
Planning with Dynamic Goals for Robot ExecutionKaren Zita Haighkhaigh@cs.cmu.eduhttp://www.cs.cmu.edu/�khaigh Manuela M. Velosommv@cs.cmu.eduhttp://www.cs.cmu.edu/�mmvComputer Science DepartmentCarnegie Mellon UniversityPittsburgh PA 15213-3891AbstractWe have been developing Rogue, an architecture thatintegrates high-level planning with a low-level execut-ing robotic agent. Rogue is designed as the o�ce gofertask planner for Xavier the robot. User requests areinterpreted as high-level planning goals, such as get-ting co�ee, and picking up and delivering mail or faxes.Users post tasks asynchronously and Rogue controlsthe corresponding planning and execution continuousprocess. This paper presents the extensions to a non-linear state-space planning algorithm to allow for theinteraction to the robot executor. We focus on pre-senting how executable steps are identi�ed based onthe planning model and the predicted execution per-formance; how interrupts from users requests are han-dled and incorporated into the system; how executableplans are merged according to their priorities; and howmonitoring execution can add more perception knowl-edge to the planning and possible needed re-planningprocesses. The complete Rogue system will learn fromits planning and execution experiences to improve uponits own behaviour with time. We �nalize the paper bybrie
y discussing Rogue's learning opportunities.1. IntroductionWe have been working towards the goal of building au-tonomous robotic agents that are capable of planningand executing high-level tasks. Our framework consistsof the integration of Xavier the robot with the prodigyplanning system in a setup where users can post tasksfor which the planner generates appropriate plans, de-livers them to the robot, and monitors their execution.Rogue e�ectively acts as the task scheduler for therobot. Currently, Rogue has the following capabilities:(1) a system that can generate and execute plans formultiple interacting goals which arrive asynchronouslyand whose task structure is not known a priori, inter-rupting and suspending tasks when necessary, and (2) asystem which can compensate for minor problems in itsdomain knowledge, monitoring execution to determinewhen actions did not achieve expected results, and re-planning to correct failures.Xavier is a robot developed by Reid Simmons atCarnegie Mellon [4; 7]. One of the goals of the project isto have the robot move autonomously in an o�ce build-

ing reliably performing o�ce tasks such as picking upand delivering mail and computer printouts, returningand picking up library books, and carrying recyclingcans to the appropriate containers [5]. Our on-goingcontribution to this ultimate goal is at the high-levelreasoning of the process, allowing the robot to e�cientlyhandle multiple interacting goals, and to learn from itsexperience. We aim at building a complete planning,executing and learning autonomous robotic agent.We have developed techniques for the robot to au-tonomously perform many-step plans, and to appropri-ately handle asynchronous user interruptions with newtask requests. We are currently investigating techniquesthat will allow the system to use experience to improveits performance and model of the world.We have been reporting on our work on the interleav-ing of planning and execution work [2; 3]. In this paper,we focus on describing in detail the planning algorithmand representation. Rogue uses the prodigy planningalgorithm which is a non-linear state-space means-endsanalysis planner. We explain the extensions to the al-gorithm that allow for e�ective robot execution. We de-scribe how the planning algorithm is biased towards theidenti�cation of potentially executable steps and canbe interrupted asynchronously with new goal requests.The planner communicates with the robot executor andinformation perceived from execution is converted toplanning information. Re-planning may take into ac-count information gathered from execution. The paperpresents the features of the current algorithm as well asour on-going research work to extend the current fea-tures not only along more sophisticated planning andexecution representations, but also along learning fromexecution.The paper is organized as follows: In Section 2 weintroduce the Rogue architecture, our developed inte-grated system. In Section 3, we give a brief introduc-tion to the prodigy planner. In Section 4, we describehow prodigy's means-ends engine incorporates multi-ple goals. We present the mechanism used to translatefrom symbolic actions to real world execution in Sec-tion 5. We describe the behaviour of the architecturein a dynamic environment in Section 6. Finally we

Figure 1: Xavier the Robotprovide a summary of Rogue's current capabilities inSection 7 along with a description of our future work toincorporate learning methods into the system.2. General ArchitectureRogue1 is the system built on top of prodigy4.0 tocommunicate with and to control the high-level taskplanning in Xavier2. The system allows users to posttasks for which the planner generates a plan, delivers itto the robot, and then monitors its execution. Rogueis intended to be the task scheduler for a roving o�cegofer unit, and will deal with tasks such as deliveringmail, picking up printouts and returning library books.Xavier is a mobile robot being developed at CMU [4;7] (see Figure 1). It is built on an RWI B24 base andincludes bump sensors, a laser range �nder, sonars, acolor camera and a speech board. The software con-trolling Xavier includes both reactive and deliberativebehaviours, integrated using the Task Control Archi-tecture (TCA) [6; 8]. The underlying architecture isdescribed in more detail in [7].Prodigy and Xavier are linked together using theTask Control Architecture [6; 8] as shown in Figure 2.Currently, Rogue's main features are (1) the ability toreceive and reason about multiple asynchronous goals,suspending and interrupting actions when necessary,and (2) the ability to sense, reason about, and correctsimple execution failures.1In keeping with the Xavier theme, Rogue is named afterthe \X-men" comic-book character who absorbs powers andexperience from those around her. The connotation of awandering beggar or vagrant is also appropriate.2We will use the term Xavier when referring to featuresspeci�c to the robot, prodigy to refer to features speci�cto the planner, and Rogue to refer to features only seen inthe combination.

Request

Task Status

Feedback

TCA

Base

(sonar,laser)
Speech Vision

SAY

[Reid Simmons]

Navigate

User InteractionPlan Steps

Monitor

Execution

(asynchronous)

User Request
PRODIGYROGUE

Xavier

Plan Step

User Request

User Request

(Task Control Architecture)

Success/FailFigure 2: Rogue Architecture3. ProdigyRogue is designed to be used by multiple users in adynamic environment. It therefore needs to have thecapability to integrate new task requests into its plan-ning structures as well as to handle and correct failures.prodigy's means-ends analysis search engine makesmany of Rogue's features easy to implement.Prodigy is a domain-independent problem solverthat serves as a testbed for machine learning research [1;10]. Prodigy4.0 is a nonlinear planner that follows astate-space search guided by means-ends analysis andbackward chaining. It reasons about multiple goals andmultiple alternative operators to achieve the goals.In prodigy, an incomplete plan consists of two parts,the head-plan and the tail-plan (see Figure 3). Thetail-plan is built by the partial-order backward-chainingalgorithm, which starts from the goal statement G andadds operators, one by one, to achieve preconditions ofother operators that are untrue in the current state, i.e.pending goals. The head-plan is a valid total-order plan,that is, a sequence of operators that can be applied tothe initial state I.The planning reasoning cycle involves several decision
head-plan tail-planG1 G2

O1 O2

O

G11

O22

O23

C

I GFigure 3: Representation of an incomplete plan.

Back-Chainer1. Pick an unachieved goal or precondition literal l.Decision point: Choose an unachieved literal.2. Pick an operator op that achieves l.Decision point: Choose an operator that achieves this literal.3. Add op to the tail-plan.4. Instantiate the free variables of op.Decision point: Choose an instantiation for the variables of the operator.Operator-Application1. Pick an operator op in Tail-Plan which is an applicable operator, that is(A) there is no operator in Tail-Plan ordered before op, and(B) the preconditions of op are satis�ed in the current state C.Decision point: Choose an applicable operator to apply.2. Move op to the end of Head-Plan and update the current state C.Prodigy1. If the goal statement G is satis�ed in the current state C, then return Head-Plan.2. Either (A) Back-Chainer adds an operator to the Tail-Plan, or(B) Operator-Application moves an operator from Tail-Plan to Head-Plan.Decision point: Decide whether to apply an operator or to add an operator to the tail.3. Recursively call Prodigy on the resulting plan.Table 1: Prodigy decision points.points, including which goal to select from the set ofpending goals, and which applicable action to execute(i.e. move from the tail-plan to the head-plan). Theremay be several di�erent ways to achieve a goal, butthe choices about which action to take are made whileexpanding the tail-plan, and only one of those choicesis executed. Table 1 shows the decisions made whilecreating the plans. Back-Chainer shows the decisionsmade while back-chaining on the tail-plan, Operator-Application shows how the operator is added to thehead-plan, and Prodigy shows the mediation step.Prodigy provides a method for creating search con-trol rules which reduces the number of choices at eachdecision point by pruning the search space or suggest-ing a course of action while expanding the tail-plan. Inparticular, control rules can select, prefer or reject aparticular goal or action in a particular situation. Con-trol rules can be used to focus planning on particulargoals and towards desirable plans. Dynamic goal selec-tion from the set of pending goals enables the plannerto interleave plans, exploiting common subgoals and ad-dressing issues of resource contention.Prodigy maintains an internal model of the world inwhich it simulates the e�ects of selected applicable oper-ators. The state C achieved by applying the head-planto the initial state is called the current state. The back-chaining algorithm responsible for the tail-plan views Cas its initial state. Applying an operator can thereforegive the planner additional information (such as con-sumption of resources) that might not be accuratelypredictable from the domain model.Prodigy also supports real-world execution of its

applicable operators when it is desirable to know theactual outcome of an action; for example, when ac-tions have probabilistic outcomes, or the domain modelis incomplete and it is necessary to acquire additionalknowledge for planning. During the application phase,user-de�ned code is called which can map the opera-tor to a real-world action sequence [9]. Some exam-ples of the use of this feature include shortening com-bined planning and execution time, acquiring necessarydomain knowledge in order to continue planning (e.g.sensing the world), and executing an action in order toknow its outcome and handle any failures.4. Handling Asynchronous RequestsIn the general case, while Rogue is executing theplan to achieve some goal, other users may submit goalrequests. Rogue does not know a priori what theserequests will entail. One common method for handlingthese multiple goal requests is simply to process them ina �rst-come-�rst-served manner; however this methodignores the possibility that new goals may be more im-portant or could be achieved opportunistically.Rogue has the ability to process incoming asyn-chronous goal requests, prioritize them and identifywhen di�erent goals could be achieved opportunisti-cally. It is able to temporarily suspend lower priorityactions, resuming them when the opportunity arises;and it is able to successfully interleave compatible re-quests.When a new request comes in, Rogue adds it toprodigy's pending goals cache and updates the domainmodel. When prodigy reaches the next decision

At each prodigy decision point(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS(if (and (candidate-goal <goal>)(or (ancestor-is-top-priority-goal <goal>)(compatible-with-top-priority-goal <goal>))))(then select goal <goal>))Table 2: Goal selection search control rule
has-item mitchell delivermail

deliver-item r-5313 delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

acquire-item r-5311 jhm deliverfax

robot-has-item jhm deliverfax

robot-in-room r-5311

goto-pickup-loc r-5311

has-item jhm deliverfax

deliver-item r-5313 deliverfax

n22

n23

n20

n25

n26

n28

robot-in-room r-5313

n14

finish

n5

n10

n11

n13

n17

n14n8

n7

goto-deliver-loc r-5313

goto-pickup-loc r-5303Figure 4: Search Tree for two task problem; goal nodes in ovals, required actions in rectangles.point, it �res any relevant search control rules; it is atthis point when prodigy �rst starts to reason aboutthe newly added task request.Search control rules force the planner to focus itsplanning e�ort on selected or preferred goals, as de-scribed above. Table 2 shows Rogue's goal selectioncontrol rule which calls two functions, forcing prodigyto select those goals with high priority along with thosegoals which can be opportunistically achieved withoutcompromising the main high-priority goal.Once prodigy has selected its set of immediate goals,it expands their tail-plans in the normal means-endsanalysis manner. The tail-plans for each of the sus-pended tasks remain una�ected. The control rule fea-ture of prodigy permits plans and actions for one goalto be interrupted by another without necessarily a�ect-ing the validity of the planning for the interrupted goals.Prodigy simply suspends the planning for the inter-rupted goal, plans for and achieves the selected goal,and then returns to planning for the interrupted goal.Note that while prodigy is expanding the tail-plan for a particular selected goal, it is still makingglobal decisions and may decide to change focus again.prodigy's means-ends search engine supports dynamicgoal selection and changing objectives by making it easyto suspend and reactivate tasks.The tail-plan shown in Figure 4 shows how prodigyexpands the two goals (has-item mitchell deliver-mail) and (has-item jhm deliverfax). This com-

plete tail-plan would have been generated if no stepshad been moved to the head-plan yet, i.e. if no execu-tion had started. The tail-plan to achieve both requestscan be viewed as two separate head-plans, as shown inFigure 5.To �nd a good execution order of these applica-ble actions, Rogue selects the one that minimizesthe expected total traveled distance from the cur-rent location. This choice is an execution-drivenheuristic to e�ectively merge these two head-plans.(Note that incompatible actions are not among thechoices and their tail-plans will be expanded later.)In this situation, Rogue �nds the shortest routethat achieves both tasks. Actions that oppor-tunistically achieve goals of other tasks are not re-Head-plan 1:<goto-pickup-loc mitchell r-5303><acquire-item r-5303 mitchell delivermail><goto-deliver-loc mitchell r-5313><deliver-item r-5313 mitchell delivermail>Head-plan 2:<goto-pickup-loc jhm r-5311><acquire-item r-5311 jhm deliverfax><goto-deliver-loc jhm r-5313><deliver-item r-5313 jhm deliverfax>Figure 5: Two executable plans to be merged for the tail-planin Figure 4.

peated, e.g. both <goto-deliver-loc jhm r-5313>and <goto-deliver-loc mitchell r-5313> achievethe same goal, namely (robot-in-room r-5313), sotherefore only one of the actions will be executed.Note however that the most common situation is thatrequests arrive asynchronously, and thus part of a com-plete tail-plan for a speci�c goal may have already beenmoved to the head-plan and therefore executed. For ex-ample, the second request (jhm) in Figure 4 may havearrived after the �rst had already been partially exe-cuted. Instead of merging all steps of all plans, Roguemust merge the steps for the new request with the re-maining steps of the partially executed plan. Figure 6shows one possible execution sequence.Solution:<goto-pickup-loc mitchell r-5303>[arrival of second request]<acquire-item r-5303 mitchell delivermail><goto-pickup-loc jhm r-5311><acquire-item r-5311 jhm deliverfax><goto-deliver-loc mitchell r-5313><deliver-item r-5313 jhm deliverfax><deliver-item r-5313 mitchell delivermail>Figure 6: Final Execution SequenceThe complete procedure for achieving a particulartask is summarized as follows:1. Receive task request.2. Add knowledge to state model, create top-level goal.3. Create tail-plan.4. Move actions to the head-plan, sending executioncommands to robot, and monitoring outcome.Separate tail-plans are created for each request, andtheir head-plans are merged into a single execution se-quence, i.e. only step 4 changes, where actions movedare selected from amongst the complete set of existingtail-plans.5. Symbolism to RealismIn this section we describe the interaction betweenthe planner and the robot, showing how symbolic actiondescriptions are turned into robot commands, as wellas how deliberate observation is used by the system tomake intelligent planning decisions.The key to this communication model is based ona pre-de�ned language and model translation betweenprodigy and Xavier. prodigy relies on a state de-scription of the world to plan. Rogue is capable ofconverting Xavier's actual perception information intoprodigy's state representation, and Rogue's monitor-ing algorithm determines which information is relevantfor planning and replanning. Similarly Rogue is capa-ble of translating plan steps into Xavier's actions com-mands.When prodigy moves a plan step from the tail-plan to the head-plan, Rogue translates the high-level

abstract action into a command sequence appropriatefor execution. The action acquire-item, for exam-ple, is mapped to a sequence of commands that al-lows the robot to interact with a human. The action<GOTO-LOCATION ROOM>) is mapped to the commands(1) �nd the coordinates of the room, and (2) navigateto those coordinates.SENDING COMMAND:(TCAEXPANDGOAL "navigateToG"#(MAP-DATA 567.0d0 2316.5d0))These command sequences are manually generatedbut incremental in nature. They may be executeddirectly by the Rogue module (e.g. an action likefinger), or sent via the TCA interface to the Xaviermodule designed to handle the command.Figure 7 shows a partial trace of a run. Whenprodigy applies the <GOTO-ROOM> operator in its in-ternal world model (see node n14), Rogue sends thecommand to Xavier for execution. Each line marked\SENDING COMMAND" indicates a direct command sentthrough the TCA interface to one of Xavier's modules.This example shows the use of two more TCA com-mands, namely C observe and C say (after nodes n14and n18). The �rst command is a direct perception ac-tion. The observation routine can vary depending onthe kind of information needed. It can range from anactual interpretation of some of Xavier's sensors or itsvisual images, to speci�c input by a user. The commandC say sends the string to the speech board.Linking a symbolic planner to a robot executor re-quires not only that the planner is capable generatingpartial plans for execution in a continuous way, but thatthe dynamic nature of the real world can be captured inthe planners' knowledge base. The planner must con-tinuously re-evaluate the goals to be achieved based oncurrent state information. Rogue enables this link byboth mapping prodigy's plan steps into Xavier's com-mands and by abstracting Xavier's perception informa-tion prodigy's state information.6. Monitoring Execution, DetectingFailures & ReplanningThe capabilities described in the preceding section aresu�cient to create and execute a simple plan in a worldwhere all dynamism is predictable. The real world,however, needs a more
exible system that can moni-tor its own execution and compensate for problems andfailures. Any action that is executed by any agent isnot guaranteed to succeed in the real world.The TCA architecture provides mechanisms for mon-itoring the progress of actions. Rogue currentlymonitors the outcome of the navigateToG command.navigateToG may fail under several conditions, includ-ing detecting a bump, detecting corridor or door block-age, and detecting lack of forward progress. The mod-ule is able to compensate for certain problems, such asobstacles and missing landmarks, and will not reportfailure in these situations.

n2 (done)n4 <*finish*>n5 (mtg-scheduled)Firing prefer bindings LOOK-AT-CLOSEST-CONF-ROOM-FIRST #<5309> over #<5311>n7 <schedule-meeting 5309> [1]n8 (conference-room 5309)n10 <select-conference-room 5309>n11 (at-room 5309)n13 <goto-room 5309>n14 <GOTO-ROOM 5309>SENDING COMMAND (tcaExecuteCommand "C_say" "Going to room 5309")ANNOUNCING: Going to room 5309SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 3483.0d0))...waiting...Action NAVIGATE-TO-GOAL finished (SUCCESS).n15 (room-empty 5309)n17 <observe-conference-room 5309>n18 <OBSERVE-CONFERENCE-ROOM 5309>SENDING COMMAND (tcaExecuteCommand "C_observe" "5309")DOING OBSERVE: Room 5309 conf-room...waiting...Action OBSERVE finished (OCCUPIED).SENDING COMMAND (tcaExecuteCommand "C_say" "This room is occupied")ANNOUNCING: This room is occupied6 n6 schedule-meeting7 n15 <schedule-meeting r-5311> Figure 7: Trace of Rogue interaction.Since the navigate module may get confused and re-port a success even in a failure situation, Rogue al-ways veri�es the location with a secondary test (visionor human interaction). If Rogue detects that in factthe robot is not at the correct goal location, Rogue up-dates prodigy's domain knowledge to re
ect the actualposition, rather than the expected position.This update has the direct e�ect of indicating toprodigy that the execution of an action failed, andit will backtrack to �nd a di�erent action which canachieve the goal. Since prodigy's search algorithm isstate-based, it examines the current state before makingeach decision. If the preconditions for a given desirableaction are not true, prodigy must attempt to achievethem. Therefore, when an action fails, the actual out-come of the action is not the same as the expected out-come, and prodigy will attempt to �nd another solu-tion.In a similar manner, prodigy is able to detect whenan action is no longer necessary. If an action un-expectedly achieves some other necessary part of theplan, then that precondition is added to the state andprodigy will not need to subgoal to achieve it.Also, when an action accidentally disachieves the ef-fect of a previous action (and the change is detectable),Rogue deletes the relevant precondition and prodigy
will be forced to re-achieve it.Take for example, a co�ee delivery scenario. The sys-tem picks up the co�ee, adding the literal (has-itemcoffee) to its knowledge base and deleting the goal(pickup-item coffee roomA). If Rogue is now inter-rupted with a more important task, it suspends theco�ee delivery and does the other task. While do-ing the new task, the co�ee gets cold, making the lit-eral (has-item coffee) untrue. (The state changeis detected by a manually encoded daemon.) Whenprodigy returns to the original task, it examinesthe next foreseeable action: (deliver-item coffeeroomB), discovers that a precondition is missing (itdoesn't have the co�ee) and will subgoal on re-achievingit.In this manner, Rogue is able to detect simple ex-ecution failures and compensate for them. The inter-leaving of planning and execution reduces the need forreplanning during the execution phase and increases thelikelihood of overall plan success. It allows the systemto adapt to a changing environment where failures canoccur.Observing the real world allows the system to adaptto its environment and to make intelligent and relevantplanning decisions. Observation allows the planner toupdate and correct its domain model when it notice

changes in the environment. For example, it can noticelimited resources (e.g. battery), notice external events(e.g. doors opening/closing), or prune alternative out-comes of an operator. In these ways, observation cancreate opportunities for the planner and it can also re-duce the planning e�ort by pruning possibilities. Real-world observation creates a more robust planner that issensitive to its environment.8. SummaryIn this paper we have presented one aspect of Rogue,an integrated planning and execution robot architec-ture. We have described here how prodigy's state-space means-ends planning algorithm gives Rogue thepower� to easily integrate asynchronous requests,� to prioritize goals,� to easily suspend and reactivate tasks,� to recognize compatible tasks and opportunisticallyachieve them,� to execute actions in the real world, integrating newknowledge which may help planning, and� to monitor and recover from failure.Rogue represents a successful integration of a classi-cal AI planner with a real mobile robot. The completeplanning & execution cycle for a given task can be sum-marized as follows:1. Rogue requests a plan from prodigy.2. prodigy passes executable steps to Rogue.3. Rogue translates and sends the planning steps toXavier.4. Rogue monitors execution and through observationidenti�es goal status; failure means that prodigy'sdomain model is modi�ed and prodigy may back-track or replan for decisionsAs described here, Rogue is fully implemented andoperational. The system completes all requested tasks,running errands between o�ces in our building. In theperiod from December 1, 1995 to May 31, 1996 Xavierattempted 1571 navigation requests and reached its in-tended destination in 1467 cases, where each job re-quired it to move 40 meters on average for a total traveldistance of over 60 kilometers.This work is the basis for machine learning researchwith the goal of creating a complete agent that can re-liably perform tasks that it is given. Learning allowsthe agent to use accumulated experience and feedbackabout its performance to improve its behaviour. With-out learning, the behaviour of an autonomous agent iscompletely dependent on the predictive ability of theprogrammer.We intend to implement learning behaviour to noticepatterns in the environment so that failures can be pre-dicted and avoided. We would like, for example, to beable to say \At noon I avoid the lounge", or \That taskcan only be completed after 10am", or even somethingas apparently simple as \I can't do that task given whatelse I have to do." Learning would occur at three levels:

� during navigation to select appropriate routes,� during single-task planning to place constraints onwhen it can be done, and� during multiple-task planning to place constraints onwhen tasks can be successfully combined.When complete, Rogue will learn from real world ex-ecution experience to improve its high-level reasoningcapabilities. References[1] Jaime G. Carbonell, Craig A. Knoblock, and StevenMinton. Prodigy: An integrated architecture for plan-ning and learning. In K. VanLehn, editor, Architecturesfor Intelligence. Erlbaum, Hillsdale, NJ, 1990. AlsoAvailable as Technical Report CMU-CS-89-189.[2] Karen Zita Haigh and Manuela Veloso. Interleavingplanning and robot execution for asynchronous user re-quests. In Proceedings of the International Conferenceon Intelligent Robots and Systems (IROS), November1996. To Appear.[3] Karen Zita Haigh and Manuela M. Veloso. Usingperception information for robot planning and execu-tion. In Proceedings of the AAAI Workshop \IntelligentAdaptive Agents". AAAI Press, August 1996. Availableat http://www.cs.cmu.edu/�khaigh/papers.html.[4] Joseph O'Sullivan and Karen Zita Haigh. Xavier.Carnegie Mellon University, Pittsburgh, PA, July 1994.Manual, Version 0.2, unpublished internal report.[5] Reid Simmons. Becoming increasingly reliable. In Pro-ceedings of AIPS-94, pages 152{157, Chicago, IL, June1994.[6] Reid Simmons. Structured control for autonomousrobots. IEEE Transactions on Robotics and Automa-tion, 10(1), February 1994.[7] Reid Simmons, Rich Goodwin, Karen Zita Haigh, SvenKoenig, and Joseph O'Sullivan. A modular architecturefor o�ce delivery robots. Submission to AutonomousAgents 1997, February 1997.[8] Reid Simmons, Long-Ji Lin, and Chris Fedor. Au-tonomous task control for mobile robots. In Proceedingsof the IEEE Symposium on Reactive Control, Philadel-phia, PA, September 1990.[9] Peter Stone and Manuela Veloso. User-guided inter-leaving of planning and execution. In Proceedings ofthe European Workshop on Planning, September 1995.[10] Manuela M. Veloso, Jaime Carbonell, M. Alicia P�erez,Daniel Borrajo, Eugene Fink, and Jim Blythe. Inte-grating planning and learning: The prodigy architec-ture. Journal of Experimental and Theoretical Arti�cialIntelligence, 7(1), January 1995.

