PADQO: Learning Tree Structured Algorithms for

Orchestration into an Object Recognition System!

Astro Teller and Manuela Veloso
February 10, 1995

CMU-CS-95-101

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Most artificial intelligence systems today work on simple problems and artificial
domains because they rely on the accurate sensing of the task world. Object
recognition is a crucial part of the sensing challenge and machine learning stands
in a position to catapult object recognition into real world domains. Given that,
to date, machine learning has not delivered general object recognition, we pro-
pose a different point of attack: the learning architectures themselves. We have
developed a method for directly learning and combining algorithms in a new way
that imposes little burden on or bias from the humans involved. This learning
architecture, PADQ, and the new results it brings to the problem of natural image
object recognition is the focus of this report.

!This research was sponsored by the Carnegie Mellon School of Computer Science

Keywords: PADQO, Genetic Programming, Object Recognition, Evolution,Parallel
Algorithms,Incremental Learning,Natural Images,Greyscale Video Images,Libraries,Orchestration

1. INTRODUCTION

In general, Al systems use symbols to represent knowledge and to reason about
tasks. Most of these systems today still work on simple problems and artificial
domains. One of the main reasons for this is the common assumption that sensing
is not only perfect, but also that sensors return specific symbols, not raw data.
The signal-to-symbol problem is the task of converting raw sensor data into a set
of symbols that the data can be seen as representing.

One of the main goals of computer vision is to provide a solution to the signal-
to-symbol problem. In particular, this goal involves object recognition, i.e. the
ability to recognize what objects are shown in an image. Machine learning can do
induction on a set of examples to learn to discriminate among classes. These two
fields, machine learning and computer vision, are natural mates and are particu-
larly suited to cooperate on object recognition tasks.

Several proven machine learning architectures, such as neural networks, have
been integrated with computer vision and the results in the recognition of “ev-
eryday” objects have been modest at best. It is possible that better parameter
values, more training data, or faster computers will allow one of these architec-
tures to make some significant advance in the field of object recognition. This
report proposes a different view: that given the experienced difficulties with the
current architectures, a more profitable path is to investigate new architectures.

Clearly, any solution to the object recognition problem needs to be grounded
in an algorithm that processes intensity values from an image signal. Consider the
particular task of differentiating between many different images of natural objects
in natural settings. This task can be solved by learning a separate algorithm for
discriminating image signals of each object class.

Our new architecture, PADQO, is a technique for learning these algorithms
directly, so that there is no built-in commitment to the manner in which the algo-
rithm investigates the image and arrives at a decision. No features are chosen for
PADO and no attention focusing strategy is built in. PADO (Parallel Algorithm
Discovery and Orchestration) uses an evolutionary strategy to accomplish these
feats of self-generation. The motivation for PADQ, the details of PADO, and
results on a challenging vision problem are the topic of this report.

A challenging vision problem in object recognition can be found in high res-
olution, noisy images of real world objects in natural settings. In the course of
this report, such an image set will be introduced as an example domain in which
PADO can learn and perform. PADO’s impressive performance on this difficult
recognition problem will then be repeated in a second vision domain with different
characteristics.

This report will provide a solid basis for understanding this unique architecture
and why it works. The experimental results will show PADO’s promise as a
new, practical solution to the general object recognition problem. The PADO
architecture is entirely independent of the signal type to be classified and this
construction will be seen to promise similar results on signal types as varied as
sonar, speech, and text. This report is both a dissection of a tested approach and
the introduction of a new way of doing signal understanding.

2. MOTIVATION

The Signal-to-Symbol Problem is a major problem in Al both in its own right,
and because many other, more symbolic parts of Al need to be given symbols,
rather than raw data.

As introduced above, PADO is designed to attack the general signal-to-symbol
problem. Why pick vision as PADQ’s first test domain? The real reason is that
vision is the task Al most badly needs to have solved. The two most obvious
examples of agents performing the signal to symbol translation are in hearing
and seeing. Humans and other animals seem to effortlessly take in information
which is not unfairly represented as 1 or 2 dimensional waves and very quickly
and without conscious effort determine some correspondence between these raw
perceptions and notions about the real world. In humans, we call these notions
symbols.

Extracting symbols from vision and hearing are both hard problems. But
relative to the ultimate goal of human level performance, it is clear that Al has
had more success engineering solutions to the sound problem than to the vision
problem. So because it is important to Al and because it is still a mostly unsolved
field, PADQ’s first problem was chosen to be vision.

As will be detailed in the next section, learning is relatively new to the field
of computer vision and has brought with it only modest improvements in most
areas. Given that learning in vision has had this modest success rate in uncon-
strained problems, we suggest that too much effort is being concentrated on the
effort to scale up these architectures so that they work better or with less human
intervention (i.e. preprocessing).

After all, Neural Networks (NN) as an example, were not designed to model our
visual cortex or our brains. They were intended to be like very small pieces of our
brain. There is no good reason to think that the large amount of processing that
has to go on in order to do general object recognition can be done by a NN with a
few hundred inputs or one with at most a few tens of hidden units. Even ignoring
this, it is not obvious that NNs will be easy to train on a function as complex as
the mapping from images to classes. Instead, we designed an architecture that
directly addresses some of these issues.

This report is organized as follows. Section 3 discusses related work in the
areas of object recognition and genetic programming. Section 4 provides a short
introduction to the learning power of evolution. Section 5 details the PADO
architecture and the language choices made for our experiments. Section 6 gives
the experimental background, set up, and example pictures. Section 7 shows
results on a series of experiments. Section 8 is a series of discussions on some of
the most puzzling points that this report brings up. Section 9 looks forward to
the work in progress now and the near future goals we have for this work. And
finally, Section 10 concludes by bringing together the highlights of the report.

3. RELATED WORK

Object Recognition has been a heavily researched area for almost 30 years. Until
recently however, the objects to be recognized were usually highly geometrical in
shape. In the majority of cases, the recognizer already had some model, either

explicit (e.g. CAD)[2] or implicit (e.g. hand-coded features)[3], of what the
objects were like; the task was really to try to find objects in the picture and
correctly identify their pose.

The demand for more robust systems with few constraints, coupled with the
rising cost of programmer time relative to computer cycles has pushed object
recognition and machine learning together. The field of computer vision is far
too big even to sketch here. While we focus on vision and learning, we will only
claim that to obtain similar results to those presented in this report, a hand-coded
system, if at all feasible, would require a significant amount of programmer time.

Learning has been used for a variety of purposes with respect to object recog-
nition. Researchers have tried to learn which hand-coded features to use on a
particular problem [8]. Researchers have tried to learn models of the objects
based on a number of well constrained images of these objects and then use these
models as mentioned above [19].

Learning has been applied on a larger level, particularly in the form of Neural
Networks. The major problem with using Neural Networks is that with today’s
technology, NNs cannot take full video images as input. Imagine even a small
image with 256x256 resolution. A NN with just 16 hidden units fully connected to
the 1/16 million inputs would have over 1 million weights to fix. Back propagation
would take a long time to train such a net.

When preprocessing can be done to significantly reduce the images’ resolution
while preserving the relevant information, NNs can be effective. Of course this
most often occurs when either the problem is not difficult or where the preprocess-
ing is very clever. When the preprocessor has been made very clever, the problem
has not really been solved, but simply been moved to the problem of creating this
nice preprocessor.

Though it is not directly concerned with object recognition, Dean Pomerleau’s
work on driving the ALVINN using a NN is an example of a very successful
application of NN’s to a computer vision problem [10]. Here the preprocessor was
a little clever and the problem itself was not too hard. This work is important
largely because Dean was one of the first to apply learning to this kind of real
time reactive vision problem.

Thrun’s and Mitchell’s work using NNs to do visual object recognition is an-
other good example of work with goals similar to our own [18]. They take video
images and preprocess them to get low resolution images which are then given to
a NN for object recognition training. Their work focuses on studying the effect of
lifelong learning on the ability to find general object type invariants. This work
is mentioned here not only because it is has some experimental similarities to our
work, but because we have used their data for some of the experiments discussed
in this report.

Because part of the PADO system is a type of genetic programming (GP),
there should be some mention here of the sort of vision related work that has
been done within that paradigm.

As far as we know there are no published results of the sort discussed in this
report: that is, none that apply genetic programming or genetic algorithms di-
rectly to full video images and do object recognition on the basis of that input.
The work that has been done seems to fall into two major categories: bitmap

recognition and learned aids for vision problems (including object recognition).
There have been some examples of genetic programming applied to bitmaps (usu-
ally font bitmaps) in order to do classification ([7], [1]). In between there are
works like [4] that applied GP to a restricted subset of a black/white silhouette
of a person and tried to learn where one of the hands was. Learned aids to object
recognition can be seen in works like [11] and [9]. For example, in [11], GP is used
to improve the performance of an army system for locating tanks by learning to
choose from among existing system components.

There is a significant amount of work that is related to PADO, but no single
piece of work or combination of several even partially overlaps with the details of
the PADO architecture. The method of orchestration and parallel execution of
learned algorithms for signal classification has, until now, been unexplored.

4. EVOLUTION FOR INDUCTIVE GENERALIZATION

Evolutionary computation is biologically motivated. In nature, we see that the
combination of survival of the fittest, fitness proportionate reproduction, and
genetic recombination is an extremely powerful tool for finding solutions to bi-
ological problems. In this section we introduce the basic nature of such genetic
evolutionary processes.

()

Suppose that we have a large . L .
Initialize Population with Random Things

group of things, and some measure of
how good a thing is. We can apply
this measure to each of these things
and get an approximate or exact fit- New Population of Things<<--------------=
ness for each thing. Now suppose that :
we allow each thing to be represented
in a new group of things in propor-
tion to its fitness relative to the other | Measure the Fitness of each Thing
things in the group. The best things in
the old group, are likely to have mul- Quit if Fitness Goal
tiple representation in the new group is Achieved

and the worst things in the old group
are likely to have no representation in | create Mating Pool by Fitness Proportionate
the new group. When the new group | Reproduction. (Temporary Population)

is fixed to be the same size as the old
group this scheme accomplishes both
survival of the fittest and fitness pro-
portionate reproduction. If nothing Apply Genetic Recombination to Mating Pool
else changed between each successive
group, the current group would soon

be filled with many instances of the Mating Pool Becomes New Pooulation - - - - -
most fit thing in the group. L aling Foof becomes New Fopufatio y

Suppose that before measuring the fitness of each thing in the new group, we
change some of them in a random or semi-random way. This is the most general
form of “genetic recombination.” These changes introduce some chance that one
of the new things will have higher fitness than any of the old things. After many

new groups have come and gone we can expect that the best thing in the current
group will be much better, according to our measure, than any of the things that
were in the original group. That is the concept of evolution. (See Chart above).

Evolutionary computation is a form of best-first search. Exponentially increas-
ing representation is given to those things that have highest fitness and so those
points in the space are exponentially more likely to be examined next, relative to
the other points under consideration (i.e. the other things in the group) [12, 13].

In the vocabulary of evolutionary computation, a group of things is called a
population. To distinguish one population from another they are referred to as
generations. The initial population is traditionally called “Generation 0” and
each successive generation is numbered in increasing integer order.

The exact structure of a thing varies from field to field in evolutionary com-
putation. In genetic algorithms things are called alleles and take the form of bit
strings [5]. In genetic programming things are called functions and take the form
of Lisp-like nested primitive function calls [6]. In PADO they will be referred to
as programs. The form they take will also be represented in a Lisp-like syntax,
but this is only a partial representation of what the program is. (See Appendix 1
for an example PADO program).

Genetic recombinations come in many different varieties. The two most com-
mon and the two which are directly relevant to this report are crossover and
mutation. In crossover two things are chosen and one subpart from each is se-
lected. Then these two subparts are exchanged and these two new things are
placed back in the population. In mutation, one thing is chosen and one subpart
is selected. This subpart is changed in some random way and this new thing is
placed back in the population. In both cases the syntax of the things is usually
constrained so that these changes always produce legal new things.

The most crucial aspect of evolutionary computation is that it is not a random
search of the space of things. Because there is a correlation between syntactic and
functional similarity, these recombinations explore things which are likely to be
similar in their fitness. This correlation is the essence of hill-climbing. Combine
this version of hillclimbing with the aspects of best-first search already mentioned
and we have a powerful tool for searching almost any space whose decomposable
elements have some fitness variation.

5. PADQO ARCHITECTURE

Part of the PADO architecture falls under the general heading of evolutionary
computation. This section will discuss the way PADO works and how its central
component is an instance of the general scheme that was described in the previous
section. During the first part of this section the inputs will be considered arbitrary
signals. Later in the section and then for the rest of the report, the specific signal
type of a still video image will be used as an example. But because the PADO
architecture was designed to apply to any signal type, that is how it will be
introduced.

The goal of the PADO architecture is to learn to take signals as input and
output correct labels. When there are C classes to choose from, PADO
starts by learning C different systems. System 7 is responsible for taking

a signal as input and returning a confidence that class 7 is the correct label.
Clearly, if all C systems worked perfectly, labeling each signal correctly would be
as simple as picking the unique non-zero confidence value. If, for example, system
J returned a non-zero confidence value, then the correct label would be J. In
the real world, none of the C systems will work perfectly. This leads us to the
recurring two questions of the PADO architecture:

1. “How does PADO learn good components?”
2. “How does PADO orchestrate them for maximum effect?”

We will explain how PADO orchestrates these systems in Section 7.3. Now, let’s
delve into how one of these systems is built.

System 7 is built out of several programs. Fach of these programs does exactly
what the system as a whole does: it takes a signal as input and returns a confidence
value that label 7 is the correct label. The reason for this seeming redundancy will
be justified and discussed in Section 10. PADO’s orchestration of these programs
into a single system will be discussed in Section 7.3.

PADO evolves these programs along the general lines described in the previous
section. Programs learned by PADO are written in a functional language that is
PADO-specific. During the training phase of learning, these programs are inter-
preted, not compiled. So like Lisp, the programs can be compiled or interpreted,
but during the “construction” phase they are simply interpreted.

At the beginning of a learning session, the main population is filled with P
programs that have been randomly generated using a grammar for the legal syntax
of the language. All programs in this language are constrained by the syntax to
return a number that is interpreted as a confidence value between some minimum
confidence (MinConf) and some maximum confidence (MaxConf).

At the beginning of a new generation, each program in the population is
presented with 7 training signals and the 7 confidences it returns are recorded.
Then the population is divided into C different groups of size P/C. The programs
in group Z are the P/C programs that recognized class 7 better than any other
class in the sense that they maximized a reward function Reward when K =7
(K is the class to which PADO is considering assigning program U).

/* R is the reward and C is the number of classes. Guess[U][j] is the
confidence program U returned for image j. ObjectClass[j] is the object
type that appears in image j. */

int Reward(class K, int Guess|])
R = 0;
Loop j = 1 to MaxResponses
If (K = ObjectClass[j]) Then
R=R+((C—1)xGuess[U][j]);
Else
R = R — Guess[U][j];

return R;

On images that the program (o)
should return MaxConf for, the re- Initialize Population with Random PROGRAMS
ward is multiplied by C — 1 so that,
even though this only happens once in
C times, these images will account for New Population <<<--------------------- ;
half the reward.! '

Each group is then sorted by in-

creasing fitness and each program is ! .
8 prog Measure Confidence-Reaction of each

ranked accordingly. A new total pop- program on a Set of Training Images

ulation is created by putting a copy of
Programsz in the new population with
probability 2 * rank(Z)/(P/C). The

expected number of copies of the best Separate the Main Population into C pools
according to the programs’ respective talents .

program in Groupr is 2, the expected
number of copies of the median pro-

gram is 1, and the expected number of Extract Best from each Pool

. . for Object Recognition
copies of the worst program in G'roupr : 9

is 2/(P/C'). This is fitness proportion-
ate reproduction. Create C Mating Pools using Fitness
Proportionate Reproduction.

The Libraries are functions avail-
able to all programs. After the di-
vision of the population, the libraries
are updated according to how widely | Update Libraries according to
and how often they were used. These Fitness-Weighted-Use.
statistics are weighted by the fitnesses
of the programs that called them.

Finally, = a large ,perc,ent of SMART Operators choose Recombination Siteé
the new total population is sub- :

jected to crossover and another,

much smaller percent is subjected to
mutation.?Crossover in PADO is more Apply Genetic Recombination to each
complicated than its standard form | Mating Pool
in genetic algorithms or genetic pro-
gramming. In PADO two programs

are chosen and given to a “SMART Mating Pools are Merged into New Population -
crossover” algorithm. L J

This algorithm examines the two programs and decides where they should be
crossed over. Then the two subparts of the programs chosen by the algorithm are
switched, creating two new programs. These two new programs replace the two
old programs in the population. Mutation in PADO works very much as it does
in the general case described in the previous section. One program is chosen and
a randomly chosen subpart is replaced with a randomly generated subpart. This
changed program then replaces the old program in the new total population.

1This seems reasonable since it should be as important to say YES when appropriate as to
say INO when appropriate since these two cases are respectively coverage and accuracy.

?The implementation details of these exact percentages and the reasons why they are not
equal are largely traditional and affect the speed, but not the results in this report.

At this point we have a new population and the process of evaluation, re-
production, and recombination repeats. After many generations we find that the
best programs in the population are much better than any that were created
(randomly) at the start of the process.

To extract programs to use in the systems, we can pause the process after the
evaluation step of a generation and copy out those programs that scored best or
near best in each group Z. So this architecture is an anytime learning system: at
any time we can generate a system for signal classification using what we have
learned so far.

5.1. THE LANGUAGE OoF A PADO PROGRAM

Each PADO program is made up of
three important parts: a main loop, [The Structure of
an ADF, and an Indexed Memory. J aProgram
Both the main loop and the ADF
(Automatically Defined Function) are
written in a PADO-specific functional
language. The main loop is repeat-
edly applied for a fixed time limit. A
weighted average of the responses the ain Loop
program gave on each iteration is com-
puted and interpreted as the answer.
The weight of a response at time %
is 1. Later responses count more to-
wards the total response of the pro-
gram. PADOQ’s programs are guaran-
teed to halt and respond in a fixed
amount of time.

The Indexed Memory is an array of integers indexed by the integers. As will

Indexed Memory of Integers

be seen below, each program has the ability to access any element of its memory,
either to read from it or to write to it [14]. This memory scheme, in conjunction
with the main loop described above has been shown to be Turing complete [16].
In practice this memory has a finite range of the integers over which it is indexed
and each element can hold integers in a finite range. However, indexed memory
can been seen as the simplest memory structure that can practically support all
other memory structures. Indeed, indexed memory has been successfully used to
build up complex mental models of local geography [14].

The ADF is a function definition that evolves along with the main loop. This
ADF may be called as often as desired in the main loop but may not call itself
[7]. While each program has a private main loop, a private ADF, and a private
indexed memory, there are a number of Library functions that may be called by
the entire population of programs.

Like every functional language, PADO programs are composed of nested func-
tions. These functions act on the results of the functions nested inside them
and any terminals that make up their parameters. Terminals are the zero arity
functions like constants and variables.

In the main loop, the terminals are the integer values 0 thru 255. In the ADF
and library functions, the terminals are the integer values 0 thru 255 plus the
parameters X, Y, U, and V (see below).

Here is a brief summary of the language primitives and their effects:?

Algebraic Primitives
(ADDXY),(SUBX Y),(MULT X Y),(DIVXY),(NOT X),(MAX
X Y),(MIN X Y) : These functions allow basic manipulation of the inte-
gers. All values are constrained to be in the range 0 to 255. So numbers are
rounded up or down as necessary. For example, (DIV X 0) is defined to be
255 and (NOT X) maps the set 1..255 to 0 and 0 to 1.

Memory-access Primitives

(READ X),(WRITE X Y) : These two functions access the memory of
the program. Each program has a memory which is organized as an array of
256 integers that can take on values between 0 and 255. (READ X)) returns
the integer stored in position X of the memory array. (WRITE X Y) takes
the value X and writes it into position Y of the indexed memory. WRITE
returns the OLD value of position Y (i.e. a WRITE is a READ with a side-
effect). The memory is cleared (all positions set to zero) at the beginning
of a program execution and then during that time all writes persist unless
overwritten by a newer write to the same position.

Branching Primitives

(IF-THEN-ELSE X Y Z),(EITHER X Y Z) : These two are short-
circuit branches. Either the Y or Z subtree is evaluated and returned, but
the other is never even evaluated. This is an important distinction when
subtrees can have side effects like WRITE. (IF-THEN-ELSE X Y Z)is a
deterministic branch. If X evaluates to a non-zero number then Y is evalu-
ated and returned, otherwise Z is evaluated and returned. (EITHER XY
Z) is a non-deterministic branch. A number between 0 and 255 is chosen
at random. If the number is less than X then Y is evaluated and returned,
otherwise 7 is evaluated and returned.

Signal Primitives

(PIXEL X Y),(REGION X Y),(LEAST X1 Y1 X2 Y2) ,(MOST
X1 Y1 X2 Y2),(AVERAGE X1 Y1 X2 Y2),(VARIANCE X1 Y1
X2 Y2): These are the language functions that can access the image data.
PIXEL returns the intensity value at that point in the image. REGION
returns the Gaussian sampled value at that point with a standard deviation
of 5 pixels. The other four return the respective functions applied to the
rectangle in the image that the four parameters specify. (The smaller of the
two X values is interpreted as Xppperresr and the larger is interpreted as
XLowerRight- The same is done for the Y values and so the four parameters
always specific a legal rectangle in the image).

?A portion of the discussion section will be devoted to a justification of this language design
and its ramifications

10

Routine Primitives

(ADF X Y U V) : ADF stands for Automatically Defined Function. This
function is private to the individual that uses it and can be called as many
times as desired from the main loop. Each individual has exactly one ADF
which evolves along with the main loop. The ADF differs from the main
loop in three ways. It may not call ADF, it may not call Library functions,
and it has 4 extra legal terminals: X, Y, U, and V. These extra termainals
are local variables that take on the values of the four sub-expressions that
were used in each particular call to ADF from the main loop.

(LIBRARYTJi] X Y U V) : There are 100 library functions. The i is not
really a parameter. Instead a call to a Library function from some program’s
main loop might look like (Library57 56 (ADD 1 99) 0 (WRITE 3 19)). All
100 library functions are available to all programs in the population. How

these library functions are created and changed will be discussed in Section
10.

6. THE EXPERIMENTS

The discussion of results will focus on two sets of data. One set was taken by
us. The other set was taken by Sebastian Thrun who is also working in machine
vision [18]. For reference purposes, we will call the first set A and the second set
T.

Set T has seven classes: Book, Bottle, Cap, Coke Can, Glasses, Hammer, and
Shoe. The lighting, position and rotation of the objects varies widely. The floor
and wall behind and underneath the objects are constant. Nothing else except
the object is in the image. However, the distance from the object to the camera
ranges from 1.5 to 4 feet and there is often severe foreshortening of the objects in
the image. See columns one and two of Figure 1 for sample images.

Set A has seven classes: Nothing, Bear, Long flute, Pan flute, Thermos, Book,
and Racket. The class Nothing is a collection of images which are empty or show
a hand holding some object (like a cup or a ball) that is not one of the other
six classes. All pictures are taken against a variety of solid colored backgrounds
and contain part of a hand and arm. The hand holds one of the objects, often
partially occluding it. The location and rotation of the object is only constrained
so that the object is completely in the image. The lighting varies dramatically in
intensity and position. The distance from the object to the camera ranges from
2.5 to 3.5 feet. The objects are never severely foreshortened. See columns three
and four of Figure 1 for sample images.

Set A was created with several criteria in mind. We wanted a set of images that
could be easily distinguished by people, but were not trivially different in some
way that the computer could “notice”. We wanted some noise in the images but
didn’t want to have unconstrained backgrounds. We wanted a sufficient number
of classes so that the results could give some indication of PADQO’s practical value.
However, it was important that the number of classes be small enough that the
learning and science was not lost in the engineering.

As a result, we chose grey scale images of the seven classes listed above for set
A. The backgrounds varied in color but were always solid. The noise was always

11

Sample Train Images Sample Test Images

Sample Train Images Sample Test Images

5
¥

Figure 1: 28 randomly selected images from Sets T and A.

12

there in the form of a hand and arm. In general the hand and arm takes up about
half as much area of the image as the object itself so that the signal to noise ratio
is between 1.0 and 2.0. And we chose to test the system on seven classes. Initial
tests proved PADQ’s effectiveness in a three class object recognition problem, so
slightly more than doubling the number of classes seemed like the next qualitative
step up in difficulty.

Set T was created by Sebastian Thrun for his own work. The pictures he took
were originally in color, but allowing PADQO access to the color images turned out
to be too easy (PADO classification accuracy of 95%) so we removed the color and
saturation information and kept only the brightness information. We thought it
was important, perhaps even more important, to include data on images taken by
someone else for a different purpose as this is the really goal of the PADO project.
That is, the ability to distinguish between classes of signals that were in no way
designed, taken, or preprocessed with PADO in mind.

Because these images all have at most one object, it could be argued that
the results shown in the following sections are not object recognition but rather
classification of images based on the object shown in the image. This is a murky
distinction. What makes object recognition different from image classification
(since we can imagine that an image that contains both a shoe and hammer
would be correctly classified both as a SHOE image and as a HAMMER image)?
The only reasonable distinction might be that an object recognizer must do more
than just know of the object’s existence in the image. It must be able to locate it
in the image, perhaps even segment it from the rest of the image. This distinction
is loose enough that we feel free to label these results as object recognition. More
will be said in the discussion section about finding the object in the image.

The following sections shows three different experiments.? In each of the three
experiments the general methodology was the same. The training set consisted of
14 images from each class for a total of 98 images. The testing set consisted of 14
different images from each class for a total of 98 images.® The environment was
initialized with 2100 random programs, 100 random library functions, and 100
random SMART operators. The environment was then run for 50 generations,
examining the fitness of each program relative to the 98 training images. For the
object recognition, the best seven programs as determined by their performance on
the training set, were extracted and orchestrated for testing as a complete PADO
recognizer. Each experiment was done five times in order to obtain reliable results.

7. EXPERIMENTAL RESULTS AND ANALYSIS

Through this section we show how PADO actually accomplishes difficult tasks in
visual object recognition. The results shown here are not the only hurdles that
PADO has cleared. In fact, these results are not PADO’s most flattering. But
they give an accurate, easy to understand picture of the sort of performance that
PADO can currently deliver on real tasks. The section is organized in three parts.

*The experiment on object recognition in Section 7.3 uses the results of the discrimination
experiment done in Section 7.1.

®In order to get a sufficiently large number of different images for set A, each “original image”
was subjected to a variety of transformations (e.g. mirror image, contrast up, etc.) to produce
several different images.

13

Each subsection will explain an experiment, detail the results, and then give some
basic analysis and implications.

7.1. THE STANDARD PADO TECHNIQUE

At the end of each generation, each program is placed in the group K that maxi-
mizes its reward. That reward, as mentioned before, is as follows for an individual

in group K.
Discrimination Reward Percentage

60 | | | | | | | | |
Bear
| Longflute
50 Panflute
Thermos
40 + Book
Racket

Random

30

20

10

0 % A Aty It S S S S R
0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 2: PADO discrimination reward percentage on test images of Set A.

/* R is the reward and C is the number of classes. Guess[U][j] is the
confidence program U returned for image j. ObjectClass[j] is the object
type that appears in image j. */
int Reward(class K, int Guess|])
R = 0;
Loop 7 = 1 to MaxResponses
If (K = ObjectClass[j]) Then
R=R+((C—1)xGuess[U][j]);
Else
R = R — Guess[U][j];

return R;

7.1.1. RESULTS

Figures 2 and 3 show the average reward of the top § programs in each class
for each generation between 1 and 50 based on 98 test images. In other words,
the § programs from class Z that had the highest reward for the training images
are selected. Then each of these § programs at each generation is reevaluated on

14

Discrimination Reward Percentage

60]]]]]]]]]
Book <—
50 Bottle +——
Cap B&—
Coke —><—
40 + Glasses -—
Hammer —%—
Shoe o
30 Random P2 T » s)]

20

10

0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 3: PADO discrimination reward percentage on test images of Set T.

98 test images and is given a reward based on how it performed on these 98 test
images. Then these § rewards are averaged to give the score for class Z that is
plotted on the graph. §is a PADO parameter which for this report was set to be
seven.

This data was taken on five separate runs and the graph is the average over
these five runs. The range of possible rewards is from -100% to 100%. Random
guessing would result (on average) in a reward of 0. So a reward of positive 50%
is actually 75% of the distance from the lowest possible reward to the highest
possible reward.

Learning (i.e. improvement) continues after generation 50, but the learning
rate continues to diminish. In order to do the number of experiments necessary

for reliable data, most of them were not allowed to continue far past generation
50.6

7.1.2. ANALYSIS

Figures 2 and 3 show the increasing ability of the best programs in the population
to distinguish their class from the others. The most obvious “feature” of the
graphs is that none of the curves in either graphs gets much above 50% positive
reward. Does this mean that even at generation 50 the most fit programs are
still having a hard time distinguishing their class from the others? Basically, the
answer is no. Remember first that random choice would average a reward of 0.
Because the numbers that these programs return are confidences, it is possible to
be “right” about a picture without getting the maximum possible reward. For

SGeneration 50 was picked as a cut off point in part because it is a traditional benchmark
generation number in the field of evolutionary computation.

15

example, if a program which is later designated as a Thermos program returns a
confidence of 0 upon seeing an image in which there is no thermos, its reward will
be maximal (100%). It it returns a confidence of 255 then its reward is minimal
(-100%). If, however, it returns a confidence of 10, for example, then its reward
will be 92% which is close to the maximum reward it could obtain on this picture.
So the fact that these curves do not climb to near 100% reward has two reasons.
The first is that the problem is very hard and the training set size is small. So no
program can perfectly fit the data. The second reason is more interesting. There
are some pictures which are more clearly from class 7 than others. So it makes
sense that many of the programs trained to discriminate images with objects from
class Z from other images should learn to express real levels of confidence based
on how likely they think it is that the picture is what they believe it to be.

A second important facet of the graphs in Figures 2 and 3 is that none of
the curves in either graph is drastically lower than the rest of the curves. While
they all have slightly different learning curves and some seem, on average, to be
a little easier to distinguish, they all keep pace with the pack as the generations
go by. Among other things, this is an excellent indication that the images are
all about the same level of difficulty and that, because the graphs grow slowly in
their performance, this difficulty level is non-trivial.

7.2. INCREMENTAL PADO

This subsection details a similar set of experiments. In these experiments only
two classes were trained in the early generations. The other classes were added
incrementally in periods of four generations, starting at generation twelve.

7.2.1. REsULTS

Figures 4 and 5 show the results obtained in reward average. Notice that these
newly added class discriminators rise very quickly to the point that they would
have been had they been trained from the beginning.

At generation 25, the incremental learning technique has used about half the
computation time that the standard PADO learning took for all seven classes. At
generation 50, the incremental learning technique has used about 75% of the cycles
that the standard method uses. Also notice that on average the incrementally
learned classes do slightly better than the standard technique.

We tried different training class orderings and obtained similar results. This
suggests that there is nothing special about the order in which the incremental
classes are introduced or the period between introductions. The only exception
is that, if the rate of introduction of new classes is faster than one every four
generations, the learning curve is not quite as steep. This is probably because
there is a period of a few generations during which two classes are both trying to
get up to speed. Waiting longer between introductions produces a very similar
rise in performance. In short, any graph must show this incremental learning
process using a particular introduction rate and a particular sequence for class
introduction. These graphs are, however, representative of graphs with various
orderings on the classes and various speeds of introduction.

16

Discrimination Reward Percentage

60]]]]]]]]]
Bear <—
50 |- Longflute —+—
Panflute &—
Thermos —<—
40 F Book -&— 0
Racket —x—
Random
30 —

20

10

0¢ B Al s RS M R
0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 4: Incremental PADO reward percentage on test images of Set A.

Discrimination Reward Percentage

60 | | | | | | | | |
Book —<—
50 Bottle +——
Cap B&—
Coke —<—
40 Glasses -&—
Hammer —%—
Shoe -----
30 - Random -- - m
20 ; -
10 ," -
Ot e e — I I I

0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 5: Incremental PADQO reward percentage on test images of Set T.

7.2.2. ANALYSIS

The incremental learning graphs in Figures 4 and 5 show similar properties to
those discussed in Figures 2 and 3 and the arguments continue to be valid. The

17

difference in these graphs is that two of the classes are trained from generation
0. Then starting at generation 12, a new class and new training images are
added at every fourth generation. Unlike the graphs from the standard PADO
technique, these graphs do show dramatic jumps in performance over a small
number of generations. These jumps are not constant, but increase in steepness
as the number of its introduction increases. So it seems that a class added later
learns up to the level of its fellow classes “faster” than previously added classes
did.

So why is it that these curves of the added classes seem to jump up so quickly
to meet the rest of the curves and then continue on as though it had been trained
from the beginning? It would be almost impossible to give a definitive answer to
this question. Instead, consider the following as a plausible explanation. At some
generation § we choose to add in another class. This means that the number
of groups the population will be divided into at the end of generation G will
increase by one and the training set size will increase so that there is an equal
number of each image class, including now the new image class. This new group
will be formed from the individuals in the population that performed best as
discriminators of this new class. Even at the end of generation G we can expect
some non-negligible performance. This new object must be “most like” one of
the other objects. So one of the programs from this old class that is most similar
will serve better as a discriminator than one we would pick at random. For a few
generations afterwards this effect is still important, but does not seem sufficient
to explain these sizable jumps in reward. The second half of this explanation lies
in the mechanism of the libraries. Rather than delve into them here we will finish
this discussion in the natural course of the discussion below about the libraries.
What the results of the incremental experiments tell us is that we can quickly get
a new class up to comparable performance with the current classes. This may
mean that larger numbers of classes can still be learned tractably or even cheaply
by leveraging off existing knowledge through this incremental learning technique.

7.3. OBIECT REcoGNITION WITH PADO

As was outlined in Section 5, object recognition for C classes is accomplished
in PADO by the orchestration of C different systems. FEach of these systems
is composed of the & most fit programs from the corresponding group of the
current generation. In order to show object recognition from generation 0 it is
necessary to learn all C program classes from the beginning. The incremental
technique actually seems (on average) to produce slightly better programs, but
until generation 24 or 28 respectively some classes have no programs and so the
object recognition could only proceed on a set of test images containing objects
from the classes already learned. This would make the graphs so hard to decipher
that instead we simply picked programs from the standard PADO strategy.
Systemz is built from the S programs that best” learned to recognize an
object from class Z. The § responses that the § programs return on seeing a
particular image are all weighted equally and their weighted average of responses
is interpreted as the confidence that Systemz has that the image in question

"Based on the training results from that generation.

18

Object Recognition Percentage Correct
30 | | | | | | | | |

45 - Set-A <—
Random ----

40
35
30

18 o =

10

0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 6: PADQO object recognition percentage correct on Set A test images.

Object Recognition Percentage Correct
30 | | | | | | | | |

45 SetT -—
Random ---- 5 o
40 —
35 -
30 -
25 5 _
20 -

15 B0 -

10 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 7: PADO object recognition percentage correct on Set T test images.

contains an object from class Z. PADO does object recognition by orchestrating
the responses of the C systems. The confidence response of each system is initially
weighted equally and the maximum confidence wins. That is, if Systems has the
highest weighted confidence then 7 is selected as the class of the image object.

19

Object Classmcatlon% F EV * Qutput(System)j
I1=1

//HX\

A

S
|
System IConfidence z

Prog1I Prog g Prog g Prog! Prog Prog é_ 1 Progé

Figure 8: The weights W and 'V that are trained early in testing.

7.3.1. REsSULTS

In these experiments (Figures 6 and 7) we followed an orchestration method where
there was some learning early in the test phase. During the first few test images
the weights are adjusted by telling PADO after its guess whether it was right or
wrong. Specifically, each program J in a particular Systems has its weight V7
adjusted after each of these initial tests so that its weight increases when it returns
a confidence near the correct confidence and decreases if its returned confidence is
far from the correct confidence. Similarly, Systemz has its weight W7 adjusted in
the same manner. This strategy (shown in Figure 8) is only one of many ways that
the orchestration could be accomplished. Several other orchestration strategies
were also tried with similar success. This orchestration strategy was chosen to
obtain these results because it works well and is simple to explain. This extra
learning (orchestration) adds only a few milliseconds to the total testing time.

We considered throwing out these first few test image results since there was
learning (orchestration) going on during this period. But since these first few test
images are the ones PADO does worst on (since it is still orchestrating) our results
improve by taking them out. So it seemed that the most reasonable thing to do
would be to count the results of all the test image guesses.

The data for Figures 6 and 7 were averaged over five runs. On each run,
on each generation, a PADO program was compiled from C systems which were
each built from the best programs available during that generation. This PADO
program was then tested on its ability to correctly recognize which object was in
each of the 98 test images.

20

7.3.2. ANALYSIS

Figures 6 and 7 show the ability of PADO to do object recognition on two sets of
image data. The crux of the paper and the important question is “Does PADO
succeed at the task of object recognition? Is PADO worth all this trouble?” The
most important thing to point out is that if we constructed a simple system that
simply guessed at the class of the image by choosing a class at random, it would be
right about 14% of the time (shown as a dotted line in Figures 6 and 7). PADO
passes this level of performance at generation 3. At generation 50 the percent
of the time that PADO correctly identifies the image class is about 3.5 times
random achievement. On images as unconstrained as these images are, of objects
as unfriendly as these objects are, this is a real difference. Issues of scalability
and potential application for PADO will be discussed in the next sections.

There are two other items of note about these two object recognition graphs.
The first is that they are both graphs of the single class chosen by the orches-
tration. Though it is not shown on the graphs, data was also taken about the
percent of the time that the correct class was “second place” in the orchestration’s
ranking of the C confidences. For both data sets this percentage was in the middle
30’s. This means that between 70% and 80% of the time the correct class was in
the top two in the orchestration’s ranking. This is interesting as a symptom of
how PADO fails when it does fail, and highlights how, as the number of classes
to choose from increases, the easier it is to get one “bad” vote that disrupts the
orchestration for that image.

The second item is the relative heights of the graphs in Figures 6 and 7. On
average the image set T (without the hand in it) is easier to generalize to than is
set A (with the hand in it). The two data sets are difficult for different reasons.
Set A includes full rotation and translation and includes the hand and arm that
possibly occlude part of the object in question. However, all the objects in set
A are more or less parallel to the image plane. For Set T this is not the case.
The hand is absent but the objects are rotated and translated and foreshortened.
Because the hand and arm introduce a significant amount of noise these results
are not surprising, but the whole issue of assessing the “difficulty” level in dividing
some set of signals into classes is a very open question.

8. DIscUSssION

The previous section gave enough information for the reader to read each graph
and extract the data that those graphs represent. Along with each set of results,
parts of the previous section were dedicated to the interpretation of that data
and its ramifications. To really understand these results and their ramifications,
however, a more complete explanation of the process is required. This section, in
a question and answer format, will try to explore some of the puzzling issues of
PADO and the task of object recognition.

8.1. THE LANGUAGE, THE ARCHITECTURE, AND THE PROCEDURE
Why not use more “helpful” image related language primitives?

In the language described in this report, there are six ways to get basic inten-
sity information from the input image(see Section 5.1). The PADO mechanism is

21

independent of the details of the language used. For example, (DIV X 0) could
be redefined to be 0 (instead of 255) and if we redid all these tests we would get
very similar results. There are certainly other language primitives that could have
been put into the language which might have improved the results shown here.
An obvious example is (SPATIAL-DIFFERENTIAL X Y U V) which would re-
turn the spatial differential along the line defined by points X,Y and U,V. A more
extreme example would be to make the results of an edge segmenter and edge
joiner available through some language primitives. There are two reasons why we
did not do this. The first is that in the spirit of trying a non traditional approach
to computer vision, it seemed worthwhile to see what level of success we could
achieve without borrowing any notions or structures from traditional computer
vision. This was originally motivated by the lack of success that computer vision
has had with natural object in natural scenes. In fact, because we believe these
results to be non trivial, that reason seems to have been justified. The second
reason is that we are trying to create a learning architecture that requires minimal
input or help from the user. The more time a programmer must spend to cus-
tomize a language in order to get good results, the less “autonomous” the system
is. We have shown in this report that with the bare minimum of input from the
user (i.e. these extremely basic functions for getting image intensity) good results
are still possible. And, of course, if still better results are sought, this system can
be improved, among other ways, by trying other language primitives.

Why use Indexed Memory as the memory structure?

Indexed Memory has shown itself to be a highly successful memory structure
in the field of Genetic Programming [14]. The successful programs whose perfor-
mance is plotted in Figures 2 - 7 typically use from 5 to 30 of their memory spots
very heavily and ignore or largely ignore the rest of the 256 memory elements.
The size of the memory was chosen to be 256 elements simply because then every
legal value would be a legal pointer into memory and because every memory ele-
ment could be accessed through a pointer from a legal value. It would have been
possible to use other memory sizes, but the results shown above were not found
to be sensitive to changes as long as there were at least approximately 50 memory
slots. It is possible that a different memory size would be needed for a different
problem, but 256 elements of 8 bits each provide for approximately 3.2 x 10916
different states already.

What part do the Libraries play in PADO’s functionality?

Initially all 100 Library functions are initialized to be random legal subtrees
with the same characteristics as ADFs. At the end of every generation, the K
worst Library functions are removed from the Library and replaced with the ADF's
of the K most successful programs of the generation. The “goodness” of a Library
function is the sum of the adjusted fitnesses of all programs that called it, multi-
plied by how often they called it (with a ceiling of once per fitness case). The ad-
justed fitness of each program is Rank[Program(Z)]—(Max Rank—MinRank)/2.
Notice that, unlike the main loops and ADFs, the Libraries do not evolve. Rather
they are a storage place for some of the best “ideas” in the population and bad
ideas are moved out in favor of other ideas that have a good chance of being good.

22

How bad library functions are determined, how many are removed, and how new
ones are found or created, is still an active area of our research.

What do the SMART Operators do that traditional crossover can’t?

When evolving functions or programs, there are several issues related to evolv-
ability. The three most important are: language representation, genetic change
paradigm, and genetic change operator(s). In Genetic Programming the language
representation is usually a Lisp-like structure much like the language shown in
Section 5. The major difference we have introduced is that we are now evolv-
ing programs instead of functions. In Genetic Programming the main genetic
change paradigm is crossover. In standard crossover, two nodes are picked, one
from each expression-tree. Then these nodes (and the subtrees under them) are
exchanged. PADO maintains this basic paradigm. In Genetic Programming the
genetic change operator is random (i.e. the two nodes to be exchanged are cho-
sen at random). This does not work for PADO. The space of algorithms is much
more difficult to negotiate than is the space of functions [15] and the result is
that, for PADO, traditional crossover stops helping at relatively low fitness levels.
In PADO we have developed SMART operators to help us choose which nodes to
exchange, where these two nodes are either both in main loops of two programs
or both in ADFs of two programs. A SMART operator is a program that takes
two expression-trees as input and, after some deliberation, indicates two nodes,
one in each tree, that are to be exchanged. These SMART operators evolve in a
separate pool, but at the same time as the main population, so that how they act
changes with the changing needs of the main population. This new approach to
crossover operators has been much more successful and to it we attribute much
of PADQ’s success. Unfortunately, the details of the SMART operators might fill
a report by itself and are the subject of another publication [17].

Why does PADO evolve programs instead of functions?

As was just mentioned, evolution becomes more difficult (or at least requires
smarter recombination) when programs replace functions as the type of thing in
the population (see Section 4). If there was no benefit to using programs over
using functions, we and PADO could avoid a lot of work. However, it turns out
that the results shown in this report could not be obtained in a similar fashion
when functions were used instead of programs. In order to achieve 80% of this
report’s results using functions, PADO requires 10 times that space (memory) and
almost 5 times as many hours of computation. And in the experiments we did, the
results never climbed to the near 50% object recognition rate shown in Section 7.3.

How does PADO ensure that every program stops after a fixed time?

As was mentioned in Section 5, the PADO language is Turing complete. If
PADO waited until every program was “finished” where finished was defined by
some returned value or state of its memory, it is likely that PADO would never get
past generation 0, because many of the programs generated randomly would run
on forever. PADO avoids this problem by constructing each program as an “any-
time algorithm.” This means that the program can run for as long as it wants,
but at any time PADO may interpret what it has done so far as its “answer.” The

23

main loop of each program returns a value after each execution. Most programs
execute their main loop between 10 and 100 times during the first 65 milliseconds
of program execution. So PADO stops each program after 65 milliseconds and
interprets this series of values that the program has returned (one for each main
loop completion) as its answer. Since the program must return a single value,
this series of values is averaged. And because it is likely that the values near the
end of its execution are more “informed” about the correct answer (having had
more time to “think”) the series of values is linearly weighted so that the value
returned at time 7T is weighted by T'. This is just one way around the problem
of waiting for all programs to halt. There are other ways to constrain the con-
struction of programs so that they all halt in a bounded amount of time. None
of these techniques were investigated. There are also other ways of enforcing the
anytime solution that PADQO uses. For example, we tried running each program
for 65 milliseconds and then interpreting the answer in Memory[0] as the answer.
This also worked well and we continue experiments using this strategy. We finish
by remarking only that PADQO’s architecture only requires that it get a fitness for
each program in a bounded amount of time. How we do this here is an implemen-
tation detail.

Why was each program only given 65 milliseconds to run?

If we had given them 1 second each instead of 1/15s, learning would have
taken 15 times as long. So we don’t have good information on how much better
these programs could do if given such a long stretch to think about a single im-
age. Some tests were done for time thresholds as long as 250 milliseconds. There
was some increase in the peak performance for each generation, but taking into
account the longer time to run each generation, the rate of increase, in computer
cycles, of the peak performances for each generation was higher with rates closer
to 50 milliseconds. Since machines change and as the environment improves, this
1/15 of second may become more like 1/30 of a second. It is more relevant, then,
to talk about how much work gets done in the time allotted. At 1/15 of a second
each program is able to evaluate between 1000 and 8000 nodes. These numbers
are, of course, machine and implementation dependent. Remember, some nodes,
like the terminals and the simple non-terminals (e.g. ADD), evaluate quickly.
But some of the nodes take a very long time to evaluate (e.g. (VARIANCE 0
0 255 255) takes about 0.5 milliseconds). Since each program is given a small,
fixed amount of time to run, it must decide how to design its code to balance
this difference in the time cost of evaluating various nodes. So the answer is that
1/15 of a second was chosen as a number which balanced well the criteria just
mentioned. This choice means that the object recognizer will take C * S * 1/15
seconds to do the object recognition. For the results described in Section 7 this is
about 3 seconds. Another point worth mentioning is that these programs, while
very Lisp-like, are being interpreted each time they run. If you had C S programs
which made up some PADO object recognizer, they could be compiled into LISP,
C, Pascal, etc. and then from there compiled into assembly and run. This would
probably yield a speed increase of between 5 and 20 fold.

24

Where is the “Paralle]” in PADO?

Above, we mentioned that PADO (on C = 7 classes) took about 3.2 seconds
to make a prediction. Again, this number is machine and implementation depen-
dent. This speed is a little slow for a reactive agent, but for computer vision in
general this speed is reasonable. If we were to scale up to C = 100 classes and kept
S = 7 programs per system, it would now take about 700 % (1/15) = 46 seconds
to recognize one image. If we compiled the programs as mentioned above, this
would probably drop to 3 or 4 seconds, but this speed is still a little slow. Which
brings us to the P in PADQ: Parallel. Unlike most learned systems, the complex
job that PADO does can be easily parallelized. If there are 100 classes and 7
programs have been selected from each of the 100 groups, there are 700 programs
to run and if even 50 processors were available, the time to find an answer could
be cut by a factor of 50. Because all the programs take exactly the same amount
of time to run the speed up from the parallelism will be exactly linear. So a robot
that had even 4 processors on board could recognize 100 classes in less than a
second, using the current compiled PADO technology.

Why was the Orchestration a weight vector tuning?

Orchestration is a crucial part of the PADO architecture. The implementa-
tion of this orchestration is less important partly because there are several good
solutions. For example, an alternative method for orchestration using PADO it-
self was tested. That is, each orchestration procedure was a program developed
in a separate PADO run in which the inputs were the outputs of S different ob-
ject discrimination programs and the output was a confidence. Because this is
a program it is easy to see that this could learn to return 7 where program 7
gave the largest input to this orchestration program. This orchestration program
could, in fact, implement the weight vector tuning in its memory or do something
even more complicated. Because this implementation of orchestration required a
second, smaller training set and took more time, it was not used as the example
for this report, but its results on object recognition were comparable to those
shown in Section 7.3. An additional piece of appeal for the weight vector tuning
is that because it is so fast, there is really no reason not to leave it on all the
time during its “testing” phase. During its life span of usefulness, conditions may
change or even be periodic. This continual orchestration tunning would allow the
learned system to quickly turn over the decision making to those programs most
suited for the current conditions. Paradigmatically, this continual adjustment also
seems like a reasonable way to test the performance of a system. Off-line PADO
can do a large amount of computation for learning. During testing, however, it
should be the case that the system gets feedback about how it is doing. Any addi-
tional learning it can do in real time should not only be allowed, but encouraged.
Orchestration can take place as part of the training phase, but we use the word
orchestration rather than learning partly because it is the activity of orchestrating
the parts that is important, and not that it counts as “learning” or “testing”.

How much time did it take to get these results?
As has been discussed, the orchestration takes milliseconds, so the entire cost
to develop a PADO recognizer is the time it takes to evolve the programs to be

25

used in that PADO recognizer. It takes approximately 48 hours of CPU time on
a DECstation5000/20 to train 7 classes up to 50 generations. Since this data was
taken, improvements have been made to the learning environment which would
have cut this time down to 24 hours of CPU time. Omne incremental learning
run took about 37 hours of CPU time and would, with the new environment,
take about 18 hours of CPU time. The environment is written in C. Further
improvements and exploration of alternative techniques are being explored in our
current research.

8.2. RELATED ISSUES

Why use more than one program to decide on a confidence for class 77

It seems, at first, that if the “best” program is the best, then trusting the
response of that program is the best PADO will be able to do. The first reason
this approach would not be optimal is that the top few programs are picked as
determined by the training phase. There is no guarantee that the individual that
best fit the training data will also generalize the best. So that is a good reason
for taking a few of the top programs from each group Z. If the information ex-
tracted by each program from the image were very similar (i.e. if their responses
on specific pictures were highly correlated), then that would be the only good
reason. However, this correlation is not the case. It turns out the errors that
the best program in group Z makes on test images is largely independent of the
errors the second best program in group 7 makes on test images. And similarly
for the second best relative to the third, etc. This means (approximately) that we
can reduce our error by polling several of these programs. The chance that the
majority of them are wrong goes down as the number of them increases. Because
the top few programs are much more fit (able to discriminate correctly) than, for
example, the average program from that group, there would be a disadvantage to
taking too many to use in the PADO object recognition. This is why the PADO
object recognizer does not use C? programs to do predictions. PADO takes S
programs from each group, where § is a constant. So PADO grows linearly in
time and space with increasing group size.

How do we know that these images aren’t easy to distinguish?

Figure 9 shows the average intensity for each of 21 randomly selected images
from each class from each set (273 images total). Clearly, this piece of global
information is not enough to partition the images into the correct classes. That
fact, of course, does not rule out the existence of some global property of the image
on which partitioning can be done successfully. Since the four non-local image
primitives these programs had were Average, Min, Max, and Variance, all four of
these were tested as global properties. The graphs of all four for both data types
look very much like the two shown above. The large amount of variance between
pictures in the same class for all four of these tests suggests that there is no real
predictive power in these values. So any successful technique for recognizing the
objects in these images must be based in part on the ability to focus attention.
Beyond the foviation that we have just concluded the PADO recognizer is doing,
it becomes very difficult to say how hard two images are to distinguish from
each other. Also, because of the complexity and density of these programs, it is

26

Image Average Intensity Image Average Intensity
250 F T T 1T T T T 1T T T 9250F T T T 1T T T T T T4
Book ©— Bear <©—
Bottle +— Longflute —+—
200 Cap H— 200 Panflute &]
Coke ><— Thermos ><—
Glasses &2— Book 4&—
150 Hammer -X— — 150 |- Racket -¥— —

50 - - 50 -

I A I [N N | 0 I A I [N N |

[[
0 2 4 6 8 1012 14 16 18 20 0 2 4 6 8 1012 14 16 18 20
Sampled Picture # Sampled Picture #

0

Figure 9: Average image intensity for random images from each class.

very hard to ascertain whether, for example a particular successful program is
looking for light-dark boundaries, or whether it is looking for particular shapes,
or textures, or any other type of visual clue.

One detail of note is that PADO may give us object position for free in im-
ages with a single object each. As was mentioned in Section 6, some people may
feel that object recognition requires at least object position location in the image
and maybe even pose determination. Each image primitive that PADO executes
(pixel, region, average, least, most, variance) takes place in a particular part of
the image. A simple computation is to find, for each image that some particular
“best” program from class Z looks at, what the center of mass of all these image
primitive locations is. It turns that with high probability this center of mass will
be near the center of the object in the image. Since the object typically takes
about 25% of the image and moves widely between images, and this happens with
regularity, PADQO demonstrates its ability to focus attention and returns a free
piece of information: object location in the image!

What reasons exist for believing that PADO will scale up to 100 classes?

PADO ranks the population along C different dimensions. Sometimes it turns
out that one of the best in class J is also a good program in class 7, where 7 # J.
In other words, it might turn out that at the end of some generation, program X’
is the best at distinguishing bottles from other objects, but also happens to be
pretty good at distinguishing coke cans from other objects. This must be because
the coke can and the sprite bottle have some visual similarities (e.g. shape). To
scale up the number of classes, we will introduce a hierarchical orchestration. The
difficult part of PADO will become the construction of this hierarchical structure
for classes. We can use indications of similarity like the one just mentioned to
find correlations between the image classes and build the hierarchy. More will be
said on this in the future work section.

27

Will PADO work with more similar classes?

The results shown in this report are not the only tests PADO has passed. For
example, set T originally had three dimensions: color, saturation, and brightness.
When PADO was given the color information, its performance on object recogni-
tion jumped to about 95%. The reason is undoubtably because the images were
“too” different along some dimension. That dimension was color. The objects
were of such different colors that this information is, by itself, a very good indi-
cator of the class. In an effort to make the problem harder, we gave PADO only
the brightness data (the greyscale images shown in Figure 1). PADO didn’t do
as well, but given that the problem got much harder, still did very well. This will
be mentioned again in the future work section. So while PADO’s performance on
7 different shoe classes is in question, we could certainly have chosen objects, or
signals that represent those objects, that were much less similar.

9. FUTURE WORK

Scalability

The issue of scalability is critical to the success of PADO. We are trying to design
a learning architecture that can build up useful systems to be applied to natural
environments. Because PADO was designed with an eye for success as well as
scientific advancement, it must be able to scale up to hard problems.

The most obvious area of scalability is in the number of classes. This report
dealt with a system that performed well in an environment with 7 classes. While
there are real applications for recognizing 5 to 10 classes, most applications need
to be able to recognize hundreds of classes. In the discussion section we mentioned
that new types of orchestration are an active part of our current and future work.
By doing a hierarchical structure for the orchestration, we hope the number of
classes PADO can handle will at least move into the hundreds.

A second important area of scalability is performance. PADQO’s results on set
A and set T were much better than random, but they were not perfect. Many
applications can be useful even if there is some error, but most applications require
error rates of 5% to 10% and some cannot tolerate even that. So PADO’s ability
to improve its performance is also critical for PADO’s future. This issue becomes
even more important when we remember that, as PADO begins to tackle hundreds
of objects instead of tens of objects, the difficulty of the problem rises very quickly
and would be impressive for PADO to maintain its current performance on seven
classes as the number of classes rises.

Though less pressing, time factor is also a scalability issue for PADO. As we
require PADO to perform much better on many more classes, the number of gener-
ations necessary to achieve this state will skyrocket. So even though most learning
can be done “off line” in a non time-critical way, it will become increasingly im-
portant to find faster ways to implement PADO and better architectural choices
that require less space or time. One point here in PADO’s favor is that evolu-
tionary computation lends itself easily to massive parallelization. So by using 100
processors, we could divide PADQ’s learning time 100 fold. An additional avenue
that we have already started to explore is incremental learning. As discussed in
the Section 7.2 it is possible to train several classes, and then later add a new

28

class. As our ability to get new classes quickly up to speed improves, we may be
able to conquer the time problem this way.

Partly because they are so difficult to understand, it is hard to know exactly
what role the Libraries and the SMART operators play in PADO’s performance.
Clearly the future performance of PADO will depend heavily on how well we can
improve these features of the PADO architecture.

Investigation for Greater Understanding

There are several parts of the PADO architecture that are not yet well understood.
Two examples just mentioned are the Libraries and the SMART operators. In
both cases we have good indications that they are vital to the functioning of the
system, but we don’t really understand why. The work we are doing to better un-
derstand different aspects of PADO will help us to change these things to achieve
some of the goals of scalability mentioned above. Another example of a PADO
aspect that should be investigated is the programs themselves. By understanding
better how they accomplish their tasks we may be able to learn about how, in
general, object recognition and signal understanding is done.

Innovative Applications of PADO

PADO was not designed specifically for images. It was designed to be able to
do classification on any set of signals. So far PADO has only been applied to
images. One of the most important next steps in PADO’s growth will be a series
of classification tests on a variety of signal types, all of which were not designed
with PADO in mind. These signal types will include speech, sonar, radar, text,
and several others.

In summary, the open questions of this research effort are:

e Can PADO scale up to a large number of classes?
e Can PADO learn the same amount much faster?
e Can PADO improve its performance even as the number of classes increase?

o Will PADO prove to be a general signal classification learning architecture?

The investigation of answers to these questions is part of our immediate research
agenda.

10. CONCLUSIONS

This report began with the motivation of the signal-to-symbol problem. Al sys-
tems need to reason about high level information, but the world provides a huge
amount of noisy perception instead. Any bridge between these two realms is a
significant tool for Al. In humans, we depend most heavily on the signal-to-symbol
translation in our visual cortex. Taking this as our cue, we decided to tackle the
problem of object recognition. Object recognition’s major flaw has been that it
does not address unconstrained or “natural” environments very well. Machine
learning has, aside from some small pockets of success, not yet delivered in this

29

area. This level of success may be because the learning architectures that have
been applied were not designed for the task of understanding real world signals.
Out of this belief that new architectures must be found, PADO was born.

This report has shown an application of PADO on three related tasks with two
different sets of image data. Both sets of image data fall outside the constraint
boundaries that object recognition tasks usually require. That is, translation,
rotation, lighting, and even foreshortening were allowed for the object classes.
In addition, the objects that made up the classes were not simple, uni-colored,
geometric, or even rigid in some cases.

On these difficult problems, PADO achieved an object recognition rate of
about 50%. Given that there were seven classes, this is about 3.5 times better
than random guessing would accomplish. As was mentioned in the discussion
section, PADQO’s performance on images from Set T jumps to about 95% when
the original color images are used. So the performance described in this report is
on image sets that have been made deliberately difficult.

PADO achieved this performance with no help from users or domain specific
information of any kind. To prove this point, PADO was given as its primitives
for accessing images the simplest possible functions: Pixel, Region, Least, Most,
Average, and Variance. The fact that these primitives were coded for PADO
in half an hour and were found to be sufficient for a different image set (Set
T) supports the hypothesis that PADO can make do with little or no outside
intervention.

The design of PADQO’s architecture provides for several exciting features.

¢ At any point during the learning process, a program, as a group of “signal
understanding” systems, can be extracted and used immediately for object
recognition.

¢ PADO incorporates evolution into its design, thereby providing the chance
to exploit a myriad of different solutions through orchestration.

e The orchestration of independent solutions makes it possible (simple even)
to run PADO on a parallel machine for a linear speed increase.

e The architecture’s independence from the particular examined signal makes
it viable to use PADO for any signal type.

The future paths of PADO research are diverse. In the near future we hope
to see PADO performing better, with fewer examples, of more classes, on harder
images. PADO has matured so quickly that this goal seems much more realistic
now than it did even when the writing of this report began. In addition, PADO
has been designed to perform signal understanding on any signal type: from text,
to sonar, to spectrum, to speech. OQur goal is to have performance at the current
highest levels of understanding in any signal type we try.

Researchers today spend a significant amount of their time finding the right
learning algorithm for their task, and then tweaking that algorithm until it per-
forms. There are simply too many domains for this to lead to real progress. We
believe that PADO, as a domain independent learning architectures, can have a
significant impact in solving the general signal-to-symbol problem.

30

APPENDIX

A. SAMPLE PROGRAM

This program was the best at recognizing hand held BOOKs in Generation 37.

Repeat

(IF-THEN-ELSE (LESS 45 (Library22 (EITHER 14 200 66) (VARIANCE (LESS 44 62) (PIXEL 138 165) 193 200) 119
99)) (Library25 (VARIANCE 29 (EITHER (READ (WRITE 92 (Library32 (EITHER 240 193 (EITHER 185 233 (MOST
226 153 45 246))) 2 (EITHER 38 (PIXEL 5 71) 175) 165))) 32 (Library50 152 135 208 101)) (EITHER 116 88 85) 95)
211 119 (READ (Library65 169 (IF-THEN-ELSE 146 (EITHER (IF-THEN-ELSE 58 (ADF 234 144 181 8) 223) (WRITE
(EITHER 216 17 225) 137) 154) 173) (Library51 170 25 (READ (READ 190)) (EQ 162 81)) 0))) (EITHER 217 (IF-
THEN-ELSE 200 191 9) (EITHER (EITHER (NOT (EQ 75 167)) 166 (ADF (ADF 69 129 145 6) (IF-THEN-ELSE 201
249 80) (ADF 188 (MOST 207 21 (READ (VARIANCE 254 44 102 135)) 85) 216 125) (LESS (LEAST 114 46 76 (WRITE

109 86)) 160))) (MULT (SUB (IF-THEN-ELSE 155 (LEAST 43 56 156 184) 136) 36) 165) 31)))

Until Time-Limit

ADF(P1 P2 P3 P4): (1F-THEN-ELSE (LESS (EQ 181 (LEAST (IF-THEN-ELSE 193 0 199) (IF-THEN-
ELSE P3 71 P2) 40 P1)) (READ P4)) (READ (NOT (READ (IF-THEN-ELSE 189 85 132)))) (LESS (IF-THEN-ELSE
(EQ P3 P4) P1 (DIV (EQ 91 (WRITE (EITHER 82 51 P2) 245)) P3)) (LESS (VARIANCE (EITHER (READ P1) P1

P2) 121 (IF-THEN-ELSE 190 P1 (LESS (VARIANCE P4 177 P3 P2) P4)) 26) (READ P1))))

Library22(P1 P2 P3 P4): (VARIANCE (IF-THEN-ELSE (EITHER P1 55 (SUB (MIN (ADD P4 P2)
(WRITE 54 74)) (AVERAGE (EQ (EITHER 90 P3 P2) 218) 62 (NOT P3) (EQ 78 168)))) (MULT (IF-THEN-ELSE 28
P1 P2) (LESS (LEAST 224 P2 (READ P2) (LEAST 5 76 152 (REGION 142 166))) P1)) (READ (ADD (VARIANCE
222 P2 (IF-THEN-ELSE P1 153 P4) P2) P1))) P1 (NOT (READ (WRITE (VARIANCE (IF-THEN-ELSE 57 (WRITE
227 P4) (VARIANCE P3 P3 P2 180)) (PIXEL 151 P1) 140 (EQ (VARIANCE P2 173 70 179) 102)) (REGION 251 P4))))
(VARIANCE 2 P1 131 P2))

Library25(P1 P2 P3 P4): (LeasT P1 (MULT (LESS (MAX P4 P2) (EQ 33 (NOT P1))) 93) P2 (IF-
THEN-ELSE (NOT (DIV (IF-THEN-ELSE (REGION 109 106) P1 (VARIANCE P2 93 190 P2)) (REGION P4 (READ
P4)))) P2 P2)

Library32(P1 P2 P3 P4): (suB P4 (VARIANCE (WRITE 203 P1) (READ (VARTANCE (IF-THEN-
ELSE 157 (EITHER 77 244 (VARIANCE 226 P2 P2 P1)) 146) (VARIANCE 164 P3 217 160) P1 (EITHER P1 (VARIANCE
46 (NOT 219) P4 (WRITE P4 P4)) P1))) (READ P1) (EITHER P1 (WRITE (NOT P3) (EITHER (IF-THEN-ELSE 110
(DIV 245 46) P2) P4 229)) (VARIANCE (LESS 222 93) (READ 10) (VARIANCE P3 P4 (WRITE (VARIANCE 46 130
208 215) 159) (READ 164)) (WRITE (VARIANCE P1 P1 P4 (EQ P4 139)) (EITHER P4 216 P2))))))
Library50(P1 P2 P3 P4): (MosT 102 (VARIANCE P1 117 127 (READ P2)) (NOT P1) (IF-THEN-
ELSE P4 P4 P4))

Library51(P1 P2 P3 P4): (gq P1 (VARIANCE (AVERAGE 0 47 (MOST P1 64 (EITHER P3 P1 40)
(REGION (LEAST P4 (EITHER 132 73 111) 226 24) (WRITE (MIN P3 P4) (LESS P1 P3)))) (EITHER (IF-THEN-ELSE
P1 P4 (EITHER 162 P1 198)) (EITHER 76 26 88) 121)) (WRITE 131 (VARIANCE P1 (IF-THEN-ELSE 211 (READ 32)

(REGION 110 247)) 235 124)) P1 (WRITE (EITHER (DIV (AVERAGE 86 (WRITE P3 P3) 215 P4) 83) 125 P4) P3)))

Library65(P1 P2 P3 P4): (rEcion (RITHER 6 113 168) P4)

31

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(17]
[18]

[19]

David Andre. Automatically defined features: The simultaneous evolution of 2-dimensional
feature detectors and an algorithm for using them. In Jr. Kenneth E. Kinnear, editor,
Advances In Genetic Programming, pages 477-494. MIT Press, 1994.

Farshid Arman and J. K. Aggarwal. Cad-based vision: object recognition in cluttered range
images using recognition strategies. In Image Understanding, pages 33—49. Ablex, 1993.

David J. Braunegg. Marvel: a system that recognizes world location with stereo vision. In
IFEFE transactions on Robotics and Automation, pages 303-310. IEEE, 1993.

Michael Patrick Johnson et al. Evolving visual routines. In Rodney Brooks and Pattie
Maes, editors, Artificial Life IV, pages 198-209. MIT Press, 1994.

David Goldberg. Genetic Algorithms: In search, optimization, and machine learning.
Addison-Wesley Press, 1989.

John Koza. Genetic Programming. MIT Press, 1992.
John Koza. Genetic Programming II. MIT Press, 1994.

S.7Z. Li. Toward 3d vision from range images: an optimization framework. In Image Under-
standing, pages 231-261. Ablex, 1992.

Thang Nguyen and Thomas Huang. Evolvable 3d modeling for model-based object recogni-
tion systems. In Jr. Kenneth E. Kinnear, editor, Advances In Genetic Programming, pages
459-476. MIT Press, 1994.

Dean Pomerleau. Neural Network Perception for Mobile Robot Guidance. PhD thesis,
Carnegie Mellon University School of Computer Science, 1992.

Walter A. Tackett. Genetic programming for feature discovery and image discrimination.
In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic
Algorithms. Morgan Kauffman, 1993.

Walter A. Tackett. Recombination, Selection, and the Genetic Construction of Computer
Programs. PhD thesis, University of Southern California, 1994. Available as: Technical
Report CENG 94-13. Dept. of Electrical Engineering Systems.

Walter A. Tackett. Greedy recombination and genetic search on the space of computer
programs. In L.D. Whitley and M.D. Vose, editors, Proceedings of the Third International
Conference on Foundations of Genetic Algorithms, pages 118-130. Morgan Kauffman, 1995.

Astro Teller. The evolution of mental models. In Jr. Kenneth E. Kinnear, editor, Advances
In Genetic Programmaing, pages 199-220. MIT Press, 1994.

Astro Teller. Genetic programming, indexed memory, the halting problem, and other cu-
riosities. In Proceedings of the 7th annual FLAIRS, pages 270-274. IEEE Press, 1994.

Astro Teller. Turing completeness in the language of genetic programming with indexed
memory. In Proceedings of the First IFEE World Congress on Computational Intelligence,
pages 136-146. IEEE Press, 1994.

Astro Teller and Manuela Veloso. Learning operators in a fixed paradigm. Unpublished
report, Computer Science Department, Carnegie Mellon University, 1995.

S. Thrun and T.M Mitchell. Learning one more thing. Technical Report CMU-CS-94-184,
Department of Computer Science, Carnegie Mellon Unversity, 1994.

Mark D. Wheeler. Towards a vision algorithm compiler for recognition of partially occluded
3d objects. Technical Report CMU-CS-92-185, Computer Science Department, CMU, 1992.

ACKNOWLEDGEMENTS

We gratefully acknowledge Sebastian Thrun for the permission to use his images and Tom

Mitchell for providing hardware so we could take our own images. Also, Peter Stone, Alicia

Perez, Eric Siegel, and Joseph O’Sullivan were invaluable as readers.

