Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Speeding Up Search-Based Motion Planning via Conservative Heuristics

Ishani Chatterjee, Maxim Likhachev, Ashwin Khadke, Manuela Veloso*
The Robotics Institute, Carnegie Mellon University

Abstract

Weighted A* search (WA*) is a popular tool for robot motion-
planning. Its efficiency however depends on the quality of
heuristic function used. In fact, it has been shown that the
correlation between the heuristic function and the true cost-
to-goal significantly affects the efficiency of the search, when
used with a large weight on the heuristics. Motivated by this
observation, we investigate the problem of computing heuris-
tics that explicitly aim to minimize the amount of search ef-
forts in finding a feasible plan. The key observation we ex-
ploit is that while heuristics tries to guide the search along
what looks like an optimal path towards the goal, there are
other paths that are clearly sub-optimal yet are much eas-
ier to compute. For example, in motion planning domains
like footstep-planning for humanoids, a heuristic that guides
the search along a path away from obstacles is less likely
to encounter local minima compared with the heuristics that
guides the search along an optimal but close-to-obstacles
path. We utilize this observation to define the concept of con-
servative heuristics and propose a simple algorithm for com-
puting such a heuristic function. Experimental analysis on
(1) humanoid footstep planning (simulation), (2) path plan-
ning for a UAV (simulation), and a real-world experiment in
footstep-planning for a NAO robot shows the utility of the
approach.

Introduction

Weighted A* (wA*) (Pohl 1970), has been widely used for
relatively low-dimensional motion planning problems such
2D navigation (Ferguson, Likhachev, and Stentz 2005), path
planning for UAVs (Hwangbo, Kuffner, and Kanade 2007),
(Liu et al. 2018), and footstep planning for humanoids (Hor-
nung, Maier, and Bennewitz 2013). wA* with high weight
shows better search efficiency in domains that show a strong
correlation of the heuristic function with the node-distance-
to-goal (Wilt and Ruml 2012). A weak correlation may cre-
ate heuristic depression regions, or local minima, where the
path suggested by the heuristic may not be feasible, severely
degrading search efficiency (Wilt and Ruml 2012). We in-
vestigate the idea of computing heuristic functions that ex-
plicitly aim to reduce search expansions by wA*.

*This work was in part supported by ONR grant N0O0014-15-1-
2129
Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

674

For heuristic computation, it is common to solve a sim-
pler planning problem in a space formed by relaxing some
constraints in the original space (Bulitko et al. 2007), (Holte
et al. 1996). We define an edge in the relaxed space as con-
servative if for each corresponding state in the original space
there is an edge to at least one corresponding successor state.
Existence of a path composed only of conservative edges in
the relaxed space, guarantees existence of a feasible path in
the original space. If the heuristic computation finds such a
path in the relaxed space, then simply following the heuris-
tic gradient can guide the search to the goal, while expand-
ing only the states that appear in the solution. Our first con-
tribution is in observing that in motion planning problems
formulated as heuristic search one can often identify con-
servative edges in the relaxed space. Secondly, we propose
a heuristic computation algorithm that minimizes the use of
non-conservative edges to reduce inefficient expansions in
the original space.

Motivation behind the conservative property is similar to
several ideas explored in classical hierarchical planning. Re-
laxed spaces and “safe” abstractions (Haslum and others
2007) have been used to compute solutions that could be
refined/extended to the original space (Bacchus and Yang
1991). Bacchus and Yang showed that plans in the relaxed
space can be refined to a plan in original space with a
high probability if the relaxed space satisfies the Down-
ward Refinement Property (DRP). It is difficult to find non-
trivial relaxed spaces with DRP. In our work, the relaxed
spaces do not satisfy DRP, but we observe that we can iden-
tify conservative edges in the relaxed space that can di-
rect the search in the original space towards goal. Also,
we do not refine plans computed in the relaxed space but
use them to compute a heuristic to be used by the original
search. Many works use relaxed spaces to compute heuris-
tics (Pearl 1984), (Hoffmann and Nebel 2001), (Holte et
al. 1996). Pattern databases (Culberson and Schaeffer 1998)
store a table mapping states or sub-goals in a relaxed ver-
sion of the original problem, to the cost-to-go of a pre-
computed solution in the relaxed space to reach these sub-
goals. (Helmert et al. 2007) compute heuristics in abstract-
spaces for automated-planning, where abstractions are com-
puted using different sets of state-variables. The Fast Down-
ward Planner attempts to combine refinement with heuristics
(Helmert 2006). (Béckstrom and Jonsson 2013) define the



weak refinement property (WRP) in studying the relation-
ship between refinement and heuristics, and (Pang and Holte
2011) define “strong matching”, both of which come close to
the conservative property, except that it is not a requirement
in our relaxed spaces. Also, these works mainly deal with
symbolic planning, whereas our focus is in motion planning.
(Vega-Brown and Roy 2018) use abstraction-based search
in motion-planning that divides the environment into over-
lapping regions and has the effect of heuristically guiding
the search towards the next region, based on some computed
bounds. However, they make assumptions about the convex-
ity of the regions. In our case, there is no such assumption
about the planning environment. To the best of our knowl-
edge, no attempt has been made to identify and use con-
servative edges for heuristic computation in the context of
motion planning.

Planning with Conservative Heuristics
Definitions, Notations and Problem Description

Consider a graph G = (S, E,c), where S is the set of
states, E = {(s,s')|s,s’ € S} denotes the set of feasi-
ble transitions/edges in the graph and, c is a cost-function
such that c(s;, s;) is the cost of an edge (s;,s;). A plan-
ning problem consists of finding a path 7(s;, s;) in G from
s; to s;. m*(s;, ;) denotes the least-cost path between s;
and s;. The cost of any path n(s;,s;) is the cumulative
cost of all edges along it and is denoted by c(7(s;, s5)). Let
h. : S — N be our conservative heuristic function esti-
mating cost-to-goal. We assume that s; € S is a goal-state
if and only if h.(s;) = 0. We use wA* to compute a path
in G from a start state s, to any state in the goal-set S, =
{s €8 | hc(s)=0}.

Heuristic Space: Consider another state-space S, an ab-
stract space used to compute heuristics. We call it the
heuristic-space. Let X : S — S be a many-to-one mapping
representing the projection of each state in S to the heuristic-
space S, such that |S| < |S|. Moreover, \~1(3) = {s € S |
A(s) = 5} V& € S. The heuristic-space has its own set of
transitions £ = {(s;,§;)|i,8; € S}. Let G be the graph

defined by S and E. 7(5;, 3;) denotes a path in G from 3

to 5;, and c(m(3;, 3;)) denotes its cost in G. We assume that
for every pair of states s; and s; in .S,

(" (si,85))) = e(m* (A(si); As5))) (1)
if 3 7(s;,85) st |e(n(si,85))| < oo,
then 3 7(A(s;), A(s;)) s.t |e(m(A(s:), A(s;5)))| < o0 (2)

We assume states in the goal-set Sy map to one goal-state 5,
in the heuristic space, ie, 5, = A(s4)Vs, € S,.

Conservative Edges: An edge (5,5") € F is conservative
iff Vs € A71(3) 3 (s,8') € Est s’ € A71(§). A conserva-
tive edge (3, 3') guarantees that every state s € A71(3) is
connected to at least one state in A~!(&’). Thus, existence
of a path in the heuristic-space from A(s;) to A(s;) which
consists of only conservative edges, guarantees existence of

675

edge in abstract
“conservative”

Figure 1: (a) A conservative edge in (S) and its correspond-
ing set of states and edges in (G). (b) Non-conservative
edges (red) with missing edges between some pairs of corre-
sponding states in S. (c) Path (green) in .S, comprising solely
of conservative edges in S.

cs,8)=
Non-Conservative edges

obstacle

C(s’, $” ) = Conservative edges

Figure 2: A planning environment with obstacles (red) in-
flated by the circumradius of a polygonal robot. Edges inside
the inflated region (light blue) are non-conservative, while
those outside (dark blue) are conservative.

a path from s; to s; in the original space. Fig. 1 illustrates
this reasoning. If the search in G is guided to always prefer
successors connected via conservative edges in G, it would
reach the goal by expanding only such successors, making
the number of expansions equal to the solution size.

Identifying conservative edges in G is a domain-
dependent process. For example, when planning in S =
(x,y, orientation) for a non-circular robot, S can be ob-
tained by dropping the orientation, or, S = (z,y). Here,
the heuristic-space is obtained by abstracting away a spe-
cific geometric property of the robot (in this case the ori-
entation), which is equivalent to treating the non-circular
robot as a circular one in the heuristic-space. Inflating ob-
stacles by the radius of the robot-footprint’s circumcircle
(circumradius) identifies the space that the robot can phys-
ically occupy for all possible orientations. States in S ly-
ing outside of this inflated-obstacle region are surely not in
collision with obstacles, therefore an omni-directional robot
can surely move between neighbouring states. Thus, edges
between these states are conservative. Fig. 2 shows the con-
servative and non-conservative edges in a 2D environment
inflated by the robot circumradius.

Conservative Heuristic Computation

We want to compute h.(s) such that it (1) guides the search
in the original space along paths that minimize the number
of non-conservative edges in .S, (2) prefers the shortest be-



tween all paths made purely of conservative edges and, (3)
is « consistent (co > a > 1). We define a heuristic to be
a-consistent if for all s, s’ € S such that s is a successor of
s, he(s) < ac(s,s’) + he(s'), and he(s) = 0 forall s € Sy.
Consider a graph G,, = (S, E, ¢;,), which is G but with
modified edge-cost. For any s € S and its image § = A(s),
we define h.(s) = ¢, (7}, (3, 5,4)), where 777, is the optimal
path in Gy, from 5 to 5,4, Let E,, be the set of conservative
edges in E, E,co = E\ E¢ - Let ¢4, be the minimum

edge-cost in G. We define cm in Eq. (3).

o Cmin/|Beo| i (3:,5;) € B
cm(&’sﬂ)_{ OCmin  if (34, 85) € Enco

3

From Eq. (3), we see that the optimal path (7}, (5, 54)) in
G, would rather consist of all possible conservative edges
than incorporating a single non-conservative one. Thus, the
desired properties of h, are achieved.

Algorithm 1 shows the heuristic computation in detail. We
need to first compute c,,;, and total number of conservative
edges | E.,| (Lines 1:5). We then compute the shortest path
in G,, from 54 to every state in G . This is done by running
a backward Dijstra’s search on G, from 54 to every state in

G Gy, s implicitly constructed: for each expanded s and
a predecessor §', we check whether (3,3’) is conservative
and assign costs according to the scheme described in Eq.
(3) (Lines 6:19).

For each state s expanded by wA* search in the original
graph G, we first find its projection § = A(s). g(§) which
was updated when s was expanded in the heuristic computa-
tion search, is the cost of the shortest path in G,,,. Therefore,

he(s) = g(3).

Algorithm 1 Conservative Heuristic Computation

I Cmin = ming s 515 ¢(5, 5)

2:n=0

3: for every (3,5') do > Compute | E.|
4:  ifis_conservative((3,35’)) == True then

5: n=n+1

6: |Eeol =n

7: g(54) =0

8: OPEN = §,, CLOSED = 0)

9: while at least one § € S hasn’t been expanded and OPEN # ()

do
10: remove § from OPEN with minimum g¢(§)
11: insert s into CLOSED
12: for every predecessor 3’ of 5 s.t § not in CLOSED do

13: if is_conservative((§,3’)) == True then
14: cm(3,8") = cmin/|Ecol

15: else

16: cm(8,8) = acmin

17: if g(3) > g(s) + cm(3,§’) then

18: g(8) = g(s) + cm(5,8)

19: Insert § into OPEN with ¢(§) as key

We prove the following (full proofs can be found in (Chat-
terjee et al. 2019)):

e h. is « consistent.

e wWA* using h. is complete, with cost of the returned solu-
tion being no more than w.« times optimal solution cost
in G (Thm 1,3).

e The chosen cost-scheme guarantees that the longest
purely conservative path has lower cost than any path with
a non-conservative edge in G, (Thm 4).

e If a purely conservative path exists in ém from 54 to s,
then number of expansions made by wA* with sufficiently
large w equals the length of the shortest purely conserva-
tive path from 5, to 5, (Thm 5). If not, k. will still guide
the search towards the use of edges in G that have con-
servative mappings in Gpm. In doing so, wA* returns a
solution with cost within the stated sub-optimality bound.
However, no guarantees on the number of expansions can
be provided.

It is to be noted that finding conservative edges (func-
tion is_conservative((§,5)) in Lines 3 and 13) is
domain-dependent. However, in navigation-planning do-
mains, domain-knowledge helps in computing conservative
edges efficiently. In the aformentioned example of planning
in (z, y, orientation), given the map of the environment and
the circumradius r. of the robot, an edge can be deemed
conservative by checking if both the vertices comprising the
edge are at a distance greater than r. from the nearest obsta-
cle !. This check is an O(1) operation and can be performed
during the implicit construction of G,,. The next section
shows how conservative edges can be computed efficiently
for two navigation domains: (1) path-planning for a UAYV,
and (2) humanoid foot-step planning.

Implementation and Experimental Analysis
Path Planning for a UAV in (X,Y,Z)

We first evaluated the effectiveness of our heuristic com-
putation for path planning in S = (X,Y,Z) for a sim-
ulated omnidirectional UAV. We discretized the environ-
ment (Fig 3 bottom left), terrain (obstacles) in maroon) into
600 x 600 x 400 cells. G is a 3D 26-connected grid with
transition costs proportional to euclidean distance between
states.

Heuristic space: G is defined by dropping the z, or,
A[z,y, 2]) = [z, y]. Thus, G is a 2D 8-connected grid. We
assume a maximum flying range in z for the UAV given by
Zmagz- We consider § = [z,y] € S as ’free’ if there exists
a2z < Zmag for which s = [z,y, 2] is obstacle-free, thus
ensuring Eq. (2) holds.

Conservative Edge Computation: For every 2D [z, y]
state, obstacles in z are represented as the terrain elevation-
map (Fig 3, example elevation values z, shown in yellow).
For a 2D edge ([, y], [',y']), let z. and 2, be the respective
elevations for [x,y] and [z, y']. We compute zq = |z, — 2L,
the absolute difference in elevation of two adjacent 2D states
forming the edge. Since the 3D grid is 26-connected, a z4
value of 0 or 1 implies that every s = [z, y, 2| projecting to

'Distance-Transforms are typically used to compute and store
the distance of each state in a 2D or 3D grid to its nearest obstacle.



Figure 3: (top left) Cons.(red and blue) and a non-Cons.
edge(green) for UAV domain, terrain elevation map (grey:
terrain, yellow: elev values(z.)). (top center, right) visual-
ized h-values and optimal 2D paths by h. and h; respec-
tively. (bottom left, right) 3D paths using A, hy.

[z, y] has at least one collision-free edge to a s’ = [z, 1/, 2']
projecting to [2’,y], making ([z,y], [x’,y']) conservative
(Fig 3 (top left), red and blue). However, z4 > 1 indicates
that there is one state s = [, y, 2] projecting to [z, y], which
has no collision-free edge to any s’ = [/, 4/, 2’] projecting
to [z, y'], making ([z,y], [z’,y']) non-conservative (Fig 3
(top left), green. z4 = 2).

Results: We compare h, with a base-line heuristic hyp,
which is cost of the optimal path in (x,y) space but with the
regular euclidean 2D edge-costs. h,. is higher (yellow, red
regions in Fig 3 (top center)) in the central region where
elevation differences are steeper causing many infeasible
3D edges and more non-conservative edges. As a result,
h. guides the search away from this region and on purely
conservative paths (Fig 3(top center) white-line), unlike hy
(Fig 3 (top right)). We evaluate in 20 ’Easy’(gradual ter-
rain slopes, lesser depression regions) and 20 ’Difficult’
(steeper slopes). Table 1 shows results. Success rate indi-
cates the number of instances when the planner finds a so-
lution. Heuristic computation time includes time taken to
identify conservative edges and run the Backward Dijkstra’s
search in G,,,, Planning time indicates time taken by wA* to
compute a solution, total time being the sum of both. Statis-
tics are computed for cases in which both planners were able
to find a solution. h. has significantly less expansions, while
producing similar solution costs and sizes. For the example
in Fig 3, h. (Fig 3(bottom left)) generates a path around the
steep regions, whereas h;, (Fig 3(bottom right)) computes a
path through the steep-sloped regions. The number of expan-
sions using h. is 829, which is exactly equal to the solution
size (829), and significantly less than the number of expan-
sions using hp (20940). However, solution cost using h. is
8280, which is slightly greater than that using h; (6270).
For the ’easy’ scenarios where chances of encountering local
minima are low, search using h. and h; performs similarly.

Humanoid Footstep Planning for Bipedal Walk

For this domain, state s = [z, y;, 01, %, yr, 0, ID] € S
consists of global position and orientation of the two feet

677

- 1T

g

mnmns

-+

/N
%

T T T

Figure 4: (left) Biped states sy, so (red, black) such that
A(s1) = A(s2) = A € S. States(pink) forming a “North”
macro-move in E for s;. (right) States(yellow) forming a
“North” macro-move in F for sa. (A, D) is the correspond-
ing macro-move in E.

and ID of the foot being moved next (active foot). The envi-
ronment was divided into 800x800 cells. # has a resolution
of 45°. The active foot moves relative to the pivot foot. For
each foot as pivot, there are 15 feasible motions of the ac-
tive foot in the form of a = [dz, Jy, 66] relative to pivot
foot. Transition-costs are proportional to euclidean distance
between the feet centers.

Heuristic Space: G is a 2D 8-connected grid. A projects
the 2 feet-positions in s to the 2D grid by computing their
mean. Cost of an edge is proportional to the euclidean dis-
tance between 2D cell-centres.

Conservative Edge Computation: For an (5,5') to be
conservative, every s € A71(3) should have at least one
valid pose leading to a state in A~1(3’), such that the
mean moves along (§,3). Owing to the kinematic con-
straints of this humanoid, most edges in set E are non-
conservative. Consider the example in Fig 4, where the ac-
tive foot (right) can have 2 feasible motions: a; = [2,0,0]
or ag = [0,0,45°]. Let sy, s be states in A~!(A), shown in
Fig 4 (left) in red and black respectively. None of the actions
a1 or ag applied in sy result in a successor that projects to
B. Similarly, no action applied in s; results in a successor
that projects to C. Thus, (A, B) and (A, C) are both non-
conservative edges.

However, consider the state D, 5 edges North of A in the
heuristic-space (Fig 4 (center)). Applying a; thrice from s;
(Fig 4 (center)) moves the mean to D. Applying ao and then
a1 four times from so (Fig 4 (right)) also moves the mean to
D. Thus, we can choose a state §', k edges away from A in
heuristic space, with k being sufficiently large such that ev-
ery s € A"1(A) has a sequence of valid steps in G to move
the mean to §’. We call this sequence of moves as a “macro-
move’. Macro-moves exist in G as well as G. Fig 4 (cen-
ter) and Fig 4 (right) depict macro-moves in G from s; and
s9 respectively, corresponding to the macro-move (A, D) in
G. If we can find macro-moves from every s € A~1(A) to
some s’ € \71(D), then (A, D) satisfies the conservative
property and thus, becomes a conservative macro-move.

We can generate such macro-moves from A in other direc-
tions as well. Here, we select £ = 20 and add macro-moves
in 4 directions (North, East, West, South) in G. These macro-



type of environment | heuristic | win wA* | succrate | # expansions sol size sol cost planning time(s) | heur comp time(s)
difficult he 100 100% 534499 534+99 | 53334994 0.002+0.001 0.21+0.003
difficult hy, 100 80% 56687+30740 | 537+£94 | 53574943 0.028+0.03 0.21+0.01
easy he 100 100% 894+1263 381+£96 | 3798+969 0.001+0.001 0.21+0.009
easy hy, 100 100% 1921£4300 | 346+112 | 345241160 | 0.0024+0.002 0.20+0.05

Table 1: Comparison of h. with baseline h; for UAV domain in *difficult’ (more local minima) and ’easy’ scenarios

heuristic | win wA* | succ.rate | # expansions sol size sol cost planning time(s) | heur comp time(s)
he 100 37/39 1720£5850 50+£35 156250+110820 6+19.8 0.07 £1.39
hy 100 24/39 16000£19000 | 61.1£62.8 | 51630452396 36143 0.036+0.006

Table 2: Comparison of h. with baseline h;, in Footstep Planning.

Figure 5: Results with A, (left) and Ay (right) for footstep
planning.

moves represent sequence of actions and are analogous to
motion primitives and can be computed offline. Once com-
puted for all s € A™'(A) for any A € S, these can be ap-
plied to any state s € S to compute its relevant successors.
We compute conservative heuristic h.(s) of state s, by

performing a Dijstra’s search in G with the macro-moves
included. Note that, macro-moves are like any other edge
and no edges have been removed from any of the graphs,
hence all the guarantees described before still hold.

Results (Simulation): We used the model of a full-size
humanoid for our experiments and allowed a maximum
planning time of 90 seconds. We chose a typical indoor envi-
ronment with narrow passages, corridors and varying door-
way sizes. Also, the environment has multiple pathways for
traversing between different locations, therefore requiring
the search to explore these options. Table 2 compares the
performance of conservative heuristic (h.) with the baseline
2D Dijkstra’s shortest path heuristic (hy). Results are aver-
aged over 39 random starts and goals. h. has a remarkably
higher success rate (94.8%) compared to h; (61.5%). More-
over, using h. reduces planning times by an order of ~ 6
and expansions in the final search by a factor of 10. The
heuristic computation time is slightly higher for h. (0.07s)
than h;, (0.036s) owing to the addition of macro-moves in F.
Two examples of the search using h. and h; shown in Fig 5
(left) and (right) respectively. In the first example (top), wA*
with hy, takes a long time but finds a path through the narrow
passage. In the second example (bottom), wA* with hy, isn’t
even able to find the solution in 90s.

678

Figure 6: Initial environment (top left). Planner stuck in local
minima (top center) created by the narrow passage between
white and brown box using hj, NAO waiting for plan (top
right). NAO executing plan computed using h. (bottom).

Results (Robot experiment): Fast re-planning is useful
when the environment is changing. We implemented a foot-
step planner for the NAO robot based on (Hornung, Maier,
and Bennewitz 2013) and show advantages of using h. in
quickly computing footstep plans in the following scenario:

e We placed a set of static obstacles in the environment and
computed initial footstep plans using h. and hy,.

e During execution, we added an obstacle in the environ-
ment creating a narrow passage on the robot’s path, trig-
gering re-planning. wA*(w=8) using h; keeps expand-
ing states in the local minima created by the passage
and fails to find a path in the given time. wA*(w=8) us-
ing h. re-plans in 978 ms (heuristic computation time:
187 ms, planning time: 791 ms). A video demonstration
of this experiment can be found here: https://youtu.be/
zs4HX84jE1w

Conclusion

We proposed a heuristic computation algorithm using con-
servative edges in the heuristic-space for reducing state ex-
pansions by wA*, proved theoretical properties and applied
our approach in several motion planning domains, observ-
ing significant reductions in expansions and planning times.
Future work is to have a probabilistic definition of the con-
servative property.



References

Bacchus, F., and Yang, Q. 1991. The downward refine-
ment property. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence - Volume 1, 1]-
CAT’91, 286-292. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.

Béckstrom, C., and Jonsson, P. 2013. Bridging the gap be-
tween refinement and heuristics in abstraction. In IJCAI,
2261-2267.

Bulitko, V.; Sturtevant, N. R.; Lu, J.; and Yau, T. 2007.
Graph abstraction in real-time heuristic search. J. Artif. In-
tell. Res.(JAIR) 30:51-100.

Chatterjee, 1.; Likhachev, M.; Khadke, A.; and Veloso, M.
2019. Speeding up search-based motion planning via con-
servative heuristics. Tech. Report, The Robotics Institute,
Carnegie Mellon University.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318-334.

Ferguson, D.; Likhachev, M.; and Stentz, A. 2005. A guide
to heuristic-based path planning. In Proceedings of the in-
ternational workshop on planning under uncertainty for au-

tonomous systems, international conference on automated
planning and scheduling (ICAPS), 9-18.

Haslum, P, et al. 2007. Reducing accidental complexity in
planning problems. In IJCAI, 1898-1903.

Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176-183.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253-302.

Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDon-
ald, A. J. 1996. Speeding up problem solving by abstrac-
tion: A graph oriented approach. Artificial Intelligence 85(1-
2):321-361.

Hornung, A.; Maier, D.; and Bennewitz, M. 2013. M.:
Search-based footstep planning. In In: ICRA Workshop
Progress and Open Problems in Motion Planning and Nav-
igation for Humanoids.

Hwangbo, M.; Kuffner, J. J.; and Kanade, T. 2007. Ef-
ficient two-phase 3d motion planning for small fixed-wing
uavs. Proceedings 2007 IEEE International Conference on
Robotics and Automation 1035-1041.

Liu, S.; Mohta, K.; Atanasov, N.; and Kumar, V. 2018.
Search-based motion planning for aggressive flight in se (3).
IEEE Robotics and Automation Letters 3(3):2439-2446.
Pang, B., and Holte, R. C. 2011. State-set search. In Fourth
Annual Symposium on Combinatorial Search.

Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence 1(3-4):193-204.

679

Vega-Brown, W., and Roy, N. 2018. Admissible abstractions
for near-optimal task and motion planning. arXiv preprint
arXiv:1806.00805.

Wilt, C. M., and Ruml, W. 2012. When does weighted a*
fail? In SOCS, 137-144.



