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Abstract— For autonomous multi-robot teams, the individual
team members are tasked with completing their assigned tasks
as defined by a team plan provided by a centralized team
planner. However in complex dynamic domains, the team plans
are generated by the team planner with assumptions due to
the complexity of modeling the domain. Failures in execution
are therefore inevitable for the team members, and as such,
replanning will occur for the team. In this paper, we intro-
duce a rationale-driven team plan representation that provides
rationales on why actions were chosen by the team planner.
During a failure, the individual team members autonomously
use our described intra-robot replanning algorithm to select
all applicable replan policies for a given rationale. We then
describe a method to learn the predicted cost of each replan
policy, given a state of the environment, in order for the
individual robots to select the lowest costing replan policy to
improve team performance.

I. INTRODUCTION AND RELATED WORK

Centralized multi-robot team planners in complex dynamic
domains often have incomplete knowledge of their environ-
ments, have poorly modeled dynamics, and have simplified
assumptions about their environments. These shortcomings
manifest into execution failures by which the individual
team members fail to successfully complete their assigned
action(s). Intra-robot replanning introduced and formalized
in [1] is an approach where the individual robot replans
locally using the information provided by the team plan or
by the environment to fix a team plan failure. In our previous
work, we showed the benefits of intra-robot replanning in a
competitive dynamic domain [2]. In this paper, we will focus
on describing our rationale-driven team plan representation,
our intra-robot replanning algorithm, and our method to learn
the predicted cost of a replanning algorithm.

In the literature, the standard approach to team planning is
to divide the problem into a hierarchy from abstract actions
to concrete actions in the environment [3], [4], [5]. This
division of computation makes the problem more solvable in
complex domains. We follow the Skills, Tactics, and Plays
(STP) hierarchy as described by [6]. Skills are concrete
actions that are very specific to the domain. Tactics combine
skills together in order to accomplish more complex tasks.
Plays assign roles and a series of tactics, with their specific
parameters, to guide the team of robots towards their goal.
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Fig. 1.
Laboratério de Sistemas e Tecnologia Subaquatica (LSTS) in Porto, Portugal
that were used to gather the depth data in Figure 3.

Three Light Autonomous Underwater Vehicles (LAUVs) from the

Plays are essentially the team plan and the series of tactics
are the actions that must be executed by each robot for the
team plan to be successful. For our purposes, STP provides
a useful division between the team plan and tactics executed
by the individual robots.

We assume the team plans are generated in a centralized
fashion and the individual robots execute the team plan, i.e,
their assigned tactics, in a decentralized fashion. We also
assume that the individual robots can communicate with the
centralized team planner, but that the cost of communicating
with the centralized team planner is high [7]. To better illus-
trate such a domain, we describe an example domain using
Autonomous Underwater Vehicles (AUVs), see Figure 1.

As a quick introduction into the AUV domain, we assume
that a centralized controller offshore is generating team plans
for a team of AUVs. To clarify, we are not concerned with
the method by which the team plans are generated in this
paper; we will assume human operators create the team
plans in this domain. We are concerned with the team plan
representation, specifically the information included in the
team plan for the individual autonomous robots. We assume
the AUVs are placed into the ocean having already received
the team plan, and from then on the only communication
between the AUVs and the centralized controller is through
a satellite link which is very expensive and time consuming
to use. We also assume the AUVs can quickly and cheaply
communicate with each other over wifi if they are close
enough in proximity and are not underwater. To reiterate, the
AUVs cannot communicate underwater nor can they receive
a GPS signal for localization. Therefore, the AUVs will often



Fig. 2. A simulated environment where two AUVs criss-cross the boundary
line of fresh water (light blue) and salt water (dark blue) to gather scientific
data about the boundary. At each location the AUVs connect to each other
and synchronize their movements and then they yoyo to the next location.
See Figure 3 for the yoyo maneuver between two points.

fail to arrive at their destination when traveling underwater,
ultimately causing a team plan failure. Further discussion of
the AUV domain is provided in Section III.

In order for the individual robots to replan locally without
the centralized controller, i.e., intra-robot replanning, the
team plans must contain the rationales for why the actions in
the team plan were chosen. Otherwise, the individual robots
may fail to comply with the reasoning of the centralized
controller. There has been research in single robot domains
that validate the rationales of a plan, monitor those rationales,
and update a plan when those rationales change [8], [9], [10].
However, this work was limited to single-robot domains, and
as such it assumed a single robot was generating the plan,
thereby having complete knowledge of its own reasoning.
Additionally, this work did not focus on the replanning
aspect of the problem. There is some limited research in
distributed multi-robot domains where each robot creates
a rationale graph of relevance to other robots, shares it
with the robots, and updates the robots when a rationale
is violated [11]. However, the work did not explore how to
replan when a rationale changes, nor did it fully describe
the rationales or the rationale graph used by the robots. Our
AUVs have the capability to replan locally, and as such, there
is an opportunity to improve the performance of the AUVs
executing their team plans in complex dynamic environments
like the ocean.

II. PROBLEM

In order for autonomous intra-robot replanning to be
successful within a team, the individual robots must un-
derstand the rationales of the team planner for the actions
being executed. Further, once the rationales are known, the
individual robots must have a way of selecting the policies
that may enable the failing rationales of the team plan, such
policies are called replan policies. Finally, the individual
robots must have a method of choosing a single replan policy
from those applicable ones with two considerations: most
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Fig. 3. Real depth data collected by two AUVs. They sync their movements
before time step 50 then execute a yoyo maneuver where one AUV is at
the top of the water column while the other is at the bottom of the water
column. After a set number of yoyos, they ascend at time step 200. They
must connect again after step 200 before moving to the next location.

importantly, enable the failing rationale given the state of the
environment, and, secondly, do so in a cost-effective manner.

III. DOMAIN

To illustrate our problem, we are using a simulated AUV
domain where two AUVs follow a defined path together
(simultaneously), criss-crossing the boundary line between
fresh and salt water in order to collect multiple data points in
the water column for oceanography research. The simulated
path is shown in Figure 2. The AUVs will complete a
yoyo maneuver by ascending and descending multiple times
between two points on the ocean surface. In order to collect
more sensor data in the water column, the AUVs time their
movements to have inverse motion in the z-axis (depth).
Shown in Figure 3 is depth data collected by two real AUVs
completing the described yoyo maneuver between two points
on the ocean surface.

Our concerns with this domain are:

1) The AUVs must connect at each location in order to
synchronize their movements so that they can perform
the behavior shown in Figure 3;

2) Unknown water currents will often push the AUVs
off their intended course while they perform the yoyo
maneuver;

3) Communication for replanning between the AUVs and
the centralized controller by satellite communication is
very costly.

To handle these concerns, we implement intra-robot replan-
ning with our new rationale-driven team plan representation
to handle failures locally, if possible.

IV. RATIONALE-DRIVEN TEAM PLAN REPRESENTATION

The definition of a rationale needs to be clearly defined
before we can proceed to our representation. First, a rationale
is a constraint that reduces the planning space of a planning
problem. Second, we assume a rationale produces a true or
false result. As an example, the constraint AT{X =1,Y =



2} reduces the location space to exactly one position and
gives the rationale for why the action GOTO{X = 1,Y =
2} may have been selected. Thus, we define a rationale as a
function with a finite set of parameters:

f(plap27"'apn) ZtTue\/false (1)

that returns true or false given those specific parameters. Our
example AT{X = 1,Y = 2} constraint can be defined as
the following rationale:

AT(z,y,1,2) =z =1ANy=2 2)

where x and y are the location variables of the AUV. This
rationale is only true if the AUV is at the specific location
(1,2). Our rationale-driven team plan representation adds
these rationales to the team plan alongside the actions they
constrain.
Therefore, in the STP hierarchy, we redefine a Play as the
following tuple (A, R, T):
o A are the applicability conditions of the Play, i.e., when
the team plan can be used;
e R is the set of roles in the team plan;
e T is the ordered set of tactics, where a tactic t; =
<Rz » Ps T>
— R; is the assigned role,
— p are the parameters for this tactic,
— T is the set of rationales for this tactic.

Each Tactic has a set of rationales 7, previously called team
plan conditions in [2], that need to be satisfied if there is a
failure by the Tactic.

V. INTRA-ROBOT REPLANNING ALGORITHM

We define our intra-robot replanning problem as a tuple
(R,S,P,T,F):
e R is the set of robots on the team;
o S is the current state;
« P is the set of replan policies (i.e., replan tactics); where
a policy P; = (o, §):
— « are the input parameters to the replan policy,
— [ are the rationales that can be enabled by this policy
(effects);

o 7 is a set of rationales for the current tactic;
o F C T are the rationales that are invalid, i.e., failing.

We assume there exists a replan policy that calls the
centralized team planner and can therefore enable all possible
sets of rationales including the empty set of rationales.
We also assume that the replan policies do not invalidate
rationales, just enable them. There can be multiple policies
that enable the same rationale so the problem becomes
selecting the applicable policies and then choosing the best
option given the current state of the environment.

In Algorithm 1, the invalid rationales are provided in F.
For every invalid rationale, the applicable replan policies P
are selected by checking that the replan policy can enable
the invalid rationale as provided in 3 of P; in the problem
definition. If P; has the invalid rationale in 3 then the replan
policy is placed into the P queue. Then the policies are

Algorithm 1 Intra-Robot Replanning algorithm for selecting
applicable replan policies, sorting them, and then executing
the policies until the rationales are true.
Require: FASARAP
for all 7, € F do
for all P, € P do # Find applicable replan policies
if 7; C 8 € P; then
P.push(P;)
end if
end for
P + sort(P)
repeat
P. front(a)
IP.pop()
until F;(p1, ..., pn) = true
end for

# Execute with a CS AR

sorted. There are different options for sorting the replan
policies, and part of the complexity of intra-robot replanning
is choosing a good option based on the environment, see
Section VII. While the rationale is invalid, the replan policies
of the queue are executed and then popped from the queue.
There is always the assumed replan policy that calls the
centralized team planner so the loop will not cycle forever.

VI. EXPERIMENTS

We developed a simulated environment in order to test
the rationale-driven team plan representation with the intra-
robot replanning algorithm over multiple experiments with
different environmental conditions. In this section, we will
describe:

A. The constants used in the experiments,
B. The tactics used by the AUVs,

C. The rationale used in the team plan,
D. The replan policies used by the AUVs,
E. The experiments and their results.

A. Constants

Everything in the simulation is defined in kilometers and
seconds. The constants below are assumed:

1) AUV speed is 0.0128 km/s (2.5 knots)

2) Wifi radius is 0.1 km

3) Satellite cost is 600 seconds (10 mins)

4) Wifi cost is 3 seconds

5) Maximum wait time (W) for a wifi connection is 300
seconds (5 mins)

B. Tactics

The tactics used in our experiments are:

1) INITIAL: Starting tactic for getting the AUV ready.

2) CONNECT {ID}: Connect over wifi to the AUV with
the defined ID.

3) Goto {X} {Y}: The AUV stays on the surface and
heads directly to the (X, Y) location. We assume it can
receive a GPS signal so it does not get lost, but it cannot
receive a wifl signal unless it stops.



4) Yovo {X} {Y}: The AUV performs a series of descents
and ascents in the water column towards the (X, Y)
location. As the AUV is underwater, it cannot receive a
GPS or wifi signal so the YOYO maneuver oftentimes
does not arrive at the destination location.

5) SATELLITE: The AUV connects to the centralized con-
troller through a satellite link.

C. Rationale

We focus on a rationale that can be enabled by different
replan policies. The AUV’s state, S, knows if it is connected
over wifi, C, and to what ID it is connected, C;p. The
CANCONNECT rationale checks if the AUV has a connection
with the ID.

CANCONNECT(ID) =

(C=true) A (C;p =1D) ®)

We assume the internal state, S, is provided to the ratio-
nale, and as such we are only explicitly expressing the inputs
that are provided by the team planner.

D. Replan Policies

For the first three replan policies, an attempted CON-
NECT lasts 3 seconds and it uses the ID provided by the
rationale. The final CONNECT continues until the maximum
wait time W, after which the replan policy fails.

1) Goro, {8 = CANCONNECT()}: Uses GOTO to the
failed location and then CONNECT.

2) CONNECT-GOTO, {8 = CANCONNECT()}: Attempts
CONNECT, and then proceeds like GOTO,..

3) STAR-GOTO, {8 = CANCONNECT()}: Attempts CON-
NECT. Then centered at its current location, it creates
five evenly spaced points on the circumference of a
circle with a radius equal to the wifi distance. It will
GOTO each location and attempt to CONNECT. The first
location is chosen at random and then it always proceeds
to the further point away from its current location
until all points have been attempted. If unsuccessful,
it proceeds like GOTO,. This was inspired by the
sector search pattern described in [12] for search and
rescue, but was changed to ensure that the AUV always
traveled the same distance before attempting to connect.

4) GOTO-SATELLITE, {3 = any rationale}: Uses GOTO to
the failed location and then SATELLITE.

5) SATELLITE, {0 = any rationale}: SATELLITE to receive
a new plan.

E. Experiments

For our experiments, we are following our example do-
main with two AUVs criss-crossing the ocean using the
team plan shown in Table I and assuming the AUVs start
at location (0, 0). A visualization of the plan’s path is in
Figure 2. The team plan serves as the base case without any
rationales, i.e., how replanning would be handled prior to
adding rationales to the plan. In this case, the AUVs would
call the centralized team planner through a satellite connect
when failures occur.

TABLE I

TEAM PLAN PROVIDED TO AUVS WITHOUT ANY RATIONALES

AUV1 AUV2

INITIAL INITIAL
CONNECT AUV2 | CONNECT AUV1
Yoyo 8 4 Yoyo 8 4
CONNECT AUV2 | CONNECT AUV1
Yoyo 15 Yoyo 15
CONNECT AUV2 | CONNECT AUV1
Yoyo 8 6 Yoyo 8 6
CONNECT AUV2 | CONNECT AUVI1
Yoyo 17 Yovyo 17
CONNECT AUV2 | CONNECT AUVI1
Yoyo 8 8 Yoyo 8 8
CONNECT AUV2 | CONNECT AUV1
Yoyo 19 Yoyo 19

END END

We assume that there exists a current that pushes the AUVs
off course when they are performing the YOYO maneuver.
The simulation uses a simplified model of currents that are
only applied to the AUV’s location after the simulation has
determined the YOYO maneuver finished. The AUVs pop up
near the intended destination based on random distributions,
by which the ocean currents are being modeled. There has
been work on modeling ocean and wave currents for real-
time simulations, but this level of simulation goes beyond
the scope and need of this work [13].

In this domain, each AUV will complete a set number
of yoyos and then surface to connect with the other AUV
before beginning the next traversal. The only purpose of the
specific locations is to direct the AUVs in a certain direction
and so the only rationale added to the team plan is that they
need to be able to connect when they surface. The defined
location does serve as a location known by both AUVs in
case they cannot connect where they surface, which is how
we designed the replan policies to use it.

We therefore add CANCONNECT to every YOYO tactic in
the team plan shown in Table I. See below for a general
example:

| Yovo {X} {Y}; CANCONNECT({ID}); |

1) Experiment 1: We assume there is an ocean current
in the positive y-axis modeled by a normal distribution with
mean 2 and variance 0.1, and a uniform distribution from O
to 0.1 in the x-axis. See Figure 2 for axes.

Figure 4 shows the time taken by the AUVs to complete
the team plan using a specific replan policy for every CAN-
CONNECT rationale. The first three replan policies have very
consistent performances because they always go towards the
failed location and are affected only slightly by the ocean
current. Relying on satellite communications for every failure
is clearly very costly. The intra-robot replanning policies that
attempt to connect over wifi perform better. However, the
AUVs have a limited wifi radius of 0.1 km and so they cannot
always connect when they surface. STAR-GOTO,. attempts
to find the other AUV but the search patterns can add more
time, which is why its performance has a higher variance.
On the other hand, CONNECT-GOTO, only adds wifi costs
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Fig. 4. Experiment 1, ocean current in both x- and y-axes directions:

Average time and variance to complete the team plan using the stated replan
policy.

to its time in comparison to GOTO,..

2) Experiment 2: We assume there is an ocean current
in the positive x-axis modeled by a normal distribution with
mean | and variance 0.05, and O in the y-axis. Figure 5
shows that CONNECT-GOTO, and STAR-GOTO, perform
reliably better than GOTO,. because the two AUVs are often
within the wifi radius after surfacing from a yoyo. Similar to
Experiment 1, STAR-GOTO,. has a higher variance because
of the extra search time.
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Fig. 5. Experiment 2, ocean current in only the y-axis direction: Average

time and variance to complete the team plan using the stated replan policy.

3) Experiment 3: We assume there is an ocean current
in the positive x-axis and y-axis both modeled by a normal
distribution with mean 1 and variance 0.2. We are assuming
the surface waves are too large and connection over wifi
cannot be established. The replan policies that try to connect
will always fail at the maximum wait time on their final
CONNECTand then SATELLITE,. will be executed. Therefore,
their average times are consistent, and the time variance
is mainly due to the the increase in the variance of the
ocean current. Shown in Figure 6, GOTO-SATELLITE,. is the
best option because it first moves to the failed location and
then immediately calls the satellite. Because both AUVs are
together, the centralized controller connects them and they
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Fig. 6.  Experiment 3, large ocean currents with no wifi connections:

Average time and variance to complete the team plan using the stated replan
policy.

start their next yoyo. SATELLITE, however connects at the
failed location, receives a plan to the failed location (to bring
the AUVs together), and then cannot connect at the failed
location so it must call the satellite again, being by far the
worst option.

4) Review: These experiments show that a predetermined
sorting of the intra-robot replanning polices in one environ-
ment will not always be the best option in another envi-
ronment. Another challenge is handling unknown variables
when deciding the order of the replan polices. In the next
section, we describe a method to learn the predicted cost of
each replan policy in order to select the lowest costing one.

VII. LEARNING PREDICTED COSTS OF REPLAN
POLICIES

In this section, we detail our learning approach to sorting
the replan policies in our AUV domain. We use a state
based approach that learns a predicted cost for each replan
policy given the current state of the environment. We then
demonstrate that learning the predicted costs can improve
team performance compared to the deterministic approach
in Section VL

A. Learning Method

We train the neural networks to learn a function from a
state of the environment to a predicted cost. The predicted
cost is the time it takes for the replan policy to complete
(successfully or unsuccessfully) plus the time it takes to
complete the next action in the team plan. Our predicted
cost is therefore a two step lookahead, i.e., what it will cost
to use this replan policy and what will the next action cost.
For the AUV domain, we will use the following:

1) Input State:

e AUV’s current location (X,Y)

o AUV’s destination location (X, Y)

2) Output:
« Predicted cost of replan policy and the next action

The data to train the neural networks is collected over
multiple runs of the simulation. For each replan policy, we



order it first and run the entire team plan. We save the current
state when replanning starts, along with the cost it takes to
replan plus the cost of the next action. Each AUV collects
its own state and cost during the execution of the team plan.
A neural network is then trained for each AUV for that
particular replan policy using a supervised learning method.
We repeat until we have trained a neural network for every
replan policy.

For the learning experiment, we used the open source
library OpenANN [14]. For each replan policy, we used
a full-connected network with one hidden layer with 50
neurons. We used RECTIFIER activators for the hidden layer
and a LINEAR activator for the output. For Experiment 4, we
ran the simulator 5,000 times for each replan policy (ordered
first) collecting the state and cost data. We then trained
the neural networks using OpenANN’s built-in conjugate
gradient method. The neural networks were then used to sort
the replan policies before execution by LEARNED.

B. Experiment 4

We combined the ocean currents of the previous experi-
ments in Section VI separated by the locations in Figure 2:

e 1 & 2 are Experiment 1
o 3 & 4 are Experiment 2
e 5 & 6 are Experiment 3 (no wifi connection)

Figure 7 shows that the LEARNED method outperforms using
the replan policies in a predetermined order for the complex
environment. The improvement is made on the last two
locations, 5 & 6, where there is no wifi connection. The
predicted cost for using GOTO-SATELLITE, is less than any
other replan policy for those two locations. This saves five
minutes of wait time at each location, wasted by CONNECT-
GOTO,- when it attempts to connect over wifi but fails. And,
we clearly see an improvement of roughly ten minutes for the
LEARNED method. In this way, LEARNED could effectively
use GOTO-SATELLITE, only when it was the best option
given the state of the environment.
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Fig. 7.  Experiment 4, changing ocean currents for different locations:

Average time and variance to complete the team plan using the stated replan
policy. LEARNED performs the best in this complex domain by combining
the benefits of CONNECT-GOTO,- and GOTO-SATELLITE;-.

VIII. CONCLUSION AND FUTURE WORK

We described a new rationale-driven team plan represen-
tation that provides the rationale for why the actions in the
team plan were chosen by the team planner. We described our
autonomous intra-robot replanning algorithm that determines
the set of replan policies that can enable the rationales
when there is a failure in the execution of a Tactic. We
demonstrate that different replan policies are beneficial in
different environments, and as such, learning to predict a
cost for each replan policy leads to a better ordering of the
replan policies. We then demonstrated that our method of
learning the predicted costs for the replan policies did better
than the predetermined orders. In future work, we would like
to explore learning the cost in more complex environments
with multiple different plans. We would also like to introduce
more AUVs or other aquatic robots to the simulation for a
larger team plan. Future work also includes generating team
plans using the rationale-driven team plan representation.
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