Planning with Dynamic Goals for Robot Execution

Karen Zita Haigh

khaigh@cs.cmu.edu
http://www.cs.cmu.edu/~khaigh

Manuela M. Veloso

mmv@cs.cmu.edu
http://www.cs.cmnu.edu/~mmv

Computer Science Department
Carnegie Mellon University

Pittsburgh PA 15213-3891

Abstract

We have been developing ROGUE, an architecture that
integrates high-level planning with a low-level execut-
ing robotic agent. ROGUE is designed as the office gofer
task planner for Xavier the robot. User requests are
interpreted as high-level planning goals, such as get-
ting coffee, and picking up and delivering mail or faxes.
Users post tasks asynchronously and ROGUE controls
the corresponding planning and execution continuous
process. This paper presents the extensions to a non-
linear state-space planning algorithm to allow for the
interaction to the robot executor. We focus on pre-
senting how executable steps are identified based on
the planning model and the predicted execution per-
formance; how interrupts from users requests are han-
dled and incorporated into the system; how executable
plans are merged according to their priorities; and how
monitoring execution can add more perception knowl-
edge to the planning and possible needed re-planning
processes. The complete ROGUE system will learn from
its planning and execution experiences to improve upon
its own behaviour with time. We finalize the paper by
briefly discussing ROGUE’s learning opportunities.

1. Introduction

We have been working towards the goal of building au-
tonomous robotic agents that are capable of planning
and executing high-level tasks. Our framework consists
of the integration of Xavier the robot with the PRODIGY
planning system in a setup where users can post tasks
for which the planner generates appropriate plans, de-
livers them to the robot, and monitors their execution.
ROGUE effectively acts as the task scheduler for the
robot. Currently, ROGUE has the following capabilities:
(1) a system that can generate and execute plans for
multiple interacting goals which arrive asynchronously
and whose task structure is not known a priori, inter-
rupting and suspending tasks when necessary, and (2) a
system which can compensate for minor problems in its
domain knowledge, monitoring execution to determine
when actions did not achieve expected results, and re-
planning to correct failures.

Xavier is a robot developed by Reid Simmons at
Carnegie Mellon [4; 7]. One of the goals of the project is
to have the robot move autonomously in an office build-

ing reliably performing office tasks such as picking up
and delivering mail and computer printouts, returning
and picking up library books, and carrying recycling
cans to the appropriate containers [5]. Our on-going
contribution to this ultimate goal is at the high-level
reasoning of the process, allowing the robot to efficiently
handle multiple interacting goals, and to learn from its
experience. We aim at building a complete planning,
executing and learning autonomous robotic agent.

We have developed techniques for the robot to au-
tonomously perform many-step plans, and to appropri-
ately handle asynchronous user interruptions with new
task requests. We are currently investigating techniques
that will allow the system to use experience to improve
its performance and model of the world.

We have been reporting on our work on the interleav-
ing of planning and execution work [2; 3]. In this paper,
we focus on describing in detail the planning algorithm
and representation. ROGUE uses the PRODIGY planning
algorithm which 1s a non-linear state-space means-ends
analysis planner. We explain the extensions to the al-
gorithm that allow for effective robot execution. We de-
scribe how the planning algorithm 1s biased towards the
identification of potentially executable steps and can
be interrupted asynchronously with new goal requests.
The planner communicates with the robot executor and
information perceived from execution is converted to
planning information. Re-planning may take into ac-
count information gathered from execution. The paper
presents the features of the current algorithm as well as
our on-going research work to extend the current fea-
tures not only along more sophisticated planning and
execution representations, but also along learning from
execution.

The paper is organized as follows: In Section 2 we
introduce the ROGUE architecture; our developed inte-
grated system. In Section 3, we give a brief introduc-
tion to the PRODIGY planner. In Section 4, we describe
how PRODIGY’s means-ends engine incorporates multi-
ple goals. We present the mechanism used to translate
from symbolic actions to real world execution in Sec-
tion 5. We describe the behaviour of the architecture
in a dynamic environment in Section 6. Finally we

Figure 1: Xavier the Robot

provide a summary of ROGUE’s current capabilities in
Section 7 along with a description of our future work to
incorporate learning methods into the system.

2. General Architecture
ROGUE! is the system built on top of PRODIGY4.0 to
communicate with and to control the high-level task
planning in Xavier?. The system allows users to post
tasks for which the planner generates a plan, delivers it
to the robot, and then monitors its execution. ROGUE
is intended to be the task scheduler for a roving office
gofer unit, and will deal with tasks such as delivering
mail, picking up printouts and returning library books.

Xavier is a mobile robot being developed at CMU [4;
7] (see Figure 1). Tt is built on an RWI B24 base and
includes bump sensors, a laser range finder, sonars, a
color camera and a speech board. The software con-
trolling Xavier includes both reactive and deliberative
behaviours, integrated using the Task Control Archi-
tecture (TCA) [6; 8]. The underlying architecture is
described in more detail in [7].

ProDIGY and Xavier are linked together using the
Task Control Architecture [6; 8] as shown in Figure 2.
Currently, ROGUE’s main features are (1) the ability to
receive and reason about multiple asynchronous goals,
suspending and interrupting actions when necessary,
and (2) the ability to sense, reason about, and correct
simple execution failures.

'In keeping with the Xavier theme, ROGUE is named after
the “X-men” comic-book character who absorbs powers and
experience from those around her. The connotation of a
wandering beggar or vagrant is also appropriate.

2We will use the term Xavier when referring to features
specific to the robot, PRODIGY to refer to features specific
to the planner, and ROGUE to refer to features only seen in
the combination.

User Request

!

Request g

User Request | Tasc stanu
(asynchronous) Feedback ROG U E

Plan Steps

PRODIGY

Monitor

Execution User Interaction

TCA
(Task Control Architecture)

[Reid Simmons]

Plan Ste SAY
Success/Fail

Base
(sonar,laser)

Xavier

Navigate Speech Vision

Figure 2: Rogue Architecture

3. Prodigy

ROGUE is designed to be used by multiple users in a
dynamic environment. It therefore needs to have the
capability to integrate new task requests into its plan-
ning structures as well as to handle and correct failures.
PRODIGY’s means-ends analysis search engine makes
many of ROGUE’s features easy to implement.

ProDIGY is a domain-independent problem solver
that serves as a testbed for machine learning research [1;
10]. ProDIGY4.0 is a nonlinear planner that follows a
state-space search guided by means-ends analysis and
backward chaining. It reasons about multiple goals and
multiple alternative operators to achieve the goals.

In PRODIGY, an incomplete plan consists of two parts,
the head-plan and the tail-plan (see Figure 3). The
tail-plan is built by the partial-order backward-chaining
algorithm, which starts from the goal statement G and
adds operators, one by one, to achieve preconditions of
other operators that are untrue in the current state, .¢e.
pending goals. The head-plan is a valid total-order plan,
that is, a sequence of operators that can be applied to
the initial state 7.

The planning reasoning cycle involves several decision

o]
@ tail-plan

head-plan @
Cou >

o

Figure 3: Representation of an incomplete plan.

Back-Chainer
2. Pick an operator op that achieves [.
3. Add op to the tail-plan.

4. Instantiate the free variables of op.

Operator-Application

Prodigy

1. Pick an unachieved goal or precondition literal .
Decision pownt: Choose an unachieved literal.

Decision pownt: Choose an operator that achieves this literal.

Decision pownt: Choose an instantiation for the variables of the operator.

1. Pick an operator op in Taiul-Plan which is an applicable operator, that 1s
(A) there is no operator in Tail-Plan ordered before op, and
(B) the preconditions of op are satisfied in the current state C.
Decision pownt: Choose an applicable operator to apply.
2. Move op to the end of Head-Plan and update the current state C'.

1. If the goal statement G is satisfied in the current state C'| then return Head-Plan.
2. Either (A) Back-Chainer adds an operator to the Tail-Plan, or
(B) Operator-Application moves an operator from Tail-Plan to Head-Plan.
Decision point: Decide whether to apply an operator or to add an operator to the tail.
3. Recursively call Prodigy on the resulting plan.

Table 1: Prodigy decision points.

points, including which goal to select from the set of
pending goals, and which applicable action to execute
(i.e. move from the tail-plan to the head-plan). There
may be several different ways to achieve a goal, but
the choices about which action to take are made while
expanding the tail-plan, and only one of those choices
is executed. Table 1 shows the decisions made while
creating the plans. Back-Chainer shows the decisions
made while back-chaining on the tail-plan, Operator-
Application shows how the operator is added to the
head-plan, and Prodigy shows the mediation step.

PRrRODIGY provides a method for creating search con-
trol rules which reduces the number of choices at each
decision point by pruning the search space or suggest-
ing a course of action while expanding the tail-plan. In
particular, control rules can select, prefer or reject a
particular goal or action in a particular situation. Con-
trol rules can be used to focus planning on particular
goals and towards desirable plans. Dynamic goal selec-
tion from the set of pending goals enables the planner
to interleave plans, exploiting common subgoals and ad-
dressing issues of resource contention.

PRODIGY maintains an internal model of the world in
which 1t simulates the effects of selected applicable oper-
ators. The state C' achieved by applying the head-plan
to the initial state is called the current state. The back-
chaining algorithm responsible for the tail-plan views C'
as its initial state. Applying an operator can therefore
give the planner additional information (such as con-
sumption of resources) that might not be accurately
predictable from the domain model.

ProDIGY also supports real-world execution of its

applicable operators when it 1s desirable to know the
actual outcome of an action; for example, when ac-
tions have probabilistic outcomes, or the domain model
1s incomplete and it is necessary to acquire additional
knowledge for planning. During the application phase,
user-defined code 1s called which can map the opera-
tor to a real-world action sequence [9]. Some exam-
ples of the use of this feature include shortening com-
bined planning and execution time, acquiring necessary
domain knowledge in order to continue planning (e.g.
sensing the world), and executing an action in order to
know its outcome and handle any failures.

4. Handling Asynchronous Requests

In the general case, while ROGUE is executing the
plan to achieve some goal, other users may submit goal
requests. ROGUE does not know a prior: what these
requests will entail. One common method for handling
these multiple goal requests is simply to process them in
a first-come-first-served manner; however this method
ignores the possibility that new goals may be more im-
portant or could be achieved opportunistically.

ROGUE has the ability to process incoming asyn-
chronous goal requests, prioritize them and identify
when different goals could be achieved opportunisti-
cally. It is able to temporarily suspend lower priority
actions, resuming them when the opportunity arises;
and 1t is able to successfully interleave compatible re-
quests.

When a new request comes in, ROGUE adds it to
PRODIGY’s pending goals cache and updates the domain
model. When PRODIGY reaches the next decision

At each PRODIGY decision point

(then select goal <goal>))

(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS
(if (and (candidate-goal <goal>)
(or (ancestor-is-top-priority-goal < goal>)
(compatible-with-top-priority-goal <goal>))))

Table 2: Goal selection search control rule

| *finish* |

n5
[has-item mitchell delivermail)
n7
I deliver-item r-5313 delivermail |

n20
(has-item jhm deliverfax)

Ideliver—item r-5313 deliverfax |

ng
(robot-has-item mitchell delivermail j

nl4 n23
(robot-in-room r-5313 j (robot-has—itemjhm deliverfax j

nl0

nl7 n25

I acquire-item r-5303 mitchell delivermail

I goto-deliver-loc r-5313 |

acquire-item r-5311 jhm deliverfax

nil
robot-in-room r-5303

nl3

I goto-pickup-loc r-5303

robot-in-room r-5311

n28
I goto-pickup-loc r-5311 |

Figure 4: Search Tree for two task problem; goal nodes in ovals, required actions in rectangles.

point, 1t fires any relevant search control rules; it is at
this point when PRODIGY first starts to reason about
the newly added task request.

Search control rules force the planner to focus its
planning effort on selected or preferred goals, as de-
scribed above. Table 2 shows ROGUE’s goal selection
control rule which calls two functions, forcing PRODIGY
to select those goals with high priority along with those
goals which can be opportunistically achieved without
compromising the main high-priority goal.

Once PRODIGY has selected its set of immediate goals,
it expands their tail-plans in the normal means-ends
analysis manner. The tail-plans for each of the sus-
pended tasks remain unaffected. The control rule fea-
ture of PRODIGY permits plans and actions for one goal
to be interrupted by another without necessarily affect-
ing the validity of the planning for the interrupted goals.
ProDIGY simply suspends the planning for the inter-
rupted goal, plans for and achieves the selected goal,
and then returns to planning for the interrupted goal.

Note that while PRODIGY is expanding the tail-
plan for a particular selected goal, it is still making
global decisions and may decide to change focus again.
PRODIGY’s means-ends search engine supports dynamic
goal selection and changing objectives by making it easy
to suspend and reactivate tasks.

The tail-plan shown in Figure 4 shows how PRODIGY
expands the two goals (has-item mitchell deliver-—
mail) and (has-item jhm deliverfax). This com-

plete tail-plan would have been generated if no steps
had been moved to the head-plan yet, i.e. if no execu-
tion had started. The tail-plan to achieve both requests
can be viewed as two separate head-plans, as shown in
Figure 5.

To find a good execution order of these applica-
ble actions, ROGUE selects the one that minimizes
the expected total traveled distance from the cur-
rent location. This choice is an execution-driven
heuristic to effectively merge these two head-plans.
(Note that incompatible actions are not among the
choices and their tail-plans will be expanded later.)
In this situation, ROGUE finds the shortest route
that achieves both tasks. Actions that oppor-
tunistically achieve goals of other tasks are not re-

Head-plan 1:
<goto-pickup-loc mitchell r-5303>
<acquire-item r-5303 mitchell delivermail>
<goto-deliver-loc mitchell r-5313>
<deliver-item r-5313 mitchell delivermail>

Head-plan 2:
<goto-pickup-loc jhm r-5311>
<acquire-item r-5311 jhm deliverfax>
<goto-deliver-loc jhm r-5313>
<deliver-item r-5313 jhm deliverfax>

Figure 5: Two executable plans to be merged for the tail-plan
in Figure 4.

peated, e.g. both <goto-deliver-loc jhm r-5313>
and <goto-deliver-loc mitchell r-5313> achieve
the same goal, namely (robot-in-room r-5313), so
therefore only one of the actions will be executed.

Note however that the most common situation is that
requests arrive asynchronously, and thus part of a com-
plete tail-plan for a specific goal may have already been
moved to the head-plan and therefore executed. For ex-
ample, the second request (jhm) in Figure 4 may have
arrived after the first had already been partially exe-
cuted. Instead of merging all steps of all plans, ROGUE
must merge the steps for the new request with the re-
maining steps of the partially executed plan. Figure 6
shows one possible execution sequence.

Solution:

<goto-pickup-loc mitchell r-5303>
[arrival of second request]

<acquire-item r-5303 mitchell delivermail>
<goto-pickup-loc jhm r-5311>
<acquire-item r-5311 jhm deliverfax>
<goto-deliver-loc mitchell r-5313>
<deliver-item r-5313 jhm deliverfax>
<deliver-item r-5313 mitchell delivermail>

Figure 6: Final Execution Sequence

The complete procedure for achieving a particular
task is summarized as follows:
1. Receive task request.
2. Add knowledge to state model, create top-level goal.
3. Create tail-plan.
4. Move actions to the head-plan, sending execution
commands to robot, and monitoring outcome.
Separate tail-plans are created for each request, and
their head-plans are merged into a single execution se-
quence, i.e. only step 4 changes, where actions moved
are selected from amongst the complete set of existing
tail-plans.

5. Symbolism to Realism

In this section we describe the interaction between
the planner and the robot, showing how symbolic action
descriptions are turned into robot commands, as well
as how deliberate observation is used by the system to
make intelligent planning decisions.

The key to this communication model 1s based on
a pre-defined language and model translation between
PRODIGY and Xavier. PRODIGY relies on a state de-
scription of the world to plan. ROGUE is capable of
converting Xavier’s actual perception information into
PRODIGY’s state representation, and ROGUE’s monitor-
ing algorithm determines which information is relevant
for planning and replanning. Similarly ROGUE is capa-
ble of translating plan steps into Xavier’s actions com-
mands.

When PRODIGY moves a plan step from the tail-
plan to the head-plan, ROGUE translates the high-level

abstract action into a command sequence appropriate
for execution. The action acquire-item, for exam-
ple, is mapped to a sequence of commands that al-
lows the robot to interact with a human. The action
<GOTO-LOCATION ROOM>) is mapped to the commands
(1) find the coordinates of the room, and (2) navigate
to those coordinates.

SENDING COMMAND:

(TCAEXPANDGOAL "navigateToG"
#(MAP-DATA 567.0d40 2316.5d0))

These command sequences are manually generated
but incremental in nature. They may be executed
directly by the RoGUE module (e.g. an action like
finger), or sent via the TCA interface to the Xavier
module designed to handle the command.

Figure 7 shows a partial trace of a run. When
PRODIGY applies the <GOTO-ROOM> operator in its in-
ternal world model (see node n14), ROGUE sends the
command to Xavier for execution. Each line marked
“SENDING COMMAND” indicates a direct command sent
through the TCA interface to one of Xavier’s modules.

This example shows the use of two more TCA com-
mands, namely C_observe and C_say (after nodes n14
and n18). The first command is a direct perception ac-
tion. The observation routine can vary depending on
the kind of information needed. It can range from an
actual interpretation of some of Xavier’s sensors or its
visual images, to specific input by a user. The command
C_say sends the string to the speech board.

Linking a symbolic planner to a robot executor re-
quires not only that the planner is capable generating
partial plans for execution in a continuous way, but that
the dynamic nature of the real world can be captured in
the planners’ knowledge base. The planner must con-
tinuously re-evaluate the goals to be achieved based on
current state information. ROGUE enables this link by
both mapping PRODIGY’s plan steps into Xavier’s com-
mands and by abstracting Xavier’s perception informa-
tion PRODIGY’s state information.

6. Monitoring Execution, Detecting
Failures & Replanning

The capabilities described in the preceding section are
sufficient to create and execute a simple plan in a world
where all dynamism is predictable. The real world,
however, needs a more flexible system that can moni-
tor its own execution and compensate for problems and
failures. Any action that is executed by any agent is
not guaranteed to succeed in the real world.

The TCA architecture provides mechanisms for mon-
itoring the progress of actions. ROGUE currently
monitors the outcome of the navigateToG command.
navigateToG may fail under several conditions, includ-
ing detecting a bump, detecting corridor or door block-
age, and detecting lack of forward progress. The mod-
ule is able to compensate for certain problems, such as
obstacles and missing landmarks, and will not report
failure in these situations.

n2 (done)
n4 <xfinish*>
n5 (mtg-scheduled)

Firing prefer bindings LOOK-AT-CLOSEST-CONF-ROOM-FIRST #<5309> over #<5311>

n7 <schedule-meeting 5309> [1]
n8 (conference-room 5309)
nl10 <gelect-conference-room 5309>
nill (at-room 5309)
nl3 <goto-room 5309>
nl1l4 <GOTO-ROOM 5309>

SENDING COMMAND (tcaExecuteCommand "C_say" "Going to room 5309")

ANNOUNCING: Going to room 5309

SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 3483.0d0))

...waiting...
Action NAVIGATE-TO-GOAL finished (SUCCESS).

nil5 (room-empty 5309)
nl7 <observe-conference-room 5309>
n18 <0BSERVE-CONFERENCE-ROOM 5309>

SENDING COMMAND (tcaExecuteCommand "C_observe" "5309")

DOING OBSERVE: Room 5309 conf-room
...waiting...
Action OBSERVE finished (OCCUPIED).

SENDING COMMAND (tcaExecuteCommand "C_say'" "This room is occupied")

ANNOUNCING: This room is occupied

6 1n6 schedule-meeting
7 nl1b <schedule-meeting r-5311>

Figure 7: Trace of Rogue interaction.

Since the navigate module may get confused and re-
port a success even in a failure situation, ROGUE al-
ways verifies the location with a secondary test (vision
or human interaction). If ROGUE detects that in fact
the robot is not at the correct goal location, ROGUE up-
dates PRODIGY’s domain knowledge to reflect the actual
position, rather than the expected position.

This update has the direct effect of indicating to
PRODIGY that the execution of an action failed, and
it will backtrack to find a different action which can
achieve the goal. Since PRODIGY’s search algorithm is
state-based, it examines the current state before making
each decision. If the preconditions for a given desirable
action are not true, PRODIGY must attempt to achieve
them. Therefore, when an action fails, the actual out-
come of the action is not the same as the expected out-
come, and PRODIGY will attempt to find another solu-
tion.

In a similar manner, PRODIGY is able to detect when
an action is no longer necessary. If an action un-
expectedly achieves some other necessary part of the
plan, then that precondition is added to the state and
PRODIGY will not need to subgoal to achieve it.

Also, when an action accidentally disachieves the ef-
fect of a previous action (and the change is detectable),
ROGUE deletes the relevant precondition and PRODIGY

will be forced to re-achieve it.

Take for example, a coffee delivery scenario. The sys-
tem picks up the coffee, adding the literal (has-item
coffee) to its knowledge base and deleting the goal
(pickup-item coffee roomd).If ROGUE is now inter-
rupted with a more important task, it suspends the
coffee delivery and does the other task. While do-
ing the new task, the coffee gets cold, making the lit-
eral (has-item coffee) untrue. (The state change
is detected by a manually encoded daemon.) When
PRODIGY returns to the original task, it examines
the next foreseeable action: (deliver-item coffee
roomB), discovers that a precondition is missing (it
doesn’t have the coffee) and will subgoal on re-achieving
it.

In this manner, ROGUE is able to detect simple ex-
ecution failures and compensate for them. The inter-
leaving of planning and execution reduces the need for
replanning during the execution phase and increases the
likelihood of overall plan success. It allows the system
to adapt to a changing environment where failures can
occur.

Observing the real world allows the system to adapt
to its environment and to make intelligent and relevant
planning decisions. Observation allows the planner to
update and correct its domain model when it notice

changes in the environment. For example, it can notice
limited resources (e.g. battery), notice external events
(e.g. doors opening/closing), or prune alternative out-
comes of an operator. In these ways, observation can
create opportunities for the planner and it can also re-
duce the planning effort by pruning possibilities. Real-
world observation creates a more robust planner that is
sensitive to its environment.

8. Summary

In this paper we have presented one aspect of ROGUE,

an integrated planning and execution robot architec-

ture. We have described here how PRODIGY’s state-
space means-ends planning algorithm gives ROGUE the
power

e to easily integrate asynchronous requests,

e to prioritize goals,

e to easily suspend and reactivate tasks,

e to recognize compatible tasks and opportunistically
achieve them,

e to execute actions in the real world, integrating new
knowledge which may help planning, and

e to monitor and recover from failure.

ROGUE represents a successful integration of a classi-
cal Al planner with a real mobile robot. The complete
planning & execution cycle for a given task can be sum-
marized as follows:

1. ROGUE requests a plan from PRODIGY.

2. PRODIGY passes executable steps to ROGUE.

3. ROGUE translates and sends the planning steps to
Xavier.

4. ROGUE monitors execution and through observation
identifies goal status; failure means that PRODIGY’s
domain model is modified and PRODIGY may back-
track or replan for decisions
As described here, ROGUE is fully implemented and

operational. The system completes all requested tasks,
running errands between offices in our building. In the
period from December 1, 1995 to May 31, 1996 Xavier
attempted 1571 navigation requests and reached its in-
tended destination in 1467 cases, where each job re-
quired it to move 40 meters on average for a total travel
distance of over 60 kilometers.

This work is the basis for machine learning research
with the goal of creating a complete agent that can re-
liably perform tasks that it is given. Learning allows
the agent to use accumulated experience and feedback
about its performance to improve its behaviour. With-
out learning, the behaviour of an autonomous agent is
completely dependent on the predictive ability of the
programmer.

We intend to implement learning behaviour to notice
patterns in the environment so that failures can be pre-
dicted and avoided. We would like, for example, to be
able to say “At noon I avoid the lounge”, or “That task
can only be completed after 10am”, or even something
as apparently simple as “I can’t do that task given what
else I have to do.” Learning would occur at three levels:

e during navigation to select appropriate routes,

e during single-task planning to place constraints on
when it can be done, and

e during multiple-task planning to place constraints on
when tasks can be successfully combined.

When complete, ROGUE will learn from real world ex-

ecution experience to improve its high-level reasoning

capabilities.

References

[1] Jaime G. Carbonell, Craig A. Knoblock, and Steven
Minton. PRODIGY: An integrated architecture for plan-
ning and learning. In K. VanlLehn, editor, Architectures
for Intelligence. Erlbaum, Hillsdale, NJ, 1990. Also
Available as Technical Report CMU-CS-89-189.

[2] Karen Zita Haigh and Manuela Veloso. Interleaving
planning and robot execution for asynchronous user re-
quests. In Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), November
1996. To Appear.

[3] Karen Zita Haigh and Manuela M. Veloso. Using
perception information for robot planning and execu-
tion. In Proceedings of the AAAT Workshop “Intelligent
Adaptive Agents”. AAAI Press, August 1996. Available
at http://www.cs.cmu.edu/~khaigh/papers.html.

[4] Joseph O’Sullivan and Karen Zita Haigh. Xavier.
Carnegie Mellon University, Pittsburgh, PA, July 1994.
Manual, Version 0.2, unpublished internal report.

[5] Reid Simmons. Becoming increasingly reliable. In Pro-
ceedings of AIPS-94, pages 152—-157, Chicago, I, June
1994.

[6] Reid Simmons. Structured control for autonomous
robots. [EFEE Transactions on Robotics and Automa-
tion, 10(1), February 1994.

[7] Reid Simmons, Rich Goodwin, Karen Zita Haigh, Sven
Koenig, and Joseph O’Sullivan. A modular architecture
for office delivery robots. Submission to Autonomous
Agents 1997, February 1997.

[8] Reid Simmons, Long-Ji Lin, and Chris Fedor. Au-
tonomous task control for mobile robots. In Proceedings
of the IEEE Symposium on Reactive Control, Philadel-
phia, PA, September 1990.

[9] Peter Stone and Manuela Veloso. User-guided inter-
leaving of planning and execution. In Proceedings of
the European Workshop on Planning, September 1995.

[10] Manuela M. Veloso, Jaime Carbonell, M. Alicia Pérez,
Daniel Borrajo, Eugene Fink, and Jim Blythe. Inte-
grating planning and learning: The PRODIGY architec-
ture. Journal of Fxperimental and Theoretical Artificial
Intelligence, 7(1), January 1995.

