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Abstract— Autonomous mobile robots continuously perceive
the world, plan or replan to achieve objectives, and execute
the selected actions. Videos of autonomous robots are often
naturally used to aid in replaying and demonstrating robot per-
formance. However, plain videos contain no information about
the ongoing internals of the robots. In this work, we contribute
an approach to automate the overlay of visual annotations on
videos of robots’ execution to capture information underlying
their reasoning. We concretely focus our presentation on the
complex robot soccer domain, where the high speed of the
robots’ execution results from action planning for collaboration
and response to the adversary.

I. INTRODUCTION

Consider watching a video of robot soccer in the RoboCup
Small Size League (SSL), as depicted in Figure 1. The game
is fast and the ball is small, so it is hard to tell what is
happening for anyone does not already know the game very
well. It can be hard even to tell which robots are on each
team, as shown by the blue and yellow dots on top. Even
if we do know the robots well, there is still a lot that we
cannot deduce by just looking at the robots moving; the ball
and the teams are still hard to follow. Videos are informative,
because they capture a recording of what actually happened
in the world, but there is much information about the robots’
behaviors that is not captured by the video.

In this work, the robots are necessarily controlled by some
computer algorithm; we contribute a process for extracting
information about their operation while they run and storing
it for display on a video. It would not be possible to do
something similar with a video of humans, whose internal
“algorithms” are inaccessible to the outside world.

We propose and discuss a means of organizing the in-
formation generated by an autonomous robot in a manner
suitable for translation to visualizations. Overall, our main
goal is to combine real systems of mobile autonomous robots
with the ability to visualize reasoning algorithms, so that we
can capture and reveal what the algorithms of autonomous
robots are doing. We wish to display the behavior of complex
autonomous agents in tandem with the real world, enhancing
what were originally initially plain, uninformative videos,
and we do so by developing the ability to draw extra
algorithmic information on videos, as shown in Figure 1.
Much of the internal state of the robots involves physical
locations on the ground, e.g., where the ball is, where to
pass to, and where the opponents are. By making the video
look as if all of that information had actually been displayed
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(b) The same frame as above, with visual annotations overlaid.

Fig. 1: An example of an image from an SSL game, first
without and then with extra annotations.

on the ground around the robots, we can more clearly show
what happened and why the robots did what they did.
Since an algorithm controlling robots may process many
different pieces of information per second, it is also important
to be able to reduce what such visualizations display in
a way that follows the robot algorithm. Accordingly, we
introduce the application of multiple levels of detail to
robot visualizations. We describe a method of organizing the
information created by a run of a robot algorithm into a form
that mirrors the structure of the algorithm. By organizing the
information into a graph structure, we make it easy to select
and filter information that relates to individual components.
In this paper, we demonstrate an application of these ideas
using a RoboCup SSL team. However, the same concepts can
be extended to work with other autonomous mobile robots.

II. RELATED WORK

Our work consists of two main parts: organizing the infor-
mation generated by an autonomous robot as it executes tasks
and projecting that information onto a video of the robot
performing those tasks. In this paper, we discuss the first
aspect and provide a summary of the second. We concretely
ground our visualizations using the RoboCup SSL [10].

Batory and O’Malley [2] previously examined the orga-
nization of software into separate components that relate to
each other in a graph structure, similar to how we organize
the information generated by an autonomous agent. They
provide a general definition of software components and the



interfaces between them. Collberg et al. [4] take a related
approach to the organization of software, using inheritance,
program flow, and call graphs, and develop visualizations
for depicting the change of software over time. Compared
to this earlier work, we incorporate the spatial aspects of
autonomous robots into the system, allowing us to perform
an augmented reality-style visualization. We also take the
conceptual structure of the program and, rather than visualize
it directly, use it to organize a separate set of visualizations
generated during the execution of the program.

Augmented reality systems are displays that show the
real world itself along with additional information on top.
Collett [5] developed a system to depict robots’ sensor
information in an augmented reality display. We use similar
ideas of video manipulation, but additionally focus on higher-
level aspects of robotic planning, A popular commercial
product related to augmented reality appears in television
broadcasts of American football games ([1], [7]). Many such
broadcasts add a virtual down line or other information for
the benefit of viewers; the displays move and are occluded
as if they were present on the playing field, much like the
work presented here. Such displays are mature and have
high precision in positioning and occlusion, but they require
pan/tilt sensors on all cameras and a crew of humans in order
to keep track of changes in lighting conditions.

IIT. PLANNING IN THE ROBOCUP SMALL SI1ZE LEAGUE

The SSL is a RoboCup league in which teams of six robots
play soccer using a golf ball in a 9m x 6 m field. Each team
has an offboard computer that controls all of that team’s
robots over radio. Overhead cameras provide localization;
SSL-Vision [13] processes the camera input to detect the
robots and ball. As compared to other RoboCup leagues,
the high-fidelity global vision and centralized planning allow
teams to focus on coordination and high-level teamwork, as
opposed to perception, locomotion, or distributed planning.
RoboCup SSL games are fast-moving, with the robots trav-
eling at up to 3m/s and the ball at up to 8 m/s.

An example of a specific planning algorithm used by our
SSL team is selectively reactive coordination (SRC) [8],
which is our method of determining how to position attacking
robots so as to maximize the probability of scoring goals.

In brief, the steps of the SRC algorithm are as follows:

1) Compute zones, which are subsets of the field.

2) Assign the zones to the available attacking robots.

3) For each attacking robot, compute an individual action

within its assigned zone.

The algorithm includes multiple steps in sequence, where
details of the positions and regions involved in each stage
are not deducible from the final behavior of the robots.

At any given moment in time, the SRC algorithm uses a
set of zones {z;}, which are rectangular subsets of the field
space. Sets of zones are chosen offline and manually; the
algorithm chooses a set of zones at each timestep. If there
are n available attacking robots, the algorithm designates
n — 1 as support attackers and assigns them to zones;
the remaining robot is the primary attacker, which has no

zone; instead, it attempts to manipulate the ball. To assign
the primary attacker and the support attacker zones, the
algorithm computes a cost for each robot and each role, then
finds the best overall assignment of robots to roles.

Next, each support attacker chooses a pass reception
locations within its zone. Each location is the point within
the zone leading to the highest probability of successfully
making a pass. The computation of probability depends on
several factors, such as the distance from each point to the
opponent goal. Regardless of the point chosen, each support
attacker moves to a predefined default location within its
zone; they wait there until the algorithm chooses a pass
receiver, which moves to its chosen location.

Finally, the team executes the pass using a pass-ahead
algorithm [3], which determines the timing of the receiver’s
movement relative to that of the robot with the ball in order
to receive the pass while leaving as little as time as possible
for the opponent team to intercept the ball.

IV. VISUALIZATIONS OF PLANNING

We introduce the idea of augmenting a robot planning
algorithm to generate visualizations describing aspects of
its planning. While running, the robot records information
relating to the planning; each time the control algorithm
executes, the generated visualization information is gathered
together for real-time or offline display. In our system,
that information is then drawn onto a video, as shown in
Figure 1b. We discuss visualizations that consist of geometric
shapes, which can be drawn onto the video directly; it is
also possible to use symbolic information, which would
then have to be transformed into drawings in a further step.
For the SRC algorithm, we choose the following pieces of
information to visualize:

« the zones

o the default location within each zone

« the location chosen by each support attacker

o which robot is the primary attacker

For a planning algorithm such as SRC that runs on real
robots, showing aspects of the plan that will take time to
execute on top of the current state of the robots blends the
future and present aspects of the planning and execution in
a way that is impossible to achieve with a plain video alone.

Figure 2 shows a particularly visible example of this
correspondence across time, as related to SRC. The first
image shows the primary attacker planning to pass to a
location in the upper right of the image; the second image
shows a point in time a few seconds later, after the intended
receiver has received the ball at the planned location.

A. Information hierarchy

We adapt the idea of layered disclosure [9], which applies
to textual logging information, and only with a single di-
mension of filtering. With layered disclosure, lines of textual
information generated by an autonomous agent are given
numerical levels corresponding to the level of detail that they
represent. For example, levels 1-10 are for high-level goals,
while levels 41-50 are for sensory perceptions.



(b) A teammate robot has received the ball at the planned location and is about to shoot it into the goal.

Fig. 2: Visualizations showing the planning and subsequent execution of a pass between two robots.

We extend the idea of a single dimension of detail to a
hierarchical system of logging information. The structure of
the information hierarchy should mirror the layout of the
algorithm in some sense. The idea of software as a graph of
components has been explored, though the means of creating
the abstract structure in our case may be different from
that in the other work. We assume generally that we have
a directed acyclic graph (DAG) describing the reasoning
structure, where each node has some set of visualization
information associated with it. This DAG might be generated
based on a similar notion of components within the reasoning
algorithm of the agent as described above; alternatively, the
nodes could correspond to particular pieces of information
and the information dependencies between them.

When working with visualizations, having a principled
means of filtering information is even more important than
with text logging; spatial visualizations may overlap with
each other, causing them to interfere in a way that is not
present with text. Our solution is to use the conceptual
organization of the agent to filter the set of visualizations
shown at the same time.

B. Geometric primitive mapping

At any time during execution, an agent’s reasoning al-
gorithm may generate visualizations based on its state at
that point. The algorithm applies some means of mapping
an aspect of its reasoning into geometric primitives, each of
which is one of a few simple shapes: circle, line, rectangle,
or ellipse. Each instance of a geometric primitive has a color
and the appropriate geometric parameters.The parameters of
a primitive are some function of values in the reasoning, such
as local variables at the point in the algorithm generating the
primitive. The mapping may be chosen by anyone involved
with the robots, perhaps (but not necessarily) a developer.

A typical use of the geometric primitives for robot soccer
is to display positions on the field derived from calculations
within the soccer algorithm. For example, we might show
a good location at which to receive a pass by drawing a

circle around it, or show where a robot should go by using
line segments to draw an arrow from its current location
to that location. For the SRC algorithm in particular, we
define the following mappings from information to geometric
primitives; Figure 2 shows examples:

« the zones map to yellow rectangles

« the default locations map to yellow circles

« the computed locations to receive passes map to small
red circles (top right of Figure 2a)

« the locations to which support attackers should drive to
receive passes map to small green circles (top right of
Figure 2a)

Figure 2b also demonstrates lines depicting parts of the
calculations for making the subsequent shot on the goal.

We also use circles of a fixed size to represent the robots;

doing so is appropriate here, since all of the robots are of
essentially identical size and shape. If the robots were not
all the same, we could easily use different shapes for each
one, given a suitable shape for each type of robot.

V. SSL LOGGING AND DRAWING

In this section, we describe the specifics of the SSL
platform on which we have implemented our visualizations,
including the format of log file available and the current
interfaces available for viewing log files.

A. Log description

The control algorithm of the team runs a complete iteration
60 times per second; each iteration produces a heterogeneous
collection of information about the reasoning it performs.
The information produced by each iteration comprises:

o raw positions as received from SSL-Vision [13]

— for each robot: position and angle
— for the ball: position

« positions and velocities predicted by Kalman filter [11]
— for each object: position, angle, and velocity
« the commands sent to each robot by our soccer team



— for each robot: velocity, angular speed, kick state
« a hierarchically-organized textual log [9]

— lines of text, each indented corresponding to its
depth; we form a tree where the parent of each line
is the closest previous line with a smaller indent

o a list of drawing primitives with parameters

— list of circles, lines, rectangles, and ellipses

We have developed a graphical interface to display the
information from a log and enable us to interpret the rea-
soning behind the SSL robot behaviors, shown in Figure 3.
The interface combines all aspects of the log into an inte-
grated display and is essential to our efforts to improve the
intelligence of our robots.

B. Additional drawings created by the viewer itself

The viewer application, in addition to depicting the pre-
generated drawings, computes additional information to draw
based on the information in the log. Currently, that infor-
mation comprises (a) object trails, (b) navigation targets,
(c) open angles to goals, and (d) navigation obstacles. The
viewer draws these pieces of information itself, visually dis-
tinct from the drawings from the soccer team. These pieces of
information could be pre-generated as well, but, for practical
reasons, they are treated separately. These extra pieces of
information can be toggled on and off independently, so they
present a simple form of information selection.

One reason that not everything can be computed by the
viewer is randomness; each random choice would need to
be explicitly recorded and reused. There is also the matter
of amount of computation. The information drawn by the
viewer comprises object positions and the results of short
computations using information in the log. That information
would be redundant to include in the log, so we allow it to
be recomputed. On the other hand, reproducing everything
would involve rerunning the entire soccer program, which
would be impractical. The set of information redrawn reflects
a balance between these two extremes.

C. Information selection

Our robot agents are complex and produce information at
a high rate. Thus, it is necessary to devise means of reducing
what is displayed. For the textual information, we already use
an extension of layered disclosure. We produce a tree-shaped
hierarchy of information at different levels, but instead of
having only a single dimension for filtering, we allow for
selection of subtrees which is persistent across frames.

For the drawing information, we create a hierarchy that
mirrors the text hierarchy. When we collapse a node in the
hierarchy of the text log, all the drawings created while the
execution of the program was within that node are hidden
as well. Figure 4 shows examples of one scene drawn at
different levels of detail, with offense- and defense-related
drawings selected independently.

VI. CONSTRUCTING A VIDEO

We can take the graphical portion of the viewer application
and insert it into the video as the natural means of combining

the drawn visualizations with real video of the robot actions.
Doing so involves taking the instances of drawing primitives
from a log and drawing them most informatively onto a
video. For the SSL, we choose to place the drawings in the
video so that they appear in the appropriate places on the
ground and are occluded by the objects on the ground.

A. Drawing with different levels of transformation

An important kind of information that we display consists
of the positions of the robots and ball on the field at
the present time in the video. A basic means of depicting
this information would be to show, for each object, some
identifying string (e.g., the ID number for robots) printed
directly onto the video at the location of the object. We
could instead draw, e.g., a circle in the image centered at
that point. In the complete version, we instead draw a circle
that is transformed to the correct perspective and masked so
that it appears to be present on the ground in the frame of the
camera and occluded by real objects on the field. Compared
to the simpler approaches, doing so has the advantage of
providing a more natural appearance for the drawings and
avoiding drawing on top of parts of the video that contain
the objects we are interested in watching. These different
means of distinguishing robots are shown in Figure 8.

B. Projection and masking

Here, we summarize the process of transforming the
drawing primitive instances into drawings on top of a video.
The process is described in more detail in [12]. The drawing
process for each frame consists of two main steps: projecting
the drawings from the coordinates used by the robots into
the frame of the video and computing which pixels to alter.

The projection step consists of computing and applying
the homography to map the coordinates of points from world
space into image space [6]. The field coordinates have their
origin at the center of the field, with the x-axis along the line
between the goals; the image coordinates are determined by
the position of the camera. A homography is represented
by a 3 X 3 matrix. G1ven a homograpl;y H and the world
coordinates (z y) JFH(@ oy 1) = (7 ¢ z’)T
then the corresponding image coordinates are (z—: Z—i)
A homography can be constructed from four or more cor-
respondences (points with known world and image coordi-
nates); currently, we manually specify correspondences for
each video to process. There are well-known algorithms [6]
for robustly computing a homography from correspondences.

Because a homography does not preserve distances, it can,
e.g., map circles to ellipses. We approximate circles and
ellipses as polygons with a large number of vertices, which
means that this warping happens automatically. Meanwhile,
since homographies do preserve lines, we need only project
the endpoints of a line and the vertices of a rectangle, and
then draw straight lines between them in the image.

The other step is deciding where in the image to draw
on. We wish to make the drawings appear present on the
ground, so we find which pixels show the ground. Since our
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Fig. 3: An example of our viewer’s display, showing the textual log information on the right. The graphical display on the
left shows the robots, labeled with their unique team color and ID number, and additional drawings generated by our team.

(a) Only the positions of the game objects are annotated; the
reasoning visualizations are absent.

(c) In addition to the object positions, offense-related annotations
are drawn. The ball is about to be kicked by the blue robot near it;
the annotations include lines showing the projected path of the ball
(green), the orientation for the robot to be facing during the kick
(purple), and the predicted path of the ball afterward (red).

(d) In addition to the object positions, defense-related annotations
are drawn. The drawings include the extents of the open angles to
the goal from the position of the opponent best able to receive the
ball (red) and desired positions for extra defenders (orange).

Fig. 4: An example of a single image annotated with different levels of detail.

applications have taken place on green SSL fields, we have
been able to use a mostly pixelwise process to perform this
masking step. Primarily, we use two thresholding steps in
HSV color space to find the green of the field and the white
of the field line markings, combined with morphological
operations to smooth edges and fill in gaps.

C. Drawing accuracy and limitations

So far, we have used a homography to map between the
video image and the world coordinates. For a homography to
be completely accurate, the video must have been taken using
a camera and lens with no distortion (i.e., they map straight

lines to straight lines). While some classes of lenses are
prone to distortion (e.g., wide-angle lenses) or intentionally
distorted (e.g., fisheye lenses), distortion is generally not
desirable; the videos we have produced, on a consumer
video camera, have no noticeable distortion, as is typical
for modern products. In any case, it is straightforward to
compute and reverse the distortion of any camera setup, given
the ability to take new images with it [6], so we do not
consider camera distortion to be a major issue.

Also, our current implementation requires a fixed camera
for each video, since it assumes a constant homography



Fig. 5: The graphical portion of the display shown by our
viewer application for the same frame as shown in Figure 4.

Fig. 6: An example of robots at different distances from
the camera properly generating circles of different sizes
according to the camera perspective.

Fig. 7: An example of the masking process allowing a robot
to appear to cover a line drawn on the field.

Fig. 8: Possible ways to mark robots in an annotated video.

across all frames of a video, which allows us to specify the
coordinates for a video with a single set of correspondences.
It is possible, however, to analyze the video and track points
on the field over time, which would allow us to construct
a moving homography over time. The rest of the drawing
process could then proceed exactly as before, using the
varying homography.

VII. CONCLUSION

We have described a method for organizing visualization
information generated by the execution of an autonomous
mobile robot, as well as results of projecting that information
onto uninformative videos of robot execution. We grounded
the ideas of the method in a concrete implementation in-
volving a team of the SSL, but the ideas used, both for
organization and for visualization, are generalizable to other
mobile robot algorithms.
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