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Abstract.

This paper addresses the problem of human-robot collaboration in
the context of manipulation tasks. In particular, we focus on tasks
where a robot must perform some complex manipulation that is suc-
cessfully completed only upon reaching some target pose provided
by a human user. We propose an approach in which the robot ex-
plicitly reasons about its ability to complete the task and proactively
requests the assistance of the human teammate when necessary. Our
approach effectively trades-off the benefits arising from the human
assistance with the cost of disturbing the user. We also propose an
adaptation mechanism that enables the robot to adjust its behavior
to the particular manner by which the human user responds to the
requests made by the robot. We test our approach in a simple illus-
trative scenario and in two real interaction scenarios involving the
Baxter robot.

1 Introduction

In this paper we address the general problem of human-robot collab-
oration, where a human user and a robot work together towards the
successful completion of some predefined task. We are particularly
interested in tasks where the robot is required to perform a complex
motion involving the manipulation of an object which will act as the
“interface” supporting the interaction with the human user. Examples
of the tasks we envision include assisting the human user in dressing
a piece of clothing [5, 8] or jointly preparing a drink [4].

Our contribution is aimed towards three distinguishing aspects of
the class of scenarios described:

e The task is usually hard to model, which poses difficulties in the
application of standard motion planners. To deal with this chal-
lenge, we adopt a motion representation that is particularly suited
for learning from demonstration [1]. Explicitly teaching the robot
the desired motion circumvents the need for explicit planning. At
the same time, it provides a natural and intuitive interface for hu-
man users to program the robot to execute new tasks [18].

e Although the particular motion that the robot must perform to
complete the desired task depends on the human user (for ex-
ample, the dressing motion depends on the pose of the human
user; pouring a drink into a cup depends on where the user places
the cup), the general shape of the trajectory is approximately the
same. Our approach relies on the notion of motion primitives [7],
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which represent idealized motions to perform a given task. Motion
primitives provide a flexible way of representing the desired tra-
jectory while, at the same time, modulating the trajectory to adapt
to changing task parameters (e.g., depending on the human user).

e Finally, when interacting with the robot, the human user seldom
takes into consideration the motion limitations that the robot has.
For example, in the dressing assistance task, the user may assume
a pose that blocks the robot’s motion; or, in the drink pouring sce-
nario, the human user may place the cup outside of the robot’s
workspace. We follow recent work on symbiotic autonomy [16],
where the robot acknowledges and explicitly reasons about its own
limitations, and relies on the human assistance to overcome such
limitations. In this process, the robot takes into consideration the
burden imposed upon the human user, trading it off with the ben-
efits obtained from the human intervention.

Summarizing, our contributions are threefold. First, we contribute a
novel decision-theoretic framework enabling a robot to reason ex-
plicitly about its own limitations during task execution. Second, we
exploit our framework in the context of symbiotic autonomy [16],
allowing the the robot to consider the potential benefit of enrolling
human assistance during task execution against the associated cost.
Third, we combine our framework with an online adaptive mecha-
nism that uses the outcome of the successive interactions between
the robot and the user to refine the model of the user’s behavior and
improve the quality of the interaction.

1.1 Related work

The topic of cooperative object manipulation has been widely stud-
ied in the literature, where the standard example involves joint lifting
a heavy object [20]. In such collaborative tasks, the human user typi-
cally plays the role of the “leader”, guiding the execution of the task,
and the robot adapts its execution to that of the leader. In such in-
teraction paradigm, the robot must often predict the motion of the
human and act accordingly, and several approaches have been pro-
posed in which collaborative manipulation relies on the prediction of
human motion [2, 10-12].

Recent work has, to some extent, shifted to the robot part of the re-
sponsibility and initiative in completing the task. In this line of work,
the motion executed by the robot is planned so that it can easily be
interpreted/predicted by the human user [4, 6, 13], thus facilitating
the (implicit) coordination of the two elements. For example, Dra-
gan et al. [4] investigate how the shape of the trajectory by the robot
impacts task efficiency: trajectories that are more legible allow the
human user to more effectively interact with the robot than trajecto-
ries that are more functional. A related idea is pursued in [22], where,
in this case, the best motion is learned.
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Figure 1. Illustration of a possible trajectory to perform a back flip. At
some instant ¢1, the tail of the helicopter will stand below the cabin;
afterwards, at some time instant to > t1, the tail will pass over the cabin.

Another line of work closely related with our own work investi-
gates adjustable autonomy in human-robot and human-agent teams
[3, 17, 19]. For example, Scerri et al. [17] introduce the notion of
transfer-of-control, where agents interacting with humans adopt a
decision-theoretic framework to reason about when to handle the task
control to the human users. Sellner et al. [19] investigate the impact
of sliding autonomy in the performance of a multi-robot team.

Also relevant for our work is recent research in impromptu teams
or ad hoc teams [14,21]. Ad hoc teamwork seeks to develop strate-
gies that enable an agent to rapidly infer the strategy of its teammates
and act accordingly, towards the joint completion of some common
task. Although most work in this area addresses this problem from
a high-level, decision-theoretic perspective, the challenges faced in
this topic of research bare a close resemblance to those found in col-
laborative human-robot manipulation: the “ad hoc agent” must infer
the goal of the teammate and adapt its actions accordingly.

In this paper we propose an approach in which the robot takes
upon itself the initiative of solving the task, explicitly requesting the
assistance of the human teammate when necessary. This approach,
in which the robot plays an active role in the interaction, can be seen
as an instantiation of the concept of symbiotic autonomy [16], re-
cently introduced and explored in the context of robot navigation.
We propose an approach in which the robot is able to autonomously
trade-off the cost associated with “disturbing” the human user with
the potential benefit arising from the human intervention. In our ap-
proach we use probabilistic motion primitives, recently introduced
by Paraschos et al. [15] as a flexible representation for robot motions
and explored in the context of interaction in [9].

2 Probabilistic Motion Primitives

In our approach we use probabilistic motion primitives to represent
the motion that the robot should perform during task execution.

Probabilistic motion primitives (ProMPs) were introduced in [15]
as a way to represent in a flexible way the motion necessary to com-
plete some well-defined task. Consider, for example, a helicopter for
which we want to represent the motion associated with performing a
back flip. There are multiple ways by which a back flip can be per-
formed, all of which, however, share several distinctive features. For
example, independently of how the back flip is performed, at some
point in time the tail of the helicopter will stand below the cabin,
after which the tail will move above the cabin (see Fig. 1).

A ProMP can be seen as a representation of an “idealized trajec-
tory” 7" for the intended motion, where the different ways by which
the task can be addressed are seen as perturbations of this idealized
trajectory. Therefore, a ProMP takes the form of a probability dis-

Figure 2. A ProMP that represents a helicopter back flip may assign
positive probability to trajectories fulfilling the desired task (corresponding
to the shaded area). Trajectories closer to the desired trajectory, herein
represented as the dashed line, are assigned larger probability, which in this
case could mean that pgip (72) > paip (71)-

tribution over the space of trajectories. Trajectories “closer” to the
idealized trajectory are assigned a larger probability, while trajecto-
ries that are further away are assigned smaller probability. The prob-
ability of a given trajectory describes how likely it is for an agent to
perform such trajectory when performing the desired task.

Returning to our previous helicopter example, a ProMP to repre-
sent a back flip could assign a positive probability to trajectories in
which, at some point in time, the helicopter tail moves from below
the cabin to above the cabin, assigning larger probability to those
closer to the desired trajectory. Figure 2 illustrates this idea: the
shaded area visually represents the “space of trajectories” that are
assigned positive probability. Moreover, in this illustration the tra-
jectory 1o is close to the desired trajectory (the dashed line), which
would imply that the ProMP would assign larger probability to 72
than to 7.

We represent a trajectory as a sequence

= {y(0),y(1),...,y(T)},

where T' denotes the trajectory length and y(t) is the pose of the
robot at time-step ¢t. We write 7 to denote the space of trajectories
and refer to a ProMP M as some distribution pas over 7, where
pum () denotes the probability of trajectory = € T in the context of
the desired task, as seen above.

For representational purposes, and following [15], we assume
that the “idealized” trajectory associated with a ProMP can be con-
structed as the linear combination of a set of well-defined trajectory

features, ¢,k =1, ..., K; the trajectories pertaining to the ProMP

thus take the general form
K
y(t) =D dp(un +et) =@ (Dw+e®), (D)
k=1

where {e(t),t = 1,...,T} is a noise sequence and w € R* is a
vector of parameters, wy, representing the weight of feature ¢, in the
trajectory. This simplifying assumption establishes a correspondence
between the space of trajectories 7 and the space of parameters, and
allows the probability distribution over trajectories that represents the
ProMP to be expressed as a distribution over parameters, which is
easier to represent and manipulate. Therefore, one can easily express
operations involving the motion primitive in terms of familiar con-
cepts and operations from probability theory. For example,

e Prior knowledge regarding the task or preference over the trajecto-
ries that best accomplish it can be expressed in the form of a prior



Figure 3. Kinesthetic teaching. In the image, the human teacher shows the
robot the necessary motion to pour liquid into a cup.

distribution ps over RE.

e Sample demonstrations of the desired trajectory provided by an
expert can be integrated into the ProMP by a standard Bayesian
update. For example, letting D = {71, ..., T~} denote a dataset
containing several (independent) trajectories demonstrating the
desired motion, we can learn from such demonstrations simply
by updating the ProMP distribution to the posterior

pu(w | D) o< p(D | w)pu (w) )

where p(7, | w) represents the likelihood of observing a trajec-
tory T, when the idealized trajectory is represented by the param-
eter vector w.

e Similarly, modulating the trajectory to reach a certain target pose
y™ at time-step ¢ can easily be achieved by computing

Preach(w | y(t) = y") x p(y(t) = y" | w)pm(w) (3)

where, once again, p(y(t) = y* | w) represents the likelihood
of attaining pose y™ at time-step ¢ when the idealized trajectory is
represented by the parameter vector w.

In the next section we describe the class of problems addressed in
the paper, where a robot must perform a complex motion towards a
target provided by a human user. We contribute a novel approach that
enables the robot to reason about asking the human user for assis-
tance, explicitly weighting the potential improvement in (task) per-
formance that may result from such assistance against the cost of
disturbing the human user. Our approach is designed to leverage the
representational power of ProMPs while, at the same time, enable
the robot to adjust to the particular user by learning how the latter
responds to the requests made by the robot.

3 Collaborative Manipulation

We focus on tasks where a robot must perform some potentially com-
plex manipulation that is successfully completed only upon reaching

some target pose provided by a human user. Examples of such sce-
narios include placing an object in a container held by the user, or
assisting a human to put on some piece of clothing. In both exam-
ples, the robot must perform a complex motion that culminates with
reaching a target pose—the position of the container or a part of the
human body.

In all our examples we start by building a ProMP M from a set of
trajectories acquired by kinesthetic demonstration: a human expert
guides the robot along the whole motion from the initial position to
the target position (see Fig. 3). We adopt a fully Bayesian approach,
where the demonstrated trajectories are used to compute a posterior
distribution pas over parameters, as suggested by the ProMP manip-
ulations discussed in Section 2.

Following [15] we use a parametric representation for the distribu-
tion pas, and denote by 0 the parameters of the distribution. We can
rewrite the ProMP update equation for a single trajectory 7T to bring
forth the role of the distribution parameters to yield

1
pu(w | T,0) = EP(T | w)pm(w | 0),

where 7 is a normalizing constant. The likelihood p(7 | w) depends
directly on the noise sequence {e(¢),t = 1,...,T} in (1). For sim-
plicity, we take {e(¢),t = 1, ..., T} to be white Gaussian noise with
zero mean and known covariance X.. Therefore, and since the se-
quence {e(t),t = 1,...,T} is uncorrelated in virtue of our white-
ness assumption, the likelihood p(7 | w) can be written as

Il
=

p(7 | w) p(y(®) | w)

-
Il
=

I
=

Normal (y(t) | @' (t)w, 25) )

-
Il
-

and taking a Gaussian prior over WV, we have, for each trajectory T,

pu(w|T,0)
1z
== H Normal (y(t) |® " (t)w, Zg) Normal (w | p,,,, Xw),
=t
where 0 = {p,,, X }.

3.1 Task execution

Given a ProMP M, learned from a set of demonstrated trajectories,
and a target pose y*, we can now modulate the trajectories of the
ProMP M using (3) which, in light of our Gaussian assumption,
translates into the standard updates for p,, and 3.,

py" = p, + Ky -2 (Tp,)
0= (I -K®'(T)Zu,
where the matrix K is given by
K=3%,®(T)S™!
and
S=&" (1), ®(T) + =..

The updated Gaussian distribution, with parameters 6"°"
new

{p’™, 257"}, can be used to obtain a trajectory that leads the robot
to the new target position.



However, for targets y* too distant from those observed in the
demonstrations, the modulation may yield trajectories quite different
from the desired one that may actually extend beyond the workspace
of the robot. We introduce a cost function, cg : T — R, providing
the robot with a quantitative measure of the quality of any trajectory
and a way to explicitly reason about its ability to perform it.

We write cg (7) to denote the execution cost associated with a tra-
jectory 7 € T in light of the target task. The cost function cg can
account for task success, safe execution, robustness, or any other per-
formance criteria that the task designer specifies. Then, given a target
pose y* and a ProMP M, we can compute the expected execution
cost of M given y* as

Ce(y*) =E: [cr(T)] = /CE(T)p(T | y*,0)dr, 4)

where, as before, 8 represents the parameters of the ProMP distri-
bution pas. For the Gaussian setup considered, we can further break
down the computation in (4). Abusing somewhat our notation, let
ce(w) denote the (expected) execution cost associated with the pa-
rameter vector w, i.e.,

ce(w) = /CE(T)p(T | w)dr
_ / ce(® w + e)p(e)de

where we wrote € to denote the noise sequence. Then

Coly") = / en(w)p(w | y*,0)dw

w

= /cE(w)NormaI (w | py7, 2% dw.

3.2 Active collaborative manipulation

A natural possibility to address the difficulties posed by targets
placed in inconvenient locations (in the sense discussed above) is
to acknowledge such difficulties and request the human user for as-
sistance in moving the target to a more convenient location. Sup-
pose then that the robot has available a finite set of instructions,
A = {ao,a1,...,as}, that it can voice to the human user. Instruc-
tions az, .. .,ay correspond to requests to the human user to move
the target in a specific manner, while ag corresponds to the null in-
struction (request nothing from the human user). For example, in the
scenario of Fig. 3 where the robot must pour a liquid in a cup, a
possible request could be to place the cup closer to the robot.

We associate with each instruction a € A a request cost, cr(a),
that quantifies the burden imposed upon the user in executing the
action associated with instruction a, and should be designed rela-
tively to cg(7). Thus, assuming a cg(7) in [0,1], cr(a) = 0.1
indicates that action a adds an additional 10% burden. Additionally,
associated with each instruction a € A and each target position y,
we consider a transition model that describes (probabilistically) the
outcome of the user’s action in terms of the target position. In par-
ticular, we write prarget (Y’ | Y,a) to denote the probability that,
after requesting a, the target moves from y to y’. For action ao,
Prarget (Y | Y, a0) =0(y',y).

With the elements above, the total cost incurred by the robot upon
performing request a at the target position y and then moving to

reach the target in the resulting position is given by

Cu(a) = cr(a) + By [Cr(y') | y,a]
—cn(@)+ [ Coypomse(u' | v )iy

Assuming that the instruction set .A always includes the null instruc-
tion ag (with a cost of cg(aog) = 0), the robot will select action
a® = arg min C (a),
acA

thus pro-actively requesting the user’s assistance in the reaching task
whenever the benefit from the user’s aid effectively surpasses the bur-
den imposed upon that user. The interplay between the two compo-
nents of the cost Cas, namely cg and cg, determines in which cir-
cumstances it pays off to rely on human assistance: when cr is small
it is generally better to request, while for large cr it is generally bet-
ter to execute without human assistance.

3.3 Anillustrative example

We now illustrate the framework for active collaborative manipula-
tion introduced above in a simple 2D example. We used kinesthetic
teaching to collect a number of projected trajectories, depicted in
Fig. 4,* and computed the associated ProMP parameters M, and 3.
In this example scenario, we consider a simple execution cost that
penalizes deviations from the known target area—the shaded region
in Fig. 4(a). In fact, targets away from those reached in the demon-
strations lead to trajectories with shapes significantly different from
those demonstrated, as seen in Fig. 4(b). Therefore, in this example
scenario, given a trajectory 7 = {y(0),...,y(T")} we use

en(r) = K (1— pu(y(T) | 0))
~ Kp (1 ~ [ P | wp(w| o>dw) ,
where
p(y(T) | w) = Normal (y(T) — & (T)w | 0, %),
par(w | 8) = Normal (w |, 3u).

and K g is a constant.

We consider an instruction set A = {0, U, D, L, R}, correspond-
ing to the null request () and requests to move the target up (U),
down (D), left (L) and right (R), and a constant request cost cg(a) =
Kr,a € A\ {0}. Figure 5 compares, for different values of Kz and
KR the average performance obtained by (i) always trying to execute
the trajectory most likely to lead to the target, without ever requesting
for assistance (Always execute); (ii) always requesting assistance
before executing (Always request); and (iii) using our approach.’

Several aspects are worth noting in Fig. 5. First of all, as expected,
the total cost grows linearly with both K g and Kg, as seen in the
curves corresponding to the approach that always executes and the
approach that always requests, respectively.

A second point worth noting is that, also as seen in Section 3.2,
for small Kg, it is generally better to request, while for large K it
is always better to execute without human assistance.

4 The trajectories were collected using the Baxter robot and the positions of
the end effector were then projected in a 2D plane.

5 The results in Fig. 5 were obtained by sampling 1,000 targets uniformly
at random from the robot’s workspace, and averaging the performance of
the different approaches in these 1,000 points. Human intervention after
an instruction by the robot leads to an average displacement of the target of
~20cm in the requested direction. Finally, we considered that there was no
execution noise.
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Figure 4. (a) 2D trajectories collected through kinesthetic teaching (dotted lines). The solid line represents the average trajectory, while the contours
represent the distribution of targets estimated from the demonstrated trajectories. (b) Trajectories obtained by modulating the ProMP to targets away from the
“known area”, represented by the contour. The solid line represents the “mean trajectory”.
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Figure 5. Performance of three approaches to the manipulation task that
rely on human assistance at different levels. See text for details.

Finally, we note that our approach naturally outperforms the other
two naive approaches, striking the correct trade-off between the costs
and benefits of requesting human assistance, the difference being
largest in those situations where the latter two perform similarly.
This observation can be explained by noting that, except in a “com-
fort region” around the “average target”—in which any human action
moves the target away—human intervention may always be selected
so0 as to bring the target closer to the comfort region. When the two
naive approaches perform similarly means that the larger execution
cost incurred by the approach that always executes in areas far from
the comfort region compensates the request cost incurred by the ap-
proach that always requests around the comfort zone. Our approach,
nevertheless, takes the best of the two and is thus able to attain sig-
nificant improvements with respect to the other two approaches.

4 Adapting to the human user
According our approach the robot selects the action

a” = argmin C(a),
acA

Human intervention
[ outside the gray area
moves the target

| closer to the “average
target”

Human intervention
in the gray area
moves the target

further away from
the “average target”

Figure 6. Diagram illustrating the impact of human intervention in
different regions of the robot’s workspace.

where the cost Cys is given by

(a) +Ey [C(Y) | y,a].

As pointed out before, the cost Cas expresses the trade-off between
the costs and benefits of recruiting human assistance in the execution
of the desired task. However, computing C'ys requires knowledge of
the transition probabilities prarget (Y’ | Y, a), which essentially cor-
responds to a model of how the human user moves the target in re-
sponse to the robot’s request. Such model can be learned from data
obtained from people moving the target. However, there is still the
possibility that, for one particular user, the model is incorrect—for
example if the user has some physical limitation, it may not be able
to perform some of the actions requested by the robot.

To illustrate the potential impact of a wrong model in the perfor-
mance of the robot, we return to the example from Section 3.3 and
determine what happens when the transition model pearget (¥’ | Y, @)
is incorrect. In particular, let us suppose that a particular user cannot
perform vertical motions. We set Kr = 0.17 and Kg = 2 and draw
50, 000 target poses uniformly at random in the robot’s workspace.

CM (a) = CR



The results are summarized in Table 1.

Table 1. Performance of different approaches with correct and incorrect
models.

Approach Avg. cost
Always execute 0.4764
Always request (incorrect model) 0.5184
Always request (correct model) 0.5023
Our approach (incorrect model) 0.4748
Our approach (correct model) 0.4405

The results in Table 1 show that, in the example, the approach that
never requests assistance from the human user is generally superior
to the approach that always requests. It is also worth noting that the
performance of the approach that always requests does not signifi-
cantly change by using an incorrect model. Both approaches always
request human assistance, and the only difference lies on the selec-
tion of the instructions to be voiced. The difference in performance
is explained mostly by those situations in which the best action is a
request to move the target horizontally but the approach with the in-
valid model incorrectly requests the user to move the target vertically,
and vice-versa.

The results also show that even with an incorrect model our ap-
proach is still able to outperform (even if by just a small margin) the
naive approaches. Finally, the results confirm that an incorrect model
indeed impacts the performance of the robot—when using the correct
model, our approach presents a significant advantage over all other
approaches.

To address the possibility of an incorrect transition model, we in-
troduce an adaptation mechanism that, after each action requested
from the human user, updates the model to more faithfully trans-
late the most recent evidence. In particular, we adopt a parameter-
ized representation for the transition probabilities piarget and write
Drarget (Y’ | Y, @) to denote the transition probabilities correspond-
ing to the parameter cx. We associate a parameter vector o, with
each action a € A, implying that

Prarget (Y | Y, @) = Prarget (Y | ¥, ata).

Then, by updating the parameters o, associated with each action
a € A the robot is able to incrementally adapt to the specific human
user that it is currently interacting with.

We conclude by revisiting the example of Section 3.3 to illustrate
the impact of adaptation in our approach.

4.1 TIllustrative example revisited

We adopt a simple parametric model for the transition probabilities
Prarget- Namely, when the robot voices an instruction a € A\ {ao},

v =y+a,ty,

where o, is a displacement vector associated with action a and v is
a zero-mean Gaussian disturbance. Equivalently,

Prarget(y | Y, 0ta) = Normal (3 — (y + @), 50,

where X, is the variance of the disturbance. The update of each pa-
rameter vector o, can be done more or less aggressively, depending
on how much weight we want to assign to the robot’s experience.
We set Kr = 0.17 and Kr = 2 and draw 5, 000 target poses
uniformly at random in the robot’s workspace. After every 250 steps
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Figure 7. Average learning performance in the example of Section 3.3.

we update the parameters oo, a € A, in a total of 20 update steps.
Figure 7 depicts the obtained results, including the performance of
the five approaches featured in Table 1, as well as the learning ap-
proach. As is clear from the plot, the learning approach initially ex-
hibits a performance similar to our approach with an incorrect model.
However, as more information from the user becomes available, the
performance slowly converges towards that of a correct model.

5 Experimental results

We illustrate the application of our framework in two real-world tasks
involving the Baxter robot. In both tasks, Baxter posed the requests
to the human user through voice commands. In the first task, the robot
pours a bottle to a cup placed on a table. The robot was provided
with five demonstrations of the intended motion through kinesthetic
teaching (as demonstrated in Fig. 3), with the cup placed in differ-
ent positions in the table.% These trajectories were used to compute a
ProMP as described in the illustrative example of Section 3. At exe-
cution time, we use homography to determine the position of the cup
in the table, and modulate the ProMP as in (3) to obtain the trajec-
tory for that target. Figure 8(a) illustrates the execution of a pouring
motion. If the bottleneck ends over the cup, the motion is considered
a success and the robot incurs a small execution cost (depending on
the distance to the center of the cup). If the bottleneck does not end
over the cup, the motion is considered a failure, and the robot incurs
a large penalty. For decision-making, a simple model predicting the
probability of failure is used to compute the execution cost.

Note that, even if this task in itself is not very complex, the lim-
ited number of demonstrations prevents the robot from confidently
generalizing the motion to the whole table, allowing us to study the
effectiveness of our approach in handling the robot’s limitations.

In the second task, the robot helps the user to put on a backpack.
This task is significantly more complex, comprising two motions in-
volving both of Baxter’s arms (in a total of 14 DoF) and requiring
some compliance from the user. The robot was provided with four
demonstrations of the intended motion, with the user placed in dif-
ferent positions in front of the robot. We used as targets the hands of

6 Trajectories were stored in joint space.
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Figure 8.
the robot’s view. (c) Comparison of the average performance of the three approaches. The results portrayed are averages over 17 trials (cup) and 16 trials
(backpack) for each method. Error bars depict the standard error.

the user. At execution time, we again use homography to determine
the position of the hands of the user in a vertical plane. The execu-
tion cost merely measures the success or failure of the motion. For
decision-making, we use an SVM trained to predict success/failure
given the target position to estimate the execution cost. Figure 8(b)
shows the contours of the cost function for the backpack task.

We compare the performance of three approaches: (i) executing
without ever requesting user assistance (Always execute); (ii) ex-
ecuting after always requesting user assistance (Always request);
and (iii) ask human assistance when convenient (Our approach).
Each approach was evaluated for a number of trials in each of the
two tasks. In each trial, the robot is allowed to interact with a human
user, where the target (cup or user) is placed in random positions in
front of the robot. The robot proceeds as prescribed by the approach
under consideration, and we evaluate the success of the correspond-
ing motion. The results are summarized in Fig. 8(c).

Analyzing the results in detail, we note first that, as expected, the
Always execute approach incurs no request cost. The Always re-
quest approach, on the other hand, incurs the largest request cost.
However, overall, it is significantly better than the approach that al-
ways executes, which indicates that the request cost incurred by the
former when requesting unnecessary user assistance still compen-
sates the execution cost incurred by the latter with targets that it can-
not safely reach. Our approach is the most cost-effective of all three,
incurring less execution cost, request cost and overall cost than any
of the other approaches. The results show that our approach success-
fully weights the robot’s limitations, enlisting user assistance when
the latter can be of use, thus establishing a form of symbiotic auton-
omy where both user and robot assist one another for mutual benefit.

We illustrate in Figures 9(a)-9(c) the performance of the different
approaches for different positions of the cup. Several interesting ob-
servations are in order. First of all, considering Fig. 9(a), it is possible
to observe that the robot is able to successfully complete the tasks
when the cup is in the vicinity of the area demonstrated (marked as
the shaded region). When the cup was placed in a position relatively
distant from that area, the modulation process is less accurate, lead-
ing the robot to “miss” the cup and fail the task.

Considering now Fig. 9(b), we note that by requesting the user to
move the cup, a significant number of cup positions that the robot
missed in the Always execute approach can now be successfully
corrected into positions that the robot can successfully reach. How-
ever, for those positions that the robot was already able to reach, the
request to the user is unnecessary, leading the robot to incur an un-
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(a) Example of a pouring motion executed by Baxter. (b) Contour lines of the execution cost function cg for the backpack task, superimposed on

necessary request cost.

Finally, considering Fig. 9(c) it is clear that the robot requests only
the user’s assistance in those positions that it cannot successfully
reach. Some of these remain out of the reach of the robot, but a sig-
nificant number of them (as already observed in the Always request
approach) can now successfully be reached. These results illustrate
that our approach is, indeed, able to successfully trade-off the cost of
requesting the assistance from the human user and the potential ben-
efit arising from such assistance. The results illustrated in Fig. 9 are
summarized (in terms of cost) in the plot of Fig. 8(c). As expected,
the approach Always execute incurs no request cost. Conversely, the
average request cost for Always request is Kr = 0.17, since all tri-
als incur exactly this cost. Our approach incurs smaller cost both in
terms of execution and in terms of request.

6 Conclusions

In this paper we presented a novel approach that explores the con-
cept of symbiotic autonomy in the context of collaborative manipu-
lation tasks. Our approach enables a robot to reason explicitly about
its limitation when executing a complex manipulation task with re-
spect to a target provided by a human user, and reason about when
the cost of disturbing the human user and requesting its assistance
is compensated by the benefits arising from such assistance. Our ap-
proach relies on a model of the human responses to the robot’s re-
quest; when discrepancies are detected, our approach successively
adjusts the model to a particular user, as the number of interactions
increases. Our results show that our approach is effectively able to
perform the desired trade-off, as well as adapt to gross errors in the
user’s model.

Our work also opens interesting directions for future work. Our
current decision process is myopic: it selects the best option at each
time-step disregarding the potential future effect of the actions. How-
ever, by using a more evolved decision-theoretic approach, it is pos-
sible to further optimize the (long-term) performance of the robot.
In fact, given the Markovian nature of the target displacement model
used, it should be possible to formulate the decision problem of the
agent using a decision-theoretic model such as a Markov decision
process, for which solution techniques are readily available.
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