
Inferring Capabilities by Experimentation

Ashwin Khadke
1

and Manuela Veloso
2

1
Robotics Institute, Carnegie Mellon University

2
Department of Machine Learning, Carnegie Mellon University

Abstract. We present an approach to enable an autonomous agent
(learner) in building a model of a new unknown robot’s (subject) per-
formance at a task through experimentation. The subject’s appearance
can provide cues to its physical as well as cognitive capabilities. Building
on these cues, our active experimentation approach learns a model that
captures the effect of relevant extrinsic factors on the subject’s ability to
perform a task. As personal robots become increasingly multi-functional
and adaptive, such autonomous agents would find use as tools for hu-
mans in determining ”What can this robot do?”. We applied our algo-
rithm in modelling a NAO and a Pepper robot at two different tasks.
We first demonstrate the advantages of our active experimentation ap-
proach, then we show the utility of such models in identifying scenarios
a robot is well suited for, in performing a task.

1 Introduction

Suppose we get a multipurpose domestic robot for our home but are not familiar
with all of its functionalities. How do we identify what tasks it can perform? Ap-
pearance and specifications of a robot can convey information about its physical
as well as cognitive capabilities. Seeing a legged robot equipped with a camera
and a microphone could make one wonder if it can climb stairs, recognize faces,
detect hand gestures or interpret voice commands. How do we identify which
of these appearance-deduced tasks it can actually perform? Moreover, although
physical appearances can provide rich cues about a robot’s capabilities they are
not sufficient to identify the scenarios in which it can function well. The robots
Roomba and Braava appear similar and are both used for cleaning floors. But
the Roomba can clean carpets and not wet floors, which is exactly the opposite
of what Braava can do. For a human working collaboratively with a robot, know-
ing the robot’s strengths and shortcomings is especially useful. A robot’s spec
sheet provides information about different sensors and actuators. But inevitably
how well a robot performs a task depends on the way it is programmed and for
a naive user, this is difficult to determine simply based on appearance and spec-
ifications. Experimenting with a robot can help identify the scenarios it is well
suited for. But experimentation is tedious and intelligent robots are capable of
learning new skills and adapting to new scenarios over time. This motivates the
need for an autonomous system that can intelligently experiment with robots,
identify their skills and quantify their applicability in different scenarios.



In this paper we tackle the problem of an autonomous agent (learner) build-
ing a model of a robot (subject) at performing a particular task through exper-
imentation. The outcomes of these experiments can be non-deterministic. We
call such models as Capability Models (Section 3). We assume the learner can
infer tasks a subject can potentially perform from its appearance and, present
a method to build a model of the subject at one of these tasks. Apart from
the subject’s inherent capabilities, certain extrinsic factors may affect its per-
formance at the task. Assuming some of these factors are controllable and the
learner can choose values for such factors in the experiments it conducts, we
provide an approach to pick values for controllable factors that generate the
most informative outcomes (Section 4.1). However, knowing the set of extrinsic
factors relevant for a particular robot and a task a priori is not always feasible.
We present a model refinement method to identify relevant factors from a set of
candidates (Section 4.2). Further we show that Capability Models can be used
in quantifying a robot’s ability to perform a task in different scenarios thereby
identifying situations a robot is well suited for (Section 5).

We applied our algorithm in modelling a NAO robot at the task of kicking
a ball. We show that active experimentation leads to faster learning of the sub-
ject’s model than passively observing it perform and that our model refinement
approach correctly identifies the set of relevant factors missing from the model
(Section 6.1). Furthermore, we learned a Capability Model for a Pepper robot
programmed to pick up and clear objects off a table. From the learned model, we
identified the types of objects the robot can pick up. We demonstrate how this
knowledge is useful in improving performance at a collaborative clear-the-table
task (Section 6.2).

2 Related Work

Earlier works on learning from experimentation either addressed domains that
are inherently deterministic [1,2] or assumed that the experiments they conduct
are deterministic [3]. Owing to noisy actuation and sensing, outcomes of exper-
iments with robotic systems are non-deterministic and, hence the problem of
deducing a robot’s capabilities through experimentation is challenging.

Affordance [4] is a relation between a certain effect, a class of objects and
certain robot action. Learning affordances [5,6] is similar to learning the physical
capabilities of a robot. However, these approaches learn a mapping from motor
commands to effects on different objects characterized by raw sensory input. It
is difficult for a human to use these models in identifying scenarios a robot is
well suited for. Another approach [7] uses visual features (Size, Shape, Color
etc.) to characterize objects and learns models that capture the effect (Object
speed etc.) of a robot’s actions (Tap, Push, etc.) on different objects. However,
all of these works [5,6,7] adopt passive approaches to learn and do not use their
existing models to reason about what to explore next. Moreover, they provide
no concrete method to quantify a robot’s capability.

Modeling a robot’s capability can be thought of as learning a forward model
[8]. Such models predict the change in a robot’s state brought about by its ac-



tions. Active approaches to learn forward models exist [9,10,11,12,13]. However,
these models only predict the immediate effects of an action i.e. predict the next
state given the current state and action and provide no approach to identify from
the forward model, the likelihood of successful task execution in different sce-
narios. An idea to mitigate this problem is to learn a forward model over higher
level states [14,15]. But the emphasis in these works is on learning a policy for
a task [11,12] or a combination of tasks [10,13] or learning higher level actions
(sub-policies) relevant for a task [14].

3 Capability Models

Suppose the subject is an anthropomorphic robot (Fig. 3a) and the learner
chooses to build a model of the subject at the task of kicking a ball. Extrin-
sic factors that the learner may consider include, the size of the ball and turf on
which the subject is playing. Among these factors, ball size is controllable. An
experiment for this task would constitute the learner commanding the subject to
kick a ball in certain direction from a particular position and observing the out-
come. A robot’s perception and actuation is noisy and therefore the outcome is
not deterministic. To capture this non-determinism we use a Bayesian Network.

Fig. 1: Capability Model

We introduce Capability Model (Fig. 1), a Bayesian Network which consists
of three types of nodes namely:

– SIT = CNTX ∪ COMM, is the set of variables that describe the situation
in which the subject is performing the task.
• CNTX is the set of extrinsic factors (context) for the task.
• COMM is the set of commands given to the subject.

– OUT is the set of variables denoting the outcomes of the task.
– ATTo is the set of attributes of variable o ∈ OUT. These variables are not

explicitly accounted in the model. Section 4.2 discusses their need and utility.

We capture the subject’s ability to perform a task in the conditional probability
tables associated with this Bayesian Network.



Fig. 2 presents a Capability Model for the BallKick task discussed before
using the notation we just introduced. Position represents the location of the ball
with respect to the subject before it kicks. KDc and KDo denote the commanded
and observed kick direction respectively. KDo is None if the subject attempts
but fails to kick the ball or does not attempt to kick. The set OUT need not
always be a singleton. How far a subject kicks a ball could be another outcome
for the BallKick task.

KDcPosition BallSize

KDo

Turf

BallColor

(a)

SIT = {KDc, Position, Turf, BallSize},
CNTX = {Turf, BallSize},
COMM = {Position, KDc},
OUT = {KDo}, ATTKDo = {BallColor}

(b)

Position ∈ {LeftSide, Middle, RightSide},
Turf ∈ {Grass, Synthetic, Sand},
BallSize ∈ {Small, Large},
BallColor ∈ {Yellow, Orange},
KDc ∈ {Left, Mid, Right},
KDo ∈ {Left, Mid, Right, None}

(c)

Fig. 2: Capability Model for the BallKick task. (a) depicts the Bayesian Network,
(b) shows the type of each variable in the model and, (c) describes the values
each variable can take.

4 Building Capability Models

Building a model involves identifying the right factors to include in the Bayesian
Network and learning the conditional probabilities associated with it. First, we
present a method to learn the conditional probabilities assuming the learner
knows the right factors and structure of the network is fixed. Later, we describe
our method to refine the model if need be. Here we introduce some notation.

– A Bayesian Network is a tuple (G, θ)
• G ≡ (V,E) is a graph, V is the set of nodes and E is the set of edges.
• V = SIT ∪OUT are random variables with Multinomial distribution
• E capture the conditional dependencies amongst the nodes V
• θ parameterize the conditional probability distributions

– Q ⊂ SIT are variables a learner can control in an experiment. COMM ⊂ Q.
An instantiation

3
of Q is called a Query.

– Instantiations of CNTX, COMM and OUT are called Context, Command
and Outcome respectively. Situation = Context ∪ Command

3
An instantiation of a set of random variables is a mapping from variables in the set
to values in their domain. Query ← ∪q∈Q{q ∶ vq} where vq ∈ Domain(q)



4.1 Active Learning for Bayesian Networks

We adopt a Bayesian approach to learn parameters and use the algorithm pre-
sented in [16] to build a distribution over θ. We describe it here in short.

The algorithm starts with a prior p(θ) and builds a posterior p
′(θ) by actively

experimenting with the subject. In each experiment, it picks a Query and re-
quests the subject to perform the task. Variables in SIT \ Q either have a fixed
value (Eg. Turf in the BallKick task) or are assigned some value by the environ-
ment. A standard Bayesian update on the prior p, for the parameters of the con-
ditional distributions identified by the Situation i.e. P (o∣Situation) ∀o ∈ OUT,
based on the Outcome yields the posterior p

′
. The posterior p

′
becomes the prior

for the next experiment.

To generate a Query from the current estimate of p(θ) we need a metric to
evaluate how good the current estimate is. We can then quantify the improve-
ment in the estimate brought about by different queries and pick the one which
leads to the biggest improvement. Let θ

⋆
be the true parameters of the model

and θ
′
be a point estimate.∑o∈OUTDKL(Pθ⋆ (o)∣∣Pθ′ (o))4 denotes the error in point

estimate θ
′
, where Pθ⋆ (o) and Pθ′ (o) are distributions of variable o parameterized

with θ
⋆

and θ
′

respectively. θ
⋆

is not known, but we do have p(θ), which is our
belief of what θ

⋆
is given the prior and observations. Error in point estimate θ

′

with respect to p(θ) can be quantified as in Eq. (1)

Errorp(θ′) = ∑o∈OUT ∫θDKL(Pθ(o)∣∣Pθ′ (o))p(θ)dθ (1)

ModelError(p) = min
θ′

Errorp(θ′) (2)

We use ModelError(p) of a distribution p, defined in Eq. (2), as the measure of
quality for the estimate p(θ). Lower the ModelError, better the estimate. We
would want to see observations that reduce the ModelError associated with p(θ)
to improve our estimate. But the learner can only control the Query. For a
particular Query we take an expectation over possible observations to evaluate
the Expected Posterior Error (EPE) as defined in Eq. (3). In every experiment
the learner picks the Query with the lowest EPE.

EPE(p,Query) = EΘ∼p(θ)(EOutcome∼PΘ (OUT∣Query)(ModelError(p′))) (3)

In Eq. (3) p
′
represents the posterior obtained after updating prior p with sample

drawn from PΘ(OUT∣Query). For further details, please refer [16]. θT as defined
in Eq. (4) parameterize the conditional probabilities of the Capability Model for
task T . We compute θT using the learned distribution p(θ).

θT = ∫
θ
θp(θ)dθ (4)

4
DKL(P1(o)∣∣P2(o)) =∑

vo∈Domain(o)
P1(o = vo)log(P1(o = vo)

P2(o = vo)
), P1 and P2 are distributions of o.



4.2 Model Refinement

Every subject may have a different set of extrinsic factors relevant for a task.
If a subject only detects balls of a certain color, a variable BallColor should be
included in the model for the BallKick task. We assume the learner starts with a
minimal set CNTX and variables representing some of the relevant factors may
be missing. In Section 3 we defined ATTo to be attributes of variable o ∈ OUT
not explicitly accounted in the model. We assume that the missing variables, if
any, belong to these sets. Including all of them makes the model unnecessarily
large and difficult to learn. We need a metric to quantify the dependence of
variables in OUT on the attributes to identify the relevant ones.

An attribute Aj ∈ ATTo is relevant if the subject’s performance (distribution
of o) is drastically different for different values of Aj in at least one of the observed
Situations. In each experiment, attributes are chosen randomly independent of
the Situation. After every experiment, the learner computes P̂ (Aj∣Situation) and

P̂ (o∣Aj,Situation)∀o ∈ OUT,∀Aj ∈ ATTo. P̂ is the estimate of the true distri-
bution from the observations in the past experiments. We use the metric defined
in Eq. (5), to quantify the dependence of o on the attribute Aj in a Situation.

R(o,Aj∣Situation) =
I(o,Aj∣Situation)

min(H(P̂ (o∣Situation)), H(P̂ (Aj))
(5)

I(o,Aj∣Situation) = H(P̂ (o∣Situation))−
∑

a∈Domainvalid (Aj∣Situation)
H(P̂ (o∣Aj = a,Situation))P̂ (Aj = a) (6)

In Eq. (6), H(P ) is the entropy of distribution P and Domainvalid (Aj∣Situation)
are values of Aj that have been observed sufficiently in a Situation. As Aj is

sampled independently of the Situation, P̂ (Aj) ≈ P̂ (Aj∣Situation). Therefore,
I(o,Aj∣Situation) is approximately the Mutual Information of o and Aj given
the Situation, and R(o,Aj∣Situation) is the Coefficient of Mutual Information. If
R(o,Aj∣Situation) is greater than threshold RTh, the learner adds Aj to CNTX,
updates the parents of variable o in the graph and creates conditional probability
tables for the updated graph.

Algorithm 1 outlines the overall method. Function BestQuery (Line 10) com-
putes a Query using the approach described in Section 4.1. Function Identify-
Dependence (Line 16) applies the model refinement method presented above.

5 Quantifying Capabilities

To determine how well a robot performs a task in different scenarios, we need a
reference that captures the expected performance and, a metric that quantifies
how the robot fares against this standard. We assume the reference for task
T , is a distribution of the outcome variables conditioned on the commands i.e.
P
T
ref(OUT∣COMM). Eq. (7) shows a possible reference for BallKick task (Fig. 2).

P
BallKick
ref (KDo∣KDc,Position) = {1 if KDo = KDc

0 otherwise
(7)



Algorithm 1: LearnModel(maxIter, RTh)

1 From Domain Knowledge
2 Construct G ≡ (V,E)
3 Initialize Q, p(θ)
4 SituationsObserved ← ∅

5 Initialize P̂
6 i ← 0
7 while i < maxIter do
8 i ← i + 1
9 ATTIncluded ← {}

10 Query ← BestQuery(p(θ), Q)

11 Attributes ← SampleUniform(⋃o∈OUT ATTo)
12 Outcome, Situation ← Experiment(Query, Attributes)
13 SituationsObserved ← SituationsObserved ⋃ Situation

14 p(θ), P̂ ← Update(p(θ), P̂ ,Situation,Outcome,Attributes)
15 for o ∈ OUT do
16 ATTIncluded[o] ←

IdentifyDependence(P̂ ,ATTo,SituationsObserved,RTh)
17 p(θ), G,Q ← Modify(p(θ), G,Q,ATTIncluded)
18 return (G, p(θ))

This reference implies that a robot is expected to always kick in the commanded
direction. ScoreT (Context ), defined in Eq. (9), denotes how well a robot fares at
a task T in certain Context. Lower score values indicate poor performance. We
say a robot functions well in a Context, if the score is higher than a threshold.

Mismatch(Context ) =
∑

Command

DKL(PTref(OUT∣Command )∣∣PθT (OUT∣Situation))5,6

∣Domain(COMM)∣
(8)

ScoreT (Context ) = 1

1 +Mismatch(Context ) (9)

6 Results

We present results of applying our method in modelling a NAO robot (Fig. 3a)
performing the task of kicking a ball and a Pepper robot (Fig. 3b) picking up
different types of objects and clearing them off a table.

6.1 BallKick Task

Here we demonstrate advantages of the active experimentation approach and our
model refinement algorithm. Our approach builds a model, but without knowing

5
PθT is the distribution parameterized by θT . For a task T , θT is defined in Eq. (4)



(a) NAO (b) Pepper

Fig. 3: Subjects for experiments

the ground truth we cannot determine how good the learned model is. So we pro-
grammed the robot to behave according to a predefined model with parameters
θpredefined . We use DKL(Pθpredefined

(OUT)∣∣PθBallKick
(OUT)) to determine how close

the learned and predefined models are. θBallKick is defined in Eq. (4), for the
BallKick task. Fig. 4a shows the learner’s initial guess of the Bayesian Network.

Passive vs Active Passively observing a subject, where you do not control the
scenarios in which you witness it perform a task, is equivalent to randomly pick-
ing Situations to build a model. We learned a model using our approach and an-
other one by randomly picking Situations. Fig. 4b depicts the Bayesian Network
for the predefined model. We experimented with a single ball on a synthetic turf
and thus variables Turf and BallSize were dropped in the predefined model. A
subtle point to note, the experiments were noisy. The learner chose a particular
Situation, sampled a direction from Pθpredefined

(KDo∣Situation) and commanded
the robot to kick in this direction. However, owing to noisy perception and ac-
tuation, sometimes the robot kicked in directions it wasn’t commanded to. Fig.
5a shows that despite noisy experiments the active approach converged faster.

Model Refinement We programmed the robot to detect balls of any color
but only a specific size. If presented with a ball of a different size, the subject
would not detect and thus won’t kick i.e. KDo would be None. Fig. 4c depicts
the Bayesian Network for the predefined model and Fig. 4a shows the learner’s
initial guess. The learning curve for this model is shown in blue in Fig. 5b. The
learner correctly identified the missing variable to be BallSize. Once identified,
the algorithm resets the conditional probabilities (hence the jump in the trend)
and restarts the learning process with the updated model. To show that incor-
porating relevant attributes yields a model better representative of the subject,



KDcPosition BallSize

KDo

BallColor

Turf

(a)

KDc

KDo

Position

(b)

KDc

KDo

Position BallSize

(c)

Fig. 4: (a) depicts the learner’s initial guess of the model and, (b) and (c) depict
the Bayesian Network of the predefined model. Nodes are as defined in Fig. 2c

we learned another model including BallSize from the start. As can be seen in
Fig. 5b, the model that included BallSize from the start (in green) converged to
a lower KL Divergence compared to the model that did not (in blue). Moreover,
post refinement the trends for both models are almost same.

We tested in simulation, how our approach fares as the number of missing
attributes increase. In these experiments the robot could only detect balls of
a certain size and the kicked ball would randomly end up in any of the three
possible directions i.e. BallSize and Turf were the missing relevant variables.
To simulate noisy experiments we sampled KDo uniform randomly 20% of the
time. We performed multiple runs and the results in Fig. 5c show that including
all the relevant variables gives a better model. More the number of missing vari-
ables, more the number of experiments needed to identify them all. Moreover, it
becomes progressively harder. As a variable gets included in the model, possible
Situations increase. While evaluating R(o,Aj∣S) (Eq. (5)), we only consider the
distributions of o conditioned over values of Aj that have been observed more
than a certain number of times in the Situation S. The active learning algorithm
avoids repeating Situations and thus it becomes incrementally harder to identify
relevant variables.

6.2 Pickup Task

We programmed a Pepper robot to detect and pickup objects of three shapes
viz. spherical, cubical and cylindrical. We experimented with two sets of weights
and two sizes for each shape (in total 12 types of objects). Fig. 6 depicts the
Capability Model for the Pickup task. A Context (Size, Shape and Weight)



(a) (b)

(c)

Fig. 5: (a), (b) and (c) depict the trend in DKL(Pθpredefined
(KDo)∣∣PθBallKick

(KDo)).
(a) compares the trends when learned actively vs passively. In (b) and (c), curves
in blue depict trends for the learner’s model as it identifies relevant factors to
include, red points mark the instances when a new variable is added and curves
in green depict the trend if the model were initialized with the right variables.

denotes an object type. In every experiment Pepper was asked to pick up a
particular type of object with one of its arms.

We performed 2 trials with 70 experiments each to learn the conditional prob-
ability tables associated with the Capability Model. We computed ScorePickup ,

as defined in Eq. (9), for each object type using the reference P
Pickup

ref
defined in

Eq. (10). We identified object types with score higher than a threshold at the
end of both trials, as favourable for Pepper to pickup.

P
Pickup

ref (Pick ∣Arm) = {1 if Pick = Success
0 otherwise

(10)

Having knowledge of the scenarios a robot is well suited for could help in a
collaborative task. To demonstrate this, we employed the robot along with a
human to clear a cluttered table. In every experiment, the human cleared all but
4 objects off the table and, the robot had to clear the rest. The robot was allowed
3 tries per object (12 in total). We performed such experiments in two settings.
In the first setting, the human randomly selected objects for the robot to pick



up and in the second, the human only selected objects of favourable types. We
conducted 5 experiments in each setting. Table 1 summarizes the results.

Settings Number of objects cleared Number of tries

Objects of any type 1.8 ± 0.98 8.8 ± 1.7
Objects of favourable types 3.4 ± 0.49 6.6 ± 1.2

Table 1: Results of the clear-the-table task (µ±σ) after 5 experiments per setting.

Performance at the task is better in terms of number of tries as well as number
of objects cleared, when the robot is employed in a favourable scenario.

A video outlining our work can be found at https://youtu.be/_9fm3U80vHE.

Size

Pick

Shape Weight

Arm

(a)

SIT = {Shape, Size, Weight, Arm}
CNTX = {Shape, Size, Weight},
COMM = {Arm}
OUT = {Pick}, ATTPick = {}

(b)

Arm ε {Left,Right},
Shape ∈ {Ball,Box,Cylinder},
Size ∈ {Small,Large},
Weight ∈ {Light,Heavy},
Pick ∈ {Success,Failure},

(c)

Fig. 6: Capability Model for the Pickup task. (a) depicts the Bayesian Network,
(b) shows the type of each variable in the model and, (c) describes the values
each variable can take.

7 Conclusion and Future Work

Building models of unknown robots becomes all the more relevant as robots
become increasingly multifunctional. To the best of our knowledge, the problem
of inferring capabilities from appearance and active experimentation is novel
and yet unexplored. We presented an algorithm to build capability models from
experiments and showed results with a NAO and a Pepper robot at two different
tasks. Experimenting with a physical system requires an operator. However, we
still need a systematic approach to design experiments. Our algorithm can serve
as a tool for humans in determining, ”What can this robot do?”

As an extension to this work we intend to develop an approach to draw infer-
ences about the capabilities of a robot from its appearance and specifications. A
robot’s capabilities may have certain limitations which are intrinsic and others
which it may learn to overcome. Enabling the learner to distinguish between the
two and experiment accordingly is an interesting future direction. Moreover, we
assumed that experimenting with the subject in any Situation has the same cost.
Depending upon the task this may be quite far from reality. Learning models in
such scenarios is another interesting problem.

https://youtu.be/_9fm3U80vHE
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