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Abstract

We present a formal description of the planning algorithm used in the Prodigy4.0 system.
The algorithm is based on an interesting combination of backward-chaining planning and
simulation of plan execution. The backward-chainer selects goal-relevant operators, and then
Prodigy simulates their application to the current state of the world. The system can use
different backward-chaining procedures, some of which are presented in the paper.
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1 Introduction

Prodigy is an integrated planning and learning system. The system includes not only a
planning algorithm but also procedures for learning and case-based reasoning, which greatly
increase the efficiency of the planner. For example, Prodigy is able to learn control rules
[Minton, 1988], conduct experiments to acquire new knowledge [Gil, 1992], generate ab-
straction hierarchies [Knoblock, 1993], and use analogical reasoning to recognize and exploit
similarities between planning problems [Veloso, 1992].

Prodigy’s core, the planning algorithm itself, has been improved over the years. The
old algorithm, Prodigy2.0 [Minton et al., 1989], was succeeded by NoLimit [Veloso, 1989]
and then by Prodigy4.0 [Carbonell et al., 1992]. All versions of Prodigy were developed by
members of the Prodigy research project at Carnegie Mellon University. The authors of the
system are listed in the acknowledgements section.

Strictly speaking, Prodigy4.0 is not a single planner, but a family of closely related
planning procedures. These procedures are based on a combination of backward-chaining
with a simulation of plan execution, similar to forward-chaining planning. Prodigy4.0 can use
different backward-chaining procedures, some of which are presented in the paper. Prodigy’s
execution-simulator searches among states of the world that can be achieved from the initial
state by applying different operators. However, unlike usual forward-chainers, the simulator
uses only operators selected by a backward-chaining algorithm as relevant to the goal.

The goal of our paper is to give a formal description of the Prodigy planning algorithm.
We show how Prodigy4.0 represents the plans, describe its search space, and give an overview
of different planners of the Prodigy family.

Prodigy4.0 consists of two parts: a simulator of the plan execution and a backward-
chaining procedure. The backward-chainer is responsible for goal-directed reasoning, while
the execution-simulator enhances the goal-directed search with elements of forward-chaining.
These two parts of Prodigy are described in the two large sections of the paper: the execution-
simulator in Section 3 and a family of backward-chainers in Section 4.

2 Definitions

A planning domain is defined by a library of operators. Prodigy’s language for describ-
ing operators is based on the Strips domain language [Fikes and Nilsson, 1971], extended
to express disjunctive preconditions, universal quantification, functions, and conditional ef-
fects [Carbonell et al., 1992]. An example of a planning domain, a version of the Blocks
World, is shown in Table 1. The operators in this example contain variables, which refer to
blocks and hands.

Prodigy usually replaces variables of an operator with particular constants before in-
serting the operator into a plan. The instantiation is performed by a complex matching
algorithm, which considers all applicable instances of an operator and does not compromise
the completeness of planning [Wang, 1992]. A description of this matching algorithm beyond
the scope of the paper.

A planning problem is defined by an initial state I and a goal G, represented as sets of
literals. A solution of a planning problem is a sequence of operators that can be applied to
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unstack (hand, X, y) stack (hand, x, ) pick-up (hand, x) put-down (hand, x)
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empty(hand)
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Table 1: The Blocks World domain (with two hands)

the initial state to achieve the goal. A sequence of operators is called a total-order plan. A
plan is valid if the preconditions of every operator are satisfied before the execution of the
operator. A valid plan that achieves the goal G is called correct.

For example, consider the planning problem in Table 1. The plan “unstack(hand-1,A),
put-down(hand-1,A)” is valid, since it can be applied to the initial state. However, this plan
does not achieve the goal, and hence it is not correct. The problem may be solved by the
plan “unstack(hand-1,A), put-down(hand-1,A), unstack(hand-2,C), put-down(hand-2,C),”
which s correct.

A partial-order plan is a partially ordered set of operators. A linearization of a partial-
order plan is a total order of the operators consistent with the plan’s partial order. A
partial-order plan is correct if all its linearizations are correct. For example, the problem in
Table 1 may be solved by the following partial-order plan:

o < unstack (hand-1, A) — put-down (hand-1, A) >9
unstack (hand-2, C) — put-down (hand-2, C)

3 Simulating plan execution

The purpose of the algorithm described in this section is to enhance a backward-chaining
planner with elements of forward-chaining. This algorithm calls a back-chainer to select
operators relevant to the goal and simulates the application of these operators. Some of
Prodigy’s back-chainers will be described in Section 4.
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Figure 1: Representation of an incomplete plan

3.1 Representation of plans

Given a problem, most planning algorithms start with the empty plan and modify it until
a solution plan is found. A plan may be modified by inserting a new operator, imposing
an ordering constraint, or instantiating a variable. The plans considered during the search
for a solution are called incomplete plans. Each incomplete plan may be viewed as a node
in the search space of the planning algorithm. Modifying a current plan corresponds to
expanding a node. The branching factor of search is determined by the number of possible
modifications of the current plan.

An incomplete plan may be represented in many different ways. It may be a total-order
sequence of operators (as in Strips [Fikes and Nilsson, 1971]) or a partial-order plan (as
in Tweak [Chapman, 1987], Non-Lin [Tate, 1977], and SNLP [McAllester and Rosenblitt,
1991]); the operators of the plan may be instantiated (e.g. in NoLimit) or contain variables
with codesignations (e.g. in Tweak); the relations between operators and the goals they
establish may be marked by casual links (e.g. in Non-Lin and SNLP).

In Prodigy, an incomplete plan consists of two parts, the head-plan and the tail-plan (see
Figure 1). The tail-plan is built by a backward-chaining algorithm, which starts from the
goal G and adds operators, one by one, to achieve goal literals and preconditions of other
operators. Prodigy may use different backward-chaining algorithms. The tail-plan may be
total-order or partial-order, depending on a particular backward-chainer.

The head-plan is a valid total-order plan, that is, a sequence of operators that can be
applied to the initial state 1. All variables in the operators of the head-plan are replaced with
specific constants. The head-plan is built by the execution-simulating algorithm described
in the next subsection. If the current incomplete plan is successfully modified to a correct
solution of the problem, the head-plan will become the beginning of this solution.

The state C' achieved by applying the head-plan to the initial state is called the current
state. Notice that since the head-plan is a total-order plan that does not contain variables,
the current state is uniquely defined. The back-chaining algorithm responsible for the tail-
plan views C as its initial state. If all preconditions of the tail-plan are satisfied in C,
then the tail-plan may be executed immediately after the head, and thus the head and tail
together make a solution of the planning problem. If some preconditions of the tail-plan are
not satisfied in C', then there is a “gap” between the head and tail. The purpose of planning
is to bridge this gap.

Figure 2 shows an example of an incomplete plan with a partial-order tail. This plan can
be constructed by Prodigy while solving the problem in Table 1. The gap in this plan can
be bridged by a single operator, unstack(hand-2,C).
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Figure 2: Example of an incomplete plan (“h1” stands for “hand-17)
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Figure 3: Modifying the current plan

3.2 Prodigy’s top-level algorithm: Execution-simulator

Given an initial state [ and a goal G, Prodigy starts with the empty plan and modifies it,
step by step, until a correct solution plan is found. The empty plan is the root node in
Prodigy’s search space. The head and tail of this plan are, naturally, empty, and the current
state is the same as the initial state, C' = [.

At each step, Prodigy can modify a current incomplete plan in one of two ways (see
Figure 3). First, it can modify the tail-plan. Modifications of the tail are handled by a
separate planning procedure, called Back-Chainer. For example, Back-Chainer may add
a new operator to the tail or impose an ordering constraint. This procedure views the
current state ' as the initial state. Almost any backward-chaining planner may be used as
Prodigy’s Back-Chainer. Two back-chainers designed specifically for Prodigy are described
in Section 4.

Second, Prodigy can move some operator op from the tail to the head (see Figure 3). The
preconditions of op must be satisfied in the current state C'. op becomes the last operator
of the head, and the current state is updated to account for the effects of op.



For example, the operator put-down(hand-1,A) in Figure 2 can be moved to the head.
On the other hand, put-down(hand-2,C) cannot be moved, because its preconditions are not
satisfied in the current state (Block C is not in hand-2).

Intuitively, we may think that the head-plan is being carried out in the real world, and
Prodigy has already changed the world from its initial state I to the current state C'. If
the tail-plan contains an operator whose preconditions are satisfied in ', Prodigy can apply
it, thus changing the world to a new state, say C’. Because of this analogy with real-world
changes, the operation of moving an operator from the tail to the end of the head is called
the application of an operator. Notice that the term “application” refers to simulating an
operator application. Even if the application of the current head-plan is disastrous, the
world does not suffer: Prodigy simply backtracks and considers an alternative solution.

Notice that if we apply some operator op (i.e. we move op to the head-plan), then op
will precede all other operators of the tail. Therefore, we can apply an operator only if it is
not ordered after any other operator of the tail. For example, in the top plan of Figure 3,
we can apply operator x or y, but not z. If the tail-plan is total-order, we can apply only
its first operator.

If operators in the tail-plan contain variables, then we must instantiate op before applying
it. The instantiation may be performed by Prodigy’s matching algorithm. All possible
instantiations must be considered to insure completeness.

Moving an operator from the tail to the head is the only way of updating the head-
plan. Prodigy never inserts a new operator directly into the head. Thus, only goal-relevant
operators are used in Prodigy’s forward-chaining.

Prodigy recognizes a plan as a solution of the problem if the head-plan achieves the goal
G, i.e. all goal literals are True in C'. Prodigy may terminate after finding a solution, or it
may search for a better plan.

Table 2 summarizes the execution-simulating algorithm. The places where Prodigy
chooses among several alternative modifications of the current plan are marked as back-
tracking points.

3.3 Soundness and completeness

Below we discuss the formal properties of Prodigy, soundness and completeness, and their
connection with the corresponding properties of Back-Chainer. We show that Prodigy is
always sound, while its completeness depends on the search strategy used by Prodigy and
on the Back-Chainer procedure.

Soundness: A plan found by Prodigy for a given problem is always a correct solution of
the problem.

Sketch of the proof. By construction, the head-plan is a plan that can be validly
applied to the initial state. Prodigy terminates when the goal G is satisfied in the current
state (', achieved by applying the head-plan. Therefore, upon termination, the head-plan is
a correct plan that achieves GG. O

The theorem shows that Prodigy is a sound planner even if Back-Chainer is not sound.
This property enables us to use unsound back-chaining algorithms. The use of unsound algo-
rithms sometimes improves performance, because insuring correctness in backward-chaining



Prodigy
1. If the goal G is satisfied in the current state C', then return Head-Plan.
2. Either
(A) Back-Chainer modifies Tail-Plan, or
(B) Operator-Application moves an operator from Tail-Plan to Head-Plan.
Backtracking point: both alternatives must be considered.
3. Recursively call Prodigy on the resulting plan.

Operator-Application
1. Pick an operator op in Tail-Plan such that
(A) there is no operator in Tail-Plan ordered before op, and
(B) the preconditions of op are satisfied in the current state C.
Backtracking point: all such operators must be considered.
2. Instantiate op if necessary.
3. Move op to the end of Head-Plan and update the current state C'.

Table 2: Execution-simulating algorithm

planning may be expensive, especially for partial-order plans. We describe in the next section
two unsound partial-order back-chainers used in Prodigy.

Next we analyze completeness of Prodigy. A planner is said to be complete if it is able
to find a solution for any solvable problem.

Completeness: If Back-Chainer s complete, and if Prodigy explores all branches of
the search space (e.g. by the breadth-first search or iterative deepening), then Prodigy is a
complete planner.

Sketch of the proof. If we remove all branches of Prodigy’s search space where oper-
ators are moved to the head, then Prodigy can only modify the tail-plan (by calling Back-
Chainer), and thus Prodigy’s space becomes identical to the search space of Back-Chainer.
We conclude that Back-Chainer’s space is a subset of the entire space of Prodigy. If a plan-
ning problem has a solution, then the space of a complete Back-Chainer contains a solution
plan, and therefore Prodigy’s space also contains this solution plan. By successively applying
all operators of this plan, Prodigy will find the solution head-plan and terminate. O

The proof shows that Prodigy’s search space contains the space of Back-Chainer, and
that the path to a solution in Prodigy’s space is longer than Back-Chainer’s path to the
same solution. Thus, the breadth-first search by Prodigy is less efficient than the search by
Back-Chainer. Prodigy becomes efficient only when it uses the depth-first search.

4 Back-chaining procedures

We now turn our attention to Back-Chainer procedures used in Prodigy. We present two
of the Prodigy’s Back-Chainers, one of which operates with total-order tail-plans, while
the other is a partial-order planner. Recall that the completeness of Prodigy depends on
the Back-Chainer. On the other hand, the soundness of back-chaining procedures is not a
concern.
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Figure 4: Total-oreder tail plan

4.1 Total-order back-chainer

This algorithm represents the tail as a total-order sequence of operators (see Figure 4a).
New operators are added to the beginning of the sequence. When this Back-Chainer is
called to modify the tail, it chooses an unachieved precondition or goal literal and adds a
new operator that achieves this literal. A literal [ is considered unachieved if

(1) I does not hold in the current state C', and

(2) 1 is not established by any preceding operator of the tail plan.

For example, given the plan shown in Figure 4b, the Back-Chainer may add the operator
put-down(hand-2,C) to achieve the goal literal on-table(C), thus generating the tail-plan
“put-down(hand-2,C), put-down(hand-1,A).”

The set of unachieved goal literals and unachieved operator preconditions in the tail-plan
may be viewed as the current goal of planning. Let us denote this set by G’. For example,
the current goal G’ of the plan in Figure 4b includes the unachieved goal literal on-table (C)
and the precondition in-hand(hand-1,A) of put-down(hand-1,A).

Initially, when the tail-plan is empty, the current goal consists of the goal literals that
are not satisfied in the initial state: G' = G — I. When a new operator op is added in the
beginning of the tail-plan, Back-Chainer removes from G’ the literals achieved by op and
adds to G’ the preconditions of op that are not satisfied in the current state C. If Prodigy
moves op from the beginning of the tail-plan to the end of the head-plan, G’ also must be
updated. To perform this update, we have to know the goal literals achieved by op. For this
reason, we establish links from every operator of the tail-plan to the literals achieved by the
operator.

Table 3 summarizes our total-order back-chaining algorithm. By itself, this back-chaining
algorithm is not complete. However, in combination with Prodigy’s execution-simulator it
makes a complete planner.

4.2 Partial-order back-chainers

Tree-structured plans. A simple partial-order Back-Chainer operates with plans that
are organized as trees (see Figure 5). The root of the tree is the goal G, other nodes are
operators, and edges are ordering constraints. Each goal literal is linked to the operator of
the tail-plan that was selected to achieve it.

A goal literal or precondition [ in a tree-like tail-plan is unachieved if

(1) I does not hold in the current state C', and
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Total-Order-Back-Chainer
1. Pick a literal { from G'.

Backtracking point: all literals of G' must be considered.
2. Pick an operator op that achieves [.

Backtracking point: all such operators must be considered.
3. Add op in the beginning of Tail-Plan.

Establish a link from op to [.

If op achieves other literals of GG, establish links to these literals as well.
4. Modify G': remove literals achieved by op and

add preconditions of op that are not satisfied in C'.

Table 3: Total-order back-chaining algorithm

i 2f
I:] -

I<- gap-=1 < --tal-plan --=

Figure 5: Tree-structured tail-plan

(2) lis not linked with any operator.

When the back-chaining procedure is called to modify the tail, it chooses some literal [ from
the set G’ of unachieved literals, adds a new operator op that achieves [, and establishes a
link from op to [. The summary of the algorithm is shown in Table 4. One may verify that
this back-chainer is complete.

The backtracking point in Step 1 of the algorithm may be required for the efficiency of
the depth-first planning, but not for completeness. If Prodigy generates the entire tail before
applying it, we do not need branching on Step 1. We may pick preconditions in any order,
since it does not matter in which order we add nodes to our tree-plan.

An enhanced back-chainer. Sometimes, a precondition of an operator in a partial-
order tail-plan may be achieved by another operator of the tail. For example, operator x in
Figure 5 may establish some precondition of y. Then we may achieve this precondition of y
by establishing a link from z to y rather than adding a new operator. When establishing new

Partial-Order-Back-Chainer
1. Pick a literal { from G'.
Backtracking: all such literals must be considered.
2. Pick an operator op that achieves [.
Backtracking point: all such operators must be considered.
3. Add op to the plan and establish a link from op to .
4. Modify G': remove [ and add preconditions of op that are not satisfied in C.

Table 4: Back-chainer generating tree-structured plans
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Figure 6: Branching decisions

links, we must make sure that links do not form loops. For example, we cannot establish
a link from z to y (Figure 5). We can readily extend our partial-order back-chainer to
the procedure that not only adds new operators but also establishes new links between old
operators of the tail-plan.

5 Conclusion

The Prodigy planning algorithm interleaves backward-chaining planning with the simulation
of plan execution. The back-chainer is responsible for the goal-directed planning: it provides
the execution-simulator with operators relevant to the goal of the planning problem. The
simulator models possible ways of applying goal-relevant operators to the initial state of
the world and computes the resulting current state. The execution-simulator insures the
soundness of planning, while the back-chainer is responsible for the completeness.

Incomplete plans generated by Prodigy while searching for a solution consist of two
parts: (1) the valid total-order head-plan, built by the execution-simulator, and (2) the
goal-directed tail-plan, constructed by the back-chainer. Different representations of the
tail-plan give rise to different back-chaining procedures.

The efficiency of Prodigy depends on its search space and on the order of expanding nodes
of the search space. The search space is determined by the back-chaining procedure used
by Prodigy, while the order of expanding nodes depends on the branching decisions made in
backtracking points. On each step, the planner decides which branch of the search space to
explore first. The decisions made by Prodigy in every backtracking point are summarized
in Figure 6.

The paper does not address the efficiency of the Prodigy system. A formal analysis of
advantages and drawbacks of Prodigy as compared to other planners is still an open research
problem. However, multiple experiments have demonstrated Prodigy’s ability to efficiently
solve a wide range of complex problems (see, for example, [Veloso, 1992] and [Gil, 1992]).
Below we list some advantages of Prodigy’s planning algorithm.

Rich domain language. Prodigy’s language for operator representation includes dis-

9



junctive preconditions, universal and existential quantification of variables, and conditional
and functional effects. The execution-simulator, which maintains the description of the
current state, allows us to use this powerful operator representation.

Learning opportunities. Prodigy uses several learning procedures, which improve the
efficiency of the planner. The information about the current state is used at a learning phase
to identify the reasons for local and global planning successes and failures. Partial-order con-
straints of the tail-plan enable learners to determine which aspects of the operator ordering
in the head-plan are relevant to the solution.
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