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Abstract— We present a novel approach to enable a mobile
service robot to understand questions about the history of
tasks it has executed. We frame the problem of understanding
such questions as grounding an input sentence to a query that
can be executed on the logs recorded by the robot during its
runs. We define a query as an operation followed by a set of
filters. In order to ground sentence to a query we introduce a
joint probabilistic model. The model is composed by a shallow
semantic parser and a knowledge base to store and re-use
the groundings of a sentence. The Knowledge Base and its
predicates are designed to match the structure of a query. Our
results show that, by using such Knowledge Base, the approach
proposed requires fewer and fewer corrections as users interact
with the system.

I. INTRODUCTION

We have been deploying the CoBot robots (see Figure 1)
for over five yecars [1]. The CoBot robots are mobile service
robots able to autonomously navigate in our multi-floor
office environment, and to execute tasks for users, such as
moving between locations, delivering objects, and escorting
visitors. The robots have navigated over 1,000km [2] and
have executed countless tasks.

The CoBot robots autonomously move performing tasks
without any supervision. Hence, we can see these robots
navigating in our environment, but people are unaware of
what specific task they are executing or have executed.
In this work, our aim is to enable the CoBot robots to
autonomously answer questions about the history of the
tasks they have performed. We address questions provided as
natural language sentences, and aim at retrieving a specific
bit of information from the long list of tasks executed by the
robot. The problem we have to solve is therefore two fold.
First, the robots need to be able to access the history of tasks
they have performed. The CoBot robots are continuously
recording logs of their execution, so we use these logs to
access the history of tasks. Second, the robots need to ground
a natural language sentence to an operation that can be
performed on the logs recorded. To do so, we introduce
parameterized operations and learn a Knowledge Base to
store and to re-use the groundings of the questions in natural
language to the log operations.

In previous work, we introduced the concept of verbal-
ization [3], [4] to allow a mobile service robot to convert
its route experiences into natural language. Here we move
beyond the navigation aspect to the task level. We focus on

Fig. 1: The CoBot robots.

learning the groundings of language to log queries, i.e., we
focus on the understanding of the question itself.

We frame the problem of answering a question about the
history of tasks executed as finding the best query to execute
on the logs recorded by the robot during its runs. To do so,
we define the structure of a query as a primitive operation
to be performed on the record of the logs that match a set
of filters defined by the user. We then enable the robot to
learn the grounding of a question to a query by using a
Knowledge Base that stores mappings from natural language
expressions to log operations and filters. Finally, we validate
our approach by evaluating it on a corpus of queries.

The rest of the paper is organized as follows. Section II
discusses related work. Sections III-Aand III-B present the
structure of the tasks our CoBot robots execute and the
structure of the logs they record. Section III-C provides
the formalization of the structure of the queries that can
be executed on the logs. Section IV introduces the overall
model to ground sentences to queries. Section I'V-A presents
our semantic parser, and Sections IV-B and IV-C present
the Knowledge Base we designed and its use for grounding.
Finally, Section V details our experimental setup and the
results achieved.

II. RELATED WORK

In the literature we identify three main categories of works
relevant to our proposed approach: 1) works presenting
robots that are persistently deployed in the environment, 2)



works pertaining to intelligibility or explanation of intelli-
gent agents, and 3) works enabling autonomous robots to
understand natural language.

The CoBot robots are not the only example of robots inter-
acting and executing tasks for their user that are persistently
deployed in the environment. The Kejia robot [5], initially
designed to compete in the Robocup@Home!, was recently
deployed in a mall where it acted as a guide [6]. The DWI-
Bots [7] are able to complete user requests and integrate
probabilistic and symbolic reasoning. These capabilities are
used to dialog with their user and resolve queries efficiently
by using commonsense reasoning. Finally, the STRANDS
project [8] aims at tackling the increasing demand from end-
users for autonomous service robots that can operate in real
environments for extended periods.

In Human-Computer Interaction a large body of works fo-
cus on intelligibility of intelligent systems (e.g., for context-
aware systems [9]). In [10], the authors present a study
performed over 200 participants. The results shows that
automatically providing explanation for a system’s decision
can improve users trust, satisfaction and acceptance level. In
[11], the authors use a music recommender system to show
how the mental model of a user affect the ability of the user
to more effectively operate the system itself. In particular,
they show that completeness in the explanation provided
by the system helps the user build more useful mental
models. Last, [12] uses a Clinical Decision Support System
(CDSS) to show how automatically generated explanations
can increase the users trust. Similarly we aim at improving
the understanding and trust users have toward our CoBot
robots. As a first step, in this work we enable our robots to
understand question on the task they perform.

We expect users to ask questions to our robots using
natural language. Enabling an agent to understand natural
language has been a long standing goal for Al researchers
[13] that today interests more and more scholars [14]. In
the robotics literature we identify two main approaches to
enable robots to understand natural language. The first is to
map the input sentence to a logical form that the robot can
evaluate and ac upon (e.g., A-calculus [5], [6], [15], [16]).
The second approach, that we also adopt, is to consider a
probabilistic model to map language into robot actions as in
[17], [18], [19], [20]. In the previous works, robots learned
how to understand commands or instructions requiring them
to execute physical actions. We move beyond these works by
enabling robots to understand questions about the history of
tasks they execute. Finally, to represents the tasks executed
by the robots, we use semantic frames [21], a formalism
extensively applied both to linguistics [22] and to robotics
[23], [24].

III. TASKS, LOGS, AND QUERIES STRUCTURE

Our goal is to enable a mobile service robot to answer
questions about its past experience, and in particular inquiries
about the tasks it has executed. In this sections we first
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describe the tasks the robots are able to execute. We then
presents the structure of the logs recorded. Finally, we
formalize what a query to the log is and its structure.

Action: GoTo
Arguments: Destination
Action: FindAndFetch
Arguments: Object

Source

Destination
Action: Escort
Arguments: Person

Destination

Fig. 2: Semantic frames and their arguments for each of the
tasks the robot can execute.

A. Robot Tasks

Our CoBot robots are able to execute three tasks: going
to a specific place, escorting a person to a location in the
environment or delivering an object. Each of this tasks
is represented by a semantic frame. Semantic frames are
composed by an action (the task itself) and a set of task-
specific arguments. Figure 2 shows the semantic frames and
their argument for the three tasks our robot can perform.

B. Logs

Our CoBot robots run primarily on ROS?. ROS allows
to write modular code where each module is called a
node. Nodes can publish or subscribe to specific topics in
order to send and receive messages from other nodes. Each
topic specifies the structure of the messages exchanged.
Using rosbag® it is possible to record and replay all the
messages exchanged during each run of the robot. These
recordings constitute the bulk of our logs. During each
run the logging process records the messages exchanged
over 40 topics but, to answer queries about the history
of task executed, we will focus only on one specific
topic (namely, /Cobot /TaskPlannerStatus). Figure 3
shows the structure of the messages exchanged on this
topic. The message has many different attributes that are
used for multiple purposes. To keep track of the current
execution state of a task we use the timeBlocked, and paused
arguments. To schedule requests for other tasks we need
to check the navigationTimeReamining and timeToDeadline
arguments. The argument of the message relevant to answer
questions about the history of tasks performed are the one
specifying the task type (currentTask) and the ones matching
the argument of the semantic frames representing the tasks
(fromLocation, toLocation, objectToFind).

All the relevant attributes in the messages are strings. The
currentlask can only be one of the three actions shown in
Figure 2 (GoTo, FindAndFetch or Escort). The objectToFind
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attribute matches directly the English expressions used to
schedule the task. Tasks can be scheduled from a GUI
on board, from a website, or through a spoken interface;
in all three cases the objectToFind attribute contains the
information as provided by the user. Last, the two arguments
relating to location (fromLocation, and toLocation) are ex-
pressed as location-labels (e.g., “GHC7412”) that the robot
autonomously map to (z,y) coordinates in its map.

int32 mission_id

string currentTask

string currentSubTask

string currentNavigationSubTask
float32 timeBlocked

float32 taskDuration

float32 subTaskDuration
float32 navigationSubTaskDuration
float32 navigationTimeRemaining
float32 timeToDeadline
CobotLocalizationMsg currentDestination
string JfromLocation

string toLocation

string objectToFind

bool carryingObject

bool navigating

bool taskCompleted

int32 successValue

bool paused

string owner

Fig. 3: Structure of the message exchanged on the topic
/Cobot/TaskPlannerStatus. On the left the argument
type and on the right the argument name.

C. Queries

We define a query as an operation and a set of filters. The
operation defines which function we apply to the relevant
records of the logs. We identify three different operations:

o CHECK: this operation returns true if the logs have at
least a record matching all the filters specified by the
query, otherwise it returns false (e.g., “Did you go to
Chris office last Tuesday?”).

¢ COUNT: this operation returns the number of records
matching the filters specified in the query (e.g., “How
many times did you escort someone to the lab last
week?”).

o SELECT: this operation returns all the records match-
ing the filters specified in the query (e.g., “what where
you doing on March 3rd at 3pm?”).

The filters, as the name suggest, reduce the number of
records and select only the relevant ones for the query. We
consider two different types of filters namely, task-related
and the time-related. Since the queries we consider refer to
the history of tasks executed, it is natural for the user to
specify a time to frame their question. We formalize the time
reference of a query as time-related filters. Specifically, we
identify two different type of such filters, the ones referring
to a specific time (e.g., “What were you doing yesterday at
4:30pm?’) and the ones specifying a time interval (e.g. “how
many times did you go to the lab last week?”).

For our CoBot robots, we identify a total of five task-
related filters. The first task-related filter is the task ID.
This filter specifies what kind of task the query refers
to. We derive the remaining four filters directly from the
arguments of the semantic frame for each task. These filters
are: destination, source, object, and person. Not all the filters
are applicable to all tasks, Figure 4 shows which filter is
applicable to each task.

GoTo | FindAndFetch | Escort
Time v v v
Task ID v v v
Destination v v v
Source v
Object v
Person v

Fig. 4: Filters and their applicability

IV. GROUNDING SENTENCES TO QUERIES

We frame the problem of understanding a question about
the tasks the robot executed as inference in a joint proba-
bilistic model over the possible groundings (), a parse of
the question P, and given a Knowledge Base K B. The goal
is to find the query @* that maximize our joint probability.
Formally:

argmax p(Q, P|KB)
Q

Using Bayes Theorem we rewrite our joint distribution in
terms of the grounding and parsing probabilities:

p(Q, PIKB) = p(Q|P, KB)p(P|KB)

Finally, since the parser is independent from the Knowledge
Base, we can further simplify the equation for the probability
of a query as:

p(Q, PIKB) = p(Q|P, KB)p(P)

In the next three subsections we first describe our parsing
model, we then detail the Knowledge Base used for the
grounding model, and finally we introduce our model to
compute the grounding probability.

A. Parsing

We adopt a shallow semantic parsing. We label each word
in a sentence and then we chunk together words with the
same labels. The labels we have chosen closely match the
structure of a query as explained in Section III-C. The set of
label L we used is: {Operation, TaskID, Time, Destination,
Source, Object, Person, None}. We use the label Operations
for the words referring to one of the three operation we can
perform on the logs (CHECK, COUNT, and SELECT). The
TaskID, Destination, Source, Object, and Person labels are
used to select the words pertaining to one of the task-related
filters. The Time label matches words identifying time-related
filters. Finally the label None is used for words that can be
ignored. Figure 6 shows an example of an input sentence
and its parse.



Query
Operation
) TaskiD

"] Start Time ] End Time

Clear OK

(a)

Can you tell me how many times did you take a book from my office to the library in the last two months? Query

Operation | COUNT how many

& TaskiD DELIVER_OBJECT take

& startTime |1/22/1711:40AM || & End Time [3/22/1711:40AM . |inthe last two months?

®object abook
Msource  |GHCT7002
[ Desination| GHC3102

my office

the library

Clear OK

(b)

Fig. 5: The form used for our experiments. (a) Shows the form as initially presented to the user, and (b) shows all the fields

completed.

Given a sentence S of length N we need to label each
words s; as [;, where [; € L. We model the parsing problem
as a function of pre-learned weights w and observed features
¢. Formally:

p(P)

p(li, oy INIST, oy SN)

N
1
= ECXP(;W : ¢(li, Si—1, Si, Sz‘+1))

We learned this model using a conditional random field,
where ¢ is a function producing binary features based on the
part-of-speech tags of the current, next, and previous words,
as well as the current, next, and previous words themselves.

“Can you tell me how many times did you take a book
from my office to the library in the last two months?”

(a)

Can you tell me [how many times]operation did you
[take|raskip [@ book]opject from [my office]source to [the
library]pestination [in the last two months?]riye

(b

Fig. 6: (a) Example sentence and (b) its parse. The words
without label are actually labeled as None, the label has been
omitted for clarity.

B. Knowledge Base

The goal of the knowledge base is to store and re-use
grounding of natural language expression. The Knowledge
Base stores groundings in the form of three different binary
predicates. The first argument of each predicate is always
a natural language expression e. The second argument of a
predicate represents the grounding v of the expression e. To
each predicate we attach a confidence score that we indicate
as C(¢,~)- The three predicates we use are OperationGround-
sTo, TaskGroundsTo, and LocationGroundsTo.

The predicate OperationGroundsTo is used to store the
mapping from the words labeled by the parser as taskiD
to one of the possible operation on the logs (e.g., Oper-
ationGroundsTo(“How many times”’, COUNT)). Similarly,
TaskGroundsTo saves the mapping from words labeled as

taskID, to the semantic frame actions (e.g., TaskGround-
sTo(“take”, FindAndFetch)). Finally the predicate Location-
GroundsTo maps the expression labeled as Source or Desti-
nation to one of th location-labels used by the ROS message
(e.g., LocationGroundsTo(“my ofice”, GHC7002).

C. Query Grounding

At the beginning of this section we showed how our
model is composed by a grounding probability and a parsing
probability. Here we detail how the grounding probability is
computed. A query () is composed by an operation op and
a set of ¢ filters f. We assume that an operation and its filter
are independent and can therefore be grounded separately.
Accordingly, we rewrite our initial grounding probability as:

p(Q|P, KB) = p(op|P, KB) [ [(fil P, K B)

The probability of an operation, or a filter, is computed
using the confidence score of the Knowledge base predicates.
To compute the probability of a specific grounding ~* for an
expression e we use the following formula:

* C’Y*ﬁ

PP B = e

The knowledge base contains predicates that allow for the
grounding of the operation and the filters about the task, the
source and the destination of a task. The filters about the
person and the object do not require grounding as, in the
logs, they are already saved as natural language expressions.
Finally for the time filters we opted to use a third party
library [25].

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

In order to test our approach we designed a form that users
can fill to ask questions about the history of tasks executed
by our CoBot robots. Figure 5 shows the form before and
after being completely filled. The form is designed to match
the structure of a query and it has three main components: a
large text box used for user input, a first grounding sections
for filters common to most queries, and a second grounding
section for the task-related filters.

The first grounding section of the form has two drop-down
menus and two date/time edit box. These four elements are
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Fig. 7: On the Y axis the error of the approach proposed in grounding sentences to query, on the X axis the number of
queries as time progress. (a) Shows the overall error, (b) The error in grounding the operation only and, (c) the error in

grounding the task.

all placed on the left-hand side of the form. The drop-down
menus allow the user to select, respectively, the grounding
for the operation of the query and, if needed, for the taskID.
The two date/time edit box allow the user to set time-related
filters. Time interval are specified by using both boxes, while
specific time filters (e.g., “yesterday at 4:30pm”) can be set
by disabling the second date/time box. For each element
in this section the form has, on the left, a small text-box
showing what part of the sentence matches the selected
operation or filter. This text-box are initially compiled based
on the structure extracted by the semantic parser.

The second section of the form allows the user to specify
task-specific filters such as the object for a FindAndFetch
task or the person for an Escort task. This section is initially
hidden, it only appears once a task has been selected and,
since each task has different arguments, is dynamically gen-
erated. For the filters that require a grounding (i.e., Source,
and Destination) the form provides two text boxes, on the
left the ones grounding and, on the right, the ones for the
matching structure extracted by the parser. For the remaining
filters (i.e. Person, and Object) the form only shows the part
of the sentence that is going to be used to search the logs.

B. Experimental Results

The “Ok” button at the end of the form allows the user
to confirm that all the information entered is correct. When
the button is clicked two things happen. First, we update the
Knowledge Base, by reading the content of the elements on
the right-hand side of the form we generate new predicates
and add them to the Knowledge Base. If a predicate is
already present in the Knowledge Base we simply update
its weight. Second, we save the content of the text boxes on
the right-hand side. The fragment of the sentence constitute
a parse that has been validated by the user and that can be
used to improve the parser itself.

In order to test the approach proposed we asked a user to
enter the 32 sentences we used to train the semantic parser
in the form described above. Given the small size of the
corpus, we decided to use the same sentences to train the
parser and to test our proposed approach. Doing so, we aim at
minimizing the error induced by the parser itself and properly
assess the grounding process. The user was asked to enter

the sentence and, if the from returned an incorrect or missing
grounding, to provide the right one. The initial Knowledge
Base used for grounding was completely empty.

We evaluate our approach in terms of errors made when
grounding a sentence to a query. The error is measured as the
number of edits the user made to the field of the form before
confirming the query. Figure 7a shows the total number of
errors made for each of the 32 sentences used.

Figure 7b shows the errors made in grounding the part of
the sentence referring to the operation to be performed on the
logs. The Knowledge Base is unable to provide the grounding
for the operations only on 6 occasion. This suggests that the
language used to refer to operations is consistent across the
32 sentences we gathered. Moreover, after the 19th sentence,
our approach always grounds the operation correctly.

Figure 7c shows the error made in grounding the taskID
filter. We expected this error to have a comparable trend to
the one recorded for the operation as the number of possible
grounding is the same for the operation and the tasks. By
looking at the Knowledge Base after the experiment we find
two possible explanations. First, it appears that there is less
variety in the expressions used to refer to operation compared
to the ones used for task. For the COUNT operation the
we only have to expressions, “how many” while for a
FindAndFetch task e have at least three: “take”, “bring”,
“deliver”. Second, the expressions used to refer to a task
sometimes overlaps. The verb “take” can be used to refer to
a FindAndFetch task as well as to an Escort task, creating
more uncertainty and therefore potential for error.

Finally, Figure 8 shows the number of facts recorded in the
Knowledge Base as we go through the sequence of sentences.
The number of facts initially increases quickly but after the
19th sentences the slope of the curve reduces. This matches
what we show in Figure 7b where we highlighted that the
approach proposed stops to ask questions about the operation
after the 19th sentence. Last, we note that the plot seems
to be converging toward a maximum number of facts; this
suggests that, in the long run, our approach will no longer
require corrections from the users.
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VI. CONCLUSIONS AND FUTURE WORK

In an effort to make service robots more transparent to
their user we presented a novel approach to enable a robot to
understand questions about the history of tasks it previously
executed. We formalize this problem as mapping an input
sentence to a query to be executed against the logs recorded
by the robot during its runs. We characterize a query about
the history of the tasks executed by a service robot as an
operation to be executed on the records of the logs that match
the filters defined by the user. In this work we consider both
task-related and time-related filers.

The problem of mapping an input sentence to a query is
framed as probabilistic inference over a shallow semantic
parse of the sentence and a Knowledge Base that the robot
builds, iteratively, through the interaction with its users. The
predicates used in our Knowledge Base are designed to allow
to store and re-use groundings for different parts of each
query. Our results, on a corpus of 32 sentences, show that
the approach proposed improves in grounding sentences to
queries. The number of corrections by the user decrease as
the system goes through successive queries.

In the future we plan on deploying the approach proposed
on the real CoBot robots. This will allow us to gather more
example of sentences relating to queries about the task the
robot executed in the past and further validate both our
grounding and parsing approach. In order to deploy the
approach presented in this paper in the wild we will also
investigate the best way for the robot to provide answer to
the users once the query has been executed.
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