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Abstract
The PRODIGY user interface supports the process of both building and

running a planning domain in PRODIGY. It was designed to be highly mod-
ular, requiring no changes to the code of the PRODIGY planner to run, and
extensible, so that interfaces to other modules built on PRODIGY could eas-
ily be integrated into the interface. In this paper we describe how these
goals were achieved. We demonstrate building a domain and animating the
planning process. We describe extensions to the user interface to support
planning by analogical reasoning and probabilistic planning with PRODIGY.
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1 Introduction
PRODIGY is a domain-independent planning and learning system that provides
a base planning module and many capabilities implemented as integrated mod-
ules [Veloso et al., 1995]. We recently developed a graphical user interface to
PRODIGY that provides support for several of the tasks involved in developing and
using a planning domain in PRODIGY. The PRODIGY user interface has a number of
functions. First, it provides a visual animation of the planning procedure and vi-
sual representations of the output. Second, it improves the process of creating and
debugging planning domains in PRODIGY. Third, it provides uniform access to the
modules built on top of PRODIGY, supporting a variety of visualization strategies.

Since PRODIGY is an on-going research project, it was important to develop
an interface that could be integrated easily with any variant of the system. This
requirement led us to seek an architecture that is modular in two ways. First,
the code for the planner should not need to be modified for the user interface to
run. Second, the user interface itself should make very few assumptions about
the planner’s implementation. At the same time the interface should have a tight
integration with the planner so that the planning process can be traced graphically
and the interface can be used to interrupt and direct the planner while it is in
operation.

The architecture used for the PRODIGY user interface accomplishes these goals.
In addition, our use of existing off-the-shelf software components allowed the
interface to be implemented relatively quickly. Figure 1 shows a typical view of
the interface.

In this paper we describe the architecture, implementation and the current
capabilities of the interface. We hope that the information will be of use to
developers of other planning systems, as well as other users of PRODIGY. In
the remainder of this section we describe the architecture of the interface, and the
systems used in its implementation. Section 2 describes the capabilities of the core
part of the interface, namely the visualization of the planning algorithm. The user
can dynamically follow an animation of the algorithm. If desired, the user may
also interrupt and step through the planner to analyze in greater detail a particular
episode. Finally, the user can control directly the planner, as well as freely change
different planning search strategies. Section 3 presents the framework that we
are currently developing to support the user with building a planning domain. In
Section 4 we briefly present the interfaces for twomodules built on top of PRODIGY:
planning by analogical reasoning and a probabilistic planner.
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Figure 1: A snapshot from the user interface shows two windows. The window at
the back contains the basic controls, a drawing of the goal tree and of the plan tail.
The window in front displays the partial order for the plan that was produced.

1.1 Architecture and implementation details
The user interface runs in a separate process from the planner, and the two com-
municate through sockets. This architecture makes the systems highly modular.
As long as the planner and the interface agree on a set of messages to be passed
between them, each can be implemented in any language and use a number of
different algorithms. It is possible for the interface to run on a different machine
from the planner, but this is not usually done in practice. The planner currently
runs in a Common Lisp process that listens for commands from two sources: the
terminal running lisp and a socket connected to the user interface. This allows
problems to be loaded or planning to be initiated from either the terminal or the
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interface.
The user interface is implemented in Tcl/Tk, a scripting language which in-

cludes a set of Motif widgets, and makes use of “Dag”, a freely available prepro-
cessor for drawing directed graphs [Gansner et al., 1988]. For example, when the
user clicks on “view partial order”, the UI sends a message to the planner to print
the plan’s partial order to a file, and runs Dag on that file when the planner replies
that the task is completed. The output fromDag is a file containing placements for
nodes and spline commands for edges that the UI reads to produce a window con-
taining the graph. It attaches actions to the nodes so that if the user clicks on them
it will pass another message to the planner to display appropriate information.

The simple communication described is enough to start the planner from the
interface and interpret its output graphically. A tighter communication is required
for the user to be able to interrupt and direct the planner from the interface
during its operation. This is achieved without altering the code of the planner
using PRODIGY’s “interrupt system”. The PRODIGY planner searches for a plan by
repeatedly selecting an open node in its search tree, selecting one way to expand
the node, and placing the new node on the search tree. On each pass through this
inner cycle, it looks for code that is specified by the user and runs it. This can be
arbitrary lisp code that can cause the planner to terminate if desired. In the normal
operation of PRODIGY, resource bounds such as the size of the search space or cpu
limits are implemented using this system. It is also used by the UI.

When the planner is run from the UI, the UI attaches code to the interrupt
system that causes the planner to pass amessage to the UI on each iteration through
its search process and wait for a response before continuing. The response can
lead the interrupt system to terminate planning. This scheme provides real-time
information to the UI during planning and allows the UI to interrupt or halt the
planner. The UI uses this to implement a plan stepper that is described in the next
section.

The requirement that the planner halt and wait for a message from the UI on
each iteration of its inner loop could in principle slow the planner down signifi-
cantly. However in practice we have found that even when the UI computes the
position for the node and draws the node in a window containing the goal tree, the
process is faster than the alternative tracing method of printing a line of text to the
lisp terminal.
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2 Visualizing the planning algorithm
One of the main goals underlying the design of the graphical user interface for
PRODIGY4.0 was to provide a clear animation of the planning algorithm [Carbonell
et al., 1992]. In this section we first overview briefly the PRODIGY4.0’s planning
algorithm.2 We then discuss several features in the user interface that enable
the visualization of the running of algorithm. The design of our user interface
benefitted from and was inspired by other planning user interfaces, such as the
ones from SIPE [Wilkins et al., 1995], CAPLAN [Paulokat and Wess, 1994], and
O-PLAN [Tate and Drabble, 1995].

2.1 Overview of PRODIGY4.0’s planning algorithm
PRODIGY4.0 is a nonlinear planner that follows a means-ends analysis backward
chaining search procedure reasoning about multiple goals and multiple alternative
operators relevant to achieving the goals. PRODIGY4.0’s nonlinear character stems
from its dynamic goal selection which enables the planner to fully interleave sub-
plans, exploiting common subgoals and addressing issues of resource contention.
Operators can be organized in different levels of abstractions that are used by
PRODIGY4.0 to plan hierarchically. Table 1 shows a top-level view of the PRODIGY
planning algorithm.

1. Initialize.
2. Terminate if the goal statement has been satisfied.
3. Determine which goals are pending, i.e. still need to be achieved.
4. Determine if there are any selected operators that have their preconditions satisfied
in the current state, and hence could be applied to the state as the next step in the plan.
5. Choose to subgoal on a goal or to apply an operator: (backtrack point)

To subgoal, go to step 6.
To apply, go to step 7.

6. Select one of the pending goals (no backtrack point), an instantiated operator that
can achieve it (backtrack point); go to step 3.
7. Change the state according to an applicable operator (backtrack point); go to step 2.

Table 1: A top-level view of PRODIGY4.0’s planning algorithm.
2The reader familiar with the algorithm may skip this brief overview.
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As shown in Table 1, PRODIGY4.0 follows a sequence of decision choices,
selecting a goal, an operator, and an instantiation for the operator to achieve
the goal. PRODIGY4.0 has an additional decision point, namely where it decides
whether to “apply” an operator to the current state or continue “subgoaling” on
a pending goal. “Subgoaling” can be best understood as regressing one goal,
or backward chaining, using means-ends analysis. It includes the choices of a
goal to plan for and an operator to achieve this goal. “Applying” an operator
to the state means a commitment (not necessarily definite since backtracking
is possible) in the ordering of the final plan. On the other hand, updating the
state through this possible commitment allows PRODIGY4.0 to use its state to more
informedand efficient future decisons. Hence, PRODIGY4.0’s planning algorithm is
a combination of state-space search corresponding to a simulation of plan execution
of the plan and backward-chaining responsible for goal-directed reasoning.

2.2 The head-plan and the tail-plan windows
From a plain search point of view all of the four decision points presented above
are equivalent. However it showed beneficial to capture PRODIGY4.0’s behavior by
separating the part of the plan resulting from applying operators, i.e. the head plan
and the subgoaling structure, i.e. the tail plan [Fink and Veloso, 1995]. A search
node in PRODIGY4.0 can be seen then as being composed by the head and tail plans.
The PRODIGY user interface captures this distinction as shown in Figure 2. It divides
the planning window into the tail-plan and head-plan windows. Operators, when
applied, are represented in the head-plan window. The figure shows an additional
window where the current state can be viewed at any time during planning.

The head-plan is represented simply as an ordered list of the operators applied
to the state. The tail-plan is represented as a tree with alternating goal and
instantiated operator nodes. We currently use a layout routine that minimizes the
space taken by the tree.

2.3 Run, step, break, restart, abort
PRODIGY4.0, as most planners, involves the generation and exploration of alterna-
tives. Choices are made, explored, and possibly abandoned if found not feasible
or not suitable. The tail-plan and the head-plan change dynamically during the
planning search episode. It is clearly a challenging task to provide an effective
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Figure 2: The left window contains the tail-plan and the right window the head-
plan. The operator load-rocket kippers london was applied and in kippers rocket
was added to the current state. The user asked to visualize the state by selecting
View Current State. The tail-plan shows the goals and operators that have been
selected to achieve these operators.

visualization of this dynamic process. The PRODIGY user interface currently in-
cludes the following features to facilitate the user’s understanding of the planning
search procedure:

Run: The planning process is started autonomously.
Step: The user can step through the planning process. PRODIGY4.0 cycles
through and breaks at each of its choices at each Step command.
Break: At any time, the user can interrupt the planning procedure by select-
ing a Break. The interface sends a break command to the running Lisp
process and the planning algorithm is interrupted. This allows the user to
analyze in detail a particular planning situation.
Restart: There are two situations in which a Restart command may be
selected: After a break command and as a termination of the stepping mode.
In both cases, the planning process is reactived autonomusly, i.e. as in run
mode.
Abort: The user can abort the planning procedure at any time. This may
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happen more often while debugging a planning domain, in which case the
user may notice that the planning process is diverging from its intended per-
formance. The process is aborted, the user can engage in further refinements,
and restart new planning experiments.

The commands described above can occur in a variety of different sequences.
These are some examples of possible sequences of commands: Step, Restart,
Break, Step, Restart; or Run, Break, Step, Restart.

2.4 Control of choices
PRODIGY is a completely open-controllable architecture. This means that all the
decision points are open to be controlled explicitly usually through control rules
which can automatically dictate particular choices based on the planning scenario.
Figure 3 illustrates a particular use of control rules that interrupt the planner to ask
the user for guidance.

Figure 3: The user can control choices. In the right window, the user is shown the
operator choices available to achieve the goal PRODIGY is planning for.

The user is prompted with the choices available and can either select one of
the alternatives, decide that doesn’t know which one to select, or tell PRODIGY not
to ask for any more guidance and resume its autonomous behavior.
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2.5 Additional features
In PRODIGY4.0 the head-plan is the solution plan encountered. Although this
final solution is the sequence of operators applied to the state, PRODIGY4.0 knows
the actual dependencies between the plan steps in terms of the corresponding
preconditions and effects.

The user can view the partially ordered final plan by selecting the choice to
View Partial Order. The head-plan is one of the possibly many lineariza-
tions of the partial order generated. Figure 1 shows the partial order window.

Finally, the user can change the specific planning search mode, e.g. from eager
to delayed step ordering commitments [Stone et al., 1994], can set a variety of
different running parameters, and can select different display setups.

3 Building the Application Domain in PRODIGY
To develop an application domain in PRODIGY, the user must specify an object type
hierarchy, a set of predicates and a set of operators, all of which have a specific
Lisp syntax. The development can be done in three different ways. The most
obvious way to build the domain is to create the Lisp structures directly. This
requires a complete knowledge of the system representation language. Another
approach, embodied in a system called APPRENTICE [Joseph, 1992], was developed
to produce the domain from a graphical specification. This method was shown to
be successful for visually-oriented domains.

We have implemented a form-based tool calledDomain Builder in the PRODIGY
user interface that allows interactive domain development within the planning sys-
tem. Like APPRENTICE, the tool generates a syntactically correct domain definition.
The interface is linked directly to the planning system so that the user can develop,
test, and run a domain interactively.

Domain Builder provides a menu-based interface for all the steps needed to
specify the domain. To illustrate the tool, we first show an example of adding a
type to the type hierarchy and then an example of specifying an operator.

In Figure 4 the user has selected “Type Hierarchy” from the main menu to
bring up the type hierarchy window. This window allows the user to select a type
in order to add a subtype. The user has chosen the type “Machine-Tool” to bring
up a window in which a subtype can be specified. At any time, a graphical view
of the current type hierarchy can be displayed, and this is shown to the right of the
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Figure 4: Several windows to support the user defining the object type hierarchy.

figure.
Once the types are created, the user can specify operators. Figure 5 shows the

operator definition window. The left side consists of three sections, in which the
user can specify the operator’s parameters, preconditions and effects. The right
side shows the operator as currently entered. The user can click on any of the fields
in this operator definition when additional editing is needed. The figure shows
the operator “Drill-Hole-Drill-Press”, from the process planning domain defined
in [Gil, 1991].

The tool supports the full operator syntax of PRODIGY [Carbonell et al., 1992],
including constraint functions for variables, typed first-order logic expressions for
preconditions including universal quantification, and conditional effects. Figure 5
illustrates the selection of a function to constrain the variable drill-bit-diameter. If
a variable has a simple type, the tool checks that the type has been defined. While
the operator is being developed, the tool checks the types, variables and predicates
being used. For example, if a variable is specified in the preconditions that was
not previously defined, the tool will warn the user (but will allow new variables to
be entered freely). This helps to detect many typing errors.

Building a planning domain is a difficult task, and this tool is a first step, that
shields the user from the raw domain syntax and makes it easier to build a domain
incrementally.
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Figure 5: The Operator Definition Window

4 Additions to the User Interface
The PRODIGY user interface is easily extensible, and in this section we briefly
describe two optional parts of the UI that provide additional functionality. The
first provides an intuitive interface to PRODIGY’s analogy component, allowing the
user to select cases and watch how they are followed as PRODIGY builds a new plan.
The second deals with PRODIGY’s probabilistic reasoning capabilities, allowing the
user to inspect a Bayesian net that summarises the plan’s probability of succeeding
in an uncertain environment. A third that is worthy of mention is a facility for
domain-dependent graphics, whereby graphics code can be dynamically loaded in
the UI along with a planning domain and used to display the current state while
stepping through plan creation. The user interface provides a window in which the
current state can be viewed, and a default tcl function that lists the true literals in
the current state. The domain-dependent file overrides that function with routines
that read from the state and draw in the window.
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4.1 The interface for planning by analogical reasoning
PRODIGY can plan by analogical reasoning following the derivational analogy
approach [Carbonell, 1986]. PRODIGY/ANALOGY is the module in PRODIGYthat
retrieves and replays planning episodes from a library of planning cases also
accumulated and maintained by the system [Veloso, 1994]. This running mode
can be selected from the interface. The user can solve problems and request that
the planning episodes be stored. A new problem can then be solved by replaying
and and merging possibly multiple past planning cases. Figure 6 shows a snapshot
of the interface where one case is instantiated to guide two different goals.

Figure 6: A snapshot of the setup used by the analogical reasoning module.
Guiding cases are displayed as shown in the two windows at the right. The steps
reused are marked while the steps not needed in the new situation are skipped.

The user can visualize the merging procedure, as it interleaves the multiple
cases, marks the steps that are used after successful validation, and skips the ones
that are no longer necessary or are invalid.

4.2 The probabilistic planner’s user interface
One extension of PRODIGY, discussed in [Blythe, 1995], reasons probabilistically
about plans using Bayesian nets and Markov processes. Figure 7 shows part of
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Figure 7: A window showing a fragment of the Bayesian net corresponding to a
plan in a logistics domain with uncertainty. Square nodes are actions or events
and round nodes are time-stamped propositions about the domain. The window in
the lower left of the figure shows the probability distribution for a node.

a Bayesian net used to reason about the probability of success in a plan. Nodes
represent actions (light squares), events (dark squares) or time-stamped literals
(ellipses). The user can inspect the net by clicking on a node, displaying the
probability distribution of the associated random variable as shown in the lower
left part of the figure.

5 Conclusions
We report on the user interface that we developed for the PRODIGY architecture.
Planning is a complex process and developing user planning interfaces is an
important contribution for making implemented systems available to researchers,
students, and practioners. The Prodigy user interface is designed as a modular
interface built using Tcl/Tk which provides a user-friendly interface and makes it
easy to incrementally add new features and modules. The user interface has been
in use for almost one year and has already proven very useful both for research
and educational purposes.
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