CMUnited-98: RoboCup-98 Simulator World Champion Team

Peter Stone, Manuela Veloso, and Patrick Riley
Computer Science Department,Carnegie Mellon University
Pittsburgh, PA 15213
{pstone,velosp@cs.cmu.edu, priley@andrew.cmu.edu
http://www.cs.cmu.edd7pstone,”"mmy, http://www.andrew.cmu.edu/"priley

July 24, 1999

Abstract
The CMUnited-98 simulator team became the 1998 RoboCuplaiorueague champion by winning all 8
of its games, outscoring opponents by a total of 66—-0. CMidh@8 builds upon the successful CMUnited-97
implementation, but also improves upon it in many ways. Hhniile gives an overview of the CMUnited-98 agent
skill and multi-agent coordination strategies, emphasitiie recent improvements.

1 Introduction

The CMUnited-98 simulator team became the 1998 RoboCumiikiet al. 1997) simulator league champion by
winning all 8 of its games, outscoring opponents by a totab®f0. CMUnited-98 builds upon the successful
CMUnited-97 implementation (Stone & Veloso 1998a), bubamproves upon it in many ways.

CMUnited-98 agents are capable of perception, cognitiod, @ction. By perceiving the world, each fully
distributed agent builds a model of the world’s currentestdthen, based on a complex set of behaviors, it chooses an
action appropriate for the current world state. While agantonomously, each agent contributes to the overall keam’
goal.

The agents operate in the RoboCup soccer server (Rbda 1998), a robotic soccer simulator. The simulator,
acting as a server, accepts action commands from fullyiblig&d clients (agents) throughout a 100 msec cycle and
then updates the world state all at once at the end of the.cixglents receive sensory perceptions from the simulator
asynchronously and at unpredictable intervals. A commegeview of the soccer server, including agent sensor and
actuator capabilities, is given in (Stone 1998).

This article gives an overview of the CMUnited-98 agentiskand multi-agent coordination strategies, empha-
sizing the recent improvements. The most notable impromsrare the predictive low-level skills and the strategic
agent positioning in anticipation of passes from teammaié® success of CMUnited-98 also depends on our pre-
vious research innovations including layered learningezilfle teamwork structure, and a novel communication
paradigm (Stone 1998).

2 Periodic Team Synchronization (PTS) Domains

We view robotic soccer as an example of a periodic team sgnctation (PTS) domain. We define PTS domains as
domains with the following characteristics:

e There is a team of autonomous agentthat collaborate towards the achievement of a joint lomgiigoal G.

*An extended version of this article appears in (Stetal. 1999).
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policies or endorsements, either expressed or impliedheotlt S. Government.



¢ Periodically, the team can synchronize with no restriccion communication: the agents can in effect inform
each other of their entire internal states and decisionimgaknechanisms with no adverse effects upon the
achievement of;. These periods of full communication can be thought of agsirat which the team is
“off-line.”

¢ In general (i.e., when the agents are “on-line”):

— The domain isdynamicandreal-time meaning that team performance is adversely affected if @antag
ceases to act for a period of timé: is either less likely to be achieved, or likely to be achiefather in
the future. That is, consider agent Assume that all other agent behaviors are fixed and that ayere
act optimally,G would be achieved with probabilityat time¢. If «; stops acting for any period of time
and then resumes acting optimally, either:

+ G will be achieved with probability’ at timet with p’ < p; or
+ G will be achieved with probability at timet’ with ¢’ > .

— The domain hasnreliable communicatigreither in terms of transmission reliability or bandwidithiks.
In particular:

+ Ifan agent;; € A sends a messageintended for agent; € A, thenm arrives with some probability
qg<1;or
* Agenta; can only receiva: messages evetytime units.

In the extreme, ify = 0 or if z = 0, then the periods of full communication are interleavethvperiods of
no communication, requiring the agents to act completely rautawously. In all cases, there is a costrétying
on communication. If agent; cannot carry on with its action until receiving a messagenftg, then the team’s
performance could suffer. Because of the unreliable coniration, the message might not get through on the first
try. And because of the dynamic, real-time nature of the dontlae team’s likelihood of or efficiency at achieving
is reduced.

The soccer server provides a PTS domain since teams cantrgteyges before the game, at halftime, or at other
breakpoints; but during the course of the game, commuoicagilimited.

3 Team Member Agent Architecture

Atthe core of the CMUnited-98 coordination mechanism istmeacall the Locker-Room Agreement (Stone & Veloso
1999a). Based on the premise that agents can periodicadliyimsafe, full-communication environments, the locker-
room agreement specifies how they should act when in low-aamtation, time-critical, adversarial environments.
The locker-room agreement includes specifications of théfketeamwork structure (Section 5.2) and the inter-agent
communication paradigm (Section 5.4).

Our team member agent architecture is suitable for PTS dwmadindividual agents can capture locker-room
agreements and respond to the environment, while actimnaotously. Based on a standard agent paradigm, our
team member agent architecture allows agents to senseuinerenent, to reason about and select their actions, and
to act in the real world. At team synchronization opporti@sitthe team also makes a locker-room agreement for
use by all agents during periods of limited communicatioiguFe 1 shows the functional input/output model of the
architecture.

The agent keeps track of three different types of statewtiréd state thelocker-room agreemepand thenternal
state The agent also has two different types of behaviorsernal behaviorsandexternal behaviors

The world state reflects the agent’s conception of the real world, both wWaénsors and via the predicted effects of
its actions. It is updated as a result of interpreted sensdéoymation. It may also be updated according to the
predicted effects of the external behavior module’s chestions. The world state is directly accessible to both
internal and external behaviors.

The locker-room agreementis set by the team when it is able to privately synchronizedefines the flexible
teamwork structure and the inter-agent communicatioropass, if any. The locker-room agreementis accessible
only to internal behaviors.
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Figure 1: A functional input/output model of the team memdgent architecture for PTS domains.

The internal state stores the agent’s internal variables. It may reflect previeand current world states, possibly as
specified by the locker-room agreement. For example, thetagele within a team behavior could be stored
as part of the internal state. A window or distribution oftpasrld states could also be stored as a part of the
internal state. The agent updates its internal state viatiésnal behaviors.

The internal behaviors update the agent's internal state based on its currennaitstate, the world state, and the
team’s locker-room agreement.

The external behaviors reference the world and internal states, and select therasctd send to the actuators. The
actions affect the real world, thus altering the agent'sifeitpercepts. External behaviors consider only the
world and internal states, without direct access to thedoc&kom agreement.

4 Agent Skills

The skills available to CMUnited-98 players include kiagimribbling, ball interception, goaltending, defendiagd
clearing. The common thread among these skills is that thealépredictive, locally optimal skill§PLOS). They
take into account predicted world models as well as predlieffects of future actions in order to determine the optimal
primitive action from a local perspective, both in time andpace. In this section, we present dribbling and defending
as examples of PLOS. Additional skills are described initietéStoneet al. 1999).

4.1 Dribbling

Dribbling is the skill which allows the player to move dowretfield while keeping the ball close to the player the
entire time. The basic idea is fairly simple: alternate kiekd dashes so that after one of each, the ball is still close
to the player.

Every cycle, the agent looks to see that if it dashes thisegyble ball will be in its kickable area (and not be a
collision) at the next cycle. If so, then the agent dashé®retise it kicks. A kick is always performed assuming that
on the next cycle, the agent will dash. As an argument, theléo®! dribbling code takes the angle relative to the
direction of travel at which the player should aim the ba#lg$-igure 2). This is called the “dribble angle” and its
valid values aré—90, 90]. Deciding what the dribble angle should be is discussed ati@e4.2.

First the predicted position of the agent (in 2 cycles) isakted:

Prew = Peurrent + 0+ (v % pdecay + a)
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Figure 2: The basic dribbling skill.

wherep,, .., is the predicted player positiop,..-<n¢ iS the current position of the player,is the current velocity of
the playerpdecay is the server parametpt ayer decay, anda is the acceleration that a dash gives. Tthalue is
usually just the dash power times tth@sh_power _r at e in the direction the player is facing, but stamina may need
to be taken into account.

Added top,.., is a vector in the direction of the dribble angle and lengithdihat the ball is in the kickable area.
This is the target positiop.,4.; Of the ball. Then the agent gets the desired ball trajectpithé following formula:

Ptarget — Pball
1+ bdecay

traj =

whereiraj is the target trajectory of the balh,,; is the current ball position, anillecay is the server parameter
bal | _.decay. This process is illustrated in Figure 2.

If for some reason this kick can not be done (it would be a siolti for example), then a turnball kick is done to
get the ball in the right position. Then the next cycle, a ralrdribble kick should work.

As can be seen from these calculations, the basic dribldihgghly predictive of the positions and velocities of
the ball and player. Itis also quite local in that it only Iedkcycles ahead and recomputes the best action every cycle.

4.2 Smart Dribbling

The basic dribblingtakes one parameter that was mentidimeba the dribble angle. Smart dribbling is a skill layered
on the basic dribbling skill that decides the best dribblglafased on opponent positions. Intuitively, the agent
should keep the ball away from the opponents, so that if amgqt is on the left, the ball is kept on the right, and
vice versa.

The agent considers all nearby opponents that it knows alifath opponent is given a “vote” about what the
dribble angle should be; each opponent votes for the valitedr 90, 90 that is farthest from itself. For example, an
opponent at 45 degrees, would vote for -90, while an oppaateri?0 degrees would vote for 60. Each opponent’s
vote is weighted by the distance and angle relative to theetion of motion. Closer opponents and opponents more
in front of the agent are given more weight.

4.3 Defending

CMUnited-98 agents are equipped with two different defagdnodes: opponent tracking and opponent marking. In
both cases, a particular opponent player is selected aarthet tigainst which to defend. This opponent can either be
selected individually or as a defensive unit via commumicethe latter is the case in CMUnited-98).

In either case, the agent defends against this player by\abgéts position over time and position itself stratedliga
S0 as to minimize its usefulness to the other team. Wtaaking, the agent stays between the opponent and the goal
at a generous distance, thus blocking potential shots. Wieking the agent stays close to the opponent on the
ball-opponent-goal angle bisector, making it difficult foe opponent to receive passes and shoot towards the goal.
Defensive marking and tracking positions are illustrateBigure 3.

When marking and tracking, it is important for the agent teehaccurate knowledge about the positions of both
the ball and the opponent (although the ball position igmitty relevant for tracking, it is used for the decision of
whether or not to be tracking). Thus, when in the correct gt position, the agent always turns to look at the
object (opponent or ball) in which it is least confident of tduerect position. The complete algorithm, which results
in the behavior of doggedly following a particular opponand glancing back and forth between the opponent and
ball, is as follows:
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Figure 3: Positioning for defensive tracking and marking.

¢ If the ball position is unknown, look for the ball.

¢ Else, if the opponent position is unknown, look for the opgran

¢ Else, if not in the correct defensive position, move to theipon.

¢ else, look towards the object, ball or opponent, which has lseen less recently (lower confidence value).

This defensive behavior is locally optimal in that it deferadcording to the opponent’s current position, following
it around rather than predicting its future location. Hoem\n both cases, the defensive positioning is chosen in
anticipation of the opponent’s future possible actiores, ieceiving a pass or shooting.

5 Agent Coordination

If all players act individually — constantly chase the badbary to kick towards the opponent goal — they will all
get tired, there will be nowhere to pass, and the opponettithavie free reign over most of the field. Building upon
the innovations of the CMUnited-97 simulator team (Stone &0go 1998a), the CMUnited-98 team uses several
complex coordination mechanisms, including reactive biemanodes, pre-compiled multi-agent plans and strategies
a flexible teamwork structure, a novel anticipatory offgagositioning scheme, and a sophisticated communication
paradigm.

5.1 Behavior Modes

A player’s top-level behavior decision is its behavior mottaplemented as a rule-based system, the behavior mode
determines the abstract behavior that the player shouttitxeFor example, there is a behavior mode for the set of
states in which the agent can kick the ball. Then, the detisiavhat to do with the ball is made by way of a more
involved decision mechanism. On each action cycle, thetfimg a player does is re-evaluate its behavior mode.

The behavior modes are:

Localize: Find own field location if it's unknown.

Face Ball: Find the ball and look at it.

Handle Ball: Used when the ball is kickable.

Active Offense: Go to the ball as quickly as possible. Used when no teammaite get there more quickly.
Auxiliary Offense: Get open for a pass. Used when a nearby teammate has the ball.

Passive Offense:Move to a position likely to be useful offensively in the futu

Active Defense: Go to the ball even though another teammate is already gbised in the defensive end of the field.
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Auxiliary Defense: Mark an opponent.
Passive DefenseTrack an opponent or go to a position likely to be useful dsifezly in the future.

The detailed conditions and effects of each behavior magldescribed in (Stone 1998). However, they will also
become more clear in subsequent sections as the role-basidfkeam structure is described in Section 5.2.

5.2 Roles, Formations, and Set-Plays

Like CMUnited-97, CMUnited-98 is organized around the atoof flexible formations consisting of flexible roles.
Roles are defined independently of the agents that fill theomdgeneous agents (all except the goalie) can freely
switch roles as time progresses. Each role specifies theibebéthe agent filling the role, both in terms of positiogin
onthefield and in terms of the behavior modes that shouldh&dered. For example, forwards never go into auxiliary
defense mode and defenders never go into auxiliary offelsem

A formation is a collection of roles, again defined indepenlyerom the agents. Just as agents can dynamically
switch roles within a formation, the entire team can dynathycswitch formations. After testing about 10 formations,
the CMUnited-98 team ended up selecting from among 3 diftdoemations. A standard formation with 4 defenders,
3 midfielders, and 3 forwards (4-3-3) was used at the begiyznifithe games. If losing by enough goals relative to
the time left in the game (as determined by the locker-rooraegent), the team would switch to an offensive 3-3-4
formation. When winning by enough, the team switched to amgfe 5-3-2 formation.

As a part of the locker-room agreement, the team can alsoedefiriti-step multi-agent plans, set-playsto be
executed at appropriate times. Particularly if there artagesituations that occur repeatedly, it makes sensehtor t
team to devise plans for those situations.

In the robotic soccer domain, certain situations occurasgay. For example, after every goal, there is a kickoff
from the center spot. When the ball goes out of bounds, tlsemegbal-kick, a corner-kick, or a kick-in. In each of
these situations, the referee informs the team of the 8itugt Thus all the players know to execute the appropridte se
play. Associated with each set-play-role is not only a lmegtbut also a behavior. The player in a given role might
pass to the player filling another role, shoot at the goaljak the ball to some other location.

For a detailed presentation of roles, formations, and ksgtspsee (Stone & Veloso 1999a).

5.3 Strategic Positioning by Attraction and Repulsion (SPAR)

The flexible roles defined in the CMUnited-97 software weréngporovement over the concept of rigid roles. Rather
than associating fixe@r, y) coordinates with each position, an agent filling a particutde was given a range of
coordinates in which it could position itself. Based on tla#'® position on the field, the agent would position itself
S0 as to increase the likelihood of being useful to the teathariuture.

However, by taking into account the positions of other agastwell as that of the ball, an even more informed
positioning decision can be made. The ideatddtegic position by attraction and repulsi¢BPAR) is one of the novel
contributions of the CMUnited-98 software, both simulaé@d robotic (Velos@t al. 1999). SPAR was developed in
parallel on our simulator and small-robot teams.

When positioning itself using SPAR, the agent uses a mubljigaive function with attraction and repulsion points
subject to several constraints. As described in detail alq&bet al. 1999) (in this same issue), we formulate the
multi-objective function as a weighted single-objectivadtion:

max " wo,dist(P,0;) + > wr,dist(P,T;) — —wpdist(P, B) — wadist(P, G)
i=1 i=1

In the simulator case, we uge), = wr, = z, wg = 0, andwg = 2. For example, the last term of the objective
function above expands t@ist (P, ())2.

One constraint in the simulator team relates to the positiorole, that the passive agent is playing relative to the
position of the ball. The agent only considers locationswhitnin one of the four rectangles, illustrated in Figura:5.
the one closest to the position home of the position thatatirsently playing. This constraint helps ensure that the
player with the ball will have several different passingiops in different parts of the field. In addition, players don
need to consider moving too far from their positions to supie ball.
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eBall

Figure 4: The four possible rectangles, each with one caahéne ball’'s location, considered for positioning by
simulator agents when using SPAR.

Since this position-based constraint already encouralgg®ns to stay near the ball, we set the ball-attraction
weighting functionwg to the constant functiop = 0. In addition to this first constraint, the agents observeeh
additional constraints. In total, the constraints in thewudator team are:

Stay in an area near home position;

Stay within the field boundaries;

Avoid being in an offsides position;

Stay in a position in which it would be possible to receive sspa

This last constraint is evaluated by checking that therenarepponents in a cone with vertex at the ball and
extending to the point in consideration.

In ourimplementation, the maximum of the objective funci®estimated by sampling its values over a fine-grained
mesh of points that satisfy the above constraints.

Using this SPAR algorithm, agents are ablaimicipatethe collaborative needs of their teammates by positioning
themselves in such a way that the player with the ball woule lsgveral useful passing options.

5.4 Communication

The soccer server provides a challenging communicatioir@mwent for teams of agents. With a single, low-
bandwidth, unreliable communication channel for all 22ragand limited communication range and capacity, agents
must not rely on any particular message reaching any patiteammate. Nonetheless, when a message does get
through, it can help distribute information about the stdittie world as well as helping to facilitate team coordioati

All CMUnited-98 messages include a certain amount of ste#f@rination from the speaker’s perspective. Infor-
mation regarding object position and teammate roles argivah along with the confidence values associated with
this data. All teammates hearing the message can then usgdheation to augment their visual state information.

The principle functional uses of communication in CMUnH@glare

o To ensure that all participants in a set play are ready touggdbe multi-step plan. In this case, since the ball is
out of play, time is not a critical issue.

o To assign defensive marks. The captain of the defensive(tingtgoaltender in most formations) determines
which defenders should mark or track which opponent forgartie captain then communicates this information
periodically until receiving a confirmation message.

For a detailed specification of the communication paradigih\aas first developed for CMUnited-97, see (Stone
& Veloso 1999a).



6 Layered Learning

Once the world model is successfully created, the agent$ usesit to respond effectively to the environment. As
described in Section 3, internal behaviors update theriatstate while external behaviors produce executablesmtu
commands. Spanning both internal and external behaléyeyed learnindStone & Veloso 1998b; Stone 1998)is our
bottom-up hierarchical approach to client behaviors thatws for machine learning at the various levels (Figure 5).
The key points of the layered learning technique are asvistio

High Level Goals

(Adversarial Behaviors

(Team Behaviors

\\\i\j Machine learning
4+~ Opportunities

/7

(Collaborative Behaviors

(Individual Behaviors

World Model

AR

Environment

Figure 5: An overview of the Layered Learning framework inlthagent domains. It is designed for use in domains
that are too complex to learn a mapping straight from sensastuators. We use a hierarchical, bottom-up approach

¢ A bottom-up, hierarchical task decomposition is given.
¢ Machine learning exploits data to train and/or adapt. Lisaroccurs separately at each level.
¢ The output of learning in one layer feeds into the next layer.

Table 1 illustrates possible behavior levels within theatibsoccer domain.

Layered Strategic Level | Behavior Type Examples
Robot-ball individual intercept
Action selection individual pass or dribble
One-to-one player collaborative pass, aim
One-to-many player collaborative pass to teammate
Team formation team strategic positioning
Team-to-opponent adversarial | strategic adaptation

Table 1: Examples of different behavior levels.

The low-level behaviors, such as ball interception andipgssre external behaviors involving direct action in
the environment. Higher level behaviors, such as strafgggdioning and adaptation, are internal behaviors inngjv
changes to the agent’s internal state. The type of learnsed at each level depends upon the task characteristics.
We have used neural networks and decision trees to learimbaiteption and passing respectively (Stone & Veloso
1998b). These off-line approaches are appropriate forogmeindependent tasks that can be trained outside of game
situations. We are using on-line reinforcement learninyeaches for behaviors that depend on the opponents (Stone
& Veloso 1999b). Adversarial actions are clearly oppordgppendent. Team collaboration and action selection can
also benefit from adaptation to particular opponents.



7 Results

In order to test individual components of the CMUnited-98nte it is best to compile performance results for the
team with and without these components as we have done @se\{Btone & Veloso 1999a). However, competition
against other, independently-created teams is useful/&buating the system as a whole.

At the RoboCup-98 competition, CMUnited-98 won all 8 of itswes by a combined score of 66—0, finishing first
place in a field of 34 teams. Table 2 details the game results.

| OpponentName | Affiliation | Score]
uu Utrecht University, The Netherlands 22-0
TUM/TUMSA Technical University Munich, Germany 2-0
Kasuga-Bitos Il Chubu University, Japan 5-0
Andhill’98 NEC, Japan 8-0
ISIS Information Sciences Institute (USC), USA | 12-0
Rolling Brains Johannes Gutenberg-University Mainz, Germany 3—-0
Windmill Wanderers University of Amsterdam, The Netherlands | 1-0
AT-Humboldt'98 Humboldt University of Berlin, Germany 3-0

I TOTAL | 660 |

Table 2: The scores of CMUnited-98's games in the simulaaglie of RoboCup-98. CMUnited-98 won all 8 games.

From observing the games, it was apparent that the CMUSi8ddw-level skills were superior in the first 6 games:
CMUnited-98 agents were able to dribble around opponeatspiany scoring opportunities, and suffered few shots
against.

However, in the last 2 games, the CMUnited-98 strategic &ions, communication, and ball-handling routines
were put more to the test as the Windmill Wanderers (3rd pland AT-Humboldt'98 (2nd place) also had similar
low-level capabilities. In these games, CMUnited-98'ditibs to use set plays to clear the ball from its defensive
zone, to get past the opponents’ offsides traps, and to aiaiatcohesive defensive unit became very apparent.

Throughout the tournament, the CMUnited-98 software destrated its power as a complete multi-agent archi-
tecture in a real-time, noisy, adversarial environment.

8 Conclusion

For a more thorough understanding of the technical detailsributing to the success of CMUnited-98, the reader is
encouraged to study the detailed algorithmic descriptiwagided in (Stone 1998) in conjunction with the CMUnited-
98 source code (Storet al. 1998). Other RoboCup researchers and multi-agent regrarchgeneral should be able
to benefit and build from the innovations represented therei

The success of CMUnited-98 at RoboCup-98 was due to seeehalical innovations. Building on the contributions
of CMUnited-97, including flexible formation, a novel comnication paradigm, and machine learning modules,
CMUnited-98 introduces strategic positioning using aticm and repulsion (SPAR). CMUnited-98 successfully
combines low-level individual and high-level strategicllaborative reasoning in a single multi-agent architeetu
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