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Abstract We consider mobile service robots that carry out tasks with, for,
and around humans in their environments. Speech combined with on-screen
display are common mechanisms for autonomous robots to communicate with
humans, but such communication modalities may fail for mobile robots due to
spatio-temporal limitations. To enable a better human understanding of the
robot given its mobility and autonomous task performance, we introduce the
use of lights to reveal the dynamic robot state. We contribute expressive lights
as a primary modality for the robot to communicate to humans useful robot
state information. Such lights are persistent, non-invasive, and visible at a
distance, unlike other existing modalities. Current programmable light arrays
provide a very large animation space, which we address by introducing a finite
set of parametrized signal shapes while still maintaining the needed animation
design flexibility. We present a formalism for light animation control and an
architecture to map the representation of robot state to the parametrized
light animation space. The mapping generalizes to multiple light strips and
even other expression modalities. We demonstrate our approach on CoBot, a
mobile multi-floor service robot, and evaluate its validity through several user
studies. Our results show that carefully designed expressive lights on a mobile
robot help humans better understand robot states and actions and can have
a desirable impact on a collaborative human-robot behavior.
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1 Introduction
1.1 Motivation

Mobile robots are entering our daily lives and are expected to carry out tasks
with, for, and around humans in environments such as hospitals, supermar-
kets, hotels, offices, and shops. For effective operation of these robots in these
human-populated environments, it is important that humans have an under-
standing of some of the processes, information, or decisions taking place on
the robot. Due to their mobility and possible diversity of states, as well as
actions, while evolving in a dynamic environment, revealing information about
a robot’s state over the course of its task execution is crucial to enable: (1)
effective collaboration between humans and the robot, (2) better trust in the
robot, and (3) more engaging human-robot social interactions.

Central to the scope of this work is the idea of expression, which we think
of as externalizing hidden information of an agent, in our case a mobile robot.
We will be discussing expressive behaviors, in other words robot behaviors that
have a specific communicative purpose about the robot itself, in particular its
state and actions, as well as expression channels available to the agent to
use those expressive behaviors. Current expression channels for mobile robots
mainly include speech and on-screen display. However, when it comes to mobile
robots traveling long distances, these expression channels may fail for different
reasons. First, humans are not always in close proximity to the robot, in which
case the speech might be inaudible and the on-screen text not visible. Second,
speech is transient in that its associated expressive behaviors only last the
duration of a sentence. The mobile aspect of these robots, also shared by
other embodied agents such as self-driving cars or aerial robots, hence calls
for other methods of communication that are both persistent and perceivable
at a distance.

To remedy these problems, we contribute expressive lights as an expression
channel communicating useful information about a mobile robot’s state (see
Fig. 1). Such lights are visible at a distance, provide a persistent visualization
of the state information, and are non-invasive as compared to other possible
modalities such as loud non-verbal expressive sounds. By using such lights,
we are effectively enabling the robot to modify its appearance as a method of
communication with humans, which is a distinguishing feature for expression
as compared to other modalities. Literature has shown that abstract dynamic
visual cues [23], and more specifically dynamic lighting [29], have been shown
to elicit interactive social responses. These results potentially suggest that
expressive lights on a robot are also likely to create more engaging interac-
tions with humans if, first, they are communicating useful information - in
other words they are informative - and, second, if they do so in a legible (i.e.,
readable) manner. These persistent lights may also serve as a complement
to existing modalities of interaction that are transient (e.g., speech) or that
require close proximity (e.g., on-screen text).
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FiG. 1: Augmenting a mobile robot’s communication capabilities with a new modality:
expressive lights

Throughout this paper, we will focus our analysis on an autonomous mobile
service robot, CoBot, which provides different types of services to people in
a building across multiple floors. However, the ideas we present are made
general enough to be easily ported to different platforms and designs than
the ones adopted in this paper. Nevertheless, CoBot constitutes an interesting
platform for the purpose of expression of the state information to humans
through lights. Indeed, the ways in which CoBot interacts with humans are
diverse: it can ask for help from humans when facing limitations (so-called
symbiotic autonomy [27]), influence change in human behavior for the needs
of its tasks, or provide useful information for the task at hand. The spectrum
of information potentially communicated through expressive lights is hence
greatly diverse and non-simplistic.

In summary, this paper will be investigating the use of lights to make ele-
ments of a robot’s state visible to humans, in an abstracted fashion. We focus
on light animations that are informative, i.e., providing useful information for
the situation at hand, and legible i.e., whose meaning is intuitive and doesn’t
require prior training.

1.2 Approach

Fig. 2 summarizes our approach to map the robot state information to ex-
pressive light animations. The relevant state information is first formalized
in a format which makes it easy to map to an expressive behavior such as a
light animation representing a concrete state of the robot. We then provide
a formal control method for light strips, on which we base our mapping from
robot state to light animation. The mapping and the designed expressive light
animations are finally designed, validated, and tested, by running appropriate
user studies.
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F1G. 2: Overview of our robot state / light animation mapping approach

1.3 Contributions

The contributions of this paper are as follows:

1.

An efficient robot state representation and mapping method suited for ex-
pression of state the information,

A formal framework for animation control focusing on addressable light
strips and generalizable to other forms of light arrays,

User studies to investigate the design and impact of animating robot state
through expressive lights.

1.4 Reader’s guide

The rest of the paper is organized as follows:

Section 2 summarizes relevant literature on expressive lights, their use in
technology and robots, as well as general non-verbal robot communication.
Section 3 presents a general formalism for a mobile robot’s state suitable
for expression of the state information.

Section 4 lays out our formalism for light animation and specifically control
of addressable colored light strips.

Section 5 presents our theoretical framework for mapping robot state to
an expressive behavior, such as a light animation.

Section 6 reports three studies that were conducted to inform: (1) the de-
sign of appropriate light animations (parameter selection), (2) their evalua-
tion and generalization to similar scenarios, and (3) their impact on human
behavior in the real world.

Section 7 reports three studies that we conducted to inform: (1) the design
of appropriate light animations (parameter selection), (2) their evaluation
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and generalization to similar scenarios, and (3) their impact on human
behavior in the real world.

2 Related Work

This paper will be focusing on the use of lights as a communication medium
for mobile robots. In this section, we therefore first present a short overview of
general uses of lights in different applications, and how they have previously
been used as an expressive medium. We then focus our review on lights on
robots and other existing expressive non-verbal modalities.

2.1 Short survey of uses of lights

In this subsection, we discuss different general uses of lights in technology.

2.1.1 Lights for communication at a distance

Light signals have been widely used in the history of mankind to convey in-
formation at a distance or in low visibility environments, such as in aviation
and maritime navigation [21], where the use of acoustic signals is not possi-
ble because of signal attenuation. However, most of these signals often need
to be learned since they rely on codes (an extreme case being Morse code
communication before radio technologies existed).

Nowadays, we see lights in our daily lives for communication at a distance,
especially on roads, thanks to indicators such as traffic lights that control
traffic flow through a simple color code, or lights on cars such as flashers com-
municating upcoming driver actions, emergency flashers expressing an unusual
or dangerous situation, brake warning rear lights indicating the status of the
brake, and headlights sometimes used by drivers to acknowledge or communi-
cate with other cars or pedestrians.

Light also plays a role in some biological systems, especially in animal
communication. Through a process called bioluminescence [22], some animal
species such as jellyfish, octopus, anglerfish, or fireflies can emit light to de-
ceive, attract, or communicate different messages to other animals [13].

2.1.2 Lights for revealing state information

As discussed in the previous paragraph, cars are a good example where lights
are used to reveal information about the car or the driver’s state. Similarly,
personal electronic devices and appliances often make use of light indicators
with usually intuitive, walk-up-and-use patterns to convey information to the
user. We see light indicators on all sorts of devices including cell phones,
washing machines, toasters, laptops, cameras, battery chargers and more.
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Such uses pose the problem of a mapping from a concrete state of the
device to an abstract visualization into a light animation, which we will be
investigating in section 5. We can exploit the fact that humans generalize
from their daily experience, to get inspiration in our light animation design
from standard patterns, codes and meanings associated with some of these
existing light behaviors.

2.1.8 Lights and aesthetics

Because of their visual aesthetic appeal and wide flexibility in configuration
and modularity, expressive lights have been featured extensively in contempo-
rary art including interactive art installations [17], bridge art (e.g., the Pausch
bridge at Carnegie Mellon University!) or large scale visualizations of data
such as the state of the Internet [15]. Expressive lights have also been used on
wearable apparel [7].

Stage and scene lighting share common expressive features with indicator
lights like color, intensity and time-varying patterns [9], but there the purpose
is to illuminate rather to use the light source itself as an expressive communi-
cation modality. The same holds for modern programmable luminaires, mainly
used for creating diverse moods in physical spaces [16].

2.2 Light as an expressive medium

Because of the way humans process visual information, which includes color
and motion as “undoubtable attributes” guiding the human attention pro-
cess [34], programmable multi-color lights, which combine color and motion to
create light animations, are a good candidate for changing a robot’s appear-
ance in order to communicate different types of information to humans.

2.2.1 Light control

Addressable LED technology has unlocked fine control of multiple light sources
with possible color changes and gave rise to several control protocols of which
DMX512 is probably the most popular, especially for large installations or
multiple light devices?. Color Kinetics® offers a wide variety of tools to design
and control large-scale light installations through various animations.

Smaller scale options include addressable RGB LED strips, on which we
will be focusing in this paper. Each LED has a built-in microcontroller that
controls the associated LED intensity as a function of time. By propagating
serial communication packets throughout the strip, one can achieve appealing
light animations using only one physical data communication pin*.

http://www.cmu.edu/randyslecture/bridge.html
http://opendmx.net/index.php/DMX512-A
http://www.colorkinetics.com/

W N e

https://learn.adafruit.com/adafruit-neopixel-uberguide/advanced-coding
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2.2.2 Light expression space

Light signals generally allow for a large expression space with several degrees of
freedom. For example, light communication in insects have been found to use
modulations in spectral composition, brightness, shape, size, and timing [22].
Technologically speaking, there has been efforts to standardize color spaces
(RGB, HSV etc.), but not much work has been done when it comes to stan-
dardizing light patterns [14]. Also, parametrized abstract motifs have been
used for spatial layout modulation [5].

Current LED technology offers control of brightness and color for individ-
ual light sources and allows for customizable layout options®, unlocking very
flexible designs for light animations.

2.2.3 Light animation semantics

Because of the wide use of lights to convey concrete information, it seems that
humans tend to associate specific meanings to different light animations.

For a single light source of a fixed color, different light patterns seem to
convey diverse information about a personal device’s operation [14]. In a traf-
fic setting, flashing lights, for instance, seem to be associated with the idea of
warning (such as an out-of-service traffic light or an emergency car flasher).
Also, some studies have been conducted on the conspicuity of light patterns
as a function of frequency, duration and contrast [12], but also on the percep-
tion of emergency warning signals, especially in terms of color combinations
[8]. Color has also been associated to the expression of emotions in different
contexts, such as general perception of color [36], uses in clothing [7], or on
virtual agents [24] [9].

Color theory [36], as well as learned color codes (e.g., traffic lights), pro-
vide a good starting point for the design of colored light animations carrying
meaning (in our case related to robot state). However, it remains difficult to
predict the appropriateness of colored animations for light sources extending
in space beyond a single point (namely a light strip) and expressing meaning
in relation to a complex machine such as a robot.

2.3 Robot expression

In this subsection, we discuss different ways of expressing hidden robot infor-
mation to humans.

2.3.1 Lights on robots

The use of lights for non-verbal communication on robots remains rudimen-
tary. Most of these uses do not have a direct functional role but rather focus

5 http://www.colorkinetics.com/
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on creating abstract impressions (such as “artificial subtle expressions” [20]),
expressing emotions [18], or serving as very basic indicators (such as for bat-
tery level). Often, we see these light expressions dissociated from the robot’s
state, such as for instance expressing people’s emotions in a cafe-style room
on a Roomba robot [26]. To the best of our knowledge, the only instances
of functional and state-related light communication in robots are for human-
robot speech synchronization using a Nao robot [11], and for communicating
intent in robot navigation using a drone [32]. In [11], an animated LED is used
to avoid utterance collisions in verbal human-robot communication by subtly
blinking between the user’s speech end and the robot’s speech start. In [32],
an array of LED’s are used to communicate direction of navigation on a quad-
copter. This last work fits within our idea of expressing a part of the robot’s
state through light animations. However, in the prior work, the expressed fea-
ture (directionality) remains a low-level one and the light expression has a low
level of abstraction. In contrast, we will be focusing on higher-level features
of the robot’s state related to the robot’s tasks in the (often unpredictable)
environment,.

2.83.2 Other non-verbal modalities for robot expression

Several non-verbal modalities have been considered for human-robot commu-
nication. Some of them, such as eye gaze [1], proxemics [6] are more suited
for expressing an emotional or affective state of the robot. In this paper, we
are interested in expressing robot states that are related to tasks, and as such,
there exist two main other non-verbal modalities which could be used for such
expression. The first modality is expressive motion, which has been studied in
different settings such as manipulators expressing goal and planning informa-
tion [10], as well as mobile robots expressing affective states [19]. The type of
mapping problem in which we are interested in this paper has been studied
for a continuous input signal such as music or speech being mapped to motion
sequences on a humanoid robot [37]. The second modality is expressive sound
and vibration [30], which have been less explored for robotics applications and
are usually more prevalent in electronic devices (e.g., phone notifications).

3 Mobile Service Robot State and Its Expressible Elements

In this section, we first introduce a representation of robot state that is suited
for expression of elements of robot state on a given expression channel (ex-
pressive lights in our case). Our analysis focuses on CoBot, a collaborative
mobile service robot with diverse capabilities. We then discuss the process
of mapping the robot state information to light animations with respect to
the formalism presented in the previous section. We illustrate this mapping
through the selection of informative elements of CoBot’s state to be displayed
using expressive lights. We then discuss the generalizability of our mapping
framework to multiple light strips / modalities expressing different aspects of
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F1G. 3: An example of symbiotic autonomy: CoBot getting help from a human at an elevator

the robot’s state. We end the section by providing details about how the map-
ping framework was implemented on the CoBot robot with two light strips
expressing task-related and navigation-related aspects of the robot’s state,
respectively.

3.1 CoBot overview

In this paper, we use CoBot, a collaborative mobile service robot, as an exam-
ple to illustrate the ideas presented. CoBot can perform a set of services to hu-
mans in a building across multiple floors. Building locations (rooms, kitchens,
and elevators), as well the navigation map of the building, are known to the
robot. CoBot robustly navigates autonomously [33] from location to location
while avoiding obstacles during its navigation, whenever possible, or stopping
in front of unavoidable obstacles such as humans obstructing its path. When
facing limitations, the robot asks for help from humans. For example, un-
like some other robots that can operate elevators [31], or load/unload objects
on/from the robot, CoBot is unable to perform these tasks alone. However, it
is able to overcome those limitations by proactively asking help. This is the
main idea behind symbiotic autonomy [27], illustrated in Fig. 3.

3.1.1 CoBot tasks and services

The tasks performed by CoBot are of one of two types:

— Navigation tasks involve navigating from a start location to a goal loca-
tion according to a predefined navigation map on which a path planning
algorithm is run, and
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(B) CoBot transporting a coffee mug to
an office

(A) CoBot escorting a person

F1G. 4: CoBot performing different services: (A) an escort service; (B) a transport service

— Human interaction tasks involve asking for human help (referred to as

an ‘ask’ task) or waiting for human input, such as confirmation, service
initiation, or dismissal (referred to as a ‘wait’ task).

Tasks can be combined to form services. The three services offered by

CoBot and considered in this paper are the following;:

Go-to-Room service, in which the robot goes from its current position to
a goal location.

— Item-transport service, in which the robot transports an item in its bas-

ket from a start location to a goal location.

— Escort service, in which the robot escorts a person from a start location

(typically an elevator) to a goal location.

Fig. 4 shows CoBot performing some of these services.
An example of a service broken down into individual tasks is shown below.

Ezample 1 Sample service: Transport an object from room 7002 (on the 7"
floor) to 3201 (on the 3" floor):

Task 1: Navigate from current location to service start location (room
7002).

Task 2: Wait for human to put the object to be transported in basket, and
get confirmation.

Task 3: Navigate from room 7002 to the 7" floor elevator.

Task 4: Ask for human assistance to take the elevator to the 37¢ floor.
Task 5: Navigate inside the elevator.

Task 6: Ask for human assistance to know when correct floor is reached.
Task 7: Navigate out of the elevator.

Task 8: Navigate from the 3¢ floor elevator to service goal location (room
3201).
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- Task 9: Wait for human to collect object and get service completion con-
firmation.

3.1.2 CoBot user modalities

Robot services can be requested in three different ways, corresponding to three
different input modalities:

— Through the robot’s touch screen: A Graphical User Interface (GUI) en-
ables scheduling services from CoBot itself by letting users choose the ser-
vice type and its required parameters. It can also be used to interrupt the
execution of task if needed.

— Through the speech interface [25]: The GUI also includes a button that
enables speech interaction with the robot. The user can issue service com-
mands using simple structured language that the robot understands.

— Through a web interface: People in the building can schedule a robot service
in a time window through a web interface.

3.1.8 Robot motion modes

Mobility constitutes an important distinguishing feature of CoBot compared
to other types of robots. We can distinguish three different motion modes in
which the robot can be, summarized below.

— Moving: in this mode, the robot is executing a navigation task successfully.
We distinguish these two cases:

— the robot moves with someone (escort service),

— the robot moves on its own (all other tasks).

— Stopped: in this mode, the robot is not moving, which can be due to
several reasons. We also distinguish two cases:

— the robot is intentionally stopped, either because it is idle, or because
it is performing an interaction task.

— the robot is forced to be stopped, because of some unexpected event
such as the presence of an obstacle or internal failure. In the presence
of an obstacle, the robot says “Please excuse me” to incite any human
obstacles to move away. If it is blocked for more than a few minutes, it
will send an email to the developers for help.

In the next section we present a formalism for CoBot’s state. The formalism
presented is however made general enough to easily apply to other robots with
different types of services and capabilities.

3.2 Robot state representation

3.2.1 Robot variables

Definition 1 The robot variables represent any relevant quantity (discrete
or continuous) that the robot maintains through its software. We categorize
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robot variables into service variables (related to the robot’s services and tasks
and the planning associated with them), execution variables (related to task
execution in the environment), and internal variables (related to the internals
of the robot’s software and hardware).

The robot variables that we consider for CoBot are the following:
— Service variables:
— the current service type service (‘go-to-room’, ‘transport’, or ‘escort’),
— the current task type task (‘navigate’, ‘ask’, or ‘wait’),
— the service path plan path-plan (list of position vertices (z, y, floor#)),
— the service start location start-loc, and
— the service goal location goal-loc.
— FEzecution variables:
— the current robot location loc,
— the current robot speed speed
— aboolean indicator path-blocked for whether the robot’s path is blocked,
causing the robot to stop,
— the duration of the path blockage block-time (None if path-blocked
is false),
— a boolean indicator GUI-interrupt for whether the robot’s task was
interrupted from the GUI, and
— the duration of the interruption from the GUI interrupt-time (None
if GUI-interrupt is false).
— Internal variables:
— the list sens-status of sensor statuses (1 for normal / 0 for faulty),

the list act-status of actuator statuses (same),

the software status soft-status (1 for normal / 0 for important error),

— The gravity of the fault if it occurs fault-level (e.g., on a scale from
1to05).

— a boolean indicator charging for whether the robot is charging, and
— the percentage battery level batt-level
Note that the value of some of these variables might be undefined depending

on the situation the robot is in; in that case, we assign a value of None to those
variables with undefined values.

3.2.2 State features and robot state

We build upon the robot variables defined in the previous section to generate
states in which the robot may find itself. The robot state is determined using
state features, as defined below.

Definition 2 Robot state features are discrete (usually high-level) aspects
of the robot’s state. They are represented as logical expressions over robot
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variables. The state features we consider are only those who are relevant to
humans that potentially interact with the robot such as users, humans in the
navigation environment, and developers.

The state features for CoBot considered in this paper are listed below:

- ‘Escorting’: (service = ‘escort’) A (task = ‘navigate’).
The robot is in the process of escorting the user.

- ‘Blocked by an obstacle’: (path-blocked = True) A (task = navigate).
An obstacle is impeding the navigation task progress.

- ‘Asking for help at an elevator’: (task=‘ask’) A (isElevator(loc))
(where isElevator(a) returns True if location a is an elevator and False
otherwise).

The robot is waiting to get help at an elevator.
- ‘Charging’: (charging = True).
The robot is connected to power and charging its battery.

- ‘Interrupted by user’: = (task = None) A (GUI-interrupt = True).
The robot has been interrupted by a user through the GUI.

- ‘Waiting for object loading’: (service = ‘transport’) A (task = ‘ask’)
A (Loc = start-loc).

The robot is waiting for the object to be transported at the service start
location.

- ‘Stopped because of faulty component’: (containsl(sens-status))
V  (containsl(act-status)) V (containsl(soft-status)) (where
containsi(a) returns True if list a contains at least one 1 and returns
False otherwise).

One or more execution-time fault(s) occurred in the software or hardware
of the robot (e.g., the LiDAR sensor gets reading errors when the robot
navigates in areas with a lot of sunlight).

- ‘Waiting for dismissal’: (task = ‘ask’) A (loc = end-loc).

The robot is waiting for the user to dismiss it by pressing its “Done” button
on its touch screen.

- 'Navigating’: (task = navigate).

The robot is performing a navigation task.

- 'Turning’ (distanceFromNextVertex(loc,path-plan) < dy) A
(InextTurnAngle(loc,path-plan) | > «y) (where dy, and oy are
thresholds for the distance to the next vertex in path-plan and for the
upcoming turning angle; distanceFromNextVertex(.,.) returns the
distance between the current location loc and the next vertex in the
path-plan and nextTurnAngle(.,.) returns the upcoming turn angle a
shown in Fig. 5).

The robot is about to take a turn in its navigation path.

Note that state features are not necessarily mutually exclusive: more than
one state feature could be true at the same time. Since this might pose a



14 Kim Baraka, Manuela Veloso

8 0 > Oy

~ N <O

,;:/' No turn will Turn will be

_— be detected detected

= Navigation vertex

Navigation edge

. Robot

F1a. 5: Turn detection check used for computation of feature ‘Turning’

problem for the purpose of expression (we can only visualize one or at most a
few of these features at a time), we will handle this issue in section 5.

Definition 3 The robot state is defined as the set of all state features that
are true at a given time ¢. Since the state of the robot is constantly changing
as a function of time, the state is a dynamic process S(t) = {s1,52,...,8m,
where s1..m,, are the state features true at time ¢.

3.3 What part of the robot state to express?

So far, in this section, we have looked at robot state dissociated from robot
expression. Even though state features have been defined to be relevant to users
(and hence would gain at being expressed to them in some way), the actual
nature of the medium used for expression hasn’t been taken into account yet
in our analysis.

Definition 4 We denote by expression channel any communication medium
(verbal or non-verbal) that can be potentially used to express elements of a
robot’s state. The expression channel we consider is expressive lights.

In particular, in this section, we are interested in two aspects of state
representation for the purpose of expression:

— Modulation: State features are a discrete representations of high-level, user-
relevant elements of the robot’s state. However, this representation is rigid
and doesn’t allow for modulation (no possible expression of “microstates”
within the state feature or of continuous quantities that might be relevant
when a particular state feature is true). For this reason, in this section we
will be introducing what we call “expressible state tuples”, a data structure
which takes into account modulation of expressive behaviors (such as light
animations) according to modulation quantities.
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— Simplification: For a given expression channel, there is a trade-off between
complexity of the expression vocabulary (total number of different expres-
sive behaviors used) and legibility of expressive behaviors (how readable
or intuitive these expressive behaviors are). For better legibility, it might
be useful to group or cluster some expressible elements of states together
into classes which are expressed using the same expressive behaviors. For
this reason, in this section we will be introducing what we call “expressible
classes”.

3.3.1 Expressible state tuples

We introduce expressible state tuples, which are tuples containing all state
information relevant to a particular robot situation and expressible on a given
expression channel.

Definition 5 An expressible state tuple on a given expression channel is de-
fined as a tuple (s, vs), where s is a state feature and vg is a vector of mod-
ulating variables, relevant for expression of state feature s on the considered
expression channel. These additional variables can either be robot variables
(defined in section 3.2.1) or variables computed from robot variables, referred
to as computed variables.

To illustrate the concept of an expressible state tuple, here are a few ex-
amples based on the state features listed in section 3.2.2:

- < ‘Escorting’, (percentDone(loc,path-plan)) >,
where percentDone(.,.) computes the percent distance traveled along
the path plan (progress so far towards goal location); this expressible state
tuple could be translated into some sort of progress indicator visible to the
escorted user.

- < ‘Blocked by an obstacle’, (block-time) >;
this expressible state tuple could be translated into a blockage indicator
which gets more noticeable as the blockage time increases.

- < ‘Charging’, (batt-level) >; this expressible state tuple could be
translated into a visual indicator changing as the percentage battery level
increases.

- < ‘Turning’, (nextTurn(loc,path-plan), speed) >
(where next-turn(.,.) is a function returning ‘left’ or ‘right’ accord-
ing to the direction of the upcoming navigation turn); this expressible state
tuple can be translated into a turn indicator showing the upcoming turn
direction.

3.8.2 Clustering expressible state tuples: expressible classes

For decreased complexity and increased legibility of expressive behaviors, we
introduce in this section classes of expressible state tuples, or expressible classes
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for short. The clustering is dependent on the expression channel considered
(different expression channels might require different levels of abstraction de-
pending on their complexity/legibility tradeoff). We cluster in the same class
those expressible state tuples which possess semantic similarities, allowing us
to express them in a similar fashion through the expression channel. The ex-
pressible classes suggested below were designed for expressive lights as our
expression channel; for other expression channels, as noted above, the classifi-
cation may vary, even for the same expressible state tuples.

Based on the expressible state tuples listed in the previous subsection, we
propose the following expressible classes:

— Class ‘Progressing through a process with known goal’: There are
different kinds of processes that the robot goes through in which the goal
is known. The progress on such processes could be expressed in the same
way across different kinds of processes such as when the robot is escorting
a person to a specific location or when it is charging its battery towards the
maximum charge level. For both of the escorting and charging cases, the
additional variable in the expressible state tuple represents a percentage
completion.

The expressible state tuples corresponding to this expressible class are:
< ‘Escorting’, (percentDone(loc,path-plan)) >
< ‘Charging’, (batt-level) >

— Class ‘Interrupted during task execution’: There are different ways in
which the robot’s task execution gets interrupted. From the perspective of
expressive lights, it doesn’t matter knowing why the interruption occurred
(e.g., because of an obstacle, a faulty robot component, or a user-initiated
interruption through the GUI) as much as communicating a state of inter-
ruption. (Other expression channels such as screen display or voice could
eventually complement the expressive behavior with additional informa-
tion.)

The expressible state tuples corresponding to this expressible class are:
< ‘Blocked by an obstacle’, (block-time) >

< ‘Interrupted by user’, (interrupt-time) >

< ‘Stopped because of faulty component’, (fault-level) >

— Class ‘Waiting for human input’: As described previously, there are
several situations for which the robot is waiting for some sort of human
input (corresponding to tasks of type ‘wait’ or ’ask‘): the robot can be
waiting for a task to be initiated by a user or confirmed at completion time,
or it can be waiting for help in cases where it uses symbiotic autonomy to
overcome some of its limitations.

The expressible state tuples corresponding to this expressible class are:
< ‘Asking for help at an elevator’, None >

< ‘Waiting for object loading’, None >

< ‘Waiting for dismissal’, None >
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Robot state representation

Robot variables v;:

Expressible state tuples <s,v.>

State features s;

e

Fi1c. 6: Summary of the introduced robot state concepts

3.4 Section summary

In this section, we focused on extracting informative elements of a robot’s
state to be expressed through an expression channel, such as expressive lights.
We presented a general representation of a mobile service robot’s state (robot
variables, state features, expressible tuples) that is suited for expression on an
expression channel.

4 Animating Light Sources

The goal of this section is to provide a framework for animating a set of fixed
light sources. This framework will help us design appropriate animations in a
simple fashion and facilitate the process of mapping robot state space to light
animation space. We begin by defining the concept of a light animation and
reduce the dimensionality of the very large animation space by introducing a
finite number of parametrized signal shapes. We then present the algorithms
used to dynamically control a digital light strip according to the presented an-
imation options. Our framework can be easily extended to other signal shapes
or to multiple light strips.

4.1 Light animation and animation space definitions
4.1.1 Light animation as a continuous intensity function matriz

Definition 6 An animation A(t), within a three-dimensional color space, of
a set of n fixed point source lights is defined as a time-varying n x 3 matrix of
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light intensities:
7:101 (t) Z.102 (t) 7:103 (t)

iQCl(t) i202(t) iQCs(t)
Aty =1 . : : (1)

ey (£) e (£) ey (8)

where the rows represent the indices of the individual point source lights
or pizels and the columns represent dimensions of the color space or color
channels ¢1, co and c3 (e.g., RGB, XYZ [28]). The intensity values represent
a percentage of an allowed maximum intensity, and hence:

Vt: 0<ije (t)<100 j=1,...,n; k=1,2,3

4.1.2 Spatial layout

The animation matrix above does not capture the spatial layout of these pixels,
which could be arranged in a linear, planar or three-dimensional fashion. For
the rest of this work, we will focus on linear light strips. They simplify the
analysis and representation of light animations and allow for greater mounting
flexibility from a physical point of view. For linear strips, we let the pixel index
(row index of the animation matrix) represent the position of the pixel on the
strip, along a predefined direction.

4.1.83 Animation space intensity functions

The space to which A(t) belongs is very large, as each of the intensity functions
ije, (t) can be any continuous function of ¢ bounded between 0 and 100 and
hence belongs to an infinite-dimensional space. As a result, we will only focus
on a limited set of possible intensity functions i, (¢), which we group into
classes. We call these classes parametrized signal shapes, summarized in Table
1. There are plenty of light animations (either in libraries for light strips®, or
in art projects using lights [15]) whose goal is to create aesthetically pleasing
animations. These types of animations are usually sophisticated, fast-changing
in space, time or color. We will be focusing on the simple signal shapes shown
in Table 1 which, through efficient parametrization, will still provide us with
great flexibility.

As a result of considering a handful of parametrized signal shapes, we have
now reduced the dimensionality of the animation space drastically, and the
analysis of this space is now simpler to work with.

4.1.4 Animation tuple representation

For compactness of representation, we define an animation tuple, which fully
characterizes the animation behavior for a subset of the light pixels.

6 https://github.com/adafruit/Adafruit_NeoPixel
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TABLE 1: List of parametrized signal shapes considered for each i;, (t)

Blink (rectangle waveform)
Linax
Imm_,_\_l_\_,_
Fade in/out (triangle waveform [possibly asymmetric])
!

Periodic M
1,

min

Smooth fade in/out (sinusoidal waveform)

W
I

‘min

Irregular Blink (modulated waveform)
Imax
SJNUIN U
Abrupt intensity/color change (step function)

Iy
I; f

Slow intensity/color change (clipped ramp function)

/
L

Non-periodic

Definition 7 An animation tuple is defined as a tuple (sh, psn, Jstart, jend),
where:

— sh is a string identifier for the signal shape used in the animation. It can
take on the following values: “rect” for rectangle waveform, “tri” for tri-
angle waveform, “sinl” for sinusoidal waveform, “modw” for modulated
waveform, “step” for step function, and “ramp” for clipped ramp function

— Psh = (pﬁh,pgh, ey pffjsh) is a vector of parameters associated with that
particular signal shape, where mygy, is the number of parameters for shape
sh

— Jstart and Jenq are the indices of the start and end pixel, respectively, to
be animated. In other words, the animation described by sh and pgp is
applied to pixels jstart UP t0 Jend, inclusive

The behavior of a full light strip is represented by a set of animation tuples
{<Shla pshlajstartl ) jend1> RN <Shm7 pShm?jstartm7jendm>} such that:
m
U ({jstartw e 7jendi}) == {17 . 7’[’[,}
i=1
m (2)

ﬂ ({jStartn s >jendi}) = (Z)

i=1

where n is the number of pixels on the strip. In other words, first, the pixel
indices must cover the whole strip and, second, there should be no overlap in
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the specified pixel ranges. We call an animation tuple set satisfying conditions
2 a complete animation tuple set. It fully characterizes an animation of a whole
light strip.

4.2 Signal shape parametrization

We now present a detailed description of each of the parametrized signal shapes
shown in Table 1. For periodic signals of period T', we refer to the portion of
the signal extending from ¢ = 2T to t = (2 + 1)T (where z € Z) as a cycle.

4.2.1 Rectangle waveform

The parameter vector prect for this periodic waveform is composed of the
following components:

— ,rect — ect. L
- (Icl,mim Icz,rnin7[C3,min) =P ([cl,maxa I(:Q,maxa I(:3,max) =py the mini-

mum and maximum intensity values, respectively, of color channels ci, co
and c3 (in %)

— T = p5¥°*: the period (in absolute time unit)

— Dyect = Pt the fraction of the period in which the signal is maximal

A rectangle waveform rect(t) on a color channel ¢ is defined by:

rect(t) — Ick,max O S t < DrectT
Ick,min DrectT S t<T (3)

rect(t) =rect(t +21) z€Z

4.2.2 Triangle waveform

The parameter vector pyyi for this periodic waveform is composed of the fol-
lowing components:

— tri — tri. 1
- (Icl,minaIcz,min7103,min) =P (Icl,maxalcz,maxaI%,max) =Py the mini-

mum and maximum intensity values for each color channel (in %)
— T = p&™: the period (in absolute time unit)
— Dy = p§': the ratio of the rise time to the period

A triangle waveform tri(t) on a color channel ¢y is defined by:

I, max—1Ic; min
trl(t) _ Wt + Ick,min 0 S t < DtriT
%(f% +1)+ I min DT <t<T (4)

tri(t) = tri(t +27) z2z€Z
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4.2.8 Sinusoidal waveform

The parameter vector psin1 for this periodic waveform is composed of the
following components:

— sinl — inl. L
- (Icl,mim IcQ,miny I@,min) =P ) (Icl,maxa ICQ,IH&X? I(:3,max) =Py the mini-

mum and maximum intensity values for each color channel (in %)
— T = p§"!: the period (in absolute time unit)
A sinusoidal waveform sinl(¢) on a color channel ¢ is defined by:

2 Ic max_Ic.min
sinl(¢) = sin (% - g)% + I¢),,min (5)

4.2.4 Modulated waveform

This is a special kind of waveform combining several cycles from the three
previous periodic signal shapes to create a “supercycle”. This “supercycle”
is then periodically repeated. The parameter vector pmodw for this periodic
waveform is composed of the following components:

— Ngup = PPY: the number of subcycles in one supercycle.

— Vsup = (Usub,15- -+ Usubnauy) = pFedV: a vector of ngy, shape identifier -
shape parameters pairs vsybi = (Shsub.i, Psub,i), describing the light be-
havior in each subcycle.

A modulated waveform modw(¢) on a color channel ¢, is defined by:

Shsub,l(t) 0<t<Ty

modw(t) = : :
Shsub,i(t) CZji—l S t < E (6)
shsub,ng, (1) Tnp—1 < < Ty,
Nsub
modw(t) = modw(t + z Z T;,) z€Z
i=1

where Tj represents the period of the " subcycle.
4.2.5 Step function

The parameter vector pstep for this periodic waveform is only composed of
the following component:

— (Ley,p 1Lea 5o Loy, p) = p)"™P: the final intensity value for each color channel
(in %). The initial intensity value (I, s, Ic, i, Ies,i) (previous state of the
strip) is not relevant for animating the strip from t=0 onward, so it is not
included in the parameter vector.

A step function step(t) on a color channel ¢y, is defined by:

I.,; t<O0
step(t) = { 7
p(t) {I%f e (7)
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4.2.6 Clipped ramp function

The parameter vector Pramp for this periodic waveform is composed of the
following components:

— Iy isdey i Iesi) = 01", (In,f, Lo, 5, I5,.5) = pyP: @ the initial and final
intensity values for each color channel (in %)

— trise = Py T: the rise time (in absolute time unit)

A clipped ramp function ramp(¢) on a color channel ¢ is defined by:

I; t<0
I—I,

ramp(t) = T+l 0<t <tis (8)
If t> trise

For all of these animations, note that, in a Red-Green-Blue (RGB) color
space (c1 = R; co = G; ¢3 = B), if the color ratios r1 and ry listed below are
constant as a function of time, then the animation is of a single color. If the
ratio is not respected however, we would observe color changes throughout the
animation. Color ratios 1 and ro are defined as:

- = IR,max : IG,max : IB,max and T2 = IR,min : IG,min : IB,min for the
periodic signal shapes, and

—r1=1py:lgy:Ipyand ro =1Ip;: Ig, : I, for the non-periodic signal
shapes

The case where ro = 0 : 0 : 0 results in a single color animation for any r;
values.

4.3 Animating a digital RGB LED strip

The animation model described in the previous sections is useful for design and
visualization purposes. However, this model presents us with some limitations
in practice when working with digital addressable LED strips. For the rest of
this section, we assume we are working in a RGB color space.

4.3.1 Light animation as a sequence of frames

Most light strips nowadays are digital LED strips and therefore have a finite
refresh rate frefresn. This means that the intensity functions i;.(t) (¢ = R, G, B)
are actually synchronized discrete signals i;.[l] = i;.(I. At) where At = freflresh .
Moreover, the color levels are quantized (usually into 256 levels) for each Red,

Green or Blue color channel. The combined discrete i;.[l] values form the

discrete-valued matrix A[l], which we call an animation frame.



Mobile Service Robot State Revealing through Expressive Lights 23

Definition 8 An animation frame A[l], at time step [, for a 256-level RGB
digital LED strip containing n pixels is defined as:

) i1r[l] t1c[l] ‘1B
Alp=1{ ©)
inrll] inc[l] inBll]

where the rows represent the pixel indices and the columns represent the
R, G and B color channels. The intensity values are discretized and quantized
such that:

VieN: 4;.]]eN, 0<4;.] <255 j=1,....,n; ¢c=R,G,B
4.3.2 Episodic animation control

The animations as described in the previous paragraph start at time step { = 0
and extend arbitrarily in time. However, if these lights are going to be used to
express a dynamic process, such as the varying state of a robot, then frequent
switches from one animation to another will be needed, hence the notion of
episodic animation introduced next.

Definition 9 An animation episode is defined as a fixed portion of a partic-
ular animation. Animation episodes can be arbitrarily defined; for the signal
shapes we considered, we define an episode to be:

— A single signal cycle, for periodic signal shapes, and
— The portion of the signal needed to transition from the initial to the final
intensity value, for non-periodic signal shapes.

For a complete animation tuple set containing different animations for different
pixels, each with its own episode, we define the complete animation episode
to be lasting as long as the shortest of the individual episodes.

Based on the above definition, we propose an episodic animation control
algorithm, which given a dynamic process DP of time-varying complete anima-
tion tuple sets, generates a sequence of animation episodes, as shown in Fig.
7. For illustration purposes, we assume that pixels 1 through n have the same
animation, so we only show the corresponding animation tuple (the complete
animation tuple set in this case is a singleton containing that tuple). The al-
gorithm used to achieve this behavior is summarized in Algorithm 1. At the
beginning of each episode, the algorithm gets the current animation tuple set
value from DP and animates the strip with one episode of the animation cor-
responding to that tuple set. We assume that the choice of episode length is
small compared to the dynamics of DP, in other words the minimum switching
time for the animation tuple set values is greater than any single animation
episode.

Let dfrqme be the total delay between two animation frame updates. df,qme
comprises several sources of delays including the time to compute the frame
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,((50,25,50), (100,50,100), 1.25,0.3), 1,n >
< "tri", ((50,25,50), (100,50,100),1.25,0.3),1,n >

" ((0,0,0), (80,80,80), 1)1,n >
",((0,0,0), (80,80,80),1)1,n >
" ((0,0,0), (80,80,80),1)1,n >
" ((0,0,0), (80,80,80), 1)1,n >
" ((0,0,0), (80,80,80), 1)1,n >

< "tri", ((50,25,50), (100,50,100), 1.25,0.3),1,n >
< "tri", ((50,25,50), (100,50,100), 1.25,0.3), 1,n >
< "tri", ((50,25,50), (100,50,100), 1.25,0.3),1,n >
< "tri", ((50,25,50), (100,50,100), 1.25,0.3),1,n >
< "tri", ((50,25,50), (100,50,100), 1.25,0.3), 1,n >
< "tri", ((50,25,50), (100,50,100), 1.25,0.3), 1,n >
< "tri", ((50,25,50), (100,50,100), 1.25,0.3),1,n >

Animation tuples

< "rect", ((0,0,0), (60,30,80),1.5,0.2),1,n >
< "rect", ((0,0,0), (60,30,80),1.5,0.2),1,n >
< "rect", ((0,0,0), (60,30,80),1.5,0.2),1,n >
< "rect", ((0,0,0),(60,30,80),1.5,0.2),1,n >
< "rect", ((0,0,0), (60,30,80),1.5,0.2),1,n >
< "rect”, ((0,0,0),(60,30,80),1.5,0.2), 1, n >
< "rect", ((0,0,0), (60,30,80),1.5,0.2),1,n >
< "sinl", ((0,0,0),(80,80,80),1),1,n >

< "sin
< "sin
< "sin
< "sin
< "tri

=)
S

Pixel 1 (R) 0 50
(i1r)
0 0
80
Pixel 1 (G) 50
(he) 30 2
0
0 100
80 80
Pixel 1 (B) 50
(i
18) 0 0
80 100
Pixeln (R) 6o 50
(ing)
0 0
80
Pixel # (G) »s 50
(ing) 30 0
0 100
80 80
Pixel # (B) 5
(ing) o 0

F1c. 7: Episodic animation example: animation tuple as a function of time and corresponding
intensity functions for each pixel of the strip

and the time to refresh the strip. Note that for a specific animation, df,qme =
At = m. Since these delays can differ from frame to frame, it is best
to keep track of time using a timer and sample the original A(t) curves at the
corresponding time values, as shown in the “Episode” procedure of Algorithm
1, to get the corresponding discrete and quantized frames A[l], computed by

the “GetFrame” procedure.

As a final note, we can easily extend our framework to more than one
light strip to be independently animated. For N light strips, each will have
its own dynamic process DP;,i = 1,..., N to be animated. Let Py, ..., Py be
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Algorithm 1 Episodic animation control algorithm RunAnim

1: procedure RUNANIM(DP)

2 tuple,,,,, < NULL

3 StartTimer(t) > t globally stores the time elapsed in seconds
4 while true do

5: tupset,,,..,, < tupset,,,,,

6: tupset,, ,,, < FetchAnimTuple(DP)

7 if tupsety,.., # tupset,,,, then ResetTimer(t)

8: Episode(tupset,, ,,,)

9: procedure EPISODE({<sh1 s Pshy s Jstart; 7jend1> yeevs (shm, pshmyjstartm:jendm>})
10: {e1,... em} < GetEpisodeLengths(pPshy ;- - - Pshy)
11: €min < Mmine;

k2

12: while ¢ < epin do
13: A« GetFrame({(shl, Pshy » Jstarty 7jend1> s (Shm, Pshy, » Jstart,, 7jendm>} ,t)
14: UpdateStrip(A) > Updates the strip with the current frame
15: procedure GETFRAME({<Sh17 Pshy > Jstarty 7jend1 > yeees <Shm7 Pshyy,» Jstarty, » jendm >} > t)
16: fori<1,...,m do
17: for j < start;,...,end; do
18: Aj1:3 (round(%.ijﬂ(t)), round(%.ijig(t))7 round(%.i]”g(t)))

independent control process, one for each strip. Each P; will be independently
running Algorithm 1 on DP; to episodically control light strip 3.

4.8.8 Section summary

In this section, we presented a formal framework for representing and con-
trolling light animations, summarized in Fig. 3.3. We first introduced a rep-
resentation of light animations as complete sets of animation tuples. We then
focus on the control of RGB LED strips and present an episodic animation
control algorithm to enable the translation of a dynamic process of complete
animation tuple sets into a sequence of frames on a light strip. Our framework
(Arduino code available online”) is not platform-specific and can be used by
any device using our communication protocol.

5 Robot State / Animation Mapping: Formalism

Now that we have discussed our representation of the robot state both on
its own and in relation to an expression channel, we look at the problem of
mapping expressible classes to specifically light animations, whose formalism
was presented in section 3.

5.1 Mapping architecture

The mapping we define between expressible classes (state information) and
animation tuples (light animation information) is divided into two parts:

7 https://github.com/kobotics/LED-animation
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Light animation pipeline

<Shr Psh, jstartl jend>

/\/\, Animation tuple

Parametrized signal shapes Complete

animation tuple

set (full animation
representation)

Episodic animation control

To light strip
Sequence of (low-level light
imati instfuctions)

animation frames instruc

Fic. 8: Summary of the animation framework described in this section

Robot state

State variables v;

States features s;

Light animation state

Animation o
Modulation {Pan,it {istartzena,it

§ 2 Robot State / ..
e Animation Complete animation
S Mapping tuple set

Expressible state tuples <s,v.> (e by ser {<shi, Pan,is starts Jena, >}

Class 1 Class 2 Class ¢
<S11,V11> <S51,Vp1> <Sc1:Ver>
<S V1> Sy Vpp> | e Animation
To episodic
animation

determination
control

studies)

F1G. 9: Architecture of the robot state / animation mapping

— Animation determination: The signal shape sh as well the default param-
eters psn and j; (i =start, end) are determined by the ‘feature’ part of
expressible state tuple, which is by definition discrete and communicates
well the presence of distinct robot states.

— Animation modulation: We allow modulation in the animation by modi-
fying the value of the parameters (for a fixed signal shape) based on the
value(s) of the ‘variable’ part of the expressible state tuple.

Fig. 9 summarizes the mapping architecture, and Fig. 10 shows the flow of the
mapping process for robot state all the way to the light animation module.
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Robot state — Animation

s, are the state fedtures currently true

State/Animation ‘[ J‘
N
Mapping

Preference
function

Get class

expressible
state tuple

Fi1c. 10: Flow diagram of the robot state / animation mapping

5.2 Expression of non-exclusive state features

As can be observed in the way state features are defined, there is no constraint
on their mutual exclusivity, which means that there could be two or more
features which are true at the same time, and hence more than one expressible
tuple competing to be expressed on the same channel. If we assume that only
a single expressible state tuple can be expressed on a single channel then we
need a way of selecting one out of the set of expressible state tuples, which we
call state preference function.

Definition 10 A state preference function for a given expression channel is
a function ¢ : P(F) — F where F' is the set of state features and P(F) is the
power set of F'. ¢ selects one preferred state feature given a set of true state
features.

In practice, there might be sets of mutually exclusive features, which can re-
duce the domain of ¢. Also, it might be possible to create a strict total order
on the state features, which greatly simplifies the representation of ¢, as is
shown in the example below, but it might generally not be the case.

Example of preference ordering on sample features:
Consider the three features ‘Escorting’= f; , ‘Blocked by an obstacle’= fs,
and ‘Asking for help at an elevator’= fs.

If the robot is blocked by an obstacle (f is true), then it should express

it even if it currently escorting a person (f; is true). (fz and f; are mutually
exclusive since the robot cannot be blocked by an obstacle while it is statically
waiting at an elevator).
Similarly, if the robot is escorting a person (f; is true) but across multiple
floors, it will encounter situations where it is asking for help at an elevator (f5
is true) while performing the escort task. In such situation, we prefer f5 over
f1 since the service cannot continue if the ‘ask’ task is not completed, which
is hence more important.

Therefore we have the following total order: fo > f3 > f1, where x > y
indicates that x is preferred over y.
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Expression

channel 1 Channel 1
Robot state State/ |  Channell
Expression expression
Mapping
Expression -
channel 2
Channel 2
State / T Channel 2
o Expression expression
cha Mapping
Expression
channel n
Channel n
State / T~ Channel n
Expression expression
Mapping

Fic. 11: Mapping architecture for multiple expression channels

5.3 Extension to multiple light strips / expression channels

The mapping method introduced above for a single channel can easily be
extended to handle multiple expression channels. Even though our analysis
focuses on two channels of the same modality (expressive lights), the archi-
tecture presented is general enough to be applied to other modalities such as
speech, expressive motion, etc.

Mapping architecture

Fig. 11 shows our mapping architecture when more than one light strip, or
more generally more that expression channel, is present. Each channel has
their relevant state features (possibly repeated), preference function, express-
ible state tuples and expressible classes.

Example using two light strips for multi-level expression

To demonstrate the extensibility of our concept to more than one expres-
sion channel, we consider one light strip for expression of higher-level state
information (related to tasks and services), and another light strip for ex-
pression of lower-level state information (related to navigation parameters).
Implementation details on hardware mounting and animation control can be
found in the next section. The two strips can be seen in Fig. 12. The high
level strip animations will be informed by user studies in the next section.
For the low-level strip, we considered a turn indicator animation, which lights
either the left or the right part of the strip depending on the turn the robot
is about to take. The rest of the strip changes color as a function of speed
(red for fast, orange for medium speed and green for low speed). The corre-
sponding expressible tuple for this strip’s expressive behavior is: < ‘Turning’,
(next-turn(loc,path-plan), speed) >.
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.
High-level
strip (task- \
related)

Low-level
strip—>'N
(navigation-
related)

Left turn indicator

F1G. 12: Two expressive light channels for multi-level expression on CoBot (left) and turn
indicator snapshots for the low-level strip

5.4 Implementation of the mapping on a real robot

The framework discussed above for mapping robot state to light animations
has been implemented on one of our CoBots and has been robustly running for
more than a year whenever the robot is deployed. In this section we provide
some details about the hardware and software components used to robustly
integrate the light expressive behavior on CoBot.

5.4.1 Hardware components

For our light sources, we used two programmable, fully addressable NeoPixel
LED strips® with 91 and 144 pixels respectively mounted on the robot’s body
and around its base respectively, as can be seen in Fig. 13. Acrylic diffusers
were added around the body LED strip to achieve omnidirectional visibility.
Compared to other options like luminous fabrics or LED panels, linear strips
are both simple in structure and flexible to adopt different mounting alter-
natives on CoBot. The NeoPixels strip moreover provides high light intensity
thanks to its density of 144 LEDs/m (35 Watts/m max) which makes it suited
for good visibility in luminous areas such as indoor bridges or other areas with
glass windows.

The light strips are controlled by Arduino Uno microcontrollers” (one per
strip). The data pin of the strips are connected to a digital output pin of

8 https://www.adafruit.com/products/1507
9 http://store-usa.arduino.cc/products/a000066
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CoBot on-
board
computer

Serial comm.

NeoPixels
strip 1 +
diffusers

NeoPixels
strip 2 Mlian Serial
N ——n comm.

F1c. 13: Hardware interface design

the corresponding Arduino. The Arduino in turn is connected to the CoBot
on-board computer through a USB cable used for serial communication.

5.4.2 Control architecture

The light interface control architecture is summarized in Fig. 14. A Robot
Operating System (ROS) node running on the robot itself keeps track of the
robot variables (by subscribing to the corresponding ROS topics or calling the
corresponding ROS services) and computes the corresponding expressible state
tuples. It then maps these to animation tuples for each strip, which are sent to
the corresponding microcontroller using serial communication. The protocol
used for communication between the ROS node and the microcontroller is
available online'®. Based on the animation tuples received, the microcontroller
controls the light strip by running the episodic animation algorithm described
in section 4. The flow of data from the ROS node to the microcontroller is
synchronized with the animation episodes because serial communication is
only reliable when the microcontroller is not sending any data out to the strip.
We ensure such synchronization by a simple procedure similar to a handshake
at the end of each animation episode. The actual data sent out to the LED

10 https://github.com/kobotics/LED-animation



Mobile Service Robot State Revealing through Expressive Lights 31

strip on the digital pin of the Arduino is determined by the Adafruit NeoPixel
library'! and uses serial packets that the WS2811-based pixels understand.

Robot control A

Tracks robot state and maps expressible
state tuple to animation tuple

( State animation module J
J

Animation tuple commands, e.g.:
sh=rect D=0.5 Rmax=255 Gmax=100 Bmax=50 ...

A 4

Episodic animation control
(microcontroller)

Light instructions (NeoPixel library)

A 4

| Programmable NeoPixel LED strip

F1G. 14: Control diagram of the state animation interface

5.5 Section summary

In this section, we showed how to map the extracted elements of the robot’s
state to an expressive behavior, in particular a light animation as defined
in the previous section. We extended our method to handle more than one
expression channel, which is illustrated using two light strips on CoBot ex-
pressing different types of state information (high-level task-related versus
low-level navigation-related information). Our process, although it has focused
on CoBot, is general enough to apply to other platforms, and other expression
channels than lights.

6 Design and Evaluation of the State/Animation Mapping

The previous section was concerned with question of what to express, i.e., se-
lecting appropriate state information that is useful and relevant for a given sit-
uation. In this section, we focus on the question of how to express the selected
state information. In order to answer this question, we present three studies.
The first study [2] is concerned with the design of appropriate animations for
some of the expressible state tuples discussed in section 3, i.e. selecting the

1 https://github.com/adafruit/Adafruit_NeoPixel
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appropriate animation parameters discussed in section 4 according to the dif-
ferent scenarios considered. The second study [3] evaluates the legibility of the
animations resulting from our design study, as well as their generalizability to
expression of state tuples in the same class (refer to section 3). While the first
study uses feedback from fully informed experts, the participants of the second
study were non-experts who were only given minimal information about the
testing scenarios. The third study is a small experiment which proves that the
presence of these animated lights on the robot can actually influence people’s
behavior to help the robot perform better at its tasks.

6.1 User study 1: Designing appropriate animations

In order to select suitable parameters for the animations presented above, we
conducted a study with a video-based survey. Participants were given a de-
tailed description about three different scenarios involving CoBot and possibly
a human. There were then instructed (through email) to watch videos of the
robot in each of the scenarios, on which they had to report answers through
the form of a provided spreadsheet.

6.1.1 Preliminary Study

A preliminary study was conducted with the people who have the most exper-
tise for our purposes, namely the CoBot developers. Eight developers partici-
pated in the survey, and submitted their choices. To validate our design choices,
we recruited 30 more people to include in the study. The results across both
studies were consistent. The extended study is described next.

6.1.2 Participants

A total of 38 participants took part in this study. Our recruitment filter only
included participants who have expertise in one of the following fields: robotics
(61% of the participants), design (18% of the participants), and engineering
(21% of the participants). The participants ages ranged from 19 to 50, with
an average of around 25 years old. Because cultural differences may have an
impact on our results, we tried to have diversity in our sample: 18% of the
participants are from North America, 32% from Europe, 29% from the Middle
East and 21% from Asia. Additionally, 68% were male and 32% female.

6.1.3 Survey design

Participants were asked to give their input on three aspects of the animation:
animation pattern, speed and color. For each scenario, a single video sequen-
tially showed 3 different animation patterns (corresponding to signal shapes
+ dynamics parameters) with the same neutral color (soft blue). Nuances of
3 different speeds were also shown within each pattern. The participants were
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prompted to select the (animation pattern, speed) pair that they thought
would fit best the robot’s expression purposes in the given scenario, of which
they were fully informed. In the last section of the video, we showed 6 possible
light colors (in the form of a static image of the robot). The participants were
also asked to report on the color they thought was most appropriate for their
selected (animation pattern, speed) choice, for each scenario. We made the rea-
sonable assumption that the choice of color for the animation is independent
of the actual animation selected, which helps reduce the amount of choices to
be shown. Indeed, while animation pattern and speed both relate to modu-
lations in time and intensity, color seems to be much less intertwined to the
other two. Furthermore, according to color theory [35], color on its own plays
a strong role in expression. Next, we list and justify the choices of animation
patterns shown to the participants.

— Scenario "waiting”: A regular blinking animation (Blink); a siren-like pat-
tern; a rhythmic (non-regular) blinking animation. We believe these to be
good candidates for grabbing attention because of the dynamic aspect, the
warning connotation and the non-regular pattern respectively.

— Scenario "blocked”: A faded animation (that we call "Push”) that turns on
quickly and dies out slower (giving the impression of successively pushing
against an obstacle); an ”aggressive” blink (fast blink followed by slow
blink); a simple color change at the time the robot gets blocked. We believe
these to be good candidates for inciting the human to move away from the
path.

— Scenario ”progress”: A bottom-up progress bar where lights gradually fill
from top to bottom proportionally to the distance from the goal; a top-
down progress bar where lights fill from the top towards the bottom; a
gradual change from an initial color to a final color, again proportionally
to the distance from goal.

The parameter values associated with these animations are summarized in
Table 2. In addition to the animation summarized in the table, the following
colors were shown for each scenario as static images of the lighted robot: Red
(R), Orange (O), Green (G), Soft Blue (B), Dark Blue (B’) and Purple (P).

TABLE 2: Parameter values for the animation choices shown

- — — 5
Scenario ”Waiting” Scenario ” Blocked

wv [ D] T() wv [D ] T()
Blink Push
/0.6 /\, 0.25 | 1.5/1/0.5
OJ_\—,— 0.5 | 2/1.6/0.6 0 ° 5/1/05 Scenario " Progress”
Siren Aggressive Blink disp Udisp
prog_bar bottom_up
0/\, 0.5 | 2/1.6/0.6 od U 05 | 2/1.6/0.6 prog_bar top_down
Tow color_change -
Rhythmic Blink -
J-I-I-“—I_l- Color change
0 0.5 | 3/2.5/1.5 1
Tonlw 2Touo 0
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6.1.4 Results

Table 4 shows the selected best choices, which were consistent between the
preliminary and the extended study. Fig. 15 and Table 4 show the distribution
of the results in the extended study. In the following discussion, p-values are
obtained from a Chi-Square goodness-of-fit test against a uniform distribution.
In Fig. 15, we show the results for the animation pattern. For the scenario
”waiting” (p = 0.0137), among the participants who chose the winning anima-
tion ”Siren”, 64% chose the slower speed, 29% the medium speed and 7% the
faster speed. For the scenario ”blocked” (p = 0.0916), among the participants
who chose the winning animation ”Push”, 27% chose the slower speed, 40%
the medium speed and 33% the faster speed. Note that the static color change
was the least preferred animation pattern for this scenario, which aligns with
Bertin’s result stating that motion (in our case a non-static animation) be-
ing one of the most effective visual features for attention grabbing [4] (for
the "waiting” scenario which relies even more on attention grabbing, all three
of our designed patterns were designed to be in motion). For the scenario
"progress” (p = 1.107°), the participants chose the bottom-up progress bar
animation. All p-values obtained are below 0.10, which indicates a strongly
non-uniform distribution of preferences for each scenario, and this can clearly
be seen in Fig. 15.
The results for colors, summarized in Table 3 similarly show a clear prefer-
ence for one option in each case. For instance, soft blue was selected for the
”waiting” scenario. This result supports the statement in [7] that cold colors
are better than warm colors at grabbing attention. Also, red was selected as
the best color for the "blocked” scenario. This is consistent with the fact that
red is often perceived as demanding [35] or stimulating [7], which are both
desirable in this scenario. Even though the Red/Green color combination was
the most voted for in the “waiting” scenario, this study did not account for
interference between animations for different scenario. As it turns out from
real-world deployments, since the color red was associated with the “blocked”
scenario, it confused people to also see it in the “progress” scenario. Also, since
Red-Green color blindness is the most widespread type of colorblindness, it is
a good design principle to avoid this combination of colors in a single anima-
tion. For these reasons, we opted to replace the background color with a faint
dark blue, while preserving the bright green progress bar.

6.1.5 Discussion

The results of the study demonstrate strongly non-uniform selected choices
on our (non-randomly) designed light animations, which suggests that there
are some semantics associated with simple animations of a colored light strip,
in relation to a concrete robot state. From a design choice point of view,
the results of this study suggest that we can safely eliminate choices which
received a poor rating, resulting in a small set which can be considered valid.
Although, for each scenario, there is generally a clear preference for one of the
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scenario “waiting”

)
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scenario “blocked” scenario “progress”
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B=Blink; S=Siren; RB=Rhythmic Blink;
P=Push; AB=Aggressive Blink; C=Color;
BU=Bottom-up; TD=Top-down; CC=Color Change

Fic. 15: Animation pattern results

TABLE 3: Color results (color codes correspond to those used in the text)

Scenario ”waiting”

O G B B’ P

13%

13% 13% 39% 16% 6%

Scenario ”blocked”

O G B B’ P

53%

29% 5% 0% 10% 3%

Scenario ”progress” (top 6)

R/G

B/P | B/G | O/G | O/B | P/B

27%

12% | 12% 8% 8% 8%

TABLE 4: Selected best animations for each scenario of user study 1

Scenario Animation and parameters
Soft blue ”Siren” with period 2s
» waiting” wu D T (s) Color
AN 0.5 2 Soft Blue
Red ”"Push” with period 1.5s
*blocked” wu D T (s) Color
o 0.25 1.5 Red
Bottom-up progress bar
? progress” disp ‘ Udisp ‘ In. Color ‘ Fin. Color
prog_bar | bottomup | Red |  Green

choices, visualized in Fig. 16, the study was informative of the distribution of
preferences, which can even enable the possibility of generating animations in
a probabilistic way, especially if more information about the human interacting

with the robot is available

(e.g., cultural background).
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(B) Flashing red “push”

() Green ascending progress animation for path obstructions

bar on an escort task

(¢) Slow soft blue “siren” to
call for human help

F1c. 16: Snapshots of the winning animations for each scenario of user study 1, also used in
the subsequent user studies

Moreover, the scenarios we looked at are quite generic, and are commonly
encountered in interactions involving a social robot and a human. However,
before extrapolating our results to other platforms, we need to ensure that
other factors (e.g. strip size or placement, light diffusion mechanism ...) do not
influence the perception of the expressive behavior. The distinguishing feature
of our robotic platform is motion, which prompts us to think whether other
mobile robotic systems such as autonomous cars or drones could utilize similar
animations if they encounter similar sates. The main research questions to
investigate to study generalizability at this scale (beyond the physical factors
mentioned above) would concern the effect of the context on the perception
of the task and the signals associated with it. For instance, would red and
green colors mean different things in an indoor environment vs. in a traffic
scenario, or an aerial scenario, where existing visual codes might influence
the perception? These results can however still serve as a starting point for
the design of future social robotic systems which use lights as a means of
communication.
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6.2 User study 2: Evaluating and generalizing the designed animations

In order to evaluate the effectiveness of the chosen expressive light anima-
tions, we conducted an online survey in which participants watched videos of
a robot performing tasks from afar. At the end of each video, participants
were asked to hypothesize about the robot’s current state, but also about its
actions (specifically reasons for performing a specific action such as stopping
or being unresponsive). Questions were in a multiple choice format, with four
possible answers. Half of the participants saw the robot performing tasks with
its expressive lights on (referred to as the “Lights on” condition), and half
saw the robot with the lights off (referred to as the “Lights off” condition).
The animations for the “Lights on” condition were informed by the first user
study described in section 6.1. Participants were randomly assigned to one
of the two experimental conditions, resulting in a between-subject study. We
analyzed participants’ hypothesis choices to demonstrate that those who saw
the robot with the lights were more accurate, but also and gained a higher
level of trust in robots, from watching the videos.

6.2.1 Participants

A total of 42 participants, of which 14 were male and 28 were female, took
part in the study. Ages ranged from 20 to 67 (M = 32.4, SD = 13.7). Out
of the 42 participants, 33 live in the United States; the rest live in different
countries across Asia and Europe. Even though computer usage was relatively
high amongst participants (31 out of 42 used computers 30+ hours per week),
experience with robots was generally low. Only 5 out of the 42 participants
reported having worked with robots before, and 20 reported that they have
never seen a robot in person before (3 participants had seen our particular
robot, CoBot, before taking the survey). Finally, we ensured that none of the
participants were colorblind, since our light animations included color and it
could have an effect on our results.

6.2.2 Survey Design

Our online video-based survey (running on the Limesurvey platform) com-
prised nine video scenarios of CoBot acting in our environment followed by
a multiple choice question asking participants to choose a hypothesis of what
the robot was doing. Four plausible hypotheses about the robot’s state/actions
were presented as choices for each video, of which one had to be selected. Par-
ticipants were also asked to rate their confidence in their answer on a 5-point
Likert scale. The video order, as well as the choices for each answer, were
randomized to avoid any order effects.

Each of the video scenarios was recorded using our autonomous robot with
lights on and lights off. Some videos involved humans, which were actors be-
having naturally and according to the specifications of the scenario. Although



38 Kim Baraka, Manuela Veloso

the robot was acting autonomously, the videos were replicated as close as pos-
sible for the two conditions. From the robot’s perspective, we can reasonably
assume that the only notable difference between the two videos for a given
scenario is the presence or absence of lights on the robot. The videos did not
include any robot speech or any visible information on the robot’s screen.

After viewing all nine videos, some relevant background and related infor-
mation, including trust questions about this particular robot and robots in
general, was also collected. Additionally, we recorded the time taken for com-
pleting the survey and made sure everyone responded within reasonable time
limits (no disqualifications).

6.2.83 Scenario descriptions

The nine scenarios shown in the videos were specifically chosen based on actual
tasks that the robot performs while it is deployed in our buildings. We focused
our scenarios on the same three common scenario classes studied in our prior
work — “progressing through a process”, “blocked”, and “waiting for human
input”. For each scenario class, we produced three distinct scenarios in which
the robot’s state or actions are ambiguous, which are summarized in Table 5
and described below.

The “progressing through a process” scenarios represent the robot
taking actions for a long duration. For each of these scenarios, the progression
was modeled as the light animation of a progress bar (see subsection 1). The
scenarios chosen to represent this class are:

— Navigation task with human presence (P1): A person participates in the
Escort Task in which they are accompanied to their goal location.

— Speech task (P2): The person asks a question to the robot, which provides
no immediate answer, as it is searching the web for the required informa-
tion. The video ends before the robot responds. When present, the lights
show the progress on the web query task.

— Charging (P3): The robot is charging inside the laboratory, with no clear
view of the power plug. When present, the lights show the battery level
increasing progressively (video sped up 10 times).

The “blocked” scenarios represent the robot being interrupted in its nav-
igation by obstacles of different kinds. The important blockage is supported by
the fast red flashing light (see subsection 1). The scenarios chosen to represent
this class are:

— Human obstacle facing the robot (B1): The robot is stopped in its naviga-
tion by a person standing in a narrow corridor, facing the robot.

— Human obstacles looking away from the robot (B2): The robot is stopped
in its navigation by a person standing in a narrow corridor, facing away
from the robot.

— Non-human obstacle (B3): The robot, navigating down a narrow corridor,
detects a person walking towards it and changes its navigation path to
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TABLE 5: Scenarios used in user study 2

. Progress to a goal Waiting for human
Scenario class (P) Blocked (B) input (W)
. Navigation task with Human obstacle Symbiotic autonomy
Scenario 1 . (elevator button)
human presence (P1) | facing the robot (B1) (W1)
Human obstacles
Scenario 2 Speech task (P2) looking away from Object loading (W2)
the robot (B2)
g 0 3 Battery charging Non-human obstacle Confirming task
cenario (P3) (B3) completion (W3)

avoid the person. As a result, it finds itself in front of a branch of plant,
which it considers as an obstacle, causing it to stop.

The “waiting for human input” scenarios represent the robot stopped
waiting for different types of actions to be taken by a human. For each of these
scenarios, the robot is waiting patiently as represented by the slow flashing
blue light (see subsection 1). The scenarios chosen to represent this class are:

— Waiting for help at an elevator (W1): The robot is stopped in front of the
elevator, waiting for someone to press the elevator button and let it in.
People are passing by, ignoring the robot’s presence.

— Object loading (W2): The robot is stopped in the kitchen area, facing a
counter on which we can see a cup of coffee. Next to the counter area, a
person is washing the dishes, presumably unaware of the robot’s presence.

— Confirming task completion (W3): The robot is stopped in front of an office
door, with coffee in its basket. A person shows up from inside the office
and takes the coffee. The robot doesn’t react to the person’s action and
remains still. The person looks at the robot with a confused look on their
face.

For each scenario, when lights are present, the default animation on the
robot (when no expression is desired) is a static soft blue color.

6.2.4 Multiple choice questions

After viewing each video, the participants were given choices to explain the
robot’s state or actions. As discussed earlier, each of the scenarios can be
ambiguous to a person viewing CoBot from afar either because of lack of con-
textual information or because of mixed signals in the robot’s behavior. The
corresponding answer choices for each video scenario were specifically chosen to
reflect many of the possible hypotheses that could correspond to the robot’s
behaviors. Given our prior work, we theorize that the light animations will
reduce the uncertainty that people have in understanding robot’s behavior,
leading to more accurate answers to our multiple choice questions.
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Question examples

Some examples of questions and choices in the survey are:

In the video above, why did the robot stop? (a) The robot recognizes the
person, who was expecting it, (b) The robot sees the person as an obstacle,
(¢) The robot needs help from the person, (d) The robot is inviting the person
to use its services. (Scenario B1)

In the video above, why is the robot not moving after the person has taken
the coffee? (a) It is waiting for the person to confirm the task is over, (b) It
has nothing to do, (¢) It is low on battery, (d) It is trying to get inside the
room but the door is too narrow. (scenario W2)

0.2.5 Results

Responses to the survey multiple choice questions in the nine scenarios were
coded in a binary fashion — three answers were coded as wrong and one answer
was coded as the correct answer. The resulting dependent variable accuracy
was modeled as binary categorical. Additionally, we coded the responses to our
questions about robot trust (5-point Likert scale). We analyzed the effects of
our independent variables — experimental condition (binary categorical vari-
able “Lights on” and “Lights off”) and scenario (nine categories) — on the
dependent variables. While our scenarios had a range of difficulty resulting in
a range of accuracies, our light animations have a statistically significant effect
across all scenarios on participant’s accuracy. The participants who saw the
robots with lights on also indicated an increase in their overall trust in robots
more than those who saw the robot with lights off.

Participant accuracy In order to analyze our categorical dependent variable
accuracy, we used a McNemar’s chi-square test in a combined between- and
within-subject design. The “Lights on/oft” condition is our between-subject
variable. All nine video scenarios were shown to all participants and therefore
is a within-subject variable. The participant is modeled as a random variable
within the model as each person may be more or less accurate in general. The
McNemar’s chi-square tested whether the participants’ answers depend on the
presence/absence of lights, video scenario, and/or the interaction effects of
both the lights and video scenario together.

Our results indicate that there is a statistically significant difference in the
accuracy based on the presence/absence of lights (“Lights on” M = 75.66%,
SD = 18.20%; “Lights off” M = 56.08%, SD = 19.16%, p < 0.0007). The
accuracy was significantly higher for participants who saw the lights. Ad-
ditionally, there is a statistically significant difference in participants’ accu-
racy based on the video scenario (see Fig. 17 for means and standard devi-
ations, p < 0.0001) (i.e., some videos were harder to determine the robot’s
state/actions than others for each participant). However, there was no sta-
tistically significant effect by the interaction of the light condition and the
video scenario (p = 0.7), indicating that the increased effectiveness of the
“Lights on” condition was the same across scenarios. Based on these results,
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Accuracy per video across conditions Study Condition
* * * % I “Lights on”
100 {1 M B “Lights of

1T R 4T -

Accuracy (%)

P1 P2 P3 S1 S2 S3 w1 W2 w3
Video scenario

FiG. 17: Comparison of the accuracies on each scenario across the two study conditions
(error bars constructed using a 95% confidence interval; statistical significance shown used
t-test)

we conclude that while the choice of a correct robot state/actions hypothesis
does depend on the scenario in which humans see the robot, the tested light
animations universally help increase their accuracy.

Fig. 17 shows the average accuracy of the participants for each scenario
and each light condition. The error bars represent a 95% confidence interval
of the mean. We note that the “Lights on” condition accuracies (shown in
blue) are universally higher than the “Lights off” accuracies (shown in red).
Additionally, the graph clearly shows our result that the video scenarios have
different average accuracy, but the accuracy change between conditions per
video scenario is not reflective of the scenario.

Participant trust in robots On average, participants reported that their trust
in robots had increased after watching the videos shown in the survey. (To
the question: “Do you agree with the following statement? ’After watching
these videos, I will not trust robots as much as I did before.” 7, participants
in both conditions answered above 3 over 5 on average on a 5-point Likert
scale, where 1 meant “Strongly Agree” and 5 meant “Strongly Disagree”.) The
reported increase in their trust in robots was significantly more pronounced for
participants in the “Lights on” condition (M = 4.29, SD = 0.90) compared
to those in the “Lights off” condition (M = 3.52, SD = 0.87) (¢(40) = £2.02
two-tailed, p = 0.008).

However, there was no statistically significant difference between the two
conditions in the reported absolute level of trust in both CoBot and in robots
in general (£(40) = £2.02 two-tailed, p > 0.05), only in the change in trust
discussed above did the results differ across conditions.
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Participant confidence we analyzed the average reported answer confidence
over the 9 videos and found that it was slightly higher in the “Lights on” con-
dition as compared to the “ Ligths off” condiiton (2.9 versus 3.17 respectively
on a 5-point Likert scale). However, this difference was not statistically signif-
icant (¢(40) = £2.02 two-tailed, p > 0.05). Similarly, no statistical significance
was found when comparing reported confidence on a per video basis.

6.2.6 Discussion

The significant effect of scenario on response accuracy shows that some ques-
tions were harder than others. This was not unexpected, since some scenarios
were more ambiguous than others. The four answer choices presented for each
question were designed by us and it was inevitable that some choices were
more obvious to choose or to eliminate depending on the scenario and the
question asked.

Furthermore, it is to be noted that all of our videos intentionally lacked
obvious contextual clues. Lack of such clues is a usual situation when encoun-
tering a mobile robot like CoBot. Visitors often encounter the robot for the
first time and interact with it with no knowledge at all about its capabilities,
current state, or expectations from humans. Another example is when CoBot
is stopped waiting for help (e.g., at an elevator). In such cases, looking at
the robot from afar does not give much insight about what the robot’s state,
unless other visual cues are present.

Moreover, our three animations, originally designed for a specific scenario,
are shown to generalize well to other similar scenarios. Some scenarios (like
P3 and W3) even outperform the scenario used for the design of the light
animations. We attribute the success of such generalizability to the abstraction
used in these animations.

Furthermore, the fact that no significant changes in participants confidence
was observed between the two conditions might be due to the fact that partic-
ipants in one condition were unaware of the other condition which might have
made all confidence reports average out around the mean score. It might be
interesting to see if these results change in a within-subject study of the same
type. The confidence people have on hypothesizing about a robot’s state and
actions is in fact an important factor to have in mind when designing robotic
systems, especially safety-critical ones (such as for example self-driving cars).

Finally, it is important to note that the design of our study places the
participants as a third person observing an interaction and not being part
of it. Even though this design choice was made to isolate our measure of
legibility, which could have otherwise been compromised by aspects such as
motion, proximity, field of view, and so on, we could expect different results
in a real world interaction, especially when it comes to trust. It would be
interesting to investigate a more careful study of trust in a specifically designed
task that would involve different animations, in the context of human-robot
collaboration.
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6.3 Experiment: Impact on human behavior

In order to evaluate the impact of the robot body lights on people’s behavior
with respect to the robot, we conducted a small observational study to evaluate
whether the presence of lights influenced people to help CoBot at an elevator by
pressing the elevator button. The experiment was run in the Computer Science
(CS) building of our university, which is mainly populated by CS students
and faculty, but also non-CS students, staff and visitors (exact participant
background information was not gathered for this experiment).

6.3.1 Ezxperimental procedure

CoBot was placed in front of the elevator with the following text on its screen:
“Can you please press the elevator button for me to go up?”’. We had two
experimental conditions:

— Condition ‘Lights on’: in this condition, the lights were on and displaying
our designed animation for the ‘elevator waiting’ scenario.

— Condition ‘Lights off’: in this condition, the lights were off and the only
indication that the robot needed help pressing the elevator button was the
on-screen text.

The experimenter was sitting in the elevator area at a distance permitting
accurate observation while not making the participants feel that they were
being observed. The only information recorded was whether or not the person
provided help to the robot. It was coded as a binary variable ‘help’, where ‘1’
means help was provided and ‘0’ means no help was provided.

The experiment was run over three different floors of our building (labeled
GHC6, GHC7, and GHC8), which had slightly different elevator area archi-
tectures and different people. Both conditions were run over each floor, with
the order of the conditions randomized and counterbalanced across floors.

6.3.2 Data filtering

Because the human dynamics around elevator areas can be complex, we had
to filter our data according to some criteria, listed below:

— We filtered out people who passed across the robot from the back, since it
would be hard for them to see what the screen said.

— If there was at least one person waiting at the elevator, any behavior from
the passing people was discarded since the presence of people at the elevator
might have interfered with people’s willingness to help the robot (e.g.,
diffusion of responsibility effects).

— People who were not only passing across the elevator but planned to get
on it were filtered out, unless they purposefully pressed the button in the
reverse direction they were going to help the robot (i.e., pressing the ‘up’
button for the robot and the ‘down’ button for themselves).
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Floor Lights on | Lights off
GHC7 7/10 1/10
GHC6 4/10 3/10
GHCS 6/10 3/10
Total (%) 56.7% 23.3%

TABLE 6: Proportion of people who helped the robot in the two experimental conditions
across the three floors

— If the ‘up’ elevator button was already pressed and people showed a clear
intent of pressing it again without actually pressing it, they were included.

According to our filtering criteria, we gathered a total of 10 data points
for each floor/condition, resulting in a total of 60 participants.

6.3.3 Results and discussion

Table 6 shows the results for the three floors. We observe that the presence of
lights has a statistically significant impact on humans helping CoBot (¢(58) =
£2.00 two-tailed, p = 0.007). We attribute this difference to two factors: first,
the fact that the animation for this scenario is legible as shown in our legibility
study; second, the fact that the animation was effective at grabbing people’s
visual attention in addition to the other contextual clues that the robot is in
need of help such as the on-screen text and the position and orientation of
the robot close to the elevator. While only 23.3% of people provided help to
CoBot with lights off, 56.7% provided help when the lights were on. The effect
was more or less pronounced according to the floor, which we may attribute
to different factors such as familiarity with the robot, architectural differences
between the floors that might affect visibility, and time of the day.

This study demonstrated in a single scenario that expressive lights, beyond
legibility of expression (evaluated in user study 2), can have an actual impact
on the behavior of humans around robots. In the elevator help scenario, ex-
pressive lights enabled better collaboration between the robot and the human,
even when the humans who provided help were not the ones who requested
the service from the robot (and hence, they are not getting anything in return
from the robot by providing help to it). It would be interesting to see what
behaviors are observed with/without expressive lights in a scenario where the
human may get some benefit from not helping the robot (such as not wanting
to move away from the path of the robot in order to play with it). Those
results may or may not generalize, especially depending on the background of
the person interacting, but a more careful investigation is definitely needed to
hypothesize about those less simplistic scenarios.

6.4 Section summary

In this section, we have presented three user studies which evaluate the be-
havior of CoBot’s body light strip.
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The first study informed our design of light animations for three different
scenarios (waiting at an elevator, blocked by a human obstacle, and escorting
a person). We asked experts to provide their top choice from a ‘catalog’ of
available light animations, speeds, and colors.

The second study validated the legibility of the designed animations, as
well as their generalizability to scenarios similar to the ones used in the design
process. It mainly showed that the presence of lights has a significant impact
on naive people’s understanding of the robot in diverse situations.

The third study was a small real-world experiment which proved that these
lights can have a real impact on people’s behavior with regard to the robot.
It showed that people were significantly more likely to provide help to a robot
with expressive lights in a simple scenario.

7 Conclusion

This paper has focused on enabling robots to effectively communicate infor-
mation about their state through the use of expressive lights. We focused on
three main aspects of such communication modality in relation to robot state,
summarized below.

First, we came up with informative expressive behaviors of the robot’s
state by: (1) selecting from it user-relevant elements as a function of situation
and context, and (2) mapping them to the elements of our expression channel,
namely expressive lights.

Second, we designed these expressive behaviors, namely, light animations,
ensuring they are legible, such that they require minimal or no training to be
understood by first-time users. We informed our design choices by both design
and evaluation user studies.

Our technical contributions can be summarized as follows:

— An efficient representation for robot state information which builds upon
robot variables and state features to form structures suited for expression
which we call animation tuples,

— A formal framework for light animation control which divides the anima-
tion space into a finite set of signal shapes with associated parameters
related to dynamics, color, intensity, and spatial indexing. An episodic an-
imation control algorithm is used to render animatable structures (com-
plete animation tuple sets) into animation frames on a digital LED strip.
Although the analysis is focused on addressable light strips, it easily gen-
eralizes to other forms of light arrays,

— A design study to investigate the design (parameter selection) of animating
robot state through expressive lights, and

— Two evaluation studies which show that expressive lights on a robot can in-
crease understanding of robot states and actions, but also have an influence
on the behavior of humans interacting with the robot.

The formalism of both state representation and mapping as well as light
animation control was made general enough to be easily utilized in different
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robots or technological devices, as well as different types of animated light
sources. In this work, it was used to map the state of the mobile service robot
CoBot to two light strips expressing different types of information about the
robot’s state. Our design and evaluation studies focused on a single light strip,
with three light animations that were applied to three classes of scenarios. We
are confident that other similar scenarios on mobile robots with different tasks
and services, or even different types of robots, could benefit from using legible
expressive lights in a way similar to what was done in this work, to enable a
better understanding of the robot’s operation, goals, and knowledge. Beyond
legibility, even though we only touched on the effect of those lights on the
idea of trust, it is of pressing importance to understand in the future how
such a communication modality is able to positively or negatively affect more
sophisticated measures of trust, but also collaboration, rapport, attachment,
and more, in both short-term and long-term interactions.

Finally, the natural extension of this work is its application to truly mul-
timodal robot expression. With multiple modalities, there is a problem of dis-
tributing expressive behaviors across different heterogeneous modalities with
different capabilities and limitations. Also, investigating aspects of redundancy
and complementarity will be important since modalities, relating to the same
system, cannot be treated as completely independent. Along these lines, there
is also the problem of synchronization between different modalities, especially
when two modalities use the same physical resource (e.g., sound and speech,
functional and expressive motion).

Acknowledgements This research was partially supported by the FCT INSIDE ERI
grant, FLT grant number 2015-143894, NSF grant number IIS-1012733, and ONR grant
N00014-09-1-1031. The views and conclusions contained in this document are those of the
authors only. The authors declare that they have no conflict of interest.

We would like to thank Ana Paiva and Stephanie Rosenthal for their guidance on the user
studies, as well Joydeep Biswas and Richard Wang for their development and maintenance
of the autonomous CoBot robots.

References

1. Alves-Oliveira, P., Di Tullio, E., Ribeiro, T., Paiva, A.: Meet me halfway: Eye behaviour
as an expression of robot’s language. In: 2014 AAAI Fall Symposium Series (2014)

2. Baraka, K., Paiva, A., Veloso, M.: Expressive lights for revealing mobile service robot
state. In: Robot 2015: Second Iberian Robotics Conference, pp. 107-119. Springer (2016)

3. Baraka, K., Rosenthal, S., Veloso, M.: Enhancing human understanding of a mobile
robot’s state and actions using expressive lights. In: Robot and Human Interactive
Communication (RO-MAN), 2016 25th IEEE International Symposium on, pp. 652—
657. IEEE (2016)

4. Bertin, J.: Semiology of graphics: diagrams, networks, maps (1983)

5. Betella, A., Inderbitzin, M., Bernardet, U., Verschure, P.F.: Non-anthropomorphic ex-
pression of affective states through parametrized abstract motifs. In: Affective Comput-
ing and Intelligent Interaction (ACII), 2013 Humaine Association Conference on, pp.
435-441. IEEE (2013)

6. Bethel, C.L.: Robots without faces: non-verbal social human-robot interaction (2009)



Mobile Service Robot State Revealing through Expressive Lights 47

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Choi, Y., Kim, J., Pan, P., Jeung, J.: The considerable elements of the emotion expres-
sion using lights in apparel types. In: Proceedings of the 4th international conference
on mobile technology, applications, and systems, pp. 662-666. ACM (2007)

. De Lorenzo, R.A., Eilers, M.A.: Lights and siren: A review of emergency vehicle warning

systems. Annals of emergency medicine 20(12), 1331-1335 (1991)

. De Melo, C., Paiva, A.: Expression of emotions in virtual humans using lights, shadows,

composition and filters. In: Affective Computing and Intelligent Interaction, pp. 546—
557. Springer (2007)

Dragan, A.: Legible robot motion planning. Ph.D. thesis, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA (2015)

Funakoshi, K., Kobayashi, K., Nakano, M., Yamada, S., Kitamura, Y., Tsujino, H.:
Smoothing human-robot speech interactions by using a blinking-light as subtle expres-
sion. In: Proceedings of the 10th international conference on Multimodal interfaces, pp.
293-296. ACM (2008)

Gerathewohl, S.J.: Conspicuity of flashing light signals: Effects of variation among fre-
quency, duration, and contrast of the signals. J. Opt. Soc. Am. 47(1), 27-29 (1957)
Haddock, S.H., Moline, M.A., Case, J.F.: Bioluminescence in the sea (2009)

Harrison, C., Horstman, J., Hsieh, G., Hudson, S.: Unlocking the expressivity of point
lights. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1683-1692. ACM (2012)

Holmes, K.: The mood of the chinese internet lights up the facade of beijing’s water cube.
http://motherboard.vice.com/blog/video-the-great-mood-building-of-china
(n.d.). [Online; accessed 11-Feb-2016]

Hoonhout, J., Jumpertz, L., Mason, J., Bergman, T.: Exploration into lighting dynamics
for the design of more pleasurable luminaires. In: Proceedings of the 6th International
Conference on Designing Pleasurable Products and Interfaces, pp. 185-192. ACM (2013)
Jones, D.N.: Interactive light art show ’congregation’ opens at mar-
ket square. http://www.post-gazette.com/local/city/2014/02/22/
Interactive-light-art-show-opens-at-Pittsburghs-Market-Square/stories/
201402220081 (2014). [Online; accessed 11-Apr-2016]

Kim, M.g., Sung Lee, H., Park, J.W., Hun Jo, S., Jin Chung, M.: Determining color and
blinking to support facial expression of a robot for conveying emotional intensity. In:
Robot and Human Interactive Communication, 2008. RO-MAN 2008. The 17th IEEE
International Symposium on, pp. 219-224. IEEE (2008)

Knight, H., Simmons, R.: Expressive motion with x, y and theta: Laban effort features
for mobile robots. In: Robot and Human Interactive Communication, 2014 RO-MAN:
The 23rd IEEE International Symposium on, pp. 267-273. IEEE (2014)

Kobayashi, K., Funakoshi, K., Yamada, S., Nakano, M., Komatsu, T., Saito, Y.: Blinking
light patterns as artificial subtle expressions in human-robot speech interaction. In: RO-
MAN, 2011 IEEE, pp. 181-186. IEEE (2011)

Langmuir, I., Westendorp, W.F.: A study of light signals in aviation and navigation.
Journal of Applied Physics 1(5), 273-317 (1931)

Lloyd, J.E.: Bioluminescent communication in insects. Annual review of entomology
16(1), 97-122 (1971)

Mutlu, B., Forlizzi, J., Nourbakhsh, I., Hodgins, J.: The use of abstraction and motion
in the design of social interfaces. In: Proceedings of the 6th conference on Designing
Interactive systems, pp. 251-260. ACM (2006)

Nijdam, N.A.: Mapping emotion to color. Book Mapping emotion to color pp. 2-9
(2009

Pererz)i, V., Soetens, R., Kollar, T., Samadi, M., Sun, Y., Nardi, D., van de Molengraft,
R., Veloso, M.: Learning task knowledge from dialog and web access. Robotics 4(2),
223-252 (2015)

Rea, D.J., Young, J.E., Irani, P.: The roomba mood ring: An ambient-display robot.
In: Proceedings of the seventh annual ACM/IEEE international conference on Human-
Robot Interaction, pp. 217-218. ACM (2012)

Rosenthal, S., Biswas, J., Veloso, M.: An Effective Personal Mobile Robot Agent
Through Symbiotic Human-Robot Interaction. In: Proceedings of AAMAS’10, the
Ninth International Joint Conference on Autonomous Agents and Multi-Agent Systems.
Toronto, Canada (2010)



48 Kim Baraka, Manuela Veloso

28. Schanda, J.: Colorimetry: understanding the CIE system. John Wiley & Sons (2007)

29. Seitinger, S., Taub, D.M., Taylor, A.S.: Light bodies: exploring interactions with re-
sponsive lights. In: Proceedings of the fourth international conference on Tangible,
embedded, and embodied interaction, pp. 113-120. ACM (2010)

30. Song, S., Yamada, S.: Expressing emotions through color, sound, and vibration with an
appearance-constrained social robot. In: Proceedings of the 2017 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, HRI ’17, pp. 2-11. ACM, New York,
NY, USA (2017)

31. Stricker, R., Mller, S., Einhorn, E., Schrter, C., Volkhardt, M., Debes, K., Gross, H.M.:
Interactive mobile robots guiding visitors in a university building. In: RO-MAN, pp.
695-700. IEEE (2012)

32. Szafir, D., Mutlu, B., Fong, T.: Communicating directionality in flying robots. In:
Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction, pp. 19-26. ACM (2015)

33. Veloso, M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: Robust Symbiotic Autonomous
Mobile Service Robots. In: Proceedings of IJCATI’15, the International Joint Conference
on Artificial Intelligence. Buenos Aires, Argentina (2015)

34. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention
and how do they do it? Nature reviews neuroscience 5(6), 495-501 (2004)

35. Wright, A.: The colour affects system of colour psychology. In: AIC Quadrennial
Congress, 2009 (2009)

36. Wright, B., Rainwater, L.: The meanings of color. The Journal of general psychology
67(1), 89-99 (1962)

37. Xia, G., Tay, J., Dannenberg, R., Veloso, M.: Autonomous robot dancing driven by
beats and emotions of music. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems - Volume 1, pp. 205-212 (2012)

Kim Baraka is currently a dual degree Ph.D. student in Robotics at Carnegie
Mellon’s Robotics Institute (Pittsburgh, PA, USA), and Instituto Superior Tc-
nico (Lisbon, Portugal). He holds an M.S. in Robotics from Carnegie Mellon,
and a Bachelor in Electrical and Computer Engineering from the American
University of Beirut. His research interests lie at the intersection between Ar-
tificial Intelligence, Machine Learning and Human-Robot Interaction. A be-
liever in the coexistence of robots and humans, his graduate research focuses
on making robots both more adaptive and more transparent to humans. More
specifically, he is recently interested in the development of adaptive algorithms
for socially assistive robotics, such as the use of robots in autism therapy.

Manuela M. Veloso is the Herbert A. Simon University Professor in the
School of Computer Science at Carnegie Mellon University. She is the Head of
the Machine Learning Department, with joint appointments in the Computer
Science Department, in the Robotics Institute, and in the Electrical and Com-
puter Engineering Department. She researches in Artificial Intelligence with
focus in robotics, machine learning, and multiagent systems. She founded and
directs the CORAL research laboratory, for the study of autonomous agents
that Collaborate, Observe, Reason, Act, and Learn, www.cs.cmu.edu/~coral.
Professor Veloso is ACM Fellow, IEEE Fellow, AAAS Fellow, AAAI Fellow,
Einstein Chair Professor, the co-founder and past President of RoboCup, and



Mobile Service Robot State Revealing through Expressive Lights 49

past President of AAAIL Professor Veloso and her students research with a va-
riety of autonomous robots, including mobile service robots and soccer robots.
See www.cs.cmu.edu/~mmv for further information, including publications.



