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Teaching Robots to Predict Human Motion

Liangyan Gui', Kevin Zhang?, Yu-Xiong Wang?, Xiaodan Liang®, José M.F. Moura', Manuela M. Veloso®

Abstract— Teaching a robot to predict and mimic how a
human moves or acts in the near future by observing a
series of historical human movements has great application
potential in human-robot interaction and collaboration. In
this paper, we endow a robot with such ability of predicting
and demonstrating human motion by leveraging recent deep
learning and computer vision techniques. Our system takes
images from the robot camera as input and produces the human
skeleton based on real-time human pose estimation from the
OpenPose library. Conditioning on this historical sequence,
the robot then forecasts plausible motion through a motion
predictor and generates the corresponding demonstration.

Due to lack of high-level fidelity check, existing forecasting
algorithms suffer from error accumulation and inaccurate pre-
diction. Inspired by generative adversarial networks (GANs),
we introduce a global discriminator that examines whether
the predicted sequence is smooth and realistic. Our resulting
novel motion GAN predictor achieves superior performance over
the state-of-the-art deep learning approaches when evaluated
on the standard Human 3.6M dataset. Based on this motion
GAN predictor, the robot demonstrates its ability to replay the
predicted motion in a human-like manner when interacting
with a person.

I. INTRODUCTION

Consider the following scenario: A robot is dancing with a
human as shown in Figure 1. In a perfect dancing show, the
robot is supposed to not only recognize but also anticipate
human actions, such as accurately predicting limbs’ pose and
position, so that it can interact appropriately and seamlessly.
The first step towards this ambitious goal is to make the robot
able to predict and demonstrate human motion by observing
human activities.

Such ability of forecasting how a human moves or acts in
the near future conditioning on a series of historical move-
ments is typically addressed in human motion prediction. In
addition to human-robot interaction and collaboration [1], it
has great application potential in a variety of scenarios in
robotic vision, including action anticipation [2], [3], motion
generation [4], and proactive decision-making in autonomous
driving systems [5].

Predicting plausible human motions for diverse actions,
however, is a challenging yet under-explored problem be-
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Fig. 1: Dancing with a human is a potential future use case
stemming from predicting human motion.

cause of the uncertainty of human conscious movement
and the difficulty of modeling motion dynamics. Traditional
methods mainly use bilinear spatio-temporal basis mod-
els [6], Hidden Markov Models [7], Gaussian process latent
variable models [8], [9], linear dynamic models [10], and
Restricted Boltzmann Machines [11], [12], [13], [14]. More
recently, driven by the advances of deep learning architec-
tures and large-scale open datasets, various deep learning
methods have been proposed that significantly outperform
traditional approaches for predicting various actions. They
formulate the task of predicting possible future motions as
a sequence-to-sequence problem, which can be resolved by
recurrent neural networks (RNNs) to capture the underlying
temporal dependencies in the sequential data. Despite their
extensive efforts on encoder-decoder type architectures (e.g.,
encoder-recurrent-decoder (ERD) [15], [16] and residual
architecture [17]), they can only predict periodic actions
well (e.g., walking) and show unsatisfactory performance
on modeling aperiodic actions (e.g., discussion) due to error
accumulation.

In this work, we aim to address human-like motion pre-
diction that ensures temporal coherence and fidelity of the
predicted motion and that can be deployed on the robot for
its interaction with human. From a higher-level viewpoint,
the desired model can predict realistic periodic and aperiodic
future 3D poses of a person given a series of past motions.

To achieve this, we propose a novel motion GAN predictor
model that learns to validate the motion prediction generated
by the encoder-decoder network through a global discrimi-
nator in an adversarial manner. Generative adversarial net-
works (GANs) [18] have shown great progress in image gen-
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eration and video sequence generation by jointly optimizing
a generator and a discriminator in a competitive game, where
the discriminator aims to distinguish the generated samples
from the training set samples and the generator tries to fool
the discriminator. In the spirit of GANs, we use a residual
encoder-decoder network as our generator and propose a
discriminator to validate the fidelity of the predicted motion
sequence. The discriminator aims to examine whether the
generated motion sequence is human-like and smooth overall
by comparing the predicted sequence with the groundtruth
sequence.

By integrating this novel, powerful motion predictor with
other recent visual recognition techniques, we develop a
system that endows a robot with the desired ability of
predicting and demonstrating human motion. As shown in
Figue 2, our system takes images input from the robot camera
and produces the human skeleton based on real-time human
pose estimation from the OpenPose library [19]. Given
this historical skeleton sequence, the robot then forecasts
plausible motion through the motion predictor and generates
the corresponding demonstration.

In summary, our contributions are three-fold:

« We develop a deep learning based system that makes a
robot able to predict and demonstrate human motion.

o We propose a novel motion GAN model that introduces
a sequence-level discriminator and adversarial training
mechanism tailed for the motion prediction task.

« Extensive experiments on a large-scale motion capture
dataset show that our motion GAN predictor signif-
icantly outperforms state-of-the-art methods and our
entire system endows the robot with the ability of
replaying the predicted motion in a human-like manner.

II. RELATED WORK

We briefly review the literature that is most relevant to our
task and discuss the differences.

Generative adversarial networks. GANs have shown
impressive performance in image generation [20], [21], [22],
video generation [23], [24], [25], and other domains [26],
[27]. The key idea in GANSs is an adversarial loss that
forces the generator to fool the discriminator. Instead of
developing new GAN objective functions as is normally the
case, our goal here to investigate how to improve human
motion prediction by leveraging the GAN framework. Hence,
we design a discriminator with RNN architectures to examine
the predicted sequence from a global perspective and im-
prove its smoothness and fidelity. Moreover, different from
standard GANSs, our generator is the RNN encoder-decoder
without any noise inputs.

Encoder-decoder architecture. With the development of
RNNS, encoder-decoder networks have been widely used for
machine translation [28], image caption [29], and time-series
prediction [30], [31], [32]. For the human motion prediction
task which we address, Fragkiadaki et al. [32] propose a
3 layers of long short-term memory (LSTM-3LR) and an
encoder-recurrent-decoder (ERD) that use curriculum learn-
ing to jointly learn a representation of pose data and temporal

dynamics. Jain et al. [30] introduce high-level semantics
of human dynamics into a recurrent network by modeling
a human activity with a spatio-temporal graph. These two
approaches design their models for specific actions and
restrict the training process on subsets of the motion dataset,
such as Human 3.6M [33]. More recently, to explore motion
prediction for general action labels, Martinez et al. [31]
develop a simple residual encoder-decoder and multi-action
architecture by using one-hot vectors to incorporate the
action information.

However, error accumulation has been observed in the
predicted sequence, since RNNs cannot recover from their
own mistake [34]. A few works [30], [32] alleviate the error
accumulation problem via a noise scheduling scheme [35] by
adding noise to the input during training. But this scheme
makes the prediction discontinuous and makes the the hyper-
parameters hard to tune. Despite their initial progress, all
of these approaches only consider the prediction locally by
imposing the frame-wise loss on the decoder. In contrast, we
address the error accumulation problem from a sequence-
level perspective by introducing a discriminator to explicitly
check how human-like the generated sequences are.

III. OUR APPROACH

We now present our system that endows a robot with the
ability of predicting and demonstrating human motion. As
shown in Figure 2, after a person performs some action
in front of the robot, the robot can learn to predict and
demonstrate how the person moves or acts in the near
future. Our key component here is a motion GAN pre-
dictor, consisting of a generator and a discriminator, that
forecasts plausible and human-like motion. The generator is
an encoder-decoder network. An input sequence is passed
through the encoder to infer a latent representation. This
latent representation and a seed motion are then fed into the
decoder to output a generated sequence as the prediction.
To further evaluate the prediction fidelity from a global
perspective, we introduce a novel discriminator that judges
the continuation and smoothness of the generated sequence.
By jointly optimizing the generator and the discriminator
in a competitive game, our motion GAN predictor forecasts
realistic motion, thus facilitating the human-robot interaction.

We first describe how the entire system works at the
inference (deployment) stage and then discuss how we train
our motion GAN predictor.

A. Problem Formulation and Notation

Given a set of historical motions, we aim to predict
possible motions in the future seconds. The problem is
formulated as follows. The input is a set of motions X =
{x1,T2,...,x,}, where z; € R¥ (i € [1,n]) is a motion
vector that consists of a set of 3D body joint angles,
n is the input sequence length, and k is the number of
joint angles. We ignore the global translation and rotation
since only relative rotations between joints contain infor-
mation of the actions. Our goal is to predict the next m
timestep motion vectors X = {Zp41,Tnt2, - Tntm s
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Fig. 2: An overview of our motion GAN predictor that teaches robots to predict human motion. Blue-red stick figures
represent the input sequence and groundtruth, and green-purple stick figures represent predictions. During training, an input
sequence is fed to an encoder network to encode a latent representation and then the latent representation together with a
seed motion are feed into a decoder network. To further check how human-like and smooth the predicted sequence is, we
design a global discriminator that compares the predicted sequence with the groundtruth sequence. Our model simultaneously
optimizes the predictor and the discriminator to generate the final optimal predictions. During inference/deployment, after
observing that a person performs some action in front of the camera, the robot produces the historical skeleton sequence,
and then predicts and demonstrates how the person acts in the near future based on the learned motion GAN predictor.

where ; € R* (j€[n+1,n+m]) is the predicted
motion vector at time j and m is the output sequence
length. The corresponding groundtruth is denoted as Xg¢ =

{wn—i-l; L4-2, s xn+m}~

B. Prediction and Demonstration at Inference

The first phase in our system pipeline on the robot is
capturing an image from the robot. To do so, we use ROS as
our method of communication with the camera, but any other
method of capturing an image from the robot will also work.
We then send the camera image to the OpenPose library [19],
which provides us with real-time pose estimations of all of
the humans in the current image frame. We use an offboard
desktop with an Nvidia 1080 Ti that allows OpenPose to
process images at approximately 10fps.

The next phase is to transform each human’s pose from
2D image coordinates into 3D points in space. There are
a variety of ways to do this, such as using stereo cameras
to sense depth, using depth cameras, or using a model to
predict the 3D positions in space. In our case, we use a depth
camera that is calibrated with our RGB camera to create a
point cloud in which we use to determine the 3D coordinates
of each body part of the human skeleton.

After we receive the 3D coordinates for each body point,
we transform them into the same format that was used in
the dataset we used for training and then we send it into our
motion predictor.

C. Learning Motion GAN Predictor: Generator

Human motion is modeled as sequential data and we
consider the motion prediction problem as to find a map-
ping P from an input sequence to an output sequence.
Such sequence-to-sequence problem is typically addressed
by learning an encoder-decoder network. The encoder learns
a hidden representation from the input sequence. The decoder
takes the hidden representation and a seed motion as inputs
and produce the predicted sequence.

In our motion GAN predictor, the generator module is re-
sponsible for learning the mapping P, so that the ¢y distance
between the prediction and the groundtruth is minimized:

Ly, (P) =E[||P(X) = Xgll,] - (1)

We use a similar encoder-decoder network for our gener-
ator as in [31], considering its state-of-the-art performance.
Instead of working with absolute angles, the encoder takes
the first order derivative velocities as input. A one-hot vector
is introduced to indicate the action of the current input. We
then concatenate the one-hot vector with the velocities, and
feed them into the encoder. The decoder takes the output
of itself as the next timestep input. The encoder and the
decoder consist of gated recurrent unit (GRU) [36] cells
instead of LSTM [37] or other RNN variations, since GRU
is computationally more efficient. Finally, we convert the
outputs of all the timesteps back to the absolute world frame,
and generate the absolute angle outputs. Figure 2 shows the
use of the encoder-decoder in our motion GAN predictor.

D. Learning Motion GAN Predictor: Discriminator

Previous work on human motion prediction only relies on
a plain generator. While the encoder-decoder network as gen-
erator can explore the temporal information of the motions
in a roughly plausible way, a critical high-level fidelity check
of the prediction is missing. This leads to error accumulation
and inaccurate prediction and makes the predicted motions
converge to mean position after a few frames, as observed
in our experiments and previous work [31]. Inspired by
generative adversarial networks (GANs) [18], we introduce
a discriminator to address these issues, checking whether the
generated sequence is smooth and human-like.

A traditional GAN framework consists of two neural
networks: a generative network that captures the data distri-
bution and a discriminative network that estimates the prob-
ability of a sample being real or generated. The generator is
trained to generate samples to fool the discriminator and the
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discriminator is trained to distinguish the generation from
the real samples.

Specifically, we design our discriminator D to distinguish
between sequences X and Xg¢. Intuitively, the discriminator
evaluates how smooth and human-like the generated se-
quence is through directly comparing it with the groundtruth
at sequence level. The objective function is formulated as:

arg m}in max Lgan (P, D) =E [log (D(X))] (2)
1 flog (1 - D(P (X)),

Now the quality of our motion prediction is judged by
evaluating how well the predicted X via the generator P
fools the discriminator D, in an adversarial way that P tries
to minimize the objective function against D while D aims
to maximize it.

The discriminator architecture is as follows. Given a
predicted sequence as input, we use an encoder to extract its
vector representation. We then feed the vector representation
into a fully-connected layer and a sigmoid layer and produce
the probability whether the sequence is real or generated.

We found that it is beneficial to mix the GAN objective
with the original hand-crafted ¢, distance loss in Eqn. (1),
which is consistent with the recent work that uses GANs for
image-to-image translation [38]. Our final objective then is:

P* =arg m;n max Loan (P,D)+ ALy, (P), (3)

where ) is the trade-off parameter. While the discriminator’s
job remains unchanged, the generator aims to not only fool
the discriminator but also to be close to the groundtruth
prediction in an {5 sense.

E. Implementation Details

In our motion GAN predictor, we use a single gated
recurrent unit (GRU) [36] with hidden size 1024 for the
encoder and decoder, respectively. We found that GRUs are
computationally less-expensive and a single layer of GRU
outperforms multi-layer GRUs. In addition, it is easier to
train and avoids overfitting compared with deeper models
as used in [30], [32]. We use spatial embedding for both
the encoder and decoder. Despite an additional discriminator,
the number of GRU parameters in the discriminator is not
affected by the sequence length, since sequences are fed into
GRU cells sequentially and only the embedding size (which
is 1024) and the hidden size (which is 1024) affect the GRU
size. Hence, our model has the same inference time as the
baseline model that only consists of a plain generator.

We use a learning rate 0.005 and a batch size 16, and we
clip the gradient to a maximum {s-norm of 5. A is cross-
validated. We run 50 epochs. We learn our motion GAN
predictor using PyTorch [39], which takes 35ms for forward
processing and back-propagation per iteration on an NVIDIA
GPU.

IV. EXPERIMENTS

In this section, we explore the use of our system to
teach a pepper robot [40] to predict and demonstrate human

future motion when interacting with a person. To learn our
motion GAN predictor, we leverage an auxiliary, large-scale
annotated motion capture (mocap) dataset, the Human 3.6M
dataset [33]. We begin with descriptions of the dataset and
baselines and explain the evaluation metrics. Through exten-
sive evaluation on Human 3.6M, we show that our motion
GAN predictor outperforms the state-of-the-art deep learning
approaches for motion prediction both quantitatively and
qualitatively. Finally, we provide the results on the pepper
robot, showing human-like, realistic motion prediction and
demonstration.

Dataset. We use the Human 3.6M dataset [33] as an
auxiliary source for training our motion GAN predictor as
well as evaluating its performance with the state-of-the-art
approaches in motion prediction. Human 3.6M is a large-
scale, publicly available dataset including 3.6 million 3D
motion capture data and it is an important benchmark in hu-
man motion analysis. Human 3.6M consists of seven actors
performing 15 varied activities, such as walking, smoking,
engaging in a discussion, and taking pictures. We follow
the experimental setup of [32]. Specifically, we downsample
Human 3.6M by two, train on six subjects, and test on subject
five. We split the dataset to three parts following [32]: a
training set, a validation set, and a test set. During training
and validation, we feed our model with 50 mocap frames (2
seconds in total) and forecast the future 25 frames (1 second
in total). We test both on the test set of Human 3.6M and
the videos captured by Pepper.

A. Evaluation on Human 3.6M Dataset

Table I and Figure 3 show the quantitative and qualitative
comparisons of our motion GAN with the state-of-the-art
approaches on the test set of Human 3.6M, respectively.

Baselines. We compare with five recent approaches for
human motion prediction based on deep RNNs: LSTM-3LR
and ERD by Fragkiadaki ef al. [32], SRNN by Jain et al. [30],
and Sampling-based loss and Residual sup. by Martinez et
al. [31]. Similar as [31], we also consider a zero-velocity
baseline that constantly predicts the last observed frame. This
is a simple but strong baseline, and all of the learning based
approaches reported that their models did not consistently
outperform the zero-velocity baseline.

Evaluation metrics. We evaluate the performance using
the same error measurement as in [30], [32], [31] for a fair
comparison, which is the Euclidean distance between the
predicted motions and the groundtruth motions in the angle
space. We exclude the translation and rotation of the whole
body since this information is independent of the actions
themselves. In addition to the quantitative evaluation, we also
visualize the predictions frame by frame, following a similar
procedure as in [30], [32], [31].

Quantitative evaluations. Table I summarizes the com-
parisons between our motion GAN and the baselines on
walking, eating, smoking, and discussion actions. We observe
that our motion GAN significantly outperforms the deep
learning approaches, achieving state-of-the art performance.
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Fig. 3: Qualitative comparisons between our motion GAN and the best-performing baselines, e.g., Sampling-based loss
and Residual sup. [31], for motion prediction of discussion and smoking activities. For each activity, from top to bottom:
groundtruth, Sampling-based loss, Residual sup., and our motion GAN. For each row, the left black skeletons are the input
sequences, the right black skeletons are the groundtruth, and the right colorful skeletons are the predicted sequences. Ours
demonstrate more smooth and human-like prediction. (Best viewed in color with zoom.)

This thus validates that the sequence-level fidelity examina-
tion of the predicted sequence from a global perspective is
essential for precise motion prediction.

Moreover, Table I shows that the zero-velocity baseline
performs well on complicated motions (e.g., smoking and
discussion) in short time periods. Although it simply con-
stantly predicts the last observed frame, zero-velocity is
superior to the other learning based baselines, because these
actions are very difficult to model. In contrast, our model
consistently outperforms zero-velocity for longer time hori-
zon (> 80ms). The baseline models only verify predictions
one frame by one frame separately and ignore their temporal
dependencies. Our motion GAN predictor enables us to
deal with the entire generated sequence globally and check
how smooth and human-like it is. Such property especially
facilities the prediction of complicated motions.

Qualitative comparisons. Figure 3 visualizes the pre-
diction of the challenging actions, including smoking and
discussion, with the input motions and groundtruth motions
shown in black and the generated motions shown in magenta,
cyan, and blue. For reasons of space, we visualize our
predictions, and compare with the best-performing baselines,
Sampling-based loss and Residual sup. One noticeable dif-
ference between these visualizations is the degree of jump
(i.e., discontinuity) between the seed frame and the first
few predicted frames. The jump in Sampling-based loss
and Residual sup. are severe, whereas the jump in our
prediction is relatively small. Moreover, our model performs
increasingly well during the inference step in long-term
period, which shows that our motion GAN can deal well
with error accumulation.

B. Motion Prediction on Pepper

We test our human motion prediction system on a real
robot called Pepper from Softbank Robotics [40]. Pepper
has two RGB cameras and one Asus Xtion depth sensor
on its head. We use one of the front RGB cameras along
with the depth camera to generate the 3D skeleton points
of the humans using OpenPose [19], which is shown in

0.5
0.0
-0.5%

0.5 -1.0
, -1.0

Fig. 4: OpenPose body keypoints from the left image are
matched with a point cloud to generate our 3D skeleton
output on the right.

Figure 4. In addition, Pepper has 6 joints on both of its arms
that are fairly similar to human arms as well as 2 degrees
of freedom movement in its neck [40]. We make use of
all these degrees of freedom when mimicking and showing
the predictions of human motion. We derive a geometric
mapping from the 3D skeleton points (i.e., the output of
the predictor) to the angular joints on the robot, so we can
display any human motions that are within Pepper’s joint
limits. Figure 5 shows that Pepper successfully mimics a
human’s current motion and then predicts and demonstrates
the human’s future motion after being blinded.

V. CONCLUSIONS

In this paper, we develop a deep learning based sys-
tem that enables robots to predict and demonstrate human
motion. We present a novel motion GAN predictor model
to improve the plausibility of predicted motion sequences
from a global perspective. A discriminator is proposed to
model the sequence-level fidelity of predicted sequences.
After learning the motion GAN predictor using Human 3.6M,
an auxiliary, large-scale annotated dataset, we integrate it
with other recent visual recognition techniques to develop
an end-to-end prediction system. Experiments on the Human
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[ i Walking i Eating i Smoking i Discussion |
[ millisecond |80 ] 160 [ 320 | 400 [ 1000 || 80 [ 160 | 320 [ 400 ] 1000 || 80 | 160 [ 320 | 400 [ 1000 | 80 [ 160 | 320 [ 400 | 1000 |
Zero-velocity 039 | 0.68 | 0.99 | 1.15 1.33 027 | 048 | 0.73 | 0.86 1.27 0.26 | 0.48 | 097 | 0.95 1.41 031 | 0.67 | 094 | 1.04 1.81
ERD [32] 093 | 1.18 | 1.59 | 1.78 1.92 127 | 145 | 1.66 | 1.80 1.87 1.66 | 1.95 | 235 | 242 | 2.87 227 | 247 | 2.68 | 2.76 | 2.73
LSTM-3LR [32] 0.77 | 1.00 | 1.29 | 1.47 1.77 0.89 | 1.09 | 1.35 | 1.46 1.65 1.34 | 1.65 | 2.04 | 2.16 | 2.56 122 | 149 | 1.83 | 193 | 2.79
SRNN [31] 0.81 | 094 | 1.16 | 1.30 1.69 097 | 1.14 | 1.35 | 1.46 1.91 145 | 1.68 | 1.94 | 2.08 | 2.01 122 | 149 | 1.83 | 1.93 | 2.26
Sampling-based loss [31] 092 | 098 | 1.02 | 1.20 1.40 098 | 099 | 1.18 | 1.31 1.59 1.38 | 1.39 | 1.56 | 1.65 1.77 1.78 | 1.80 | 1.83 | 1.90 | 2.01
Residual sup. [31] 0.27 | 047 | 0.70 | 0.78 1.12 023 | 039 | 0.62 | 0.76 1.30 033 | 0.61 | 1.05 | 1.15 1.92 031 | 0.68 | 1.0l | 1.09 1.81
[Totion GAN (Ours) ][ 027 | 0.41 [ 0:63 [ 0.74 | 091 [ 0.22 | 0.35 | 0.59 [ 0.0 | 1.22 [] 0.25 | 0.48 | 0.9 [ 094 | LI9 ] 041 [ 063 | 0.79 [ 091 | 171 |

TABLE I: Detailed prediction error comparisons between our motion GAN and previously published methods, e.g., zero-
velocity, LSTM-3LR and ERD [32], SRNN [30], Sampling-based loss and Residual sup. [31] baselines, for motion prediction of
walking, eating, smoking, and discussion activities on the Human3.6M dataset. Our motion GAN consistently outperforms the
state-of-the-art deep learning approaches. The zero-velocity baseline achieves better performance for smoking and discussion
at 80ms prediction, but our model beats zero-velocity in all the other cases, increasing well in long time horizons.

Fig.

R

5: Pepper is mimicking the human on the right in the top

image until it is blinded and then begins executing motions
based on its prediction of the human’s motions.

3.6M dataset and a pepper robot validate the effectiveness
of our approach. In the future, we will extend the proposed
framework from single subject motion to multiple-subject
motion and have the robot execute collaborative actions with
the human by anticipating their future movements.
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