Heterogeneous Multi-Agent Planning Using
Actuation Maps

Tiago Pereira*T*, Nerea Luis®, Anténio Moreira*T, Daniel Borrajo§, Manuela Velosot and Susana Fernandez®
*Faculty of Engineering, University of Porto, Portugal
Email: {tiago.raul, amoreira} @fe.up.pt
fINESC TEC, Porto, Portugal
iCarnegie Mellon University, Pittsburgh, USA
§Universidad Carlos III de Madrid, Spain

Abstract—Many real-world robotic scenarios require perform-
ing task planning to decide courses of actions to be executed by
(possibly heterogeneous) robots. A classical centralized planning
approach that considers in the same search space all combina-
tions of robots and goals could lead to inefficient solutions that
do not scale well. Multi-Agent Planning (MAP) provides a good
framework to solve this kind of tasks efficiently. Some MAP
techniques have proposed to previously assign goals to agents
(robots) so that the planning effort decreases. However, these
techniques do not scale when the number of agents and goals
grow, as in most real world scenarios with big maps or goals that
cannot be reached by subsets of robots. In this paper we propose
to help the computation of which goals should be assigned to each
agent by using Actuation Maps (AMs). Given a map, AMs can
determine the regions each agent can actuate on. They help on
alleviating the effort of MAP techniques knowing which goals can
be tackled by each agent, as well as cheaply estimating the cost
of using each agent to achieve every goal. Experiments show that
when information extracted from AMs is provided to the Multi-
Agent planner, goal assignment is significantly faster, speeding-up
the planning process considerably. Experiments also show that
this approach greatly outperforms classical centralized planning.

I. INTRODUCTION

Real-world robotic scenarios in which a set of robots need to
solve a certain amount of tasks usually require the combination
of path-planning and motion-planning techniques. An example
of this type of scenarios is the coverage problem, which
consists of distributing the space among the set of robots, so
that each one explores a certain region of the environment.
The problem is to plan and find a route for each robot so that
all the feasible space is covered by the robots’ actuators, while
minimizing the execution time. Vacuum cleaning robots can
be potential candidates for this type of planning problem. We
assume we have a team of heterogeneous robots with different
sizes. While the smallest robot can reach more areas, a bigger
robot can clean more while traveling a smaller distance.

Nevertheless, other similar problems can also be solved with
our contributed technique, such as heterogeneous robots exe-
cuting vigilance tasks. As long as there exist some navigation
graph where we can extract information to help the planner
and agents with similar or different capabilities it will be a
potential domain to solve with our approach.

We have encoded our problem as a Multi-Agent Planning
(MAP) task. Automated planning is the field of Artificial

Intelligence which deals with the computation of plans. The
problem is modeled with the standard PDDL language [1].
For that purpose, we use a discrete representation of the map,
i.e., a 2D grid of waypoints. The robots can move from one
waypoint to another as long as they are grid neighbors and do
not collide with obstacles. Moreover, robots can actuate other
waypoints if their distance to the robot’s current position is
less than their actuation radius. The planner outputs a plan that
accomplishes all feasible actuation tasks, by moving the robots
to all the reachable locations from where they can actuate
the goal waypoints. Given the robot heterogeneity, some tasks
might only be feasible for a subset of the robots.

From a MAP point of view, the multi-robot problem we
propose to solve forces us to deal with two issues regarding
performance of the planning process: (1) the size of the search
space grows with the number of waypoints and goals; and (2)
some goals are not feasible for some robots. On one hand, real-
world scenarios are big enough to make almost impossible for
a planner to solve this problem in a reasonable amount of time
by just assigning all goals to all agents (following a centralized
planning approach). On the other hand, some Multi-Agent
planners invoke a goal-allocation phase before starting to plan,
computing smaller individuals plans [2]. However, during goal
allocation, a relaxed plan is computed per goal and robot to
either return an estimated cost or identify unfeasibility.

Therefore, to obtain path-planning related information we
contribute a methodology that combines Actuation Maps
(AMs) [3] with a multi-agent planner, using these maps as
a pre-processing step to speed-up the goal assignment phase.
These maps are built only once before the beginning of
the planning process, one per robot, at a very low cost in
comparison to the impact on time savings observed later
in goal assignment. Following the idea of the relaxed plan
computation during planning, our architecture computes an
estimated cost before-hand regarding the information that can
be directly extracted from AMs. As a result, the planner
receives the estimated cost information as input, and saves
time by avoiding the relaxed plan computation.

Domain-independent planning might not scale up well.
However, in most real-world domains, practitioners can benefit
from some domain-dependent knowledge and the challenge
is how to efficiently use this knowledge to allow planners

to scale up. We take advantage of the fact that most robotic
tasks deal with a map where robots have to carry out several
activities, and that computing AMs can be done very cheaply.
If we provide that knowledge as input to a domain-independent
MAP system that performs task allocation, the integrated
system can scale up to real hard tasks.

II. PLANNING WITH ACTUATION MAPS

As previously mentioned, this work combines Actuation
Maps (AM) with Multi-Agent Planning (MAP). The con-
tributed architecture can be seen in Figure 1.

Environment Map Roboty Robot,) ...
Image
A 4

PDDL Generation A 4 - A
| Actuation
Transform,

Actuation
Transformp,

Actuation
Transformg

Actuation
Mapm

Actuation
Actuation Maps

Maps

PDDL

Problem

Infeasible’
Goals per
Agent

Estimated
Cost per
Goal-Agent

Pre-processing

Domainn
Problemn

Domain,

Domainy
Problem,

Problem,

Plannery | | Planner, || Plannern

Figure 1. Architecture for combining AMs and Multi-Agent Planning

Our system receives as input a Map Image which represents
a 2D environment (e.g. building floor plan), m Robot models
with the agent’s features, and a PDDL domain that represents
the type of planning task being solved (e.g. coverage prob-
lem). According to the PDDL domain description, the PDDL
generation node takes as input the image file with the map
and the robot models in order to generate a PDDL Problem.
The PDDL generation could use the default pixel resolution
when building the respective 2D grid of waypoints, but we
assume it can also sample it down for a more light-weight
representation of the environment.

By using the MAP technique from [4], the planning archi-
tecture would be equivalent to the bottom part of Figure 1. The
planner would take the PDDL problem and domain files, and
execute Goal-Assignment (GA). In this first step, a relaxed
problem is computed for all agent-goal pairs in order to
obtain an estimate cost. Then, goals are assigned to each robot
using that estimated cost and following a pre-determined GA
strategy. Agents plan individually with their own problem,
returning a potential solution (plan) in the end. All plans

are first merged into one single plan and then the solution
is parallelized, resulting in plan 7, qpm,.

With that architecture, the time spent on planning depends
highly on the GA efficiency. Given that it has to solve a relaxed
problem for each agent-goal pair, repeating similar searches
multiple times, this method does not scale well with big maps
and a high number of robots. Therefore, we contribute a pre-
processing step, which uses the Actuation Maps to speed-up
GA. AMs are generated once before planning, determining
which regions are actuation-feasible for each one of the robots,
and also providing a cheap estimate of the cost of using each
agent to achieve each goal. The Discretization node converts
the pixel-based cost estimate into a grid-based cost, with the
same sampling rate used by the PDDL generation node.

Using the low cost estimates from the individual AMs,
the Merging node identifies the pairs robot-goal that are
unfeasible, compiling lists of both Unfeasible Goals per Agent
and the overall list of unfeasible goals. The Merging also
compiles a list with the Estimated Cost per Goal-Agent, saving
time by alleviating the efforts of MAP during GA. Because
the AMs are determined only once before planning, a greater
impact from pre-processing is expected for large sets of goals.

In this work we consider teams of circular robots that
actuate in a 2D environment, where the world is represented by
a 2D image that can be downsampled to a grid of waypoints.
The AM gives information about the actuation capabilities of
each robot, as a function of robot size and initial position [3].
In the vacuum cleaning robots example, AM represents the
regions of the world each robot can clean.

A. Problem Formulation

The kind of problems that can be solved using our approach
are identified by the following features: these problems always
have a navigation graph and a set of potential tasks to be
executed by an agent on each node of the graph (e.g. Rovers
or Transport domain). Thus, in these domains we can generate
the AMs and extract specific information to help the planner
solve more quickly the planning problems.

A single-agent planning task can be formally defined as a
tuple IT = {F, A, I,G}, where F is a set of propositions,
A is a set of instantiated actions, I C F is an initial
state, and G C F is a set of goals. We consider a MAP
formalization where a set of m agents, ® = {¢1,...,¢m},
has to solve the task II. We define the Multi Agent Planning
(MAP) task as a set of planning subtasks, one for each agent,
M ={11,...,II,,} where M refers to the MAP task. Each
planning subtask II; includes only the facts, actions, goals
and initial state related to the agent ¢;. For representation
convenience, an equivalent lifted representation of each single-
agent planning task in PDDL would be a pair (domain,
problem): II; = {D;, P;}, as it is reflected in Figure 1 as
output after the goal assignment (GA) step.

In order to use MAP techniques, we modeled the domain
and problem using PDDL. The domain has two types of
objects: robots, which act as agents; and waypoints, which
represent positions in the discretized world. The goal of the

problem is a list of waypoints to actuate on (positions that
need to be covered). The PDDL domain has four predicates:

« At (robot, waypoint): defines the robot position;

« Connected (robot, waypoint, waypoint): establishes con-
nectivity between waypoints;

« Reachable (robot, waypoint, waypoint): shows waypoints
actuated by robot located on specific waypoint;

o Actuated (waypoint): indicates which waypoints were
already actuated; this predicate is used to specify goals.

Robots have to actuate every waypoint in the goal list of
the PDDL problem, as long as the task is feasible. Robots
can navigate through two connected waypoints or just actuate
another waypoint from their current waypoint position. Each
robot has its individual navigability graph of waypoints.

Finally, the two actions that are defined in the domain are
called navigate and actuate. The first one moves a robot from
its current waypoint location to a neighbor waypoint. The
second action is used to mark a waypoint as actuated if it
is reachable from the robot’s current waypoint location.

Navigate and actuate are the two actions that can be
executed by an agent when it is placed on a waypoint. Both
navigate and actuate have as effect the predicate actuated.

We do not address any kind of collision between robots
or capacity for the path between two waypoints. We assume
collisions can be resolved with post-processing replanning.

B. Multi-Agent Planner

In order to run the problem we have developed the Multi-
Agent planner called MA-Plan Merger (MAPM). The main
sequence of steps of this algorithm follows the structure
presented in [4]. However the structure has been improved
to use information from AMs. MAPM processes inputs from
AMs to skip the computation of relaxed plans during GA.

The pre-processing inputs to MAPM is the list of estimated
costs EC' = {(g,¢:,¢) | g € G,¢; € D,c = C(g,¢;)} such
that ¢ is computed as the number of steps for an agent to
reach the goal position g from its initial position, shown in
Figure 1 as the Estimated Cost per Goal-Agent node. The

Algorithm maPM (IT, GAS, EC, P)

Inputs: M, GAS, EC, P
Output: Tpapm

O’ M’ = goal-assignment(M,GAS, EC)
Forall ¢, € ' do m; =plan(Il;, P)

Tseq =Merge(my,. .., Ty,) /* where n = |®'| */
If valid(mseq)

Then return 7p,qpm =parallelize(mgeq)

Else return no plan

A N R W N =

Figure 2. High level description of the MAPM algorithm. Inputs: MAP task
(M), Goal Assignment Strategy (GAS), Estimated Cost per robot-goal (EC),
Single-Agent Planner (P). Output: resulting plan (Tmapm).

cost of navigating between two neighbor grid waypoints is 1
unit. MAPM also receives as input a MAP task, which consists
of a PDDL domain and problem files (Figure 2). The PDDL
problem file includes the list of agents. In addition a goal-
assignment strategy (GAS) needs to be chosen to define the
way goals are assigned to agents by the system.

The first step of the MAPM algorithm is to allocate the
feasible goals to the agents (line 1). This step uses the
information of estimated costs received from AMs. Goal
assignment phase (GA) returns as output (1) a subset of &’
agents, ® = {¢1,...,d,}, that will be the only ones who
will plan to solve the problem; and (2) a new MAP task
M’ = {II,...,II,}. As a result, a specific PDDL domain
and problem will be generated for each ¢, agent which only
includes the goals each agent has to achieve. If a goal is
unfeasible for all the ®' agents, MAPM will discard it from
the new MAP task M’. In order to perform task allocation [5]
some strategy has to be determined or implemented, as the
aim is to improve the efficiency of the planning process
afterwards. Load-Balance strategy, defined in [6], assigns each
goal g € G to the best agent ¢; € @, but it does not assign
to an agent more goals than the ratio of total goals divided
by number of agents. The Load-Balance assignment strategy
is used when minimizing the maximum number of actions
per agent (equivalent to minimizing makespan). As a second
option, we also took the Best-Cost strategy also defined in [6],
which assigns each goal to the agent that can achieve it with
the least cost. The Best-Cost strategy is used when minimizing
the total number of actions over all robots (plan length).

After the GA phase, as in [4], each agent in ¢ builds its
plan individually (line 2). Then the agents’ plans are merged
by a simple concatenation of plans in one resulting plan (line
3). If the merged plan is valid, we parallelize the plan (line 5)
generated by the merging step. Parallelization is performed in
two steps: converting the input total-order plan into a partial-
order one by a similar algorithm to [7]; and parallelizing this
partial-order plan by ordering actions in the first time step that
satisfies all ordering constraints in the partial-order plan.

To set up MAPM, an off-the-shelf planner had to be chosen.
Our configuration of MAPM uses LAMA-UNIT-COST as the
planner P of the algorithm. LAMA-UNIT-COST corresponds to
the first search that LAMA performs, using greedy-best-first
with unit costs for actions [8]. The merged plan is validated
using VAL [9], from the International Planning Competition'.

C. Actuation Space

We briefly summarize here the process of building the
Actuation Space [3]. We assume there is an occupancy grid
map. In this image each pixel has a value with the probability
of the corresponding world position being occupied by an
obstacle. This occupancy grid map is first transformed into
a binary image using a fixed threshold.

We define G as the set with all pixel positions from the
input binary image. This input image (Environment Map Image

Uhttp://icaps-conference.org/index.php/main/competitions

in Figure 1) is represented by M, the set with the obstacle
pixel positions. We define the structuring element as an image
that represents the robot shape. Thus R; is the set with pixel
positions from a circle with radius equal to the robot size. The
morphological dilation on the obstacle set M by R; is:

MoR = J M. O]

reRr;

where M, is the translation of M by vector r.

The visual output of applying this dilation operation to a
map of obstacles is the inflation of obstacles by the robot
size. The free configuration space, CJree is then defined as:

cle—{pegG|p¢ MaR;})

where G is the set with all the pixel positions. The free
configuration space represents the feasible robot positions.

In order to determine the Actuation Space instead, the
partial morphological closing operation is used. The partial
morphological closing was introduced in order to consider the
initial robot position when determining the Actuation Space.
In order to use the partial morphological closing, the algorithm
needs to find the navigable regions first. The set of navigable
regions from a starting robot point r{ is

Li(r?) ={p G| p connected to r? Ap € C/™} (3)

The navigable set £;(r?) is the set of points that are
connected to the initial position r? through a path of adjacent
cells in the free configuration space.

Applying a second dilation operation to the navigable set
(subset of C/7¢) instead of applying it to the free configuration
space, we obtain the partial morphological closing operation.
The Actuation Space is the dilation of the navigable space:

Ai(r]) = Li(x]) & R; “)

K2

In Figure 3 we show a simulated map with 2 robots with
different sizes, and the respective Actuation Spaces.

I+, I

(a) Map & 2 Robots (c) Actuation Space 2

(b) Actuation Space 1

Figure 3. Simulated map and two heterogeneous robots with different sizes
in (a); colored regions in (b) and (c) represent actuation spaces for respective
robots, i.e. the points in the environment that each robot can actuate, depending
on their size and initial position shown in (a).

D. Actuation Map and Grid Downsampling

When converting the original map and the Actuation Space
to the PDDL description, it is possible to consider each indi-
vidual pixel as a waypoint in a grid with the size of the whole
image. However, that approach results in a high density of
points that makes the planning problem excessively complex.

We reduce the set of possible locations by downsampling the
grid of waypoints. The downsampling rate s, is set manually.
If the original pixel resolution is used, the resulting grid
of waypoints G’ contains all pixels and is equivalent to G,
otherwise it represents the grid after downsampling.

Using the Actuation Space it is possible to find the Es-
timated Cost (EC) list. For that purpose, we contribute the
following extension. We build the navigable space £; in an
iterative procedure, from the starting position r?. In the first
iteration we have £9(r?) + {r?}, and then:

LIx?) ={peG|3qge £ (x?) : p neighbor of q
ApECI™ AP ¢ LI(x)) Va<i} ()
When using this recursive rule to build the navigable space,
we guarantee that any point in the set £7(r?) is exactly at

distance j from the initial position r{. If we build the actuation
space sets with the intermediate navigable sets £ (r?),

Al = L)) @ R, 6)

then the intermediate actuation set A7(r?) represents the
points that can be actuated by the robot from positions whose
distance to r{ is j. The actuation space defined in the previous
section can also be alternatively defined as

Ai(r}) ={p€§|3a:pe A}(r))} (7)
The Actuation Map is defined for g € A;(r?):
AM;(x?, g) = min{j | g € A] (D)} + 1 ®)

The Actuation Map AM;(x?, g) represents, for each g €
A;(r?), the minimum number of actions needed for the robot
to actuate the grid waypoint g if starting from the initial
position r, measured in the pixel-based grid G. In equation 8,
the minimum j* represents the minimum distance (number of
navigate actions) needed to travel from r{ to some point from
where g can be actuated. The added one in equation 8 accounts
for the actuate action needed to actuate g, after the j* navigate
actions to reach a place where the robot actuates g.

Finally, the Estimated Cost per Goal-Agent list EC is

EC = {{g, pi,cost) | g€ G Np; € D
Ag € A;(r?) A cost = ceil (AM;(x), 9)/s.)} ©))

where s, is the downsampling rate. The division by s, trans-
forms the estimated cost of actions measured in the pixel-based
grid G, AMi(r?, g), to the respective cost in the downsampled
grid of waypoints G’. The ceil function rounds the result to
the smallest integral that is not less than AM;(xY, g)/s,..

III. EXPERIMENTS AND RESULTS

In this section we show some experiments that test the
impact of the pre-processing on the MAPM performance. We
have modeled three different scenarios that include up to
four agents with different sizes, and thus different actuation
capabilities. Planning results are shown using as metrics the
time in seconds, the length of the resulting plan and the
makespan. The makespan is the length of the parallel plan

(number of execution steps, where several actions can be
executed at the same execution step). We designed three
different scenarios, shown in Figure 4, each one with two
levels of waypoint density (H, the higher, and L, the lower).

F—-=

(a) Mutual Exclusive 4s0x220)

(b) Corridor (c) Corridor
(500 %200) paths (500 x200)

(d) Extremities (600x500)

Figure 4. Maps of the three scenarios used in the experiments. Grey regions
represent out-of-reach regions that can nevertheless contain goal waypoints,
which are unfeasible for all the robots. Robots are represented with blue circles
positioned in the region of their starting position. Solution for the Corridor
scenario is also presented, with the paths for the four robots.

Four different configurations of MAPM have been set up:

e MAPM Load-Balance (LB) with estimated-cost informa-
tion (EC). EC refers to the configuration that combines
Actuation Maps and MAP.

e MAPM Best-Cost (BC) with estimated-cost information
(EC), also combining Actuation Maps and MAP.

e MAPM LB, same as before but without EC information.

« MAPM BC same as before but without EC information.

Furthermore, the following state-of-the-art planners have
been chosen as a comparison baseline:

e ADP [10], a planner that automatically detects agents.

e LAMA [8], winner of IPC 2011.

e YAHSP [11], a state-of-the-art centralized planner.

The maximum time spent on the pre-processing for any
scenario was 170 milliseconds, for the Extremities problem
with 4 robots. We included the pre-processing times (to
generate the AMs) in the GA column of Table I, and in
the total time in Table III. Hardware used for running the
planner was IntelXeon 3,4GHz QuadCore 32GB RAM. AMs
were computed using a 2.5GHz DualCore 6GB RAM.

Tables I and II are shown to prove the remarkable impact
that information from Actuation Maps (AMs) has in combina-
tion with MAPM. Goal assignment (GA) times in Table I are
minimal in comparison with the ones from Table II when the
planner needs to compute the relaxed plans for every goal-
agent pair before starting to plan for the solution.

Total time results for each planner in each one of the six
problems are shown in table III. A maximum of two hours was
given to each planner to solve each scenario. YAHSP results
do not appear in the tables because it could not solve any of
the scenarios. Regarding total time, the fastest configuration is
MAPM-LB-EC if all total times are summed up. The impact of
combining information from actuation maps with MAP can be
easily appreciated by comparing MAPM-LB-EC and MAPM-LB.

Table 1
TIME RESULTS IN SECONDS FOR MAPM LOAD-BALANCE CONFIGURATION
WITH ESTIMATED COST INFORMATION. TOTAL TIME, GOAL ASSIGNMENT,
INDIVIDUAL PLANNING AND PARALLELIZATION TIMES.

MAPM-LB-EC
Name TOTAL(s) | GA | Planning | Parallel
CorridorH 33.58 | 0.64 24.37 8.57
CorridorL 6.18 | 0.26 4.62 1.30
ExtremH 602.68 | 3.06 428.28 171.34
ExtremL 58.32 | 0.92 40.93 16.47
MutExH 7.39 | 0.34 5.03 2.02
MutExL 1.39 | 0.12 1.04 0.23
Table II

TIME RESULTS IN SECONDS FOR MAPM LOAD-BALANCE CONFIGURATION
WITHOUT ESTIMATED COST INFORMATION. TOTAL TIME, GOAL
ASSIGNMENT, INDIVIDUAL PLANNING AND PARALLELIZATION TIMES.

MAPM-LB

TOTALC(s) GA Planning | Parallel
CorridorH 1232.97 | 1204.20 20.88 7.89
CorridorL 128.78 123.59 4.10 1.09
ExtremH timeout
ExtremL 3870.00 | 3823.75 32.89 13.36
MutExH 903.65 896.82 4.81 2.02
MutExL 69.41 68.19 0.98 0.24

Table IV shows results regarding the plans’ length and
also results regarding makespan. As ADP does not return a
makespan metric, we have applied our parallelization algo-
rithm to transform its total ordered plans into partial order
plans so that we can fairly compare the results.

The best configuration overall regarding Plan Length
is MAPM-BC-EC (called M-BC-E in the table). Regarding
makespan in Table IV, the Load-Balancing strategy is better,
as expected. Moreover, MAPM-LB-EC (M-LB-E) configuration
is the best one for problems with higher density of waypoints,
while MAPM-LB (M-LB) proves to be better for reducing
makespan in low density problems. This can be explained by
the discretization errors from equation 9, which are greater
when the down sampling rate is bigger. These errors result in
slightly inaccurate cost estimates that change goal assignment.

IV. RELATED WORK

A MAP approach that als uses a pre-processing step
is the automated agent decomposition for multi-robot task
planning [12]. In that work the pre-processing step exploits
decompositions of the problem in domains with a lower level
of interaction, boosting the final performance. ADP [10] is also

Table III
TOTAL TIME RESULTS IN SECONDS. MAPM WITH ESTIMATED-COST INFORMATION IN LOAD-BALANCE; MAPM WITHOUT ESTIMATED COST INFORMATION
IN LB; MAPM WITH ESTIMATED COST INFORMATION IN BEST-COST; MAPM WITHOUT ESTIMATED COST INFORMATION IN BC; ADP AND LAMA.

Total Time including Pre-Processing (s)
MAPM-LB-EC MAPM-LB MAPM-BC-EC MAPM-BC ADP LAMA
CorridorH 33.58 1232.97 41.53 2839.79 | mem.limit | timeout
CorridorLL 6.18 128.78 9.07 135.58 104.47 5.75
ExtremH 602.68 timeout 1788.69 timeout | mem.limit | timeout
ExtremL 58.32 3870.00 112.03 3929 | mem.limit | timeout
MutExH 7.39 903.65 7.27 910.18 5.54 6.29
MutExL 1.39 69.41 1.38 72.24 0.84 1.12
Table IV

PLAN LENGTH AND MAKESPAN: MAPM WITH ESTIMATED-COST INFORMATION IN LOAD-BALANCE; MAPM WITHOUT ESTIMATED COST INFORMATION IN
LB; MAPM WITH ESTIMATED-COST IN BEST-COST; MAPM WITHOUT ESTIMATED COST INFORMATION IN BC; ADP AND LAMA.

Plan Length Makespan

M-LB-E | M-LB | M-BC-E | M-BC | ADpP | LAMA || M-LB-E | M-LB | M-BC-E | M-BC | ADP | LAMA
CorridorH 1289 1268 1226 1136 403 408 461 734
CorridorL 605 598 588 475 | 1403 470 219 189 303 458 | 1313 286
ExtremH 3428 3116 1453 1929
ExtremL 1490 | 1587 1365 | 1233 556 511 928 1140
MutExH 642 642 642 642 | 748 642 116 116 116 116 | 162 116
MutExL 277 277 277 277 278 277 59 59 59 59 60 59

related with that decomposition work. Our approach factorizes REFERENCES

the problem regarding goals and agents, creating independent
subtasks for each agent, but the domain is never changed.
The methodology that uses morphological operations in or-
der to build the Actuation Maps was previously introduced [3].
It has been shown that similar transformation can be used to
obtain Actuation Maps for any-shape robots as well [13]. Other
relevant multi-robot planning problem in robotics is inspection,
which searches for paths that can perceive a set of targets,
where neural network solutions have been proposed [14].
There are similar environments to our problem defined in
previous planning domains, like VisitAll and Rovers domain.

V. CONCLUSIONS AND FUTURE WORK

In this paper we showed how to combine information from
Actuation Maps with Multi-Agent Planning to solve a multi-
robot problem more efficiently. We used a pre-processing step
to determine feasibility of robot-goal pairs and to extract an
estimated cost, used later to avoid computing relaxed plans
during goal assignment. Total solving times were significantly
improved when pre-processing information was provided to
MAPM. As future work, we would like to extend the pre-
processing technique to other domains and robot models.

ACKNOWLEDGMENT

This work is financed by the ERDF through the Opera-
tional Programme for Competitiveness and Internationalisa-
tion - COMPETE 2020 Programme within project POCI-
01-0145-FEDER-006961, and by FCT (Portuguese Foun-
dation for Science and Technology) as part of project
UID/EEA/50014/2013, and FCT grant SFRH/BD/52158/2013,
and partially by MICINN projects TIN2008-06701-C03-03,
TIN2011-27652-C03-02 and TIN2014-55637-C2-1-R.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing
temporal planning domains,” JAIR, vol. 20, 2003.

D. Borrajo and S. Ferndndez, “MAPR and CMAP,” in Proceedings of
the Competition of Distributed and Multi-Agent Planners (CoDMAP-
15), Jerusalem (Israel), 2015. [Online]. Available: http://agents.fel.cvut.
cz/codmap/results/CoDMAP15-proceedings.pdf

T. Pereira, M. Veloso, and A. Moreira, “Multi-robot planning using
robot-dependent reachability maps,” in Robot 2015: Second Iberian
Robotics Conference. Springer, 2015, pp. 189-201.

N. Luis and D. Borrajo, “Plan Merging by Reuse for Multi-Agent
Planning,” in Proceedings of the 2nd ICAPS Distributed and Multi-Agent
Planning workshop (DMAP), 2014.

V. Conitzer, “Comparing multiagent systems research in combinatorial
auctions and voting,” AMAI, vol. 58, no. 3-4, pp. 239-259, 2010.

D. Borrajo, “Plan sharing for multi-agent planning,” in Proceedings
of the ICAPS’13 DMAP Workshop, R. Nissim, D. L. Kovacs, and
R. Brafman, Eds., 2013, pp. 57-65.

M. M. Veloso, M. A. Pérez, and J. G. Carbonell, “Nonlinear planning
with parallel resource allocation,” in Proceedings of the DARPA Work-
shop on Innovative Approaches to Planning, Scheduling, and Control.
Morgan Kaufmann, 1990, pp. 207-212.

S. Richter and M. Westphal, “The LAMA planner: Guiding cost-based
anytime planning with landmarks,” JAIR, vol. 39, pp. 127-177, 2010.
R. Howey, D. Long, and M. Fox, “VAL: Automatic plan validation,
continuous effects and mixed initiative planning using PDDL,” in /CTAI
2004, 2004, pp. 294-301.

M. Crosby, “Adp an agent decomposition planner,” Proceedings of the
CoDMAP-15, p. 4, 2015.

V. Vidal, “YAHSP3 and YAHSP3-MT in the 8th International Planning
Competition.” in In 8th International Planning Competition (IPC-2014),
2014, pp. 64—-65.

M. Crosby, M. Rovatsos, and R. P. Petrick, “Automated agent decom-
position for classical planning.” in /CAPS, 2013.

T. Pereira, M. Veloso, and A. P. Moreira, “Visibility maps for any-
shape robots,” in IROS’16, the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2016.

J. Faigl, “Approximate solution of the multiple watchman routes problem
with restricted visibility range.” IEEE transactions on neural networks,
vol. 21, no. 10, pp. 1668-79, 2010.

