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Abstract—We present a method to learn context-dependent
outcomes of behaviors in unstructured indoor environments. The
idea is that certain features in the environment may be predictive
of differences in outcomes, such as how long a mobile robot
takes to traverse a corridor. Doing so enables the robot to plan
more effectively, and also be able to interact with people more
effectively by more accurately predicting when its plans may take
longer to execute or may be likely to fail. We use a node-and-edge
based map of the environment and treat the traversal time of the
robot for each edge as a random variable to be characterized. The
first step is to determine whether the distribution of the random
variable is multimodal and, if so, we learn to classify the modes
using a hierarchy of plan-time features (e.g., time of the day,
day of the week) and run-time features (observations of recent
traversal times through other corridors). We utilize a cascading
regression system that first estimates which mode of the traversal
distribution we expect the robot to observe, and then predict the
actual traversal time through a corridor. On average, our method
produces a mean residual error of less than 2.7 seconds.

I. INTRODUCTION

Technology has come to a point where cohabitation of
living space by humans and machines has become almost
commonplace. Examples include self-help kiosks in the su-
permarket, hospitals and airports, robot receptionists to help
people find directions, and robot vacuum cleaners. The next
step is when these machines take on a more mobile form for
cooperative tasks. Such intelligent mobile robots are being
increasingly employed in places such as offices, hospitals,
and other institutions. These machines are termed ’service
robots’, which help take burden off of human beings by taking
care of menial tasks involved with the daily workings of
a place. For example such robots can handle routine tasks
such as automating daily delivery of medicines, taking care
of immediate requests for articles, etc.

A major hurdle for such machines is that of path planning
or task scheduling in dynamic, unstructured environments.
These robots operate in places dominantly inhabited by people,
and the presence and activities of people can affect the
outcomes of robot actions, such as how long it takes to traverse
a corridor, or how the expected time needed to wait for an
elevator. It is important to model these outcomes accurately
for two main reasons: First, to help the robots create more
efficient plans and second to coordinate with people in case
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the robot predicts it will be late in completing its current task.
For example, suppose the shortest path from the office lobby
to the HR department involves going through the cafeteria.
If a delivery is scheduled around lunch time, it would be
advisable for a robot to avoid this crowded junction. Similarly,
if a hospital delivery robot finds that one corridor unexpectedly
takes very long to traverse, and it knows that means subsequent
corridors are also likely to take long, it might decide to notify
the nurse that it will likely be delayed.

It seldom happens, however, that these context-dependent
action outcomes are programmed, or even known, a priori.
Thus, we are investigating learning such models from experi-
ence, finding patterns that can be used at plan time to minimize
the expected task execution time and at run time to detect
potential anomalies — outcomes that differ significantly from
prior expectations.

The reasoning behind our intuition lies in the very working
order of these places. Human beings follow certain patterns in
their daily lives, be it social or workplace related. Especially
in organizations such as offices and educational institutions
there are certain guidelines to be followed. For example, food
courts are always crowded during lunch and breakfast times, in
educational establishments the corridors near a lecture hall are
always crowded when a lecture ends, etc. These routines result
in patterned movement across spaces, which in turn may affect
the robot’s performance. Our work is to learn, and eventually
use, these models to improve the robot’s performance.

Our approach involves collecting a stream of data that
the robot records as it execute tasks throughout the day. We
aggregate data from similar actions (e.g., traversing a particular
segment of the corridor) and model the action outcome (e.g.,
time to traverse) as a random variable. The first step is to an-
alyze the data to determine whether the variable’s distribution
is unimodal or multimodal and, if the latter, how many modes
it has and what are their distributions (assuming a Gaussian
mixture model). The data, and the modes, are then fed into
a classifier that both predicts the mode and uses regression
techniques to predict the actual travel time. Based on just the
timestamps (time of day, day of week), we see mode prediction
accuracy of around 97% and mean time prediction residuals
of 2.6 seconds.

Our model utilizes correlations between contiguous events



in a sequence of action (such as two nearby corridors whose
long and short traversal periods correlate) and use these as
additional “medium-range” features. Note that while these
features cannot be used at plan time, if we find good correla-
tions between action outcomes then, at run time, unexpected
outcomes for one action can be used to improve the predicted
action outcomes of correlated actions. This can improve the
overall estimate of the execution time of the remaining task,
which can be used to trigger contingency plans (such as taking
alternate routes or notifying a person that the robot will be
delayed).

II.

Prediction and planning with contextual information is a
well-studied topic in the field of robotics. Since the mid 1990s,
researchers have been working towards more reactive and
proactive models of machines [1]. In recent years, increased in-
strumentation in consumer technology has driven new research
into contextual prediction across a variety of domains, from
mobile robots to consumer smartphones and sensor equipped
power wheelchairs. Some of this work has leveraged decision-
theoretic prediction algorithms [2], [3], while other work has
formulated these tasks as a sequential decision making process,
leveraging spectral latent variable models [4].

RELATED WORK

In this paper, we model a qualitative indoor environment
in which we observe dynamic movements through the space.
Similar work has been done by Haigh et al [5], where they
try to leverage observed patterns to find context-dependent
map costs. Focusing specifically on the problem in open-
ended indoor environments the work done by Bennewitz et
al [6] and Kruse et al [7] is relevant as they try to model
robot behavior while keeping human dynamics in mind, which
is a key factor for success in cohabited environments. More
recently, Sehestedt et al [8] looks at the social context in these
environment apart from simple human trajectories and tries to
deploy a minimally invasive trajectory for service robots.

III. APPROACH

In this work, our task is to use contextual information
to predict how long a robot will require to traverse a path
through the environment. We utilize real world data collected
over several years by the CoBot project [9], [10] to train and
test our methods.

The world map is represented in the form of nodes and con-
necting edges. These nodes represent landmarks from the real
world, such as corridor junctions, the beginning of stairways,
etc. and the edges represent the paths connecting them. Our
method first tries to isolate those edges of the environment
which show multimodal distributions in traversal time (see
Fig. 1), like the corridors leading up to lecture halls which
are most crowded when lectures end but not otherwise. Some
edges demonstrate simple unimodal distributions of traversal
time. Estimating travel time on these edges is trivial, and thus
we do not consider these edges in our evaluation. We model
the multimodal edges to learn feature dependent dynamics of
the subspace such as different traversal times associated with
different hours of the day. Our feature space consists of the
observable data available to a robot during its daily activities
including time stamps, sensor data, immediate history, etc. Fol-
lowing a Markovian assumption, we model these multimodal
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edges, assuming a mixed gaussian distribution, based on the
information sampled at the beginning of each edge traversal.
We train a classifier from these feature traces, which learns
the context-dependent patterns allowing us to make a priori
predictions for future edge traversals.

A. Identifying Multimodal Edges

With traversal time history for each edge as the variable
sample, we use a combination of Mean-shift and Expectation
Maximization algorithms to find the generative distribution
for it. In order to find multiple modes, we begin by running
Gaussian Mean-shift clustering on the data. If clustering results
in more than one density center, we use the Expectation
Maximization algorithm to fit the traversal time distribution
to a gaussian mixture model with number of components
equal to the number of density centers identified. We assess
the mixture model to make sure that the components are
statistically significant contextual-modes by looking at the
component weights and distribution over sample points.

Mean-shift [11] is a non-parametric mode-seeking algo-
rithm. It is an iterative algorithm which shifts towards the
density center using a kernelized window. In this case we have
used a gaussian kernel. The expectation-maximization (EM)
algorithm is an iterative method for finding maximum likeli-
hood or maximum a posteriori (MAP) estimates of parameters
in statistical models, where the model depends on unobserved
latent variables, i.e. gaussian component parameters in our
case. It involves two steps, in the E step a function for the
expectation of the log-likelihood for the model Z given X
using the current estimate for the parameters 6 is created.

Q(010") = Ezx glog[0; X, Z]

In the M step, parameters for maximizing this log-likelihood
function are computed.

0! = arg max Q016"

B. Learning Contextual Patterns

We employ supervised learning using the mode of each
point as labels for feature vectors. We use decision trees
to learn the feature patterns corresponding to each mode.
Decision trees follow a greedy mechanism, dividing the dataset
based on features which result in maximum information gain to
reduce the entropy. Information entropy of a random variable
X under probability mass function P(X) is defined as,

H(X) = E[-In(P(X))]

Information gain for a feature or attribute a, which splits
sample set X is given as,

IG(X,a) = H(X) — H(X|a)

In order to predict the exact traversal time we train regression
trees which use predicted modality of an edge as part of its
feature space. Regression trees are trained in the same manner
as decision trees, but the leaves correspond to real values rather
than discreet labels. Regression trees are generally much larger
than decision trees, and require much more labeled data.
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Fig. 1. Graphical Contrast between Unimodal and Multimodal Edges
C. Data

The data that we worked with is associated with CoBot,
which is an indoor service robot. The data comprises of all
the corridor traversals made by CoBot in different spaces of
Carnegie Mellon University since January of 2013, which is
approximately one and a half year worth of data. The data is
a typical example of patterns associated with an educational
institute.

The features that we used as predictors for decision and
regression tree have been divided into two categories. First is
long range feature, which include temporal data specifically
year, month, date, day of the week and time of the day. The
second category is that of medium range features, which uses
recent traversal history of the agent restricted by an upper
bound of being 30 minutes old.

IV. RESULTS

For all experiments presented in this section, we sample
from the full dataset to generate training sets of various sizes.
We begin with training sets of size 100, and increase this
size by increments of 100 until a training set of size 3,400
is created. A disjoint testing set consisting of 457 points is
also selected to accompany each training set. This process is
repeated with different random for 1,000 iterations, giving us
a total of 34,000 evaluations for each of our models.

A. Predicting Traversal Modality

Figure 2 shows the learning curve for predicting traversal
time modalities using a decision tree. For reference, a naive
classifier that always selected the larger mode in the travel
distributions would achieve an accuracy of 63.3%. An empir-
ical 90% confidence interval for the classifier accuracy is also
shown. This classifier was trained using timestamp features,
hallway ID, and recently observed traversal times in other
hallways. The maximum mean classification accuracy achieved
is 97.21%.
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Fig. 2. Empirical results for traversal mode prediction

B. Regression for Traversal Time

Fig. 3 shows the learning curve for two regression models,
compared to a baseline model. The baseline model simply
computes the mean traversal time for each hallway in the
training set, and uses these value to make predictions in the
testing set.

The uncorrelated regression tree model shown in Figure
3 was trained using only time stamp information and corridor
IDs. The second regression tree was trained with these features,
as well the predicted modality produced by the decision tree
classifier, and the traversal time of the most recent trip, if
the last traversal observation occurred less than 30 minutes
prior—this model is detonated as the correlated regression tree.
Figure 3 also shows the 90% empirical confidence interval for
the correlation regression tree, which indicates the centered
90% quantile of the residual means computed over the 1000
training iterations. With 3400 training points the correlated re-
gression tree achieves an mean residual value of 2.66 seconds.



Corridor Predicted Traversal Time | Actual Traversal Time
Corridor 5 16.65 17.601
Corridor 10 16.642 46.451
Corridor 4 4.4139 4.6639
Corridor 5 2.269 2.4125
Corridor 10 12.731 12.521
Corridor 7 4.4888 6.4325
Corridor 10 16.782 17.681
Corridor 5 16.241 16.161
Corridor 11 13.511 14.712
Corridor 1 9.8414 10.385
Corridor 10 17.309 18.6

ABLE 1. REDICTED VERSUS ACTUAL TRAVERSAL TIMES
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Fig. 3. Empirical results for traversal time regression.

Table I also shows the predicted and actual traversal times for
a small sample of the dataset produced using the correlated
regression tree.

V. DISCUSSION
A. Identifying Multimodal Corridors

By preprocessing the edge specific edge data first, we
were able to eliminate over 90% edges as unimodal and
ppinpoint specific areas in the environment where context-
dependency was significant. Out of 263 corridors, we identified
12 as being multimodal, thus significantly reducing computa-
tion state-space. Apart from this, we think by knowing the
status of the corridors around as unimodal or multimodal,
new areas of environment being explored can be generalized
more accurately thanks to spatial proximity. Also, identifying
areas with contextual-dependencies in the environment can
help the developers with diagnosis by giving them a more
qualitative idea of the exact geographical locations which
might be contributing to unwanted or abnormal behavior.

B. Prediction with Regression

We see in figure 3 that both regression models significantly
outperform the naive baseline, and the correlated regression
tree performs particularly well with very little data. Given
enough data (2000 or more points) the uncorrelated regression
tree nears the upper 95% percentile of the correlated regression
tree. This indicates that with enough data we can accurately
predict traversal times fairly well using only plan time features.
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These estimates can then be refined at travel time using ob-
served traversal times to reduce the average prediction residual
by roughly 0.5 seconds.

It is worth noting that the majority of the regression error
is caused by a small number of unusual outliers, in which
the robot experienced significant unexpected delays during
transit, as seen in row 2 of Table I. We have correctly
identified some of these outliers using information from recent
observations with the correlated regressor. For instance if there
is unexpected traffic due to seminar or special event, we
will discover this once we see delays in adjacent corridors.
However, other unexpected delays such as mechanical failure
or disruptive individuals interfering with the robot’s operation
cannot be predicted using the factors we have described in
this work. To discover this sort of unexpected delay, a model
would need to incorporate information from onboard sensors
or feedback from human observers.

VI. CONCLUSIONS

In this work, we have presented methods for improving
plan time and execution time behavior of a mobile robotic
system. In particular, we are able to account for contextual
and temporal factors that can affect the normal performance
of the robot.
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