
Visibility Maps for Any-Shape Robots*

Tiago Pereira1, Manuela Veloso2 and António Moreira3

Abstract— We introduce in this paper visibility maps for
robots of any shape, representing the reachability limit of the
robot’s motion and sensing in a 2D gridmap with obstacles. The
brute-force approach to determine the optimal visibility map
is computationally expensive, and prohibitive with dynamic
obstacles. We contribute the Robot-Dependent Visibility Map
(RDVM) as a close approximation to the optimal, and an
effective algorithm to compute it. The RDVM is a function
of the robot’s shape, initial position, and sensor model. We
first overview the computation of RDVM for the circular robot
case in terms of the partial morphological closing operation
and the optimal choice for the critical points position. We then
present how the RDVM for any-shape robots is computed. In
order to handle any robot shape, we introduce in the first
step multiple layers that discretize the robot orientation. In the
second step, our algorithm determines the frontiers of actuation,
similarly to the case of the the circular robot case. We then
derive the concept of critical points to the any-shape robot, as
the points that maximize expected visibility inside unreachable
regions. We compare our method with the ground-truth in a
simulated map compiled to capture a variety of challenges of
obstacle distribution and type, and discuss the accuracy of our
approximation to the optimal visibility map.

I. INTRODUCTION
Scheduling of tasks and motion planning are common

problems in robotics, usually associated with goal positions
in a map. Planning for mobile robots has been widely
studied, and many efficient algorithms are known for a wide
variety of problems. For a given environment, the ability
for a robot to execute a task depends on its own physical
characteristics. Hence, planning needs to determine if a task
is feasible for a specific robot. In our work, we further
consider reconnaissance tasks, where robots do not need to
necessarily reach the goal position, as long as they can sense
it, i.e., as long as the goal is within the robot’s “visibility”.

The ground-truth visibility map can be obtained using a
brute force approach through ray casting, determining for
each point in the map if there is a reachable robot position
from where it is visible. However, the brute force approach

*This work is supported in part by INESC Porto-Institute for Systems and
Computer Engineering of Porto, and by Portuguese Foundation for Science
and Technology (FCT), within project POCI-01-0145-FEDER-006961, and
under Grant SFRH/BD/52158/2013, through the Carnegie Mellon—Portugal
Program managed by ICTI, by ONR grant number N00014-09-1-1031, by
AFRL grant number FA87501220291, and by the ERDF European Regional
Development Fund through the Operational Programme for Competitiveness
and Internationalisation - COMPETE 2020 Programme. The views and
conclusions contained in this document are those solely of the authors.

1 Tiago Pereira is with the Electrical & Computer Engineering De-
partment, Carnegie Mellon University, and with Faculty of Engineering,
University of Porto, Portugal tpereira@andrew.cmu.edu

2Manuela Veloso is with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213, USA mmv@cs.cmu.edu

3A. Moreira is with the ECE Department, Faculty of Engineering,
University of Porto, Portugal amoreira@fe.up.pt

is inefficient as it is computationally expensive, making it
difficult to use in dynamic environments or when determining
visibility for a wide range of robot characteristics.

In our previous work, we presented an alternative that
gives a very close approximation to the ground-truth, sig-
nificantly outperforming brute force in terms of computation
time [1]. We used morphological operations to represent the
actuation space of the robot, and then determined the visi-
bility inside unreachable regions, introducing the concept of
critical points. Considering only visibility from these points
allowed to have a much faster and scalable computation of
the visibility map, although it resulted in an approximation
of the true visibility map. Nevertheless, with a wise choice of
critical points, we could obtain a very close approximation
to the ground-truth. Throughout that work we considered the
assumption that robots have a circular shape.

In this work we extend that technique to determine effec-
tively the visibility map to any-shape robots. So, instead of
the visibility map depending on the robot size and maximum
sensing range, it is now a function of the robot shape,
initial position, and sensor model, with a parametrization that
allows to represent many different robots. We determine the
overall sensing capability of a robot in a 2D gridmap (a
discretized representation of the environment), as a function
of the robot. Our algorithm determines the Robot-Dependent
Visibility Map (RDVM), i.e., what can be sensed from some
point that is reachable from the robot initial position.

The first step of our algorithm uses the partial morpho-
logical closing operation in order to obtain the actuation
space. However, because the robot model is not rotation
invariant, we discretize orientation. We contribute a multi-
layer representation of the environment, and apply the partial
morphological operation to each layer, so the actuation space
is determined for each possible orientation. After projecting
all the layers together, we determine the unreachable regions
and frontiers in a similar fashion to the circular robot case.

In the second step of our algorithm, we change the
definition of critical points to the more general any-shape
robot case. While before the critical point was chosen as the
closest point to the frontier, here that solution does not work
because the visibility inside unreachable regions depends not
only on the 2D position of the critical point, but also on
its orientation and sensor model. Therefore, we extend our
previous idea that the critical point should maximize the
expected visibility inside unreachable regions, in order to
improve the accuracy of our approximation of the visibility
map using only critical points. We contribute an algorithm to
search for points that maximize expected utility based on the
critical point position and orientation, the frontier extremes,

and the sensor model. After determining the optimal position
for the critical points, it is possible to determine the visibility
inside non-traversable regions using ray casting, similar to
the case of circular robots. This method allows to get a good
estimate of the true visibility with less effort than the brute-
force approach.

In the next section we briefly discuss related work. We
then present in depth our work, explaining how it effectively
solves the observability problem with the new representation
for any-shape robots. We present illustrative experimental
results of our algorithm in a simulated (challenging, multi-
featured) environment. Finally, we present our conclusions
and the directions for future work.

II. RELATED WORK

Visibility maps can be used as a pre-processing step
for planning, improving efficiency in motion planning for
perception tasks [1]. We had a circular robot assumption in
that work, which we drop here by considering any-shape
robots with any sensor model.

Techniques borrowed from image processing have already
been used for map transformation, e.g. automatically ex-
tracting topology from an occupancy grid [2]. They robustly
find the big spaces in the environment like humans would,
separating it into regions. Morphological operations have
also been used in robotics to determine the actuation space
of a robot, used to coordinate multi-robot teams [3].

In other work it was proposed that robots maintain reacha-
bility and visibility information, both of a robot and a human
partner in a shared workspace. However, it uses non-mobile
robotic platforms [4]. Visibility graphs are considered in [5],
but the focus is on generating points for a motion plan with
other goals in mind, such as patrolling. Moreover, it assumes
vectorial obstacles, so visibility can easily be calculated using
ray casting at the extremes of lines.

Another class of problems for visibility is the inspection
problem. In order to determine a path that can sense multiple
targets, a neural network approach was used to solve the
NP-hard Watchman Routing Problem. In order to do so
efficiently, a fast method was proposed to answer visibility
queries [6], an approach that has been extended also to
3D [7]. However, queries ask for visibility from one specific
point, while in our work we aim at finding the overall
visibility from any reachable position to the robot. Therefore,
we can have an overall overview of the capacities of robots
in terms of perception.

III. BACKGROUND

In this section we will summarize our previous technique
for effective determination of observability in 2D gridmaps,
considering circular robots and omnidirectional sensing.
Morphological operations are used to obtain the actuation
space, and then critical points were introduced to reduce the
computational effort at the expense of the output being an
Approximate Visibility Map.

In our previous work robots were assumed to have circular
shape and a maximum sensing range. The goal was to

efficiently determine the observability of a robot in a certain
environment, i.e., determine what regions can be sensed from
a position that is reachable from the initial robot position [1].
The algorithm is a function of robot size and sensing range.
We show in Figure 1 a simulated environment with obstacles,
and the Approximate Visibility Map (A-VM).

(a) Map (b) A-VM

Fig. 1. Given a black and white gridmap, an omnidirectional circular robot
(green), and a sensing range (green circumference), the A-VM determines
what can be sensed from reachable positions.

For that purpose, we used morphological operations,
which can be applied on images using a structuring element
with a given shape. Here the structuring element is a circle
representing a circular robot. The domain is a grid of
positions G. The input is a black and white binary image
representing the map, with M being the set containing the
positions that correspond to obstacles. The structuring ele-
ment, R, represents the robot. The morphological operation
dilation on the obstacle set M by R is

M ⊕R =
⋃
z∈R

Mz (1)

where Mz = {p ∈ G | p = m + z,m ∈ M}, i.e., the
translation of M by z over the grid G.

When applying the dilation operation to black points in
the image, the algorithm inflates the obstacles of the map by
the robot size, achieving the configuration space:

Cfree = {p ∈ G | p /∈M ⊕R} (2)

Given the free configuration space Cfree, it is possible
to find the points that are reachable from the initial robot
position S.

Reach(S) = {p ∈ Cfree | p connected to S} (3)

Morphological closing is the combination of a dilation
operation followed by an erosion. Dilation and erosion are
dual operations. In order to apply the closing operation to the
obstacles, we apply an erosion to the dilated obstacles. But
being dual operations, the morphological closing of obstacles
is equivalent to the dilation of the free configuration space. In
order to consider only positions reachable from the starting
position, we use the partial morphological closing, applying
the second morphological operation only to the reachable set,
Reach(S), instead of Cfree.

(a) Original Map (b) Dilated Map (c) Closed Map (d) Reachable Space (e) Actuation Space

Fig. 2. In (a) two possible positions for the robot are shown, the green one being feasible, while in the red the robot overlaps with obstacles. This
positions correspond to green and red points in the configuration space in (b), obtained by application of the morphological operation dilation to the map
(Cfree is set of green regions). The morphological closing is shown in (c). From the configuration space, the connected parts to the initial position (grey
robot) are determined, which results in the reachable space presented in (d). If the second dilation operation is only applied to the reachable space instead
of all Cfree, applying the partial morphological operation to the reachable space, it is possible to determine the actuation space, in (e). [1]

A(S) = Reach(S)⊕R (4)

The actuation space, A(S), can be seen as a first approx-
imation of the visibility map, if the maximum sensing range
considered is less than the robot size (Figure 2).

From A(S), it is possible to define the unreachable re-
gions, i.e., regions that are not reachable to the robot body,
and thus cannot be actuated.

U(S) = {p ∈ G | p /∈ A(S) ∧ p /∈M} (5)

U(S) is then divided in a set of different disconnected
components U l(S). The separation of the unreachable re-
gions of the actuation space in disconnected parts is useful,
allowing to determine visibility independently (Figure 3).
Each region U l(S) has its unique openings to the actuation
space, from where visibility inside U l(S) is possible. These
openings are the frontiers, defined as the points of the
unreachable space that connect with A(S):

F l(S) = {p ∈ U l(S) | ∃p′ : p′ is adjacent to p∧p′ ∈ A(S)}
(6)

The frontier set can be composed of multiple disjoin
segments F li(S), and visibility inside the unreachable region
should be determined for each segment independently.

So, when determining visibility for sensing range greater
than robot size, it is necessary to find points that have line
of sight inside of U l(S) through F li(S). There are multiple
candidate points, and all of them have to be in Reach(S),
the feasible positions for the robot center. In order to have
the true visibility map, all those points should be considered.

The brute-force solution is computational expensive, so we
proposed an alternative, where the visibility inside unreach-
able regions through each frontier segment is considered only
from one point of the reachable space (Figure 3).

As only one point is being used, the final visibility map
is an approximation of the ground-truth. In order to obtain
a better approximation, the point chosen has to maximize
the expected visibility inside the unreachable region. That
is accomplished by choosing a point close to the frontier,
as being closer is equivalent to having a deeper and wider
expected visibility inside U l(S), maximizing the expected

visibility area. In order to find this ideal point, c∗li(S) , the
sum of the distance to all frontier points is minimized:

c∗li(S) = argmin
p∈Reach(S)

∑
f∈F li(S)

‖p− f‖2 (7)

Ray casting is then used to test visibility inside un-
reachable regions from the critical point. As a result, the
Approximate Visibility Map is obtained.

(a) Unreachable Regions (b) Critical Point

Fig. 3. In (a) we show A(S) in white, in pink the unreachable regions that
connect with A(S), and in blue an example of a disconnected unreachable
region U l(S). In (b) we highlight that disconnected region, showing in
dark blue the frontier segment points F li(S), and in red the critical point
c∗li(S). The points from the Reachable Space are shown in green. Finally,
light blue represents the expected visibility from the critical point, through
the frontier, into the unreachable region.

IV. ANY-SHAPE ROBOT VISIBILITY MAP

In order to extend the approach described in the previous
section to any-shape robots with any sensor model, we used
a multi-layered representation to discretize orientation and a
new method to choose the critical points.

A. Actuation Space with Discretized Orientation

First, we parametrized both the robot shape and sensor
model. Both are given by images to represent them, that
can be rotated and scaled to represent any robot. It is also
possible to define the sensor and robot centers, and their
relative position.

Here we assumed the discretization of the angle is given
by nθ levels. After the initial parametrization and definition

θ = i+ 1

θ = i

θ = i− 1

Fig. 4. Layered representation of discretized orientation θ. We consider
the neighborhood of the central orange point all the 8 closest locations
in the same layer (translation without rotation), and the 9 corresponding
points in the previous and next layers (smallest rotation in either direction,
plus translation). If no additional motion constraints are considered, this
represents an omnidirectional motion model.

of the robot models, we rotate them by 2kπ/nθ, where 0 ≤
k < nθ, in order to obtain the representation of the robot for
each possible orientation.

Therefore, we have two structuring elements, R and Sens,
that represent the robot and sensor models respectively. After
the rotation, we get R(i) and Sens(i), with 0 ≤ i < nθ.

After we create the structuring elements, we can use the
morphological operations to determine the free configuration
space for each layer, by dilating the map using the robot
shape for each orientation. We use a circular representation,
where the next layer after i = nθ − 1 is layer i = 0.

Cfree(i) = {p ∈ G | p /∈M ⊕R(i)} ∀0 ≤ i < nθ (8)

Using the connectivity graph from Figure 4, it is possible
to find all points in each layer of the free configuration
space that connect with the initial position S, obtaining
Reach(S, i), as shown in Algorithm 1. From there, if we
apply the second dilation operation to the reachable space in
each layer, we obtain the actuation space for each orientation.
However, instead of using the structuring element R again,
we have to dilate the space with information related with the
sensor Sens in order to find the visibility bounded by the
robot shape. For that purpose, the second operation has to
still be bounded by the robot shape, so we use the intersection
of both structuring elements, after aligning them with their
relative displacement.

SensB(i) = R(i) ∩ Sens(i) (9)

Then, the actuation space is given by

A(S, i) = Reach(S, i)⊕ SensB(i) (10)

The actuation space gives the visibility bounded by the
robot shape, for each orientation. So, if a point belongs to

Algorithm 1 Clustering: Reachable set from initial position
Require: Free configuration space Cfree, initial position S

1: Reach(S, i)← ∅ ∀i < nθ
2: open← S . Open list of positions to expand
3: closed← ∅ . list of expanded positions
4: while open not empty do
5: p← open.pop()
6: for p′ ∈ Neighbor(p) do
7: if p′ ∈ Cfree then
8: if p′ /∈ closed ∧ p′ /∈ open then
9: if p→ p′ satisfies motion constraints then

10: open← open ∪ p′
11: end if
12: end if
13: end if
14: end for
15: closed← closed ∪ p
16: Reach(S, p′.θ)← Reach(S, p′.θ) ∪ {(p′.x, p′.y)}
17: end while
18: Return Reach

A(S, i), then it can be visible by the robot, while being
bounded by the robot shape. After determining the actuation
space for each layer, we can obtain the overall actuation
space for any orientation just by projecting the multiple
layers into one single 2D image.

PA(S) =
⋃
i

A(S, i) (11)

PA(S) has the same kind of representation we had with
the circular robot, where the actuation space is a single
2D image not depending on the orientation. Therefore, the
unreachable regions U l(S) and respective frontiers F l(S)
can be determined in the same fashion as we did with the
circular robot. PA(S) is not used to obtain the critical points
though, as orientation must be taken into account for that.

If the intersection between R and Sens is empty, the
actuation space is also going to be empty. As a result, all
points are going to belong to the unreachable set, and there
is going to be no frontiers.

B. Critical Points for Any Sensor Model

After determining the frontiers of actuation F l(S) we still
have the same problem of determining visibility inside un-
reachable regions U l(S). The true visibility can be obtained
by determining the visibility from all points in the reachable
space, but for efficiency purposes, we only use one. However,
in the any-shape robot case with general sensor models, we
do not use the center of the robot as a critical point, but a
viable position for the sensor center instead. Because these
two positions might not overlap, we enforce a more accurate
estimate for visibility when considering the sensor position
as critical point.

If again the critical point was chosen as the closest position
to the frontier points, the result could be very poor, because
a position with a non-optimal orientation towards the frontier

might be chosen. The orientation problem happens because
the sensor model is not guaranteed to be omnidirectional. In
the circular case, searching for the closest point to the frontier
was a dual problem of finding the point with greater expected
visibility through the frontier. However, that assumption does
not hold in the general case.

Therefore, in order to choose a point that improves ac-
curacy of our estimation of visibility, we will still use the
criteria that maximizes expected visibility. For that purpose,
we build an histogram with the percentage of points in the
sensor model in different directions, using the angle to the
sensor center. The histogram represents the visibility of the
sensor in each direction, as a function of robot orientation.
So, bs(φ) is the bin that corresponds to angle φ, where φ is
the angle of the vector from the sensor center to the point
in question. bs returns values between 0 and ns−1, with ns
being the number of bins in the histogram.

bs(φ) = argmin
0≤n<ns

|angleNorm(φ− 2nπ/ns)| (12)

with angleNorm normalizing the angle between π and −π.
The histogram is built by iterating over all points in the

sensor model Sens, determining the angle φ for each point,
and the respective histogram bin bs(φ).

With the sensor histogram, it is possible to estimate the
expected visibility inside the unreachable regions using only
the frontier points, namely the frontier extremes. F li(S) is
a chain of connected points, all connected to two or more
other points of the frontier, except the extremes, which are
only connected to one other. Thus it is possible to find the
frontier extremes F li1 (S) and F li2 (S) by searching over all
points in the frontier for the ones with only one connection.
This assumption holds because we use 4-neighborhood when
extracting the frontier points.

With the frontier extremes, it is possible to determine the
direction of the frontier with

~F li =
F li1 (S)− F li2 (S)

||F li1 (S)− F li2 (S)||
= (F lix , F

li
y) (13)

The frontier normal can be any vector such as ~N li · ~F li =
0. Assuming unit vectors, there are two possible directions,
(F liy ,−F lix) or (−F liy , F lix). Moreover, we can also define
the frontier center as

Clif =
1

#F li(S)

∑
f∈F li(S)

f (14)

where # is the set cardinality. It is possible to find the
perpendicular vector as the one in the direction of the frontier
center by using the following test:

~N li
c = argmax

| ~N li|=1

~N li ·
(
(Clif − F li1) + (Clif − F li2)

)
(15)

Similarly, if we find the neighbors of F li(S) in A(S), we
will obtain the frontier of actuation, i.e. F lia (S) and we can
similarly find its center:

Clia =
1

#F lia (S)

∑
f∈F li

a (S)

f (16)

The perpendicular direction to the frontier that points to
the unreachable region is

~N li
u = argmax

| ~N li|=1

~N li · (Clif − Clia) (17)

Finally, we use the two normal directions to estimate the
concavity of the frontier, which is used later to estimate the
visibility inside unreachable regions from the critical points.
If ~N li

c · ~N li
u > 0, the frontier is concave, otherwise it is

convex. This is important to consider when searching for a
critical point in the any-shape scenario, while in the circular
robot case the frontiers were always concave.

In order to search for the critical point, we use the angle of
an annulus sector defined by the critical point and the frontier
extremes. If the frontier is convex, the critical point has to
stay behind it, so (c∗li(S)−F li1)· ~N li

u < 0, and the angle of the
annulus sector is less than π. In the case of a concave frontier,
there is two possibilities: the critical point is still behind the
frontier, with (c∗li(S)−F li1) · ~N li

u < 0, and the angle between
the two extremes is less than π; or the critical point is in the
middle of the concavity, with (c∗li(S) − F li1) · ~N li

u > 0 and
the angle between the extremes being greater than π.

From now on, we assume we ordered the extremes
appropriately, so the frontier goes from angle φcli1 =
arctan 2(F li1y − cliy, F

li
1x − clix) to φcl2 = arctan 2(F li2y −

cliy, F
li
2x − clix). Then, the expected visible area inside the

unreachable region is given by the sensor histogram:

V clie =
(φcli

2∑
φ=φcli

1

hist(bs(φ))
)
− ||cli − Clif ||2(φcli2 − φcli1)/2

(18)
where ||cli − Clif ||2(φcli2 − φcli1)/2 accounts for the area

from the critical point to the frontier already visible and
counted in the actuation space PA(S).

Finally, the critical point is given by search in the layered
image representation

c∗li(S) = argmax
cli∈Reach(S)

V clie (19)

After finding the critical point, the visibility inside un-
reachable regions is determined using ray casting, as we did
in the work with the circular shape assumption.

The overall algorithm to create the Robot-Dependent Vis-
ibility Map for any-shape robots with general sensor models,
in 2D gridmaps, is shown in Algorithm 2.

V. RESULTS

To test the extension of Visibility Maps to any shape robots
with any sensor model, we created test examples for both
models, as shown in Figure 5. The robot has a trapezoidal
shape, and the sensor model is ellipsoid, representing better
sensing in the forward direction. Moreover, the sensor field of

Algorithm 2 RDVM: Creating robot-dependent visibility
maps from grid maps
Require: Gridmap G, start S, robot R and sensing Sens

1: M ← im2bw(G) . b&w image from gridmap
2: {Cfree(i)} ← dilation(M ,{R(i)}) . inflation obstacles
3: {Reach(S, i)} ← labeling({Cfree(i)}, S)
4: {A(S, i)} ← dilation({Reach(S, i)}, {R(i)∩Sens(i)})
. partial morph. closing

5: PA(S)←
⋃
i

A(S, i)

6: V (S)← PA(S) . visibility initialized with PA
7: U(S ← unreachable(PA(S),M) . unreachable regions
8: {U l(S)} ← labeling(U(S)) . find disconnected regions
9: for each U l(S) do

10: F li(S)← frontier(U li(S),M) . find frontiers
11: V clie (x)← expected visibility(U li,F li,Sens)
12: c∗li(S) = argmax

cli∈Reach(S)
V clie . critical point

13: V clit (S)← brute-force(V clie (S), c∗li(S))
14: V (S)← V (S)

⋃
V clit (S)

15: end for
16: Return V

view is limited to approximately 270 degrees. We used scaled
and rotated versions of these models to obtain visibility in
the simulated map presented before.

(a) Robot
Model R

(b) Sensor Model
Sens

(c) Relative
Position (SensB)

Fig. 5. We show in (a) a non-circular robot and its center marked with a
red dot. In the middle, the sensor model is shown, with its center marked
in green. In (c) we superpose both models to show the relative position
parametrization. In the left bottom image, the intersection of robot and
sensor models, used as structuring element in the morphological closing.

We show in Figure 6 the comparison between the RDVM
and the ground-truth, showing a great similarity in the
overall visibility. For the example, the precision and recall
were 99% and 96% respectively, which is very close to the
results previously obtained for the circular shape. Moreover,
considering the instance shown in the figure, the computation
time for the ground truth was approximately 200 times
more than the time used for the RDVM (590 milliseconds).
This demonstrates our proposed method scales well from
the circular shape to the any-shape scenario. We run tests
with other shapes, sizes, and environments, noticing that for
convex shapes with sensing models bigger than the robot
(bigger intersection between robot and sensor model), our
algorithm has very good results, close to the circular case,
with similar accuracy and time results. For the other cases,

the frontiers became more complex, and the choice of only
one critical point per frontier was not sufficient for a good
approximation. A possible solution would be to break the
frontier chains in smaller concave frontiers.

(a) Projected Actuation Space (b) Comparison of Visibility

Fig. 6. In (a) we show the projected actuation space, as the union of
the partial morphological closing for all orientation layers. The models
presented in Figure 5 were applied to the map in Figure 2. In the right
we compare the Robot-Dependent Approximate Visibility Map with the
Ground-Truth. White represents true positives (visible in both), black are
true negatives, red represents false positives, and blue represents false
negatives (visibility missed with the approximate solution).

VI. CONCLUSION

Our algorithm is able to create maps that separate the
visible regions using image processing techniques. We use
the concept of partial morphological closing, and introduce
a multi-layer representation to discretize the orientation and
be able to deal with any-shape robots and general sensor
models. We also proposed a new optimization function to
choose the critical points, allowing an efficient solution for
the visibility problem with high accuracy and less compu-
tation time. We tested our algorithm in a simulated test
scenario, built to capture the different difficulties of getting a
visibility map. The results show that we are able to efficiently
obtain the visibility maps, with high precision and recall. As
future work, we want to study the use of non-critical points
in RDVM in order to improve our approximation without
losing its time efficiency advantage.

REFERENCES

[1] T. Pereira, A. P. Moreira, and M. Veloso, “Improving Heuristics of
Optimal Perception Planning using Visibility Maps,” IEEE International
Conference on Autonomous Robot Systems and Competitions, 2016.

[2] E. Fabrizi and A. Saffiotti, “Extracting topology-based maps from
gridmaps,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2000.

[3] T. Pereira, M. Veloso, and A. Moreira, “Multi-robot planning using
robot-dependent reachability maps from morphological operations,”
ROBOT’2015 - Second Iberian Robotics Conference, 2015.

[4] A. K. Pandey and R. Alami, “Mightability maps: A perceptual level
decisional framework for co-operative and competitive human-robot in-
teraction,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2010.

[5] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[6] J. Faigl, “Approximate solution of the multiple watchman routes

problem with restricted visibility range.” IEEE transactions on neural
networks, vol. 21, no. 10, 2010.

[7] P. Janousek and J. Faigl, “Speeding up coverage queries in 3D multi-
goal path planning,” IEEE International Conference on Robotics and
Automation (ICRA), 2013.

