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Abstract— A labeled motion library, in which robot motions
are associated with semantic meanings, e.g., words, is useful for
human-robot interaction, as a robot can use it to autonomously
select motions to support its non-verbal communication. Manu-
ally assigning labels to new motions to a motion library is time
consuming. However, a new motion may be similar to motions in
the labeled motion library, and can be mapped to existing labels.
We formally define motions, labels, and mappings between
motions and labels. We use a NAO humanoid robot as a
motivating example, though our approach is general for use
on a humanoid robot with rotational joints. We explain how
we generate motions and labels, define eight distance metrics to
determine the similarity between motions, and use the nearest
neighbor algorithm to determine the labels of a new motion. The
distance metrics are varied across three axes - Euclidean versus
Hausdorff, joint angles versus points of interest (postures),
and mirrored versus non-mirrored. We evaluate the efficacy
of these eight distance metrics, using precision, recall, and
computational complexity.

I. INTRODUCTION

Body motions such as gestures can be used by humanoid
robots to communicate or reinforce what the robots are
expressing. In order to autonomously add meaningful move-
ment for a humanoid robot, motions must be labeled so as to
select the right motions from the motion library. Maintaining
the mappings between motions and labels is tedious and
unfeasible when the motion library is large.

In this paper, we consider adding new motions into an
existing labeled motion library, where each motion in the mo-
tion library has one or more labels. Without an autonomous
way to map labels to new motions, all existing labels have to
be examined manually to determine the mappings between
labels and the new motion. We contribute an algorithm that
autonomously determines mappings between a new motion
and existing labels, by finding similar motions and using
the labels of the similar motions as the labels for the new
motion. We formally define motions for humanoid robots
with rotational joints, the labels for the motions and the
mappings between motions and labels. We investigate how to
associate labels with a new motion by determining effective
metrics to compute the similarity between two motions so
as to use the labels of the most similar motion.

A similar motion has generally been defined as having
similar joint angles or postures. We explore using joint angles
and postures as measures to determine similarity. We also
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investigate two general distance metrics — Euclidean and
Hausdorff distances. We introduce the concept of a mirrored
motion, where a motion is symmetrical to another motion,
e.g., where a motion involving the left hand or the right
hand can be mapped to the same label. We incorporate all
these approaches into eight distance metrics and compare the
efficacy of each metric using precision and recall.

We use a NAO humanoid robot as a motivating example,
though our approach is general for humanoid robots. We
conducted experiments in Webots, a real-time simulator to
determine the efficacy of the eight distance metrics. We
explain how we create two motion libraries to compare
a motion library with mirrored motions versus a library
without. We also generate variants of the motions in each
motion library to evaluate the distance metrics. We determine
the mappings of existing labels to new motions using the
eight distance metrics and the nearest neighbor algorithm.
We determine the best distance metric based on precision,
recall and their computational complexity.

II. RELATED WORK

Tay and Veloso formally defined gestures and proposed
how to animate speech with gestures autonomously by
having a labeled motion library [1]. We build upon their
work and explore how to expand the motion library when
new motions are added.

Xia et al. contributed algorithms to enable humanoid
robots to autonomously dance to the beats and emotions
of music [2]. Xia et al. autonomously mapped emotional
labels to motions by comparing different emotional static
postures to the keyframes of a motion. However, only a single
emotional label is assigned to each motion. We look at how
we can map multiple labels to each motion.

Erdogan and Veloso analyzed the similarities between
pairs of two-dimensional robot trajectories using the Eu-
clidean distance between points and the Hausdorff metric
[3]. Using the similarities derived, Erdogan and Veloso use a
variant of agglomerative hierarchical clustering to determine
groups of similar robot trajectories [3].

However, Erdogan and Veloso’s method is used to find
a cluster of trajectories that is assigned to only one group.
Their method cannot be applied in a many-to-many relation-
ship where a cluster of trajectories is assigned to one group
and a subset of the trajectories assigned to another. For our
task of assigning labels to a new motion, some of the labels
can be assigned to other motions as well. Thus, a motion can
be mapped to different labels and a label can be mapped to
many motions, resulting in a many to many relationship.



Researchers have also looked at how to determine sim-
ilarity between motions of humanoid robots and humans,
mostly by comparing the joint angles [4], [5]. Huang et al.
used a similarity function that compares the joint angles
and velocities with a parameter that is adjusted to weigh
the similarity between the spatial effect and temporal effect
[6]. We consider both effects by varying the joint angles and
velocities separately and both joint angles and velocities.

III. FORMALIZATION

In this section, we formally define motions for humanoid
robots, starting with the definition of a keyframe (pose)
and motion primitive. Each motion primitive is labeled with
word(s) and has a duration defined either by using the fastest
joint angular speeds or defined by the motion choreographer.
The duration of the motion primitive can be varied using a
multiplier. Interpolations between motion primitives (from
the last keyframe of one motion to the first keyframe of the
next motion) are also defined.

A. Robot Motions
We first begin by defining a robot:

The motion primitive is parameterized with 3, where
S € Rand 8 > 1. 8 is used as a multiplying factor that
allows the execution of the motion primitive to be slowed by
a multiplier. To create similar motion trajectories, we use (3
to vary the motion.

To interpolate between two keyframes or motion primi-
tives, we use linear interpolation. We assume the interpola-
tions between keyframes are generated by a motion planner
and are collision-free and are within physical capabilities
(joint angular and velocity limits). The time to interpolate
between two keyframes, k, and k,1, is computed by the
interpolation time computation function ' : Ky x Ky — R,
ie., thn+1 = T(kn,knt1). tnnt1 specifies the minimum
duration required to interpolate from the respective joint
angles in k,, to the angles defined in k41 or is pre-defined
by the motion choreographer.

A label represents the meaning expressed by the motion.
Each label is mapped to one or more motions. Each motion
is mapped to one or more labels. Hence, mappings between
motions and labels is a many-to-many function.

Definition 3.4: A label, [, consists one or more words. Let
L be the set of all labels.

Definition 3.1: A humanoid robot, R, Definition 3.5: Let M be a library of motion primitives
has. D actuated  rotational  joints  with  the and I be a set of labels for the meanings. The function
corresponding joint limits and velocities, X : M x I — {0,1} determines the mapping between the
{(J1, L1 mins L1 maxs Viymax), - - -+ (JDs LD mins LD max, VD,max) }, motions and the labels, i.e., X(m, 1) = 1 if the motion m €

Ji # J;j. For each joint Jg, the minimum and maximum
angle of the joint is Lgmin, Ldmax and the maximum
velocity is Vi max. Let ¢ be the D-dimensional configuration
space of R.

1) Keyframe: A keyframe (static pose) stores the joints
and corresponding angles at a particular time step. For the
robot to perform a motion, several keyframes are stored at
different times and interpolated to form a continuous motion.

Definition 3.2: A keyframe k € ( is a vector of D real
numbers for each of the joint angles of R. A keyframe is
]{,‘f = {(J1791),...,(Jn,9n)}7j7; 7é Jj and n < D. The
joint index is Jy and the joint angle is 64. A keyframe is
valid if the angles are within joint limits and the body parts
of R do not collide. Let Ky be the set of all keyframes.

B. Motion Primitives (MPs)

Motions express an idea or meaning. To execute motions
on a robot, the joints of the robot have to be actuated. A robot
can only actuate its joints within the angular joint limits and
speeds. A sequence of motion is made up of several motion
primitives. A motion primitive is parameterized to allow the
motion to be synchronized with the speech.

Definition 3.3: A motion primitive g is a tuple of N prim-
itives and is parameterized with 8. g(8) = (My,..., My)
and N € Z*. The primitive M,, is a tuple of 2 keyframes,
kn—1 and k,,, and the time to interpolate between these two
keyframes, t,_1 ., Where M, (8) = (kn—1,B8tn—1n,kn).
ko, the first keyframe in M3, is the initial pose of the robot,
R, which contains all the joint angles for D degrees of
freedom. Let M = [Jg be the set of all motion primitives
in the motion library.

M is mapped to the label [ € L.

This paper aims to find the function X* : M*™ x L —
{0,1}, so as to map labels L to a new motion m™, where
M™* = M U{m*}, given the existing mapping function X,
and given that m™ is similar to an existing motion in the
motion library M.

IV. TECHNICAL APPROACH

In this section, we present how we create and expand the
motion library, describe eight distance metrics to compare
different variants of motions, and how we map existing labels
to a new motion that is added into the motion library.

A. Creating the Motion Library

Seventy words were taken from a list of words that
toddlers should know [7], the Dolch word list, “a list of
frequently used English words compiled by Edward William
Dolch” [8] and Paul Ekman’s six basic emotions as labels.
We trained a group of high school students to create motions
using the NAO humanoid robot and Choregraphe [9], a
software to create keyframe motions. The students created
two to three motions for each label.

Each motion is defined as a motion primitive, where some
of the interpolation times are defined by the choreographer
so that each motion is stable for execution. The rest of
the interpolation times are calculated based on 80% of the
maximum joint velocities. The motions for Paul Ekman’s
six basic motions were modified from the motions available
at http://hcm-lab.de/projects/shr [10]. In total, there are 170
motions.



Each motion in the motion library is tested in the sim-
ulator, Webots 7 [11], to ensure that the NAO humanoid
robot is stable after executing the motion. Webots 7 [11] is a
real-time simulator that stimulates the dynamics of the NAO
humanoid robot. If the motion is unstable, the interpolation
times are adjusted until the motion is stable.

After ensuring the stability of each motion, a video of the
NAO humanoid robot executing each motion is shown to
another group of students and they are asked to provide labels
for each motion. Hence, more labels are added, resulting in
170 motions and 322 labels.

B. Expanding the Motion Library

We term the motions in the motion library, Initial, which
are motions with no modifications. Some of the motions
in Initial are mirrored motions. Since our motion library
consisted of 170 motions, we expand Initial to 1700 motions
by varying the joint angles and/or interpolation times.

1) Varying Interpolation Time and Joint Angles: To create
similar motions, we created variants of Initial in the motion
library by varying the following features and assume each
variant of a motion, g,, share the same labels assigned to g,
in Initial:

e ModJoints: We only modify the joint angles of each

motion where each joint angle for each keyframe in
the motion primitive can be modified with a 50%
probability. If the joint angle is modified, the joint angle
will be changed within a range of -5 to 5 degrees, so
0a =04+ A and A € {—5°,—4°,-3°,...,5°}.

e« ModTime: We only vary the interpolation times by
changing 3, 8 € {1.25,1.5,1.75,2}.

e ModJointsAndTime: We change both joint angles and
interpolation time of each motion by combining the
first and second features. We use the motions that are
modified in ModJoints and modify the interpolation
time by § € {1.25,1.5,1.75,2}.

We assume that the labels of Initial are still applicable
to ModJoints, ModTime and ModJointsAndTime. In other
words, the variants of Initial share the same labels as Initial.

2) Creating Mirrored Motions: The NAO humanoid robot
has 25 actuated rotational joints. Figure 1 shows the positions
of all the joints in the NAO humanoid robot. Although Fig. 1
show a total of 26 joints, only 25 joints are actuated as the
LHipYawPitch and RHipYawPitch “share the same motor
so they move simultaneously and symmetrically” and in the
case of “conflicting orders, LHipYawPitch always takes the
priority” [13].

Some motions are a mirror image of another motion in
the library; we term them mirrored motions. The meanings
of a motion can be similar when a motion is a mirror image
of another motion. For example, waving with the left hand
and waving with the right hand can express the same label
— “wave”. Also, kicking with the left leg and kicking with
the right leg can also express the label — “kick”. However,
waving with the left hand can be labeled with the phrase
‘wave with left hand’” and waving with the right hand can also
be labeled with the phrase ‘wave with right hand’. Therefore,
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Fig. 1: Joints, POIs and coordinate frame of the NAO robot.
Edited image from [12]
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though they share most of their labels (and meanings), they
can also be mapped to different labels.

Paired Joints Corresponding Mirrored Joints
HeadYaw HeadPitch -HeadYaw HeadPitch
LShoulderPitch | RShoulderPitch RShoulderPitch | LShoulderPitch
LShoulderRoll RShoulderRoll -RShoulderRoll | -LShoulderRoll
LEIbow Yaw REIbow Yaw -REIbow Yaw -LEIbow Yaw
LEIbowRoll REIbowRoll -REIbowRoll -LEIbowRoll
LWristYaw RWristYaw -RWristYaw -LWristYaw
LHand RHand RHand LHand
LHipRoll RHipRoll -RHipRoll -LHipRoll
LHipPitch RHipPitch RHipPitch LHipPitch
LKneePitch RKneePitch RKneePitch LKneePitch
LAnklePitch RAnklePitch RAnklePitch LAnklePitch
LAnkleRoll RAnkleRoll -RAnkleRoll -LAnkleRoll
LHipYawPitch LHipYawPitch

TABLE I: Paired Joints and Corresponding Mirrored Joints

We compute a mirrored motion by looking at pairs of
joints that are symmetrical to each other by the Z axis in
Fig. 1 using the function mirror, where mirror(Jom'gmal) =
Imirrored- Table 1 shows the list of 25 joints and the
corresponding mirrored joints. For example, for the joint
angle HeadYaw of the original motion, HeadY aworiginat,
the joint angle HeadYaw for the mirrored motion will be
negative, hence to find HeadY awmirrored, W€ use the function
mirror(HeadY aweriging) = —H eadY aWoriginal -

C. Similarities of motion trajectories

Besides joint angles, we also consider the differences in
the three-dimensional positions of the joints with respect to
the robot’s torso as the joint differences may not reflect
the differences in posture. Hence, we compute the three-
dimensional (3D) position of each joint of the robot and
termed each position as a point of interest (POI). Besides
each joint, the points of interest (POIs) also include seven
red asterisks (*) (Fig. 1). We add these seven POIs as the
3D positions of these seven POIs vary with joint angles
changes in the head, wrists and ankle joints, whereas the 3D
positions of the head, wrists and ankle joints are invariant to



joint angle changes. E.g., the 3D position of the HeadYaw
joint remain unchanged when HeadYaw’s joint angle change.
Besides using Euclidean distance, Erdogan and Veloso also
chose “the Hausdorff metric for its generality and efficiency”
[3]. Eight distance metrics are varied across three axes —
Euclidean versus Hausdorff, mirrored versus non mirrored
and joint angles versus POlIs:

1) EuclideanJoint: We compute the average absolute joint
difference between the same joint for two different
motions for each time step. If a motion g; is longer
in duration than the other motion g5, we use the joint
angles at the last time step of go to compare with the
rest of the joint angles of ¢;, and vice versa. Let the
duration of g; be t; and the duration of g, be to. We
determine the average joint difference:

EuclideanJoint(g;,g2) =

25 t1,t
g ) e — )
max(ty,ts)

2) EuclideanMirrorJoint: We compute the difference in
joint angles for motion g; and a mirrored motion of
another motion go using the function mirror which
calls mirror(.J;) on each joint J; of go in each timestep.
We also compute the difference in joint angles for g;
and g and use the smaller average joint difference:

EuclideanMirrorJoint(g1, g2)
= min(EuclideanJoint(g1, g2),

EuclideanJoint(g; , mirror(gz)))

3) EuclideanPOI: We compute the average absolute Eu-
clidean distance of the 3D position of the same POI for
two different motions for each time step. If a motion
g1 is longer in duration than the other motion g3, we
use the 3D position of the POI at the last time step of
g2 to compare with the rest of the 3D position of the
same POI of ¢;, and vice versa. Let the duration of ¢;
be t; and the duration of go be t5. We determine the
average Euclidean POI difference:

EuclideanPOI(g;,g2) =
32 max(t1,t2 1
szl t:al( ) ‘POIgt B POIZ?

max(tq,ta)

4) EuclideanMirrorPOI: We compute the average absolute
Euclidean distance of the three dimensional position of
the same POI for two different motions for each time
step. We also compute the average absolute Euclidean
distance of the first motion to the mirrored motion of
the second motion and take the minimum:

EuclideanMirrorPOI (g1, g2) =
min(EuclideanPOI(g1, g2),
EuclideanPOI(g; , mirror(gz)))

5) HausdorffJoint: Instead of only Euclidean distances
between joints or POIs, we use the Hausdorff metric,

where d(Jg,,Jg,) is the Euclidean distance between
two joints:

HausdorffJoint(g1,92) =

max( max min d(Jy,,Jy,),
Jg1 €91 Jg5 €92 912792

in d(J, ,J.
max | min (Jo15Jg2))

6) HausdorffMirrorJoint: We use HausdorffJoint to find
the minimum of two Hausdorff measures — joint angles
for g1 and g» and joint angles for g; and mirror(gs):

HausdorffMirrorJoint(g,g2) =
min(HausdorffJoint(g1, g2),
HausdorffJoint (g , mirror(g2)))

7) HausdorffPOI: Instead of joint angles, we look at
Hausdorff measures for POIs and s(POI,, ,POI,,) is
the Euclidean distance between two POIs of ¢g; and go:

Hausdorff_POI(¢1,92) =

max( max min s(POI,, ,POI
(POIgl co1 POIg2 €gs ( gi» 92)7

i POI,, , POI
pOlOX | polin s(POL,, , POL,, ))
8) HausdorffMirrorPOI: We use HausdorffPOI to com-
pute the minimum of two Hausdorff measures — POIs
for motion g; and g and POIs for g and mirror(gs):

HausdorffMirrorPOI(gy,g2) =
min(HausdorffPOI(g1, g2),
HausdorffPOI(g; , mirror(gs)))

D. Adding a new motion to the motion library

We use the nearest neighbor algorithm to select the closest
motion to the new motion using the output of a distance
metric and map its labels to the new motion:

First, given a new motion m™, and the existing motion
library M, using D(m™,m), one of the distance metrics,
e.g., BuclideanJoint, we find:

m* = argmin, ¢, D(m™,m)

Second, we create an updated motion library M+ = M U
{m™}. Third, a new motion m™ is mapped to m*’s labels
and use the updated mapping function X*:

X*(m, 1) = {X(m’”

if m*#£m

X(m*,l)  otherwise

Thus, the new motion and its corresponding labels are
represented in the updated motion library M™ and the
updated mapping function X+,

V. EXPERIMENTS

In this section, we describe our experiments to evaluate
the eight distance metrics and the nearest neighbor algorithm
that autonomously maps motions to labels.



A. Experimental Setup

We compare the different distance metrics to determine
similarities of motion trajectories. We use the motions from
an existing motion library used by a NAO to animate stories
— Original — and create another motion library — NoMirrored
— by removing mirrored motions from Original. These two
motion libraries enable us to understand the efficacy of
including the function mirror in the distance metrics:

e Original: Original has a set of 170 motions and 322
associated labels.

o NoMirrored: NoMirrored has a set of 126 motions and
265 associated labels.

Next, we create variants described in Section IV-B.1 — Initial,
ModJoints, ModTime and ModJointsAndTime for each of the
2 motion libraries — Original and NoMirrored.

B. Analysis of Distance Metrics

To evaluate the eight distance metrics, we used

.. _ true positives —
Precision - (true positives—+false positives) and Recall -
true positives

(irue positives-Hfalse negatives) [0 Mmeasure the performance of as-
signing labels to motions. The term positive means the
motion is assigned a label and negative means the motion
is not assigned a label. The term true means the label
assigned is right and false means the label assigned is
wrong. We term true positives TP, false positives FP, false
negatives FN and each term is indexed by v — the index
of the label. The equation to compute the precision is
S TR, /(L TP, + STIEL FP,) and the equation for
recall is ZLL:ll TPv/(E:UL:‘1 TP, + ZLL:‘l FN, ), where |L]| is
the number of labels in the library.

We perform 10-fold cross validation, where the motions
are randomly divided into 10 folds and we iteratively use
1 fold as test data and the rest as training data. Next, we
determine the labels of each motion in the test data using
a distance metric and the nearest neighbor algorithm. We
perform the cross validation 10 times for each distance
metric, find the precision and recall for each variant of
motions in each motion library and summarize the results
with a mean and standard deviation in Fig. 2 and Fig. 3.

The precision and recall for the Initial motions is low as
compared to other variants of motions, e.g., ModTime, which
is expected as the Initial motions do not have many similar
motions. Hence, the nearest neighbor algorithm is unable to
find an exact match of the labels for the new motion. In
contrast, when the library is expanded with ModTime for
example, the nearest neighbor algorithm returns a similar
motion with the exact labels, and hence the precision and
recall is higher.

For the Original motion library, distance metrics that
include the function mirror perform worse than measures
that do not — although most labels of the mirrored motions
are the same as the labels of the Initial motions, some of
them are different as they include the word, “right” instead
of “left” or vice versa. Since there are no mirrored motions
in the NoMirrored motion library, the precision and recall
for the NoMirrored motion library are similar for metrics

with or without the function mirror. This finding supports our
explanation of why distance metrics that include the function
mirror perform worse for the Original motion library than the
NoMirrored motion library.

The distance metrics that involve Euclidean distances per-
form as well as the distance metrics that involve Hausdorff
distances, however Hausdorff distances are computationally
more expensive and runs in O(#?), whereas Euclidean dis-
tances run in O(t), where ¢ is the number of time steps
of the longer motion. The distance metrics that involve the
joints perform as well as distance metrics that involve the
POIs. However, distance metrics that involve the POIs use
more computations (absolute difference between a pair of 3D
points) than the distance metrics that involve the joints as we
take the absolute difference between each pair of joint angles.
Hence, EuclideanJoint is the best distance metric for motions
such as ModJoints, ModTime and ModJointsAndTime in
terms of precision, recall and computational complexity.

VI. CONCLUSION

We formally defined motions, labels, and mappings be-
tween motions and labels. We also described eight distance
metrics to determine the similarities of motions. We created
two motion libraries and explained how we created variants
of the motions to conduct experiments. We found mappings
of existing labels to new motions using the eight distance
metrics and the nearest neighbor algorithm. We presented the
efficacy of each distance metric using precision and recall.
We found that EuclideanJoint is the best distance metric in
terms of precision, recall and computational complexity.

We observe that distance metrics with the mirror function
have a lower precision and recall. We hypothesize that
precision and recall can be increased by looking through the
labels, and replacing the words associated with the mirrored
motion, e.g., changing “left” to “right”, but this approach
requires a dictionary of such pairs of words.

Other distance metrics such as dynamic time warping,
longest common subsequence, etc., have also been evaluated
for motion trajectories [14] and time series data [15]. These
distance metrics can also be evaluated to compare their per-
formance in precision, recall and computational complexity.

Our work does not consider the scenario that a new
unseen motion is added to the library. As future work, we
can investigate thresholds to determine if there are similar
motions, so that if the similarity of a new motion to existing
motions falls below the threshold, no labels can be mapped
to the new motion. We can also assign a confidence value
for each motion-label pair so as to determine if the label is
applicable by learning from feedback of the audience when
the robot executes the motion based on the label assigned. We
currently assume that there are no new label(s) assigned to a
new motion. Moreover, similar label(s) in semantic meanings
to the new label(s) are determined so as to associate the new
label(s) to the motions of the similar label(s).
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