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Abstract. Children affected by Autism Spectrum Disorders (ASD)
exhibit behaviors that may vary drastically from child to child. The goal
of achieving accurate computer simulations of behavioral responses to
given stimuli for different ASD severities is a difficult one, but it could
unlock interesting applications such as informing the algorithms of agents
designed to interact with those individuals. This paper demonstrates a
novel research direction for high-level simulation of behaviors of chil-
dren with ASD by exploiting the structure of available ASD diagnosis
tools. Building on the observation that the simulation process is in fact
the reverse of the diagnosis process, we take advantage of the structure
of the Autism Diagnostic Observation Schedule (ADOS), a state-of-the-
art standardized tool used by therapists to diagnose ASD, in order to
build our ADOS-Based Autism Simulator (ABASim). We first define
the ADOS-Based Autism Space (ABAS), a feature space that captures
individual behavioral differences. Using this space as a high-level behav-
ioral model, the simulator is able to stochastically generate behavioral
responses to given stimuli, consistent with provided child descriptors,
namely ASD severity, age and language ability. Our method is informed
by and generalizes from real ADOS data collected on 67 children with
different ASD severities, whose correlational profile is used as our basis
for the generation of the feature vectors used to select behaviors.

Keywords: Behavioral simulation - Computational modeling - Autism -
Autism Diagnostic Observation Schedule

1 Introduction

Autism Spectrum Disorders (ASD) is a set of developmental conditions that
affect 1in 68 children in the US! and can have varying degrees of impact on

1 According to a 2014 report by the Centers for Disease Control and Prevention.

© Springer International Publishing AG 2017
E. Oliveira et al. (Eds.): EPTA 2017, LNAI 10423, pp. 753-765, 2017.
DOI: 10.1007/978-3-319-65340-2_61



754 K. Baraka et al.

social abilities, verbal and non-verbal communication, and motor and cognitive
skills. These disorders have been widely studied from a developmental, neu-
ropsychological [17] and genetic [13] point of view, whereby researchers try to
explain the underlying mechanisms that cause or characterize ASD. However,
apart from diagnostic procedures, efforts for understanding, classifying, formal-
izing and predicting the wide range of behaviors of individuals with ASD remain
as of now limited. In particular in children, which are the focus of this work,
the exhibited behaviors may be even more diverse and hard to predict compared
to adults. The lack of such accurate behavioral models poses a problem in the
design of autonomous agents that are expected to interact socially with children
with ASD, such as avatars [12] or robots [6,14]. Several studies have shown that
introducing such agents in ASD therapy session has notable benefits [3], which
has encouraged researchers to design such agents in a variety of ways. However,
most of the existing agents either lack autonomy or are rigid when it comes to
personalizing the interaction to account for different ASD severities or types.
We believe one major bottleneck comes from the lack of useful behavioral mod-
els and simulation tools to enable the agents to intelligently adapt their social
interaction with the child. Without such tools, the effectiveness of the agent’s
reasoning, including both planning and learning, is limited.

On the other hand, several tools have been developed to diagnose ASD
through observations or questionnaires. This paper specifically builds upon the
Autism Diagnostic Observation Schedule (ADOS)?, “a semi-structured, stan-
dardized assessment of communication, social interaction, play, and imagination
designed for use in diagnostic evaluations of individuals referred for a possi-
ble Autism Spectrum Disorder (ASD)” [10]. Compared to other diagnostic and
evaluation tools (e.g., ADI-R, CARS, SRS, etc.), the ADOS possesses enough
structure to be interesting from a computational point of view. It provides us
with a detailed, precise and quasi-comprehensive assessment of the characteris-
tics of a child suspected of having an ASD, thanks to its detailed coding scheme
and the inherent structure of its activities. For instance, some of these activities
are ‘algorithmic’ in nature and use a hierarchy of ‘presses’ (social structures)
to help the coding. We take advantage of these points and use the ADOS as a
starting point for the design of a high-level behavioral simulator of children with
different severities of ASD.

The basis for this paper stems from the observation that the simulation
process can be seen as the reverse of the diagnosis process. While the latter maps
observed behaviors to a set of coded features, the former maps features to simu-
lated behaviors consistent with those features. Unlike existing simulation proce-
dures for ASD, our simulator, the ADOS-Based Autism Simulator (ABASim),
captures the individual differences in behaviors of children with varying ASD
severities. We summarize the contributions of this paper as follows:

2 Our work uses version 2 of the tool, namely ADOS-2, but for simplicity we refer to
it by ADOS throughout the paper.
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1. We define the ADOS-based Autism Space (ABAS), which captures behav-
ioral differences among children with ASD, through the use of ADOS-based
features,

2. We provide a method for stochastically mapping high-level descriptors of a
child with ASD (namely: age, ASD severity, and language ability) to a point
in ABAS. To inform the mapping process, our method uses real data collected
on children with different ASD severities,

3. We provide a method for mapping a point in ABAS to behaviors occurring
in response to a fixed set of stimuli, corresponding to ADOS activities.

2 Background

We start by discussing some related work on simulating/modeling human behav-
iors. Then, we provide some details on the structure of the ADOS diagnostic tool.

2.1 Simulating/Modeling Human Behaviors

Simulating and modeling human behaviors have been a widespread practice to
inform any type of decision-making involving humans. Examples include con-
sumer modeling in market research [1,5,16], online recommendation systems [9],
and driver modeling [4], to name a few. These models focus on behavior, which
is predicted either using an underlying cognitive process (e.g., driver modeling)
or through the use of data (e.g., recommendation systems). Moreover, a general
purpose “computer based mental simulator” (NL-.MAMS) has been developed
and used to simulate the underlying mental processes of individuals with ASD
[7].

Computational models of ASD include techniques such as neural networks or
game theory to model low-level mechanisms of the brain affecting behavior [7].
These methods are good at explaining different observed autistic behaviors, but
not as successful in computationally predicting high-level behavior, especially for
different types or severities of ASD. Reinforcement Learning methods have been
proven to be useful in modeling some high-level behaviors seen in individuals
with ASD [2], but they are only able to distinguish between ASD and non-
ASD populations. Individual differences, well established in available diagnostic
tools, are starting to be studied from a modeling/simulation perspective [15]
but the parts of the model accounting for these differences is usually simplistic.
To the best of our knowledge, the simulation of high-level autistic behaviors
in an individualized way and in response to different types of stimuli remains
unexplored.

2.2 Autism Diagnostic Observation Schedule (ADOS) Structure

The ADOS diagnostic tool comprises 5 modules suitable for different language
abilities and/or ages. Module 1 (Pre-verbal/Single Words) remains the main
module used by therapists as an initial assessment of children 31 months or
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older, and up to 14 years of age. For this reason, we focus on this particular
module in this work. However, our methods can be applied to any of the ADOS
modules as they possess a very similar structure.

The ADOS Module 1 is composed of 10 standardized activities, with varying
degrees of structuredness, including rather unstructured activities such as ‘Free
Play’ (where the child is left to freely play in the room) to very structured
activities such as ‘Response to name’ (where the therapists calls the child’s name
at different degrees of intensity and observes the child’s response). In a typical
session where the ADOS is administered, the therapist performs the activities
and records behaviors of interest throughout the session. At the end of the session
(i.e., after all 10 activities are over), the therapist codes the behaviors exhibited
by the child throughout the whole session.

There are a total of 29 ADOS codes for different, usually exclusive, behavior
types. However, of these 29 codes only 14 are used in the algorithm that returns
the total score used for diagnosis, and those slightly vary depending on the
language ability of the child. Table 1 shows the codes used for computing the total
score and of interest in this work. Codes are all converted to a 0-2 integer scale
before they are summed to produce a total score between 0 and 28. The total
score can be further broken down into three subtotals for Communication (A2
to A8), Reciprocal Social Interaction (B1 to B12) and Restricted and Repetitive
Behavior (A3 to D4). From the total score, one can compute a comparison score
(between 1 and 10) which serves as our measure for autism severity. In this
paper, we focus only on the codes of Table 1, although using more codes to get
more detailed simulated behaviors is possible.

3 ADOS-Based Autism Space (ABAS)

In this section, we formally introduce our domain, based on the structure of the
ADOS.

3.1 ABAS Definition

Through its use of codes to map observed behaviors to numbers, the ADOS
effectively defines a feature space for ASD, which we will call the ADOS-based
Autism space (ABAS). In this space, the features under consideration corre-
spond to the different ADOS codes, and ABAS points represent different indi-
viduals with different ASD characteristics. We refer to our features (codes) as
¢ for i =1,...,14 and L = ‘No words’, ‘Some words’, where ¢; 1. € {0,1,2}.
Even though some items may be originally coded by the therapist using values
outside the 0—2 range, the codes are remapped to it for the algorithm’s purposes.
We refer to a point in ABAS using the feature vector [cq, ..., c14] (ignoring the
dependence on language ability for simplicity).
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Table 1. Summary of the ADOS module 1 codes (features) used for computing the
total score for the two different language abilities

Code name Label | Few/no words | Some words
Frequency of vocalization directed to others A2 v v
Pointing A7 X v
Gestures A8 v v
Unusual eye contact B1 v v
Facial expressions directed to others B3 v v
Integration of gaze [etc.] during social overtures B4 v v
Shared enjoyment in interaction B5 v v
Showing B9 v v
Spontaneous initiation of joint attention B10 |v v
Response to joint attention B11 | v/ X
Quality of social overtures B12 |/ v
Intonation of vocalizations or verbalizations A3 v X
Stereotyped/idiosyncratic use of words or phrases Ab X v
Unusual sensory interest in play material/person D1 v v
Hand and finger and other complex mannerisms D2 v v
Unusually repetitive interests or stereotyped behaviors | D4 v v

3.2 Total Score Constraint on ABAS

The total score C is defined as z;il ¢i (C €H{0,...,28}). Except for edge cases,
there are many feature vectors (combinations of ADOS codes) that sum up to
the same total score. To evaluate the impact on constraining the L1 norm of the
feature vector, we solve the following equation for each of the possible values of

C:
14
dei=C, ¢ €{0,1,2} (1)
i=1

The number of elements in the solution set of Eq. 1 as a function of C' is shown
in Fig. 1. For some values of the total score, the number of possible feature vectors
can be very large (e.g., more than 600,000 for a total score of 14). Although
mathematically feasible, we suspect that some of these feature vectors will be
unlikely to occur in nature due to inevitable dependencies between the different
features. This observation will be tackled in Sect.4.2.

3.3 Descriptors

As for any simulator, it is useful to define a set of high-level variables which
could be inputted by a user to create a range of simulations with different char-
acteristics. In particular, the individual features might be too many to input by
hand, or as mentioned in the previous subsection, some of the combinations of
features may be unlikely to even occur in nature. Also, we may want to be able to
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Fig. 1. Number of different possible combinations of ADOS codes (feature vectors) for
a fixed total score.

stochastically generate different simulation runs for a smaller set of higher-level
input variables. For these reasons, we introduce descriptors, defined as:

— The child’s chronological age A,
— The child’s language ability L (‘no words’ or ‘some words’),
— The child’s ASD severity S (on a scale from 1 to 10).

These descriptors are used in the ADOS, which defines a relationship between
A, L, S and C in the form of a conversion table. The (A L,S) triplet will be used
as a convenient yet expressive input to our simulator.

4 Behavioral Simulation of Children with Different ASD
Severities

In this section, we describe the different components along the pipeline of
our ADOS-Based Autism Simulator (ABASim), which generates behavioral
responses to input stimuli for specified descriptors.

4.1 ABASim Components Overview

ABASim enables the generation of a set of behaviors which, according to ADOS,
are likely to occur as a response to a given stimulus, for a child with given
descriptors. The stimuli we consider in this work correspond to the standardized
activities performed during an ADOS session; therefore the set of behaviors
ABASim is able to generate are those typically observed during or as a response
to these activities.

The pipeline of our simulator is shown in Fig.2. We use the descriptors
(A,L,S) to specify the characteristics of the fictional child to be simulated.
The input descriptors first get translated into a total score range, from which a
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single total score is randomly selected. From this total score, we stochastically
generate 14 feature values whose sum matches the specified total score. The
sampling process used is informed by data collected on real children suspected
of having an ASD. Finally, for each of the 10 activities, we have identified a
set of relevant features which dictate what kinds of behaviors are likely to be
observed for the given activity. These behaviors are selected from a database of
behaviors that we compiled based on the explanation of the coding scheme of
the ADOS manual [10]. We now give some more detail on the different simulator
components.

INPUT
Age (A) COMPUTE

Language Ability (L) 1 SELECT (UNIFORMLY)

Severity (S)
ADOS total score C

GENERATE STOCHASTICALLY
(DATA INFORMED)

ADOS total score range

Feature vector [c;,...,C14]
[A2,A8,B1,B3,B4,B5,89,B10,B11,812,A3,D1,D2,D4] for L=“no words”
[A2,A7,A8,B1,B3,B4,B5,89,810,B12,A5,D1,02,D4] for L=“some words”

SELECT

Set of
relevant features
for each activity

Simulated child (UNIFORNILY} Database of behaviors b;;,

behaviors

b; OUTPUT

Rendered behavior (e.g.,
text, avatar animation)

Fig. 2. ABASim pipeline: generating simulated behaviors for input descriptors and
activity.

4.2 Stochastic Generation of Feature Vectors from Descriptors

As mentioned in the simulator overview, the user will be specifying the descrip-
tors as an input to the simulator. We hence need a mapping from descriptors to
a feature vector consistent with these descriptor values.

The first step is to map given descriptors to a total score C. This step is
trivial since it is directly given by a conversion table present at the end of the
ADOS. This table converts a given set of age, language ability, and total score
range to a severity value. Reversing this conversion gives us a range for C for a
given (A,L,S) triplet (the width of this range is typically between 0 and 7). We
then uniformly select one integer value in that range as our total score C.

The second step is to map the obtained total score C' to a feature vector
[c1,...,c14] in ABAS. In other words, we are looking for a method to sample a
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feature vector with the property 2311 ¢; = C. As emphasized in Sect. 3.2 some
vectors will be unlikely to occur because we do not expect to have complete
independence between the features c;. We use real data to verify and make use
of this hypothesis, as explained in the following subsections.

Dataset Description and Analysis. In order to inform our method for sam-
pling feature vectors, we gathered the Module 1 ADOS scores (feature values) of
67 children with different severities of ASD?. Ages ranged between 3 and 7 years
and the female-to-male ratio was 11:56. The total scores in the dataset ranged
between 0 and 25, with a more or less uniform distribution over total scores
(no blatant skewness). We analyzed the correlation between pairs of features, as
shown in Fig.3(a). Since we are dealing with ordinal data, we used Spearman
correlation coeflicients; we also ignored higher-order correlations. P-values were
computed for each correlation coefficient using a t-statistic. Note that, of the
14 features, only the 12in common between the two L categories were included.
Because of our small sample size, breaking down our dataset into two parts (one
for each value of L) would have been problematic statistically speaking. As a
workaround, we could set the value of the two remaining features randomly.
Most features turn out to be correlated (hence dependent), except for three
pairs of features whose p-value is above 0.05, namely (D2,B1) (p = 0.060),
(D2,B4) (p = 0.068), and (D2, B12) (p = 0.105). Note that all three pairs contain
D2 which corresponds to ‘Hand and Finger and Other Complex Mannerisms’.
Furthermore, the computed correlation matrix does not contain any negative
correlations, which makes sense given that all features are partial measures of
ASD severity, along different dimensions, where higher means more severe.

Generating Consistent (Unconstrained) Feature Vectors. The ABAS is
a very large space which inevitably makes most reasonably sized datasets sparse.
In particular, with our limited dataset (67 data points), it is important to enable
the simulator to generalize from data to generate synthetic feature vectors that
are consistent with our limited data points. In this work, we aim to gener-
ate feature vectors according to the correlational structure between features, as
obtained from our dataset. In other words, we would like to generate correlated
discrete (ordinal) data according to the dataset’s correlational profile. Several
methods exist to achieve this, including the Gaussian copula [11], binary conver-
sion, and mean mapping [8] methods. We use the mean mapping method, which
gave best results for our application. The method takes as input the target mar-
ginal distributions and target correlation matrix of the features, and generates a
set of feature vectors with (asymptotically) identical marginals and correlation
matrix. The ordinal data is first mapped to the continuous space by comput-
ing a corresponding multivariate normal correlation matrix (achieved through

3 The ADOS data used in this research are part of a database for autistic children that
the ASD group, at the Child Development Center of the Hospital Garcia de Orta
(Lisbon, Portugal), keeps for statistical purposes. All data was anonymous; only age
and gender were collected from the sample for biographical characterization.
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Fig. 3. Spearman correlation matrices of features for: (a) the real dataset (67 feature
vectors), (b—d) synthetic datasets of size 67, 1,000, and 100,000 respectively, along
with maximum absolute errors as compared to (a). Target feature marginals were set
to uniform distributions.

function fitting). Multivariate normal data is then drawn according to this cor-
relation matrix and reconverted to ordinal data. We used an R implementation
of this method through the orddata® package to generate the synthetic feature
vectors analyzed in Fig.3. The figure shows the obtained correlation matrices,
which are consistent with the target correlation matrix (from the real dataset)
and converge to it as the number of samples increases. We report the maximum
absolute errors, defined as the maximum absolute difference between the sample
matrices and the target matrix over all matrix entries. In order not to bias the
generated total scores, target marginals were set to the uniform distribution.

Incorporating the Constraint to Achieve the Mapping. In our feature
vector generation scheme, we have so far ensured that the sampling was con-
sistent with real data, but we have ignored the constraint on the L1 norm of
the feature vector (Eq. 1). To incorporate the constraint, we iteratively generate
unconstrained feature vectors until the total score constraint is satisfied. Unlike
the bell-shaped distribution of Fig. 1, the statistical distribution of our gener-
ated (unconstrained) feature vectors is almost uniform, as shown in Fig. 4, which
we attribute primarily to the target uniform marginals we enforced. This result
suggests that the amount of computation needed to generate a feature vector for
a given total score does not significantly rely on the value of that score as one
might expect from the different subspace sparsities emphasized in Fig. 1.

4.3 Mapping Feature Vectors to Behaviors

The problem of mapping a feature vector in ABAS to a set of behaviors in
response to stimuli is a tricky one because there are usually more than a single

* https://r-forge.r-project.org/R,/?group_id=708.
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Fig. 4. Histogram of total scores for 100,000 generated feature vectors (only 12 features
used).

behavior that fall under the same feature value and the degree of specificity
in describing the different behaviors in the ADOS manual varies greatly. Also,
there is always some level of subjectivity in the ADOS coding process which
makes the generation and rendering of the different behaviors a sensitive task
which would need to be backed up by extensive empirical studies if deployed in
an actual system (beyond the scope of this paper).

As a first step in the mapping process, we defined a set of relevant features for
each of the ADOS activities, which we summarize in Table 2. Relevant features
capture the types of behaviors that are expected to be exhibited in - or are of spe-
cial importance for - a particular activity. For example, in the activity ‘Response
to join attention’, the feature ‘Spontaneous Initiation of Joint Attention’ (B10)
is relevant but the feature ‘Unusual Sensory Interest in Play Material /Person’
(D1) is not. These relevant features were chosen based on the nature of the
activity as well as the observational guidelines included in the ADOS manual.

Table 2. Relevant features for each activity considered (for both L = ‘no words’ and
L = ‘some words’ combined).

Activity Relevant features

Free play A2,A7,A8,B5,B9,B10,B3,D1,D2,D4
Response to name B1,B4,A2

Response to joint attention B11,B1,A2,B5,B10,B12
Bubble play B3,B10,B5,D1,D2,D4
Anticipation of a routine with objects | B10,B5,D2,D4
Responsive social smile B3

Anticipation of a social routine B4,B1,B3,A2,A8,B5
Functional and symbolic imitation B4,B5

Birthday party D4,B5,B12,B1,B3,B4
Snack B1,A8,B3,A3,B12
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On the other hand, for each feature, we extracted from the ADOS manual
one or more corresponding behavior(s) b;;x, where ¢ € {1, ..., 14} is the feature
index, j € {0, 1,2} is the feature value, and k € {1, ..., K;; } is the behavior index.
The ADOS manual describes the coding process by listing more or less specific
behaviors that would fall under a given value for each feature. The database of
behaviors b;;; was manually compiled to include all those described behaviors.
The number of behaviors that fall under the same value for a given feature ranges
from a single behavior to up to 8 behaviors with varying degrees of similarity.

Sample behavior database entry for feature A7 (cz):

—cp =0: {b201: “Child points with index finger to show visually directed
referencing” } ,

—cp=1: {b211: “Child produces an approximation of pointing”, ba1o — ba17:
“Child (gazes)/(vocalizes) while (touching object)/(pointing to a per-
son)/(pointing to himself/herself)” (all combinations)},

— g =2: {b221 — bago: “Child points when (close to)/(touching) object only,
and with no gaze or vocalization”, booz: “Child doesn’t point” }

The behavior generation for a particular activity is done by sampling a behav-
ior for each of the features relevant to the activity according to the given value
of the feature. Because of the small number of behaviors that fall under the same
(feature,value) pair, we opt for a simple uniform selection rule. Note that when
selecting behaviors, the algorithm has to use the L value since the corresponding
features slightly differ. We render generated behaviors as text, but one could
imagine other ways of rendering them, such as for instance using an animated
virtual avatar.

We implemented the pipeline of Fig. 2 in Python with a GUI to control the
different simulator inputs. Figure 5 shows an illustrative example of the different
steps computed by ABASim for three different sets of input descriptors and
activities.

Output behaviors

Descriptors
Feature vector
- “chi "
. A=I5) - [A2=1,A8-2,B1=2,831,84=2,85-2,89=2, Cnltl:t:‘_\ljcs!es poorly T\od_ulated eye Eolnta"ct
='no woras’ B10=1,811=2,812=1,A3=2,D1=2,D2=2,D4=2] ild uses vocalizations to get help

$=9 “Child directs a limited number of vocalizations during activity”

Activity

. 5 Relevant features
Response to name’

B1, B4, A2

Descriptors
Feature vector Output behaviors

2 (5t s [A2=1,A7=0,A8=0,B1=1,B3=0,84=0,B5=0,
= ERInE T B9=0,B10=0,812=0,A5=1,D1=0,D2=0,D4=1]

“Child directs facial expressions to examiner to express enjoyment”

Activity Relevant features
‘Responsive social smile’ B3
Descriptors
A=7
L=‘some words’

Feature vector Output behaviors
[A2=1,A7=1,A8=1,B1=1,B3=2,B4=2,B5=2, “Child doesn't exhibit any social overtures”
B9=1,B10=2,B12=1,A5=1,D1=1,D2=1,D4=1] “Child uses occasional odd words”

Activity Relevant features

‘Functional and symbolic imitation’ B4, AS

Fig. 5. Illustrative examples showing ABASim steps for three different inputs.
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5 Conclusion and Future Work

We presented ABASim, a method for simulating the behaviors of children with
Autism Spectrum Disorders (ASD) of different severities, as a response to a
range of stimuli. While the Autism Diagnostic Observation Schedule (ADOS),
a standardized tool for diagnosing ASD, maps child behaviors to a score, our
method aims at mapping a score (along with the age and language ability of the
child) to a set of behaviors consistent with these descriptors. We first defined
the Autism-Based Autism Space (ABAS) where features correspond to ADOS
codes. We then contributed a pipeline enabling us to generate behaviors from
descriptors. In particular, our stochastic mapping from descriptors to a point in
ABAS ensures a correlational structure between features that is consistent with
actual ADOS data from 67 children suspected of having an ASD.

Our method could enable agents designed to enhance ASD therapy to rea-
son better about interactions with children with ASD, accounting for individual
behavioral differences. Another possible application that we foresee is for thera-
pist training. Simulating the behavioral responses of virtual kids could provide
new tools for therapists by enabling them to virtually interact with hypothetical
children, which they cannot do only by observing videos. The simulator could
also expose the therapists in training to a wide range of hypothetical cases of
ASD that goes beyond the sample they physically interact with in their real
professional life.

In the future, we would like to use a larger dataset to better inform our
sampling process. Also, it would be useful to have some way of evaluating our
generated feature vectors as well as behaviors to ensure they accurately reflect
actual behavioral patterns. Finally, we are interested in integrating these sim-
ulation methods as part of the reasoning of an agent interacting with children
with ASD, such as a mobile robot for therapy.
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