial state. Each state is represented by a taipte
apair(oz, € chris, t chris) @and(e gim, t kim ), Whereoz is the
value of theoz state variable, and andt are the execution
state and current task of Chris and Kim. In the initial state
we choosesurfaceandwait as dummy idle tasks. There are

boxes around the goal states (i.e. states where Chris has sur
faced successfully). Each of these are decision states. Ad-

ditional decision states are marked by ellipses. Each path i

Running tasks transition,

(S,vﬁl)np(nfm),e;ﬂ € Rf;z forz € {s,e},i=1..m",

whereM; = {p(1),...,p(n{)}.

2. Non-idle tasks continue,
tial state and the goal is to reach a state where Chris reaches

(eF #idle) = (¢i* =t7) for z € {s,e} andi =1..m".
Unmodified variables maintain their value, and

Vi =of forx € {s,e} andi € {1,...,m"} \ M,
whereM = U;.’fl Mti,

' 4. Time advances.

d=c+1.

In order to use symbolic non-deterministic planners to
solve ASET planning problems, we need a Boolean encod-

the graph corresponds to one of the eight scenarios shown ining of unit time transition graphs. This is achieved by defin-

Figure 2. o
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Figure 3: Unit time transition graph of the diver domain.

For an ASET description\ (C,V,E,T), let NC
denote non-conflicting tasks of system and environment
agents. We have, NC= NC® x NC° where NC =
{(trsestim,) € T% « Mg 0 M = 0 fori # j}. We
can now define the unit time transition graph of an ASET
description as follows.

Definition 2 (Unit Time Transition Graph) A unit time
transition graph of an ASET descriptiont = (C,V, E,T)
is a transition syster = (St, Rr), where

St isafinite setofstateS+ = C x V x E x NC, and
R7 isatransition relatiolR+ C Sy x St.
For

s e s e s e
<C, V1.0 V1.ner €1..ms) €1..me> tl..m57 1..m5>

/ /s /e /s /e /s le
<C yUL.nss V1.nes €1.ms> €1..me> tl..m3 ’ tl..me>

S =

/
S =

We have(s, s') € Ry iff

ing thecharacteristicfunction of the set of state pairs R

of the unit time transition graph. L&tands’” be two vectors

of Boolean variables representing the current and nex stat
of a unit time transition graph, where

§ = <87 ’D‘f..nsvﬁi.n‘f?é?.msaéﬁ..mﬁﬁ..mﬁﬁ..nﬁ%
5' t_,lsmﬁt_’lem‘f>

Our goal is to define a Boolean functid®y- (s, ) that is
true iff the variables of and s’ are assigned values corre-
sponding to a transition i®Rr. For an ASET description
M = (C,V,E T), letr; represent requiremenbf Defini-
tion 2

_ o s e oS o€
§ - <C »UL.nss V1.nes €1..ms> €1..me>

rio= [GEEESACT A1
i=1teT?

e = [(éf #idle) = (t1* = Ff)},
=1

o= AN A &#0= @ =9,
=1 j=1teT¥ (i)

T4 = F = {+ 11

whereM;" = {p(1),...,p(n{)}, RE (5, U1 pens) €7 18

the characteristic function of the set of tuplesi, and
Te(i)={teTF : ie My},

Further, letNCdenote the non-conflicting tasks
D ND} = 0 =

NCT =\ AN G
te€Dy t1 € Tf
jEDy t,eTr

whereD; = {1,...,m*}andDy = {1,...,m*} \ {i}.

We then have
R7(8,8) =14 A /\ ri ATy Ars A NC?.
z€{s,e}



ASET Decision Graphs

We now consider how to transform the unit time transition
graph of a ASET description into a non-deterministic plan-
ning domain that we can solve efficiently with a state-of-the
art symbolic non-deterministic planning system. The non-
deterministic planning domains used by these systems are
a generalization of classical deterministic planning dimsia
where the effect of an action applied in some state is mod-
eled by a non-deterministic choice from a set of possible
next states.

Definition 3 (Non-Deterministic Planning Domain) A
non-deterministic planning domain is a tuple, A, R)
whereS is a finite set of statesd is a finite set of actions,
and R C S x A x S is a non-deterministic transition
relation of action effects.

A unit time transition graph is transformed into a non-
deterministic planning domain by removing states where no
planning decision can be made. As mentioned in previous
section, a planning decision can be made in states where
the task of one or more controllable agents is idle. Det
denote thesdecision statesf a unit time transition graph
T = <ST,RT>. We haveDr = {< . .7€§”m5, .. > eSr:

e; = idle for somel < i < m?®}.

The non-deterministic planning domain of an ASET de-
scription, however, also needs to includbcking states
where some task is unable to transition. Without including
these states we may get anincorrect model that hides the fact
that some decision may lead to a dead end (e.g., causing two
tasks to “wait” on each other). Leé®; denote the blocking
states of a unit time transition gragh = (S7, R7). We
haveBr = {s € St : (s,s') ¢ Ry forall s’ € Sr}.

The non-deterministic planing domain associated with an
ASET description is called @ecision graphEach transition
in the decision graph corresponds to a path between decision
states and blocking states in the unit time transition graph
For a set of state§ and a transition relatio/ C @ x
Q@ apathof lengthk from v to w is a sequence of states
qoq1 - - - g suchthaig;,g;y1) e Ufori =0,...,k—1and
v = sg andw = si. We can now define the decision graph
as follows.

Definition 4 (ASET Decision Graph) Given an ASET de-
scription M = (C,V,E,T) and a unit time transition
graph7 = (St,Ry) of M, an ASET decision graph of
M is a non-deterministic planning domaih = (S, A, R),
where

S is the union of the decision and blocking stafes=
Dr U Br,
A is afinite set of actiongl = 27", and
R isatransition relatiolr C S x A x S.
For
S = <Cv Uf..nsavi.ncaei..msvei,mcat‘i,msvti..m5>
S/ = <C/7 ’Uis..ns ) vie..ncv ells..rnS ) e/le..m‘fv t/lsms ) t/lemc>

We have(s, a, s’) € R iff

e there exists a path - - - s, in R betweens = sy and
s’ = s, not visiting other states it¥ (s; ¢ S fori =
1,...,k—1),and

e the actiona is the set of system tasks startedsifac =

Ue:—idle{i"})-

If (s,a,s’) is atransition in a decision graph, the current
states is a decision state and the next statds the first
decision state or blocking state reached by some path from
s when starting the tasks defined byn the current state.

Example 3 Figure 4 shows the decision graph of the unit
time transition graph of the diver domain shown in Figure 3.
Again, we only consider the subset of transitions reachable
from the initial state. The decision graph has only one state
less than the unit time transition graph. The reason is that
the diver example for sake of presentation only has tasks
with short duration. For more realistic domains, where most
tasks will have longer duration, a much larger fraction of
states will be abstracted away.

tsoy |(1,I,5) (g,D)

[t 1,9 (x,m] [0, 1,8 (1, m]

VClock

i 2

Figure 4: Decision graph of the diver domain.

The diver domain does not have any blocking states. We
can introduce one by changing tearfacetask to the one
depicted in Figure 5. The difference is that the two top right
transitions are guarded by Kim executing tiee task and
being in execution statg This results in a blocking state if
Kim decides towait. Figure 6 shows the unit time transition
graph of the domain. The blocking state is indicated by a
sharp edged box. Figure 7 shows the corresponding decision
graph. O

Itis not obvious how to compute the decision graph, since
it is defined in terms of paths in the unit time transition
graph. For symbolic non-deterministic planning, though, t
decision graph can be efficiently computed usitegative
squaring(Burch, Clarke, & McMillan 1990).

Let
B(5) = -[35.R7(5,§)], and
D(E = \/f=idle
i=1
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Figure 5: The blockingurfacetask.
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Figure 6: The unit time transition graph of the diver example
with the surfacetask shown in Figure 5.
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Figure 7: The decision graph of the unit time transition
graph shown in Figure 6.

denote the characteristic functions for the set of blocking
states and decision states of a unit time transition gragh wi
Boolean encoding?7 (s, 5"). Further, letR!(s,5") be de-

fined recursively by
R%(3,5) = Rr(5%),

R (5,8) = R:Y35) v(a REYEE) A
5

~(D(¥) v B() A Ry (5 37/31,
fori > 0.

The operatok[s”/5'] renames double primed variables to
single primed variables in the expressionkY- is the tran-
sition relation of the unit time transition grapR’- includes

the transitions of?°, but adds a transitiots, s”) for every
pathss’s” wheres’ neither is a blocking state or decision
state. SimilarlyR? adds transitions that may bypass two
such states, an@&? adds transitions that may bypass four
etc.. In this way, we can define a Boolean encoding of the
decision graph as

RI# (5 5 A (D
(D(5") v B(3"))

whered is the maximal duration of any task. Iterative squar-
ing is known to be computationally complex. In our case,
though, we only need to iterate to “compress” paths of length
d, which often will be much less than the diameter of the
transition graph. In addition, iterative squaring has been
shown to be fairly efficient for transition systems domimite
by clock counting (Gabodt al. 1997).

R(35) = (5)V B(5)) A

Solving ASET Planning Problems

The transformation of an ASET description to a non-
deterministic planning domain and the Boolean encoding
of the decision graph, allows us to use efficient symbolic
non-deterministic planning algorithms (Cimadtial. 2003;
Jensen & Veloso 2000) including heuristic symbolic search
algorithms (Jensen, Veloso, & Bryant 2003) to solve ASET
planning problems. In the remainder of this section, we ap-
ply the machinery developed for non-deterministic symboli
planning to define ASET planning problems and solutions.

Definition 5 (Non-Deterministic Planning Problem) A
non-deterministic planning problem is a tup{®, so, G)
whereD is a non-deterministic planning domaigg is an
initial state, andG C S is a set of goal states.

For a non-deterministic planning domdh= (S, A, R),
the set of possible next states of an acti@pplied in state
is given by NexT(s,a) = {s’ : (s,a,s’) € R}. An action
a is calledapplicablein states iff NEXT(s,a) # 0. The
set of applicable actions in a statds given by APP(s) =
{a : NEXT(s,a) # 0}. A non-deterministic plan is a set of
state-action pair§SASs).

Definition 6 (Non-Deterministic Plan) Let D be a non-
deterministic planning domain. A non-deterministic plan f
D is set of state-action pair§(s,a) : a € APP(s)}.

The set of SAs define a function from states to sets of ac-
tions relevant to apply in order to reach a goal state. States



are assumed to be fully observable. An execution of a non-
deterministic plan is an alternation between observing the
current state and choosing an action to apply from the set
of actions associated with the state. Notice that the defini-
tion of a non-deterministic plan does not give any guarantee
about goal achievement. The reason is that, in contrastto de
terministic plans, it is natural to define a range of solwion
classes. We are particularly interested in strong plans tha

guarantee goal achievement in a finite number of steps. Fol-

lowing (Cimattiet al. 2003), we define strong plans formally
by as a CTL formula that must hold on a Kripke structure
representing the execution behavior of the plan.

A set of stategoveredby a plant is STATES(7) = {s :
Ja.(s,a) € 7}. The set of actions in a plan associated
with a states is ACT(r, s) = {a : (s,a) € w}. Theclosure
of a plant is the set of possible end states@SURE(T) =
{s’ & STATES(7) : J(s,a) € w.s" € NEXT(s,a) }.

Definition 7 (Execution Model) An execution model with

respect to a non-deterministic planfor the domainD =

(S, A, R) is a Kripke structureM () = (Q, U) where

e () = CLOSURE(T) U STATES(7) U G,

o (5,8 eUIff s¢ G, Ja.(s,a) € mand(s,a,s’) € R,
ors =s ands € CLOSURE(T) U G.

Notice that all execution paths are infinite which is re-
quired in order to define solutions in CTL. If a state is

can be computed via strong plans by adding fault counters
to the domain. This is also possible for ASET domains.

We define a failure of a task as a unit time transition lead-
ing to the idle state. In order to generateault tolerant
plans, we add a special fault counter state varighléor
each controllable agefit For each task of agentthat can
fail, we extend the guard and effect of each unit time transi-
tion denoting failure with the expression> ", f; and
f! = fi + 1, respectively. For the remaining transitions of
the task, we maintain the value ¢f by extending the ef-
fect with f/ = f;. Finally, the initial state is extended with
fi =0fori=1...m?° and the goal states are extended with
n 2> 2111 fi-

In this way failures can only happen in the fault extended
problem if less tham failures have occurred so far. This
is precisely the assumption effault tolerant plans and en-
sures that a strong plan of the fault extended problem is a
valid n-fault tolerant plan.

Example 5 Consider a fault extended version of the diver
problem for generating 1-fault tolerant plans via stroranpl
ning. In this domain, we assume that the top-most unit tran-
sition of thesurfacetask is due to an unlikely equipment
failure. The new task is shown in Figure 8. Since Kim’'s
wait anddivetasks are successful, it is sufficient just to add
a single fault countey for Chris. The initial state is ex-
tended withf = 0 and the goals states are extended with

reached that is not covered by the plan (e.g., a goal state 1 > f.

or a dead end), the postfix of the execution path from this
states is an infinite repetition of it. Given a Kripke struetu
defining the execution of a plan, strong plans are defined by
the CTL formula below.

Definition 8 (Strong Plans) Given a non-deterministic
planning problemP = (D, s, G) and a planr for D, 7 is
a strong plan iffM(7), s = AF G.

The expressionM (), sp = AFG is true if all execution
paths in lead to a goal state in a finite number of steps.

Example 4 There exists three non-deterministic plans for
the decision graph of the diver problem shown in Figure 4.

P = {<(37[7‘S)([7W)7{S7D}>}
p2 = {(B 1,9 W) {S,W}),((A,p,5)I,W),{D})}
ps3 = {<(3,I,S)([,W),{S,W}>,<(1,p,5)(I,W),{W}>}

Oxygen consumption

A

Distance
T -

20

=G

Figure 8: The surface task of the fault extended diver prob-
lem.

None of these, however, are guaranteed to reach a goal state.

Thus, as mentioned earlier, there does not exist a strong pla
for the diver problem.

Fault Tolerance

A weakness of strong plans is that they can be very conser-

vative. In real-world domains most actions may fail. If faul
behavior is modeled by non-determinism, a strong plan only
exists if the worst case behavior of the plan, where all astio
fail, still leads to a goal state. This is seldom the case. In-

stead it is natural to suggest a weaker requirement, which is

to guarantee goal achievement only if no more thactions
fail during execution. Such plans are calledault tolerant
plans (Jensen, Veloso, & Bryant 2004). Fault tolerant plans

The decision graph of the fault extend problem is shown
in Figure 9. The value of has been added to the front of the
first state tuple. Since the structure of the fault extended d
cision graph is identical to the decision graph of the o@adjin
problem shown in Figure 4, there does not exist a strong plan
and thus no 1-fault tolerant plan for this problem. Consider
however, that the initial state is a state on an executiom pat
where one failure has already happened. Since the fault tran
sition of thesurfacetask now can be assumed not to happen,
we get the new decision graph shown in Figure 10. The non-
deterministic plan{{(1, 3,1, 5)(I, W), {S, D}) is a strong
plan for this problem. Thus, under these assumptions, there
exists a 1-fault tolerant plan. &
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Figure 9: Decision graph of the fault extended diver prob-
lem.
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Figure 10: Decision graph of the fault extended diver prob-
lem assuming that one fault already has occurred.

Model Adaptation

ASET descriptions support model adaptation learning algo-
rithms by providing a low-level definition of task behavior.
Adapting the behavior of tasks to a real-world domain is a
structural learning problem, where transitions are added o
removed from tasks. In addition, guard and effect expres-
sions can be modified and task descriptions split. The idea
is to make a system more controllable by getting rid of non-
determinism.

Example 6 Assume that it has been learned that Kim al-
ways helps Chris when choosing to dive. In this case, at
most one unit of oxygen is consumed in the second time
unit of thesurfacetask. The learned surface task is shown in
Figure 11 and the corresponding decision graph is shown in
Figure 12. Itis now possible always to save Chris if Kim de-
cides todive (e.g.,{((1,3,1,S)(I, W), {S, D}) is a strong
plan for the problem). &

Conclusion

In this paper, we have introduced a new multi-agent planning
domain representation called ASET. The main contribution
of ASET is Evolving Tasks (ETs). ETs are, as far as we

Oxygen consumption
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T -
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Figure 12: The decision graph of the diver problem with the
learned surface task.

know, the first action representation that can represent tem
porally extended activities which are non-deterministithb
with respect to duration and effect. ETs are represented as
unit time transition systems that in a natural way solves the
problem of representing conditional effects and interratedi
effects of durative actions. In addition, ETs are explicitia
structural representations that are easy to access forfmuma
and suitable for domain knowledge learning algorithms.

We have formally defined ASET descriptions and shown
how they can be transformed into non-deterministic plan-
ning domains. Using a Boolean encoding of these do-
mains, efficient symbolic non-deterministic planning algo
rithms can be applied to ASET planning problems.

The ASET representation is currently being integrated as
the basic building block in a closed loop planning, execu-
tion, and learning framework. Our goal is to develop algo-
rithms that adapt ASET descriptions to real-world domains
by learning new domain knowledge from execution failures.
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