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Abstract— Despite the recent success of state-of-the-art deep
learning algorithms in object recognition, when these are
deployed as-is on a mobile service robot, we observed that they
failed to recognize many objects in real human environments.
In this paper, we introduce a learning algorithm in which
robots address this flaw by asking humans for help, also
known as symbiotic autonomy approach. In particular, we
bootstrap YOLOv2, a state-of-the-art deep neural network
and create a HUMAN neural net using only the collected
data. Using an RGB camera and an on-board tablet, the
robot proactively seeks for human input to assist in labeling
surrounding objects. Pepper, based in CMU, and Monarch
Mbot, based in ISR-Lisbon, are the social robots that we used
to validate the proposed approach. We conducted a study in
a realistic domestic environment over the course of 20 days
with 6 research participants. To improve object recognition, we
used the two neural nets, YOLOv2 + HUMAN, in parallel. The
robot collects data about where an object is and to whom it
belongs by asking. This enabled us to introduce an approach
where the robot can search for a specific person’s object. We
view the contribution of this paper to be relevant for service
robots in general, in addition to Pepper and Mbot. Following
this methodology, the robot was able to detect twice the number
of objects compared to the initial YOLOv2, with an improved
average precision.

I. INTRODUCTION

Human-robot symbiotic learning is an increasingly active
area of research. [1], [2], [3], [4]. Anthropomorphic robots
are being increasingly deployed in real-world scenarios, such
as homes, offices, and hospitals [5], [6], [7]. However,
exposure to real environments raises multiple challenges
often overlooked in controlled laboratory experiments. For
instance, robots equipped with state-of-the-art neural nets
trained for object recognition still fail to provide accurate
descriptions for the majority of the objects surrounding them
outside controlled environments.

This paper tackles the aformentioned problem using a
symbiotic interaction approach, in which the robot seeks
human assistance in order to improve its object recognition
skills. Our primary aim is to improve the accuracy of robot
object detection and recognition. In addition, we also tackle
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(a) Pepper the robot (b) Mbot the robot

Fig. 1: Mobile robots used for the evaluation of the proposed
method. Photos: SoftBank/Aldebaran and IDMind Robotics

the challenge of looking for a specific person’s object - a
crucial ability for assisting the disabled and elderly.

This is achieved by deploying a learning algorithm that
empowers the robot to ask humans for help. Over time, it
can be measured that the human input increases the robot’s
effectiveness. The learning process is bootstrapped by an
external state-of-the-art neural net — YOLOv2 — for real-
time object detection [8].

The robot, using its RGB camera, in conjunction with
its on-board tablet, explores its environment whilst labeling
objects. The robot then confirms its object recognition by
interacting with a human, asking them to respond to simple
Yes/No questions and/or by requesting that the human adjusts
a rectangle positioned around an object in the tablet.

The other key functionality that was explored was the
ability for the robot to determine which objects belong
to which humans. Human input is crucial for this task.
Providing accurate information will equip the robot with
means to actively seek a personal object, on request. This
task was made possible due to our realization of the wide
applications that can be derived from the data that the robot
collected.

The social robots used to test our approach were Pepper
(shown in Figure 1a), a service robot developed by Soft-
bank/Aldebaran Robotics and specifically designed for social
interaction [9], and Monarch Mbot (shown in Figure 1b). In
addition, the two robotic platforms were located in separate
working environments: Pepper was based in CMU, USA,
and Mbot in ISRobotNet@Home1, Test Bed of ISR-Lisbon,

1More info can be found at http://isrobonet athome.isr.tecnico.ulisboa.pt/
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Portugal. The experiments were conducted in a realistic
domestic scenario. By having many research participants
interact and modify the test environment, the unpredictability
of object placement and arrangement was ensured.

At the end of our experiment, the robot was able to detect
twice the number of objects compared to the initial YOLOv2,
with an improved average precision.

This paper is structured as follows, in section: II, we
review the state-of-the-art; III, we introduce the learning
algorithm; IV, the YOLOv2 + HUMAN; V, we describe the
experimental setup; VI, we analyze the results; and finally
in VII, the conclusions.

II. RELATED WORK

The complexity of indoor environments grows exponen-
tially due to a various number of factors, increasing the
difficulty for robots to complete tasks successfully. The par-
ticular task of learning and recognizing useful representations
of places (such as a multi-floor building) and manipulating
objects has been a subject of active research namely, in a
symbiotic interaction with humans [10].

In this paper, we aim to recognize objects coupled with
their bounding-box. A few works have explored a human-
based active learning method specifically for training object
class detectors. Some of them focus on human verification
of bounding-boxes [11] or rely on a large amount of data
corrected by annotators [12]. Others explore how people
teach or are influenced by the robot [13].

It is worth mentioning that symbiotic autonomy has been
actively pursued in the past [14], [15]. Some interesting
approaches are focused on improving the robot’s perception
with remote human assistance [16]. Research groups have
also worked on developing autonomous service robots such
as the CoBots [2], the PR2 [17] and many others.

Considering spatial information analysis and mapping,
studies using ultrasonic imaging with neural networks [18],
3D convolutional neural networks with RGB-D [19] and a
novel combination of the RANSAC and Mean Shift algo-
rithms [20] have been in development for several decades,
which demonstrates a clear evolutionary trajectory that en-
able the developments of the present.

Other works using scene understanding and image recog-
nition show a strong affinity with this paper. Works such as:
using saliency mapping plus neural nets to tackle scene un-
derstanding [21]; full pose estimation of relevant objects re-
lying on algorithmic processing and comparison of a dataset
of images [20]; feature-matching technique implemented by
a Hopfield neural network [22]; and data augmentation [23].

When it comes to showing an object located in the real
world to the robot, previous work has investigated alternative
ways of intuitively and unambiguously selecting objects,
using a green laser pointer [24]. In our approach, we took ad-
vantage of the robot’s tablet purposely inbuilt for interacting
with humans.

Finally, there has been work done in the area of getting
robots to navigate in a realistic setting and recognizing
objects in order to place them on a map [25]. In our case,

Fig. 2: Mbot (top) and Pepper (bottom) learning

using input from human interaction allows the robot to
generate this information. This enables the robot to store
where each object was seen and how many times it was
seen at each location.

III. LEARNING ALGORITHM
The algorithm consists of three parts: First (A), the robot

captures images to learn and predict what and where the
objects are located in the images. Then (B), the robot asks the
humans questions while confirming its previous predictions
and collecting additional information. Finally (C), the robot
trains using all the collected knowledge. This allows the
robot to improve its future predictions.

A. Predicting the objects

The robot starts by navigating to a location it hasn’t visited
before and captures different images. These are the images
that the robot will learn about for that day.

Before requesting help from a human, the robot predicts
what the objects are and where they are located in each of
the images.

To make these predictions the robot uses YOLOv2 [8], a
neural net trained in COCO dataset[26], able to detect up to
80 classes of objects2. From “person” to “bed” or “bicycle”
this neural net includes generic classes that apply to a vast
number of different scenarios.

B. Interacting with Humans

When interacting with humans the robot will be asking
questions: (1) Labeling the objects and (2) Identifying to
whom an object belongs.

1) Labeling the objects: For labeling the objects the robot
will first confirm the previous predictions and then ask the
human if all the objects in the image are labeled.

To confirm the predictions the robot asks two Yes/No
questions. Given a prediction, for example, the object “cat”,
the robot asks:

2The 80 COCO class labels can be found at http://cocodataset.org
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Fig. 3: E.g. Outcomes from Q1 and Q2.

• Q1: Is this a cat, or part of it, in the rectangle?
• (if Yes to Q1) - Q2a: Is the rectangle properly adjusted

to the cat?
• (if No to Q1) - Q2b: Ok, this is not a cat. Is the rectangle

properly adjusted to an object?
The robot provides instructions to the human explaining

that the properly adjusted rectangle refers to a rectangle that
is specifying the extent of the object visible in the image.

These first two questions (Q1 and Q2) return 4 possible
outcomes (see Figure 3). If the human says No to Q2a the
robot asks for an adjustment of the bounding-box. If the
human says Yes to Q2b the robot asks for a relabeling.

After confirming and correcting the predictions the robot
then asks:
• Q3: Are all the objects in this image labeled?
• (if Yes to Q3): The image is ready for part (C) -

Training.
• (if No to Q3): The robots ask for the human to adjust

the rectangle to an object and label it.
When labeling, a list of the previously labeled objects

shows up. If the person does not find the object in this
list, a new class can be added from a predefined dictionary
of classes. This dictionary restrains the lexical redundancies
within a language, for example “waste bin” and “trash can”
are categorized as only the “waste container” class.

When adding a new class, the robot shows the person
the zoomable diagram (Figure 4), organized by categories
from the OpenImages dataset [27]. This diagram includes
600 classes, in an organized structure. The robot only accepts
new classes from this list.

We tagged the objects in this list as personal or not (e.g.
classes like “mobile phone” and “backpack” are tagged as
personal objects and classes like “oven” and “table” as not
personal). This is used to ask the second type of questions:

2) To whom an object belongs: After labeling all the
objects in the image, the robot then asks to whom each of
these objects belong (if they are tagged as personal objects).
This way the robot also stores information that will be useful

Fig. 4: Some classes that can be added to the robot using
the labels from OpenImages dataset.[27]

when searching for an object belonging to a specific person.

C. Training

The interaction with humans results in a set of labeled
images. Every time the robot collects a multiple of 50
images it trains a neural net, HUMAN50, HUMAN100,
HUMAN150 and so on, using all the human labeled images.
From these images 70% is used for training and 30% is used
for testing.

The HUMAN neural net uses the same structure and
algorithm as YOLOv2 but is trained using only the images
labeled by humans. The reason why we train it from scratch
is to avoid catastrophic interference - neural nets forget upon
learning new classes. For example, if we added a new class to
YOLOv2, for instance “lamp”, we would have to make sure
that not only the images collected by the robot but also the
thousands of images used to train YOLOv2 have the “lamp”s
labeled if present in each image. Otherwise, the neural net
when training with the default thousands of images would
always identify all the present “lamp”s in those pictures as
false detections and therefore it wouldn’t be able to learn to
recognize this object.

After training, the HUMAN neural net is also used in part
(A) - Predicting the objects. Using the predictions from both
neural nets, the robot is able to predict more objects present
in an image.

1) Filtering images used for training: Images with no
labeled objects are not used for training. We also remove
repeating labels over the same area in the image.

If a person answers Yes to Q1 (correct label), and No
to Q2a (bounding-box poorly adjusted), reffering to two
different predictions pertaining to the same object, then we
get two repeated labels. To avoid this problem, if in an image,
an IoU (Intersection over Union) larger than 0.5 is detected
between the same labels, we only use the outer bouding-box
for training.

The IoU is a measure of how close two bounding-boxes
match. To calculate the IoU we divide the intersection area
by the union (total area) of the bounding-boxes.
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Fig. 5: Domestic scenario where we ran the experiments.

In practice, an IoU score below 50% is probably an
incorrect match. This value was set in the PASCAL VOC
competition [28], humans tend to be slightly more lenient
than the IoU larger than the 50% criterion [11].

IV. YOLOV2 + HUMAN

In a real human scenario robots will need to interact with
an unpredictable set of classes.

We used an approach that combines two neural nets
(YOLOv2 and HUMAN), running simultaneously. The HU-
MAN neural net serves as an auxiliary one to the one that
was trained with thousands of images in a global effort.

When the two neural nets detect an object in the same area
in the picture (IoU larger than 50%), we use the prediction
with higher confidence. By default, a confidence from 0.0 to
1.0 is given by the YOLOv2 algorithm, associated to each
prediction [8].

V. EXPERIMENTAL SETUP

Using our current computational resources, running the
two neural nets as separate processes requires an external
computer with a GPU. In our trails we ran the computations
and trained the neural nets in this external computer3. The
average time it took to train the neural nets was 6 hours while
YOLOv2 [29] is able to recognize the objects in real-time
(our bottleneck was the robot’s WiFi connection).

A. Domestic Environment

Using a realistic domestic scenario (Figure 5) composed
of one bedroom, one living room, one dining room and a
kitchen. The experience was conducted over the course of
20 days, taking a total of 5 hours. Six research participants
acted as the human input for the robot, answering questions
about objects in order to evaluate if the robot could train
the HUMAN neural net when confined to a small-scale
environment. We also tested the applicability of using the two
neural nets in parallel: YOLOv2 + HUMAN and evaluated
the correctness of the robot’s predictions.

3GPU:NVIDIA’s GeForce GTX 1080 Ti; CPU: Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz

Fig. 6: Points of reference comprising the surrounding area.

1) Generating Points of Reference: The robot should be
able to recognize the surrounding objects independently of its
current pose (location + orientation), relative to a fixed world
frame. There are infinite poses within a confined environment
but the robot can’t feasibly ask infinite questions to fulfill its
objective. To solve this, it starts by defining a set of sparse
points. When the distance between the robot and all the
existing reference points is greater than a fixed distance it
creates a new reference point (Figure 6).

2) Using the Points of Reference: The robot should also
be able to recognize the objects in different light conditions
(related to various hours of the day), and at different po-
sitions, angles and perspectives. We defined that each day
the robot will navigate to 1 point of reference per day, at
a random time and capture a total of 8 images at different
orientations relative to the world frame. This way it captures
different exposures and the implicit unpredictability of day-
to-day objects.

B. Looking for a specific’s person object

When the robot asks a human a question about an object
associated with a certain Point of Reference, it gathers the
spacial information of that object.

If the robot registers, for example a “doll”, as being 1
time in the living room and 10 times in the bedroom, if
asked to search for that same object it will hierarchically
search by divisions with greater number of occurrences of
that object. This somewhat emulates the thought process
of humans when they are looking for a misplaced object,
wherein they will look for the most common places where
they see or use said object.

Furthermore when a user asks where his or hers object is,
the robot, using the neural nets (YOLOv2 + HUMAN150),
starts by detecting the objects. When the searched personal
object class is detected, e.g. “backpack”, the robot compares
the part of the image inside the bounding-box with all
the previous instances of “backpack’s it has recorded and
associates it to the one with the highest amount of features
in common (using OpenCV’s SIFT code4).

4The code can be found at https://opencv.org/
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VI. RESULTS

To evaluate the proposed system, we compared the neural
nets using an external ground-truth composed of 100 pic-
tures. These images were captured by the robot in different
places of the experience scenario without the constraint of
being in a Point of Reference. They also included different
lightning conditions and 10 blurred pictures (robot moving).

A. Average Precision

The neural nets predictions were judged by the preci-
sion/recall (PR) curve. The quantitative measure used was
the average precision (AP) [30], [31], [32], [28].

It was computed as follows:

• First, we computed a version of the measured preci-
sion/recall curve with precision monotonically decreas-
ing, by setting the precision for recall r to the maximum
precision obtained for any recall r′ > r.

• Then, we computed the AP as the area under this
curve by numerical integration. No approximation was
involved since the curve is piecewise constant.

First, we map each detection to a ground-truth object
instance. There is a match if the labels are the same and
the IoU (Intersection over Union) is larger than 50% (value
established in the PASCAL VOC competitions [31]), by the
formula:

IoU =
Area(Bp ∩Bg)

Area(Bp ∪Bg)
, (1)

where Bp ∩ Bg and Bp ∪ Bg respectively denotes the
intersection and union of the predicted and ground-truth
bounding-boxes.

In the case of multiple detections of the same object only
1 (one) is set as a correct detection and the repeated ones
are set as false detections [28].

B. Correctness of Predictions

During the 20 day experiment the robot trained 3 different
neural nets: HUMAN50, HUMAN100 and HUMAN150. In
the first week (less than 50 images), the robot was using only
YOLOv2 to generate the predictions. In the second week the
robot used YOLOv2 and HUMAN50. And finally, during the
last week it used YOLOv2 and HUMAN100.

Looking at Table I, II and III we can see the results from
the Yes or No questions (Q1 and Q2).

We observed that the HUMAN neural net, although gen-
erating a smaller amount of predictions, it was also able to
produce true positives (XLabel and XBounding-box), which
indicate that the robot is learning.

The number of true positives increased by 25% from
Human50 to HUMAN100, suggesting the evolution of the
HUMAN neural net with more images retrieved from the
learning algorithm.

TABLE I: Predictions - Image 0 to 50.

YOLOv2 - total number of predictions: 161

values in % Bounding
Box X

Bounding
Box ×

Label X 52.2 18.6
Label × 13.7 15.5

TABLE II: Predictions - Image 50 to 100.

YOLOv2 - total number of predictions: 139

values in % Bounding
Box X

Bounding
Box ×

Label X 64.7 12.9
Label × 5.0 17.3

HUMAN50 - total number of predictions: 38

values in % Bounding
Box X

Bounding
Box ×

Label X 28.9 50
Label × 0.0 21.1

TABLE III: Predictions - Image 100 to 150.

YOLOv2 - total number of predictions: 181

values in % Bounding
Box X

Bounding
Box ×

Label X 59.1 15.5
Label × 4.4 21.0

HUMAN100 - total number of predictions: 31

values in % Bounding
Box X

Bounding
Box ×

Label X 54.8 22.6
Label × 6.4 16.13

C. Evaluation of the neural nets

Table IV shows the AP for each of the classes and finally
the mAP (mean Average Precision). Since this value is a
mean, when comparing the results we need to take into
account the number of classes.

Relatively to the 15 classes of YOLOv2 present in the
ground-truth the mAP of YOLOv2 was 41.29% and of
YOLOv2 + HUMAN150 was 45.8%, higher than the original
value. Additionally, YOLOv2 was only able to detect 14 of
the total number of classes while YOLOv2 + HUMAN150,
27.

In total there were only four classes where the YOLOv2
had a higher score than YOLOv2 + HUMAN150: “book”,
“chair”, “diningtable” and “pottedplant”. In all of these cases,
the difference in the score was always smaller than 5%.

In this experiment we also verified the improvement of the
HUMAN neural net with an increasing mAP, from 9.22% to
13.46% and finally 16.26% with the number of objects also
increasing from 27 to 29 and finally 30.

D. Human mistakes

We identified two primary categories of human error in
labelling images: (a) unlabeled objects (happens when ob-
jects are difficult to label, e.g. small objects, or when people
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TABLE IV: Average Precision using an external ground-truth
composed of 100 images in different poses. Values are in
percentage (%) and the largest one per row marked in bold.

values in % YOLOv2 H50 H100 H150
YOLOv2

+
H150

backpack 0 45.5 36.4 22.7 22.7
bed 62.5 0 62.5 67.5 85.9

book 18.3 5.1 6.1 6.1 17.5
bookcase - 33.3 16.7 0 0

bottle 23.5 - 9.1 0 23.5
bowl 34.4 0 0 0 34.4

cabinetry - 11.9 14.4 9.8 9.8
chair 58.1 20.3 25.6 32.1 53.8

coffeetable - 4.8 9.5 4.8 4.8
countertop - 0 0 23.8 23.8

cup 24.0 0 2.8 25.0 42.5
diningtable 43.1 21.1 37.8 13.5 39.7

doll - - - 0 0
door - 17.2 24.1 20.7 20.7

heater - 15.4 0 7.7 7.7
nightstand - 28.6 28.6 71.4 71.4

person 42.9 0 0 0 42.9
pictureframe - 0 0 17.7 17.7

pillow - 0 5.0 13.0 13.0
pottedplant 65.5 17.2 17.2 17.4 62.3

remote 73.2 0 0 0 73.2
shelf - 0 0 16.7 16.7
sink 16.3 - 0 7.1 16.3
sofa 90.5 0 0 4.8 90.5
tap - 0 0 1.4 1.4

tincan - 0 1.8 0 0
tvmonitor 48.3 5.0 20.0 33.8 63.2

vase 18.8 8.3 0 4.2 18.8
wastecontainer - 15.2 72.7 43.9 43.9
windowblind - 0 0 23.5 23.5

total of classes 15 27 29 30 30
mAP

(all classes) 41.29 9.22 13.46 16.26 31.39

mAP
(YOLOv2 classes) 41.29 8.16 14.62 15.6 45.8

couldn’t find the object in the list, e.g. “fire extinguisher”
was not in included in the OpenImages labels); (b) wrong
label (e.g. human clicks Yes when should have clicked No).

Despite the human error, we observed that the mean aver-
age precision and the total of correct predictions increased,
suggesting the improvement of the neural net.

E. Looking for a specific’s person object

In Figure7, we can see the results of this experiment,
where we simulated the misplacement of a backpack and
remotley requested the robot to search for it (using Telegram
bot API5). As the figure suggests, the robot searched the sur-
rounding environment and after approximately 2 minutes he
had a positive match on the subject’s backpack. Pertinently
there were two more backpacks present at the scene and
Pepper was able to identify the desired one.

VII. CONCLUSIONS

This paper presents an approach to address the object
recognition limitations of service robots. In particular, we
bootstrap YOLOv2, a state-of-the-art neural, based on the
teaching provided by the humans in close proximity. The

5More info can be found at https://core.telegram.org/

Fig. 7: Pepper looking for João’s backpack demo.

robot then trains a neural net with the collected knowledge
and uses two neural nets in parallel: YOLOv2 + HUMAN.
By using the two neural nets, the robot gets the ability
to adapt to a new environment without losing its previous
knowledge. We implemented our learning algorithm in two
different robots, Pepper and Mbot, and conducted exper-
iments to test the performance of these neural nets in a
domestic scenario. Potential future work includes further
enhancing the object recognition capabilities with a focus on
sharing information between the robots (located in different
places/countries). We view the contribution of this paper to
be relevant for service robots in general, in addition to Pepper
and Mbot.
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