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Due to the proliferation of wireless devices, many wireless
users treat wireless connectivity as a black box. When
wireless performance does not meet expectations, it can
be a frustrating experience to try and resolve wireless
issues. Wireless problems are more significant for mobile
robots due to strenuous requirements for sustained wireless
connectivity while moving [1]. Unfortunately, it can be
difficult to understand the cause of wireless problems in real
environments. First, wireless signals transmitted across the
wireless medium are susceptible to attenuation, interference,
and reflections from the surrounding environment and other
wireless devices. Second, wireless connectivity depends on
decentralized cooperation across heterogeneous devices. As
autonomous robots are introduced in our environments,
we believe they can be a perfect tool to capture detailed
snapshots about our wireless environments to help diagnose
wireless connectivity issues. In this paper, we show how
these insights helped us to diagnose our robot’s own motion-
based wireless connectivity issues.

I. INTRODUCTION

Understanding wireless connectivity in real environments
is hard. Much of the complexity stems from wireless trans-
missions occurring over an open, shared medium with a
mixture of decentralized, heterogeneous devices [2]. Once
devices begin to move, wireless problems become even more
difficult to diagnose since wireless conditions around the
device can change rapidly. The emergence of telepresence
robots has shown that wireless devices in motion struggle to
sustain uninterrupted wireless connectivity [1]. In this paper,
we will show that autonomous robots can be a valuable tool
for identifying the cause of poor wireless performance with
direct observations of the wireless environment.

We focus on enterprise wireless networks composed of
access points (APs) distributed throughout the environment
to provide Internet access to devices at all locations. Today,
motion-based wireless connectivity issues are difficult for
users to resolve because:

1) wireless infrastructures are complex and vary over

space and time

2) users have visibility and control over only their own

device

3) wireless communication problems can require signif-

icant domain knowledge to deal with the range of
hardware, drivers, and protocol layers
As a result, a natural reaction is to submit trouble tickets
and wait some time for network administrators to come
and resolve the problem. Even network administrators may

struggle to resolve the wireless issues because: 1. they
have limited time due to the large number of users to
administrators (25,000 to 6 in our case), 2. the problem must
be easy to replicate, and 3. network administrators control the
infrastructure APs but have limited visibility of the wireless
medium.

Autonomous robots as a wireless tool can augment diag-
nosis of wireless problems by:

1) capturing fine-grain wireless maps reflecting actual
propagation of wireless signals

2) serving as a vehicle to subject wireless devices to
repeatable motions

This is made possible due to their ability continuously
localize with high accuracy and autonomously and precisely
navigate without human assistance. Detailed wireless maps
help to reveal how the wireless medium is being used in
order to eliminate unlikely causes of poor connectivity. They
would also allow wireless users to diagnose simple dead zone
coverage issues and perhaps also empower them to create
more meaningful trouble tickets. Since wireless problems
with motion are often short-lived, the ability to reliably repeat
motions is essential for understanding more complex motion-
based wireless connectivity issues.

In this paper, we will first show that autonomous robots
can be used to collect detailed wireless measurements. Next,
we show fine-grain insights allow us to better understand
how our wireless infrastructure uses the wireless medium.
Finally, we show how we were able to diagnose our device’s
own motion-based wireless connectivity issues.

II. INSIGHTS ABOUT SURROUNDING WIRELESS
CONDITIONS

We now show the detailed insights that autonomous robots
can capture without access to any sensitive wireless in-
frastructure APs. With these insights, we will be able to
understand how the wireless medium is being utilize and see
if possible infrastructure configuration issues may be causing
our wireless connectivity issues.

A. AP Coverage

AP coverage ensures every location has at least one AP
in range. Avoiding wireless dead zones is the responsi-
bility of network administrators who manage the wireless
infrastructure. They often try to place APs to provide a
high minimum received signal strength indicator (RSSI) at
every location. Our network administrators target a minimum
RSSI of -60 dBm, which is much higher than -90 dBm that
generally signifies no connectivity. The process of verifying



coverage simply requires sampling RSSI at all locations
in the environment. Unfortunately, there are no practical
solutions that require little human effort and achieve fine-
grain sampling of the environment. As a result, there are
situations where trouble tickets result in the discovery of
wireless dead zones in practice.

We can automate this search for wireless dead zones by
deploying autonomous robots to measure coverage across the
environment. We were able to cover four floors of our en-
terprise environment. Figure 1 shows a histogram of median
RSST of the best available AP after dividing the environment
into Im x 1m grid regions. We see that AP coverage across
two floors is very strong with few regions falling below the
-60 dBm target. If there had been wireless dead zones, they
would have been apparent in these histograms. As a result,
wireless issues for these floors are unlikely to be due to
wireless dead zones.
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Fig. 1: Coverage summary showing histograms of the best
median RSSI for each floor. Network administrators typically
aim for a minimum of -60 dBm coverage.

B. Throughput Samples

Coverage is an important pre-requisite for wireless con-
nectivity but not necessarily reflective of the actual rate
of data transmission. Unlike RSSI that are instantaneous
measurements, throughput samples depend on state and co-
ordination with other wireless devices. Throughput tends to
vary more than RSSI since congestion and dropped packets
affect the rate of data transmission. As a result, throughput
maps are unliklye to be a predictable as the coverage maps.

Figure 2 shows throughput maps collect by the robot as
it moved across the environment. These measurements show
how wireless performance varies over space. We can see
that our robot’s own wireless connectivity problems are not
isolated to small regions but spread across large regions of
our building. This points to more systemic wireless issues
that our robot is struggling with. If the robot was facing
region-specific wireless issues due to excessive congestion,
these types of throughput maps would have been helpful.

IIT. DIAGNOSING MOTION-BASED WIRELESS
CONNECTIVITY

We have shown that our wireless infrastructure is well-
configured and AP coverage is not an issue. Nevertheless,
our throughput maps showed that motion-based wireless
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Fig. 2: Median throughput across two floors.

connectivity issues still persist. From our own empirical
observations, these wireless issues appear intermittent and
seemingly random while moving around. When we bring
the robot back to revisit locations where it lost connectivity,
the connectivity issues would not occur again so these
problems must arise with motion. Autonomous robots will
help to better understand these motion issues since they can
continuously collect of wireless performance measurements
while also reliably executing controlled motions. With the
autonomous robots, we will methodically diagnose the root
cause by enabling humans to search for similar patterns that
lead to these poor connectivity situations.

A. Repeated Motions

Many factors including location and speed of motion can
cause variations in wireless performance so we subject the
wireless device to nearly identical situations. An autonomous
robot itself is perfectly suited for subjecting the device to
repeated traverals over the same path with the exact same
speeds and device orientations. Deploying an autonomous is
much preferred over fixed contraptions that are cumbersome
and require modifications to the environment [3].

The robot is instructed to follow a simple three-quarter
loop path around three hallways in the environment where
connectivity issues occur frequently, as shown in Figure 3.
We even instruct the robot to move in both clockwise
(Figure 3b and 3d) and counterclockwise (Figure 3a and 3c)
directions. We intentionally select a path where the robot
traverses each location at most once. With no overlapping
measurements at any location, it will be much easier to
analyze the wireless performance variations using wireless
maps.

B. Analyzing Variations in Wireless Performance

While being driven along the given path, the wireless de-
vice simultaneously captures RSSI, throughput, and current
AP it is associated with. We present four noteworthy runs
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Fig. 3: Simultaneous associated RSSI and throughput for 4 runs over the same locations. Runs 1 (3a) and 3 (3a) began in
the bottom left corner with the robot moving counterclockwise while Runs 2 (3b) and 4 (3d) started in the top left and
moved clockwise. Numbered labels reflect the first point of association with each AP while the shape and color reflect a
unique AP whose corresponding coverage is shown in Figure 4.
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Fig. 4: Coverage for each AP corresponding to APs in Figure 3 identified with a unique shape and color.

in Figure 3 that shows RSSI (top), throughput (middle), and
coverage for each AP (bottom). In the RSSI maps (top),
the unique shapes reflect the location where the device first
associated with the corresponding AP as identified by the
color and shape. The numbered labels identify the order in
which they were visited. We show AP coverage for each
of these uniquely identified APs (bottom). Corresponding
throughput while moving (middle) is also shown where large
stretches of white space reflect absence of connectivity.

These four runs provide some noteworthy insights. First,
RSSI changes gradually over several meters as a function of
the device’s distance from the AP. Notice that run #1 and #2
remained associated with the same AP for the duration of
the traversal. Irrespective of the direction of motion, RSSI
for these runs nearly perfectly matches corresponding AP
coverage. For these runs, throughput resulted in lengthy
stretches of no connectivity since the AP was out of range.

In run #3 and #4, the device switches to another AP in
the middle of the path. This AP switch particularly benefits
run #3 but not as much for run #4. The difference is that
run #3 switches APs just as it is about to enter the strongest
AP coverage region for the selected AP. In contrast, run #4
switches to an AP that is almost out of range.

We can see in Figure 4 that there is at least one AP
with high RSSI along the entire path so AP coverage is
strong. The motion-based challenges must stem from poor
AP handoffs. The key challenges appear to be centered

around timing disassociations before connectivity degrade
significantly and then intelligently selecting the next AP to
switch to. With the help of our autonomous robot, we are
able to distinguish the effects of AP coverage, changing
wireless conditions, and device motion to conclude that poor
AP handoffs are the cause of our robot’s wireless issues.

IV. RELATED WORK

Past efforts to collect wireless measurements are unable
to ensure fine-grain accuracy, densely cover spatially diverse
areas, and provide timely updates. Unfortunately, it is diffi-
cult to predict the propagation of wireless signals in realistic,
indoor environments so fine-grain wireless maps require
measuring signals captured at each location. Measurement
studies have been performed by having humans carefully
traverse a building and mark their locations on a map [4], [5].
This is a tedious process that suffers from accuracy issues
due to human errors that make it undesirable to repeat often
so it will be difficult to ensure maps are up-to-date.

Dense deployments of static WiFi monitors can ensure
timeliness but are limited by placement options for fixed
location monitors and incur significant human effort and
costs to deploy so typically they cannot achieve high spatial
granularity. While some use dedicated sensor hardware [6],
[71, [8], others reduce costs by adding WiFi dongles to
available USB slots [9]. Distributed synchronization and
hardware calibration enables creation of a single, unified



view from measurements collected across all WiFi monitors.
A global view can be used to infer aggregate performance
metrics like number of active wireless clients, interference,
loss rates, and utlization [6], [7], [10] and even infer missing
packets [8]. These approaches are limited to the perspective
of the wireless infrastructure and have difficulty accounting
for unreceived wireless client transmissions. In this paper,
we view the wireless network from the perspective of the
wireless client by accounting for the client’s movement and
considering the client’s intent of transmitting wireless data.

Other efforts attempt to crowd-source collection of wire-
less maps. These approaches end up sacrificing accuracy in
order to easily collect measurements. GPS can be used to
provide location estimates [11], [12] but it operates primarily
in outdoor environment and suffers from poor location esti-
mates of around 3 meters. FM signals [13] similarly suffer
from the effects of indoor environments and cannot achieve
accurate location estimates. Recent efforts to take advantage
of powerful sensors including odometry, magnetometer, and
WiFi found in cell phones have been shown to have an
accuracy of 1.69 m [14], [15]. Roomba robots have also been
used to collect wireless coverage maps by spinning in small
grid areas [16], [17] but they cannot autonomously navigate
to reduce human time and effort costs or execute complex
motions like our robot can. Our work takes advantage of
much more powerful sensors that can localize within 10
cm using a wheeled platform that can reproduce complex
movements.

Previous efforts have proposed techniques to use predic-
tions to reduce the duration of handoffs or inform applica-
tions to allow for prefetching data and reduce the impact of
handoffs [18], [19]. Nearby access points have also been used
to opportunistically help mitigate WiFi handoffs for moving
vehicles when moving across multiple buildings [20]. Our
work that helps to expose and reproduce fine-grain failures
in AP handoffs for moving devices is orthogonal to these
efforts as it provides a mechanism for robustly evaluating
handoff solutions.

V. CONCLUSION

Diagnosing wireless connectivity issues can be difficult
due to the many factors that potentially impact wireless
performance. We showed how autonomous robots can help
to methodically drill down to the root cause by capturing
detailed wireless measurements that eliminate unlikely fac-
tors. We were able to identify AP handoffs as the reason for
our own robot’s motion-based wireless connectivity issue by
analyzing variations in wireless performance while subjected
to repeatable motions. This was a challenging wireless prob-
lem that arose from poor decisions dependent on accurate
timing and it is unclear that we could have uncovered them
without the accuracy and control of autonomous robots.
Opportunities for future work include using these detailed
wireless maps for better management of enterprise wireless
networks, ensuring timely maps for wireless localization
solutions, and automated diagnosis of wireless problems.
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