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Abstract

We research and develop autonomous mobile ser-
vice robots as Collaborative Robots, i.e., CoBots.
For the last three years, our four CoBots have
autonomously navigated in our multi-floor office
buildings for more than 1,000km, as the result of
the integration of multiple perceptual, cognitive,
and actuations representations and algorithms. In
this paper, we identify a few core aspects of our
CoBots underlying their robust functionality. The
reliable mobility in the varying indoor environ-
ments comes from a novel episodic non-Markov
localization. Servive tasks requested by users are
the input to a scheduler that can consider differ-
ent types of constraints, including transfers among
multiple robots. With symbiotic autonomy, the
CoBots proactively seek external sources of help
to fill-in for their inevitable occasional limitations.
We present sampled results from a deployment and
conclude with a brief review of other features of our
service robots.

1 Introduction

We research, develop, and deploy multiple autonomous mo-
bile robots capable of performing tasks requested by users in
our multi-floor office building. To successfuly perform ser-
vice tasks, our robots have several core capabilities, namely:

e To autonomously localize and navigate in the diverse
types of indoor space, including corridors, elevators, and
open areas with movable furniture and people.

e To schedule conflict-free plans for multiple robots to sat-
isfy constrained tasks specified and requested by users.

e To overcome the robots’ own limitations, in particular in
actuation, by proactively ask for help from humans.

Our current four Collaborative Robots, CoBot-1 through
CoBot-4 (see Figure 1) can be viewed as mobile, computing,
and sensing platforms, that behave as service robots.

Mobile robots, by definition, need to be able to move,
in our case, in indoor environments. Such capability has
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Figure 1: CoBots with omnidirectional motion, onboard com-
putation, interaction interfaces, carrying baskets, and differ-
ent combinations of depth sensing (cameras and LIDAR).

been extensively investigated. The fact that our research
goal includes the persistent deployment of the CoBots led
to the introduction of novel mapping, sensing, and localiza-
tion approaches [Biswas, 2014]. The robots classify sensed
obstacles as map-known long-term features (walls) or map-
missing short-term (furniture) and dynamic (people) features.
This explicit distinction enables the overall effective episodic
non-Markovian localization approach [Biswas et al., 2011;
Biswas and Veloso, 2012; 2013].

Service robots need to be able to perform service tasks.
The CoBot robots can perform multiple classes of tasks, as
requested by users through a website [Ventura er al., 2013], in
person through speech [Kollar er al., 2013] or on the robot’s
touch screen. All tasks can be represented as pick up and
delivery tasks of objects or people. The task scheduler takes
into account time and location constraints, as well as the mul-
tiple available robots, and issues plans that can include trans-
fers [Coltin, 2014].

As can be seen in Figure 1, a CoBot has no hands but
has a basket, so it can carry, but not manipulate items.
To overcome this actuation limitation, and inevitably other
types of limitations, the robots proactively ask for help
from humans [Rosenthal et al., 2010; 2011], and from the
web [Samadi et al., 2012]. They can gather and use models
of human help and preferences in a human-centered planning
approach [Rosenthal, 2012].



2 Episodic non-Markov Localization

A variety of early robots, such as Shakey [Nilsson, 1984]),
Xavier [Simmons er al., 1997], and museum tour guide
robots [Burgard et al., 1999; Fong et al., 2003], and more
recent ones [Chen et al., 2012; Randelli et al., 2013; Chris-
tensen et al., 2010; Hawes et al., 2007; Dias and Ventura,
2013; Zhang and Stone, 2015; Visser and Burkhard, 2007].
All of these efforts include variations of localization algo-
rithms [Dellaert et al., 1999]. Our CoBot robots, as deployed
in a multi-floor university building setting, now for more than
1,000km, have faced new challenges.

Over the course of their regular deployments, the CoBots
are exposed to a variety of types of environments. Some en-
vironments like corridors remain largely invariant over time,
with little or no changes. Other environments like cafe ar-
eas and open atria, exhibit significant changes over time, with
objects like tables and chairs being moved around frequently,
and numerous dynamic obstacles like humans. Such environ-
ments pose a challenge to localization algorithms that assume
that the world can be represented by a static map.

To localize in the presence of frequently observed movable
and moving objects, we introduce Episodic non-Markov Lo-
calization [Biswas and Veloso, 2014] that explicitly reasons
about observations of non-mapped objects without saving lo-
cally static maps. Episodic non-Markov localization main-
tains a belief of the history of pose estimates of the robot over
“episodes” of observations of unmapped objects. For every
time-step, it classifies observations into those arising from the
map (“Long Term Features”, LTFs), from unmapped static
objects (“Short Term Features”, STFs), or from moving ob-
jects (“Dynamic Features”, DFs). The correlations between
poses of the robot due to the presence of STFs and DFs are
represented by a “Varying Graphical Network” (VGN), which
we introduce next.

2.1 The Varying Graphical Network

As in a Dynamic Bayesian Network, a VGN includes certain
periodically repeating nodes and edges that do not change
with the belief. We term these the non-varying nodes and
edges. A VGN includes two additional structural elements:
varying nodes and varying edges. The presence and struc-
ture of the varying nodes and varying edges are not known a-
priori, and are estimated jointly with the belief. Since the es-
timates of the structure may change with the belief, the struc-
ture is likely to change as new observations become available.

VGNs provide an accurate representation for non-Markov
localization. The presence of LTFs and their relations to the
map, and the correlations between successive poses of the
robot due to odometry observations are encoded by the non-
varying edges and nodes. The presence of STFs and DFs is
encoded by the presence of associated varying nodes. The
correlations between STFs observed at different time-steps is
encoded by the varying edges. The Belief of the robot’s lo-
calization, Bel(x1.,,) is maintained over a history of n poses
T1.,. For each timestep ¢, odometry u; corresponds to the
robot’s relative motion between poses x;_1 and z;, and ob-
servation s;, made at pose x;, includes observations of LTFs
that match the map, as well as unexpected observations of
STFs and DFs.

Since the VGN for non-Markov localization has no pre-
defined structure, it might seem that the computation of the
belief would require storing the complete history of all states
and observations since the robot was turned on. However, in
practice this is not necessary, as we rely on the existence of
“episodes” in non-Markov localization. Suppose there exists
a time step ¢; such that all observations and state estimates
made after ¢;, given x;, are independent of all prior observa-
tions and state estimates:

P(xlznl‘rOySl:nvul:naM) =
P(€C1:i|$0,81:¢,u1:i7M) X P(xH»l:n‘xia3i+1:n7ui+1:n7M)'

(1)

This conditional independence implies that there are no STF
observations after ¢; that correspond to STF observations be-
fore ¢;. In such a case, the history of states and observa-
tions prior to t;, called the “episode” t(.;—1, can be discarded
when estimating Bel(z;.,) over the episode t;.,. We as-
sume such episode-boundary time-steps like ¢; exist, allow-
ing real-time non-Markov localization with limited computa-
tional resources. Figure 2 shows an example VGN near an
episode boundary, highlighting the absence of any varying
edges crossing the episode boundary.
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Figure 2: An example VGN demonstrating the presence of an
episode in non-Markov localization. Note the absence of any
varying edges that cross the red line indicating the episode
boundary. Hence the pose z; is an episode boundary, where
all previous poses up to x;_1 are in the previous episode, and
poses x; and later are in the latest episode. Observations s;_;
and older thus no longer need to be stored.

The exact structure of the VGN depends on the specific
LTFs and STFs that are observed by the robot, and we next
present how the observations are classified.

2.2 C(lassification of Long-Term and Short-Term
Features

For every time-step, the structure of the VGN, based on the
classification of the observations into LTFs, STFs and DFs, is
re-evaluated prior to updating the MLE of the belief. In this
work the sensor we use is a laser rangefinder, so each obser-
vation s; is a set of n; 2D points s; = {p; }j=1:n, observed by
the robot. We represent the pose z; of the robot on the map
at time-step ¢ as an affine transform 7 that consists of a 2D
rotation followed by a 2D translation.



We use a vector map [Biswas et al., 2011] representa-
tion Myector = {li}1=1:s for the permanent map, consist-
ing of a set of s line segments [;. To evaluate which of the
observed points p} are LTFs, an analytic ray cast [Biswas
and Veloso, 2012] is performed from the latest MLE of ;.
The result of the analytic ray cast is a mapping from pé. —
l; € Myector, indicating that the line segment /; from map
Miector 1S the most likely line in the map to be observed by
the point p; Let dist(p, () denote the perpendicular distance
of point p from the line segment [ where both p and [ are in
the reference frame of the map. The observation likelihood
P(pé [T, Myector) of the point pé» is then given by

dist(Tiph, 1)
W 2
5. ;@)

where X, is the scalar variance of observations, which de-
pends on the accuracy of the sensor used. Thus, obser-
vations are classified as LTFs if the observation likelihood
of the point given the map is greater than a threshold,
P(p;‘h:ia Mvector) > €LTF-

Observed points that are classified as non-LTFs could po-
tentially be STFs. To check if an observed point pé € LTF; is
an STF, it is compared to all non-LTF points observed prior to
time-step ¢ to check if they correspond to observations of the
same point. Given a point p; € LTF; observed at time-step

P(p;\m“ Mvector) = exXp (

7 and another point pfc € LTF, observed at a previous time-
step [, the probability that both the observations correspond
to the same point is given by the STF observation likelihood

function,
; || T;p% — Tipl||?
P(ph, p|ai, ;) = exp (—”Z’“ G

Therefore, a non-LTF point pz» € LTF, is classified as an STF
if there exists a point p} € LTF; from a time-step [,/ < i
such that P(p;,pumi, Ty) > €STF-

Given the classifications, and the form of the observation
likelihoods of the LTFs and STFs, episodic non-Markov lo-
calization solves for the maximum likelihood estimate of the
belief by representing the Belief as a cost function and opti-
mizing over it, instead of keeping multiple estimates repre-
sented as a particle filter [Biswas, 2014].

We convert the belief from a probability distribution repre-
sentation to a cost function representation C' such that

Bel(xlzn) - P(xl:n|x07 S1:ny Ulin, M)
x exp(—C(x1.n|T0, $S1:n, U1, M)).  (4)
The cost function C' consists of a sum of m subs—cost func-
9TF corresponding to the STF terms P(sy., 7 [21.,),

tions ¢;
n sub-cost functions cFTF corresponding to the LTF terms
P(s¥TF|2;, M), and n sub-cost functions cf4°™ correspond-
ing to the odometry terms P(z;|z;—1, u;).

The Maximum Likelihood Estimate x7.,, is therefore com-
puted by minimizing the cost function as:

{L‘T:n = argmin (O(xlzn“rOySl:n,ul:nuM)) . (5)
T1:n
Thus, Episodic non-Markov Localization updates the max-

imum likelihood location estimates of the robot via functional
non-linear least squares optimization of Equation 5.

2.3 Results

Episodic non-Markov Localization has been deployed on all
the CoBots over part of a 1,000km Challenge [Biswas, 20141,
and has been used to localize the robots in many different
environments spanning multiple floors across multiple build-
ings. In particular, it has been instrumental in increasing the
robustness of localization on floors with challenging open ar-
eas, like a large atrium on the floor GHC4. Figure 3 illustrates
different placements of the STF's, namely movable furniture.

Figure 3: View of the challenging varying space in GHC4
atrium and snapshots of enML at two different times. The tra-
jectory of the robot over the episode is shown in grey, along
with the covariance elipses. LTF observations are shown as
orange points, STF observations as purple points, and DF ob-
servations as green points. The long-term static map is shown
as blue lines.

To highlight the contribution of the robustness of Episodic
non-Markov localization to the deployments of the CoBots,
we tabulate the mean distance traversed autonomously by the
CoBots between operator interventions in Table 1.

CGR | EnML
GHC4 | 0.62 | 4.42
GHC6 | 8.61 9.48
GHC7 | 558 | 9.02
GHC8 | 6.04 | 19.36
GHC9 | 5.33 | 20.05
NSH4 | 0.56 | 2.65
All 479 | 8.13

Table 1: Mean distance (in km) traversed between inter-
ventions using CGR (a variant of Markov Localization) and
EnML per map over the 1,000km Challenge.

The CoBots traversed a mean distance of 4.42km be-
tween interventions while using EnML for localization as
opposed to 0.62km when using Corrective Gradient Refine-
ment (CGR) [Biswas et al., 20111, a variant of Markov Lo-
calization. Overall, EnML allowed the CoBots to traverse
a mean of 8.13km as opposed to 4.79km when using CGR.
The increased robusteness is attributed to the ability of EnML
to reason better about observations of unmapped objects, and
hence its robustness to changes in the environment.



3 Scheduling for Transfers with CoBots

Tasks requested by users are processed by a scheduler that
computes an ordered assignment of tasks to the multiple
robots. The scheduler needs to satisfy various constraints
stated by the users, including location, time windows, trans-
portation capacities of the robots, and maximum delivery
times. The goal of scheduler is to find a valid schedule which
minimize the total distance traveled by the robots and, or the
completion times of the tasks. The scheduler outputs task ex-
ecution times for each robot, and sends lists of tasks to the
robots. During execution, the robots update the scheduler of
their progress.

We realized that the robots can perform their tasks more ef-
ficiently by transferring items between one another [Coltin,
2014]. For example, the scheduler, without considering trans-
fers, could assign CoBot-1 and CoBot-2 both to pick up items
on the seventh floor that they need to deliver to the ninth floor.
Instead of both taking an elevator ride, CoBot-1 could trans-
fer its item to CoBot-2, which could deliver both items.

Initially, we introduce a scheduler that generates an optimal
schedule for the CoBots using mixed integer programming
(MIP) [Coltin, 2014]. Finding the optimal schedule is NP-
hard, so the MIP solver scales poorly, although for our typical
usage of less than fifteen tasks at once solving the problem
optimally is feasible.

To scale to larger problems, we developed an approxima-
tion algorithm for a variant of the scheduling problem in
which all the items share the same destination and there are no
time constraints. This is a common scenario for the CoBots,
when they pick up mail for delivery to the central office, or
hand out candy to building occupants for Halloween. The
approximation algorithm is based on an approximation for
the traveling salesman problem, and returns a solution that is
guaranteed to be within a factor of two of optimal in terms of
total distance traveled [Coltin and Veloso, 2014al.

Expanding to the more general problem in which items
have distinct destinations, we introduced three heuristics to
from schedules, still without considering time: a greedy ap-
proach, an algorithm based on auctions, and an algorithm
where an item’s entire trajectory is inserted into a graph of
transfers. The heuristics reduce the search space by inserting
transfers into existing schedules, and hence may not find the
optimal solution. Transfers were shown to reduce the solution
cost compared to similar heuristics without transfers [Coltin
and Veloso, 2014b].

We extended the auction heuristic to work with time win-
dows, by determining execution times through the use of sim-
ple temporal networks. The auction algorithm is applied on-
line as new tasks come in from users, so that the CoBots
replan online. If a CoBot is delayed or disabled, the other
CoBots replan so that the tasks are still completed as quickly
as possible (see Figure 4).

The CoBots also take advantage of the fact that there
are multiple robots to replan better schedules. If a robot
is blocked in a hallway, it will inform the other robots it
is blocked. The other robots will then replan to avoid the
blocked hallway, if possible, as shown in Figure 5. Addition-
ally, robots detect if doors are open or closed when they drive

@ G

Figure 4: (a) Deliveries are scheduled with three robots, in-
cluding two transfers; (b) When one of the robots fails, the
tasks are rescheduled. Squares indicate pickups, circles indi-
cate deliveries, triangles indicate transfers, and stars indicate
robot starting points. The numbers inside indicate either robot
and item numbers.

past. If one robot happens to drive by a closed door that an-
other robot is planning to pick up or deliver an item from,
it will tell the other robot, and the scheduler will attempt to
delay the task at that room until a later time when the occu-
pant has hopefully returned to their office [Coltin and Veloso,
2013]. In general, each robot can be aware of and check the
rationale of the plans of other robots.

Finally, we introduce an algorithm based on simulated an-
nealing which finds high quality non-optimal schedules with
transfers. While more computationally expensive than the
previous heuristics, this algorithm outperforms the best previ-
ous solutions to benchmark scheduling problems by incorpo-
rating transfers. In addition to the CoBots, the idea of trans-
fers are also applied to transportation and ridesharing prob-
lems to reduce fuel costs [Coltin and Veloso, 2014c].

Multiple CoBots continue to autonomously perform tasks
in the Gates-Hillman building. The scheduling algorithms,
with transfers, allow the CoBots to complete more tasks,
more quickly, while prolonging battery life.

4 Human-Centered Planning for Symbiotic
Autonomy

Rather than limiting robots’ tasks to those that only include
actions that robots can perform autonomously, CoBot in-
stead reasons about, plans for, and overcomes its limita-
tions by proactively asking humans in the environment for
help [Rosenthal ef al., 2010].

We introduced a human-centered planning algorithm that
asks for help when CoBot is uncertain of its location or when
it is uncertain of which action to take [Rosenthal et al., 2010].
Robots and humans are in a symbiotic relationship, as robots
perform service tasks for humans, and humans may need to
help the robots. The underlying assumption for the symbiotic
robot autonomy is that the requests for help from the robot,
e.g., pressing an elevator button, are simple for humans.

The symbiotic autonomy approach leads to adding ask-for-
help action primitives to the robots’ plans. The robots au-
tonomously perform such actions. Figure 6 shows a high-
level partial conditional plan for the robot to navigate to a



(a) CoBot-2 to Office (b) CoBot-4 Blocked

(c) CoBot-2 Replans (d) Obstacle Avoided

Figure 5: (a) CoBot-2 heads towards an office to make a delivery, and shares with CoBot-4 the path that it needs to traverse;
(b) CoBot-4 detects that a hallway of relevance to CoBot-2’s path is blocked; (c) The scheduler replans for CoBot-2; and (d)

CoBot-2 takes an alternate round to avoid the blocked hallway.

room, where it asks for help from a human to push the eleva-
tor buttons.

Speak(roomi#)

3
Curr_floor ==
“Floor(roomi#)
T y F
) 4 14
><__ At(roomi) ‘J’—T at(elevator)
& F Ask_PushButton (down) LF
DONE i ~Path-blocked =
~Path-blocked NavigateTo(in_elevator) T
2 «Move”
Ty ‘ AskPushButton Selhd Mﬁovrewr)r 77777
Speak(“Move”) (Floor(room#)) |
NavigateTo NavigateTo(elevator)
(out_elevator)
NavigateTo(roomi#)
L ]

Figure 6: High-level partial conditional plan for symbiotic
autonomy to navigate with actuation limitations and asking
for help if needing to take the elevator.

The conditional plan in Figure 7 is partial in the sense that it
does not include what happens if any of the actions fails. We
have developed several approaches to handle the additional
contingencies of symbiotic autonomy, namely (i) no human
helps, e.g., the robot keeps waiting by the elevator; (ii) a hu-
man provides the wrong help, e.g., it tells the robot is on an
incorrect floor. In the latter situation, as soon as the robot
recognizes that it is not at its desired location, it continues its
execution by replanning or recognizing that it cannot perform
its task for any reason. In both situations, the robot is un-
able to proceed its task. We have developed two approaches:
timeout-based one and a proactive-seek for help one. In the
timeout-based approach, the robot waits for help for a prede-
fined amount of time, after which it sends email to its devel-
opers using a template that it fills in describing the location
and situation where it finds stalled. This step represents an
action to ask for help from remote humans.

In the proactive-seek for help approach, we studied who,
whether, and where to proactively ask building occupants for
help, concretely to use the elevator. We made five hypothe-
ses based on our intuitions about what human state attributes
matter in determining where and who to ask for help. The
first two hypotheses represent the spatial considerations that
CoBot robot should take into account.

e Cost of Help: Asking someone for help who is already
at the elevator is preferred over finding someone in an
office. A benefit of asking the elevator person is that
they are already performing the action themselves and
should have little cost to helping the robot

e Distance to Help Location: If someone in an office must
be asked because it is unlikely that anyone will be at the
help location, there should be a preference for asking
someone close to the location to avoid making someone
travel too far. Although CoBot is mobile and are capable
of traveling to find help, an in-office helper would have
to travel back to the help location.

The second three hypotheses represent the considerations
the robot should make to increase the likelihood that people
are willing to comply and help the robot, because the robot
need help performing these actions over a long period of time.

e Interruption: The robot should avoid requesting help
from people in offices that are likely to be busy.

e Recency of Last Question and Frequency of Questions:
The robot should take into account how recently it asked
different helpers to avoid asking too often.

e Availability: If a robot travels with a person to the help
location and there is someone already at the location of
help, the traveling person may feel that they were asked
unnecessarily.

Through user studies, we confirmed all five hypothe-
ses [Rosenthal and Veloso, 2012]. Robots should consider
the cost of help, distance to help location, availability, inter-
ruptibility, and frequency and recency of questions. However,
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Figure 7: Execution times for, from left to right, Deliver Message tasks, Go to Room tasks, and Transport tasks. The breakdown
includes 1) waiting for help to start the task, 2) riding the elevator, 3) navigating (not including time blocked by obstacles), 4)
waiting blocked by an obstacle, and 5) waiting for help to end the task.

some participants were willing to help irrespective of the dis-
tance to the help location. We use these human state attributes
in our human-centered planning algorithm to determine who
to ask for help and where to navigate.

When CoBot needs help to use the elevator, it first asks at
the elevator hall if anyone is available to help. The people
at the elevator hall location have the lowest cost of helping
the robot because they are at the elevator anyway. However,
if no one helps CoBot, it plans where to seek for help by
computing the decision-theoretic expected cost of asking a
person in their office based on our user study findings to come
to help the robot to get to the desired floor.

The goal of our human-centered proactive replanning al-
gorithm is to simultaneously reduce the time to complete
the task while also limiting the in-office help [Rosenthal and
Veloso, 2012]. We were able to show that CoBot could com-
plete tasks 4mn faster on average with the proactive replan-
ning algorithm compared to waiting at the elevator only.

The CoBot robots have been deployed for more than
1,000km, in our multi-floor buildings successfully navigat-
ing, using their symbiotic autonomy, in particular to move be-
tween floors. We present a sample of the results to illustrate
the impact of the symbiotic autonomy in the timing of the
tasks. The results correspond to a deployment of one robot
on the upper four floors of our office building for a two week
period. CoBot was deployed for two hours every weekday
and made available to the building occupants.

The response to CoBot’s deployment was positive: over
100 building occupants registered to use CoBot. Users found
creative ways to exploit the robot’s capabilities, including, but
not limited to sending messages to friends, reminding occu-
pants of meetings, escorting visitors between offices, deliv-
ering printouts, inter-office mail, USB sticks, snacks, owed
money, and beverages to other building occupants.

We found that occupants scheduled the robot to transport
objects between multiple floors of the building more often
than they used the multi-floor functionality for other tasks
(see Table 2). In particular, the transport task saved the task
solicitors time because they did not have to travel between
floors themselves. However, even the other scheduled tasks
utilized the elevator 40% of the time.

Figure 7 shows how much time CoBot took to execute
each task, and how that time was apportioned. A total of

Table 2: Total number of task requests per task type and the
respective number that used the elevator.

Task Type Total Requests | # Multi-floor
Escort 3 2
GoToRoom 52 22
DeliverMessage 56 20
Transport 29 22

140 tasks were completed during the two-week deployment,
which took 9 hours and 13 minutes. Based on these times,
we find that task solicitors quickly responded to the robot’s
request for help at the start and end of tasks. Building occu-
pants (even those that had never scheduled a task) were will-
ing and able to help the robot in and out of the elevator. This
finding supports our model of symbiotic autonomy, namely
that humans are willing to help a robot complete its tasks so
that the robot is available and capable of performing tasks for
them as well at another time.

5 Conclusion

The CoBot robots have been successfully deployed in multi-
floor buildings for over three years. We summarized some
of the core contributions. The episodic non-Markovian local-
ization to effectively handle environments whose depth ap-
pearance varies over time. Long-term features, e.g., walls,
match existing floor-plan maps, while short-term features,
e.g., furniture, match previous observations in an episodic
non-Markovian manner. The multi-robot task scheduler con-
siders transfers among robots to optimize the travel time per-
formance, and replans to handle online requests and changing
conditions. Symbiotic autonomy enables the robot to ask for
help from humans at the place needed or proactively search
for help from near-by humans. Human-centered planning
uses models of humans to generate robots’ plans.

Current and future work include learning to improve ser-
vice performance, including human-preference and environ-
ment learning and exploration. We also continue to research
on detection of anomalies for safety of use. We are also fo-
cused on task instruction and correction through natural lan-
guage [Mericli er al., 2014], to enable any user to requests
new tasks from the robot.
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