Ridesharing with Passenger Transfers

Brian Coltin! and Manuela Veloso!

Abstract— Recently, ridesharing mobile applications, which
dynamically match passengers to drivers, have begun to gain
popularity. These services have the potential to fill empty seats
in cars, reduce emissions and enable more efficient trans-
portation. Ridesharing services become even more practical as
robotic cars become available to do all the driving. In this
work, we propose rideshare services which transfer passengers
between multiple drivers. By planning for transfers, we can
increase the availability and range of the rideshare service,
and also reduce the total vehicular miles travelled by the
network. We propose three heuristic algorithms to schedule
rideshare routes with transfers. Each gives a tradeoff in terms
of effectiveness and computational cost. We demonstrate these
tradeoffs, both in simulation and on data from taxi passengers
in San Francisco. We demonstrate scenarios where transferring
passengers can provide a significant advantage.

I. INTRODUCTION

As climate change accelerates and gasoline prices rise,
reducing reliance on personal automobiles has become crit-
ically important. Transportation by car seems especially
wasteful when one realizes that the majority of car seats in a
trip are often empty. To address this inefficiency, ridesharing
services are beginning to catch on. In these, drivers input
their destinations into their phones, and are matched with
passengers headed the same way. Drivers pick up and drop
off other passengers along the route to their own destination,
filling empty seats to conserve fuel, reduce pollution and
split costs. This process will become even more convenient
as robotic cars become widespread.

In this work, we examine the possibility of reducing fuel
use and emissions even further than traditional ridesharing
by transferring passengers between vehicles. Our focus is
on finding fast, sub-optimal algorithms to plan driver routes,
incorporating passenger transfers to minimize fuel use and
emissions. By allowing passengers to make use of multiple
vehicles, passengers can travel further at less inconvenience
to drivers (see Figure 1). This planning problem is especially
challenging because it takes a problem that is already NP-
hard, then increases the number of feasible plans exponen-
tially by allowing transfers.

We assume that the passenger and driver destinations are
known beforehand. We set aside passenger time windows,
and instead assume that the requests are all flexible within
a short window, for example a morning commute. Although

*This research was partially sponsored by the Office of Naval Research
under grant number N0O0014-09-1-1031, and by the National Science Foun-
dation under award number NSF IIS-1012733. The views and conclusions
expressed are those of the authors only.

IB. Coltin (bcoltin at cs.cmu.edu) and M. Veloso
(veloso at cs.cmu.edu) are with the Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, USA

(@ (b)

Fig. 1. Two vehicles deliver a passenger (a) without transfers and (b)
with transfers. By transferring items, fuel is conserved. In the figure, larger
shapes represent starting points, while smaller shapes represent transfer or
ending points. Squares represent vehicles and circles represent passengers.

we look at ridesharing with robotic cars specifically, all the
techniques in this paper can be directly to applied to other
instances of the more general Pickup and Delivery Problem
(PDP), including with mobile service robots [1], warehouse
service robots [2], and other transportation problems.

In this paper, we present three heuristics to plan routes
for ridesharing with transfers: a greedy heuristic, an auction
algorithm, and an approach based on graph search. Each
involves a trade-off between solution quality and compu-
tational cost. We test these three algorithms extensively in
simulation of an urban area, and show that transferring
passengers gives a significant reduction in total distance
travelled. We also demonstrate the algorithms’ effectiveness
on a map of an actual city using the trips of taxi passengers.

II. RELATED WORK

Limited prior work has been done on ridesharing without
transfers. One approach is to use auctions to assign pas-
sengers to vehicles [3]. Later work has focused on making
auctions that are incentive compatible and encourage users to
negotiate truthfully, however, currently this work is restricted
to assigning a single passenger per driver [4]. In [5], Kamar
and Horvitz assign passengers to vehicles with a set cover
approximation algorithm, and consider mechanism design to
construct a fair payment system. A third approach to dy-
namic ridesharing is presented in [6]: a combination genetic
algorithm and insertion heuristic. This work considers the
problem when passengers have time windows.

To the best of our knowledge, the only researchers who
have considered the problem of dynamic ridesharing with
transfers are Herbawi and Weber. Their work finds routes for
a single passenger while optimizing multiple objectives: cost,
time, and the number of drivers in the route. They present an
evolutionary algorithm to plan multi-hop routes with multiple

objectives in [7]. We form a plan for multiple passengers with
transfers, rather than a route for a single passenger.

The ridesharing problem is a variant of the related to
the vehicle routing problem, in which a set of vehicles
are dispatched to service tasks. The main property specific
to ridesharing is that the vehicles have fixed destination
locations, as opposed to being able to end at any location
or required to retun to a hub. See [8] for a thorough
overview of the vehicle routing problem. A second closely
related field of research is robot task allocation. However,
approaches to robot task allocation typically assume that
tasks are independent [9]. In the ridesharing problem, this
is not the case, since adjustments to the route of a vehicle
for one passenger will affect the cost of picking up other
passengers.

III. THE RIDESHARING PROBLEM

First, we define the rideshare problem formally. We begin
by defining the rideshare problem without transfers, and then
extend our definition to include transfers.

A. Ridesharing without Transfers

A rideshare problem is defined by a a set of vehicles V,
a set of passengers P, and a map the vehicles travel on with
a shortest path function sp and a distance function d.

Every vehicle v and every passenger p have starting
locations s,,s, € M and ending locations e,,e, € M.
In addition, every vehicle v € V has a capacity C,, the
maximum number of passengers the vehicle can carry at one
time, and a maximum total number of passengers M, that
the driver is willing to pick up in a single trip. In this paper,
we ignore time to focus solely on fuel conservation, and do
not consider desired arrival times or the total time a trip takes
a driver or passenger.

In the rideshare problem without transfers, the goal is to
assign each vehicle v to a route r,, such that 7“}) = 8,, and
quj%l = e, (the vehicle starts and ends at its starting and end-
ing points). Furthermore, for every passenger p there exists a
vehicle v such that for some 7, rf) = 5p, and for some j > i
rd = e,. We seek to find the assignment which minimizes

v

the total distance travelled, >3, oy >3, ;. d(ry, 7iT).
Additionally, we defined the total number of passengers
transported by a vehicle v as tp,and constrain each vehicle
such that ¢p,, < M,, meaning a single driver will pick up a
limited number of passengers in one trip and will eventually
arrive at his destination. Furthermore, at all times the number

of passengers in the vehicle v is bounded by the capacity c,,.

B. Ridesharing with Transfers

Next, we extend this formulation to include transfers. We
introduce the idea of a transfer point— a location where one
driver drops off a passenger, and a different vehicle retrieves
him. For the rideshare problem with transfers, the vehicle
paths contain transfer points ¢, ,, ,, in addition to vehicle
and passenger starting and ending points. At the transfer
point %, ., v,, vehicle vy transfers passenger p to vehicle v,.

Algorithm 1 greedy(V, P): greedily form routes r, for
vehicles v € V' to delivery all passengers p € P.
for ve V do
Ty = (Su, €y)
end for
A=10
for ¢ from 1 to |P| do
v,p ¢ argmin,, 4 , d(route_insert(ry, (sp,€p))
ry < route_insert(ry, (sp,ep))
A+~ AU{p}
end for

The goal remains to deliver every passenger to their
destination while minimizing distance travelled, but the pas-
sengers may be routed through one or more transfer points.
We add a cost cr to transfers to represent the inconvenience
to passengers and drivers. Our new objective is to minimize
the sum of distance travelled and transfer cost,

S S i)+ er [{tp o € 72}

veV \1<i<|ry|

One final complication remains: when the vehicles are
allowed to transfer passengers, cyclical dependencies may
form. Vehicle v; may need to hand off a passenger to wvs,
who later on transfers a passenger to vs. Then vg transfers a
passenger to vy before v1’s transfer to v,. In this case, v; is
waiting on vs, and v3 is waiting on v, so deadlock results.

Cyclical dependencies are not permitted in a solution to the
rideshare problem with transfers. To detect them, we form a
directed transfer graph representing the routes of the vehicles
and their dependencies induced by transfers. We construct the
transfer graph by taking the union of the vehicles’ directed
paths 7,. Then, for each transfer point ¢, ,, ,, we add an
edge from ¢, ., v, 10 tp 4,0, . If the transfer graph contains
a cycle, then the vehicles will reach deadlock.

IV. RIDESHARING WITHOUT TRANSFERS

We present two algorithms which take a set of routes
without transfers as input and output a schedule to deliver
all passengers with transfers. Hence, we first introduce two
algorithms to form schedules without transfers, a greedy
approach and an auction approach. The auction approach is
similar to [3] and [4]. An alternative algorithm, such as set
cover [5], could be used instead.

A. Greedy Passenger Insertion

In the greedy approach, we iterate through every passenger
p and vehicle v pair, insert the start and end points s, and
e, into v’s route at the points of lowest cost, and choose
the assignment of lowest additional cost. This means we
find the best insertion points for pickup up and dropping
off passenger p without rearranging the rest of v’s path. We
repeat this process until no unassigned passengers remain
(see Algorithm 1).

The procedure route_insert(p,,a) uses brute force
search to find the optimal placement to insert the points in
a into the route r,, while maintaining the points’ ordering
and v’s capacity and maximum passenger constraints. The
function returns the resulting route, or an invalid route if no
route is available. The distance function d, when applied to
a path, returns the length of the path, or oo for an invalid
path.

As is, the greedy algorithm’s runtime is O(|P|?|V|M?)
where M is the maximum number of riders in a single
vehicle. However, calls to route_insert will not change
across iterations of the for loop, except for vehicles which
were assigned a passenger in the previous iteration of the
loop. By caching these values, the algorithms complexity
becomes O(|P||V|M?).

B. Auctioning Rides

Next, we present an auction approach to solve the rideshar-
ing problem without transfers. The auction consists of
rounds, in which each passenger places a bid for the vehicle
that can transport it at lowest additional cost (as determined
by the route_insert procedure). For each vehicle, the
passenger that can be transported at lowest cost is declared
the winner, and is added to that vehicle’s route. If multiple
passengers bid on a single vehicle, the vehicle with the lowest
cost wins. Rounds of the auction continue until all passengers
are assigned to vehicles.

The worst-case runtime complexity of the auction is
O(|P|?|V|M?). However, since many passengers will be
assigned to vehicles in the same round, in practice it often
runs faster than the greedy algorithm. this algorithm also
lends itself to a decentralized implementation.

V. RIDESHARING WITH TRANSFERS

We present three heuristics for solving the ridesharing
problem with transfers: a greedy approach, an auction ap-
proach, and a graph-based approach. The greedy and auction
algorithms take as input a solution to the rideshare problem
without transfers, while the graph-based approach constructs
a solution from scratch.

However, before presenting these algorithms in detail, we
look at the problem of how to select a transfer point for
two vehicles to exchange items. Each of the algorithms for
ridesharing with transfers must solve this subproblem.

A. Choosing an Exchange Point

Given an edge on vehicle v,’s route (a,as) and an edge
on vehicle vy’s route (b1, bs), our goal is to select an optimal
meeting point p such that > ., .. , d(p,v) is mini-
mized. In the case where the map is Euclidean, this is called
the Weber problem and the point p is called the geometric
mean. We introduce a function tpoint(ay, ag, b1, ba) which
returns a proposed transfer point.

Although the idea of the optimal meeting point is quite
simple, it is difficult to compute. In fact, it has been shown
that no closed form solution exists. However, numerous
algorithms have been developed to find the optimal meeting

point with gradient descent and other techniques, including
a near-optimal solution for general maps [10].

In this work, our focus is not on finding the individual
transfer points, but on finding the overall schedule of when
the vehicles should transfer. Hence, we use a fast heuristic
rather than the computationally expensive near-optimal meth-
ods. We simply consider each of the three possible pairings
of the points aj,as,b;, and b, and find the intersection
points of the shortest paths between each set of paired points.
We choose the point which creates the lowest edge cost as
a proposed transfer point. On a general map, none of the
shortest paths may intersect, in which case we do not place
a transfer point between these line segments. Although we
choose a non-optimal approach for selecting a transfer point,
any other approach from the literature could be substituted
to find a better solution at a cost of additional computation.

For less general maps, in particular a world composed
of city blocks where the distance function is Manhattan
distance, the optimal meeting point between two edges can
be found. For each edge we take the smallest rectangle,
aligned to the city blocks, which includes the starting and
ending point of the edge. If the rectangles overlap, any point
in the overlap region is an optimal meeting point. If not,
we choose one of the closest points equidistant to both
rectangles.

In addition to the tpoint function, we introduce a helper
routine, split_route(r,vy,vy), which adds a transfer of
the passenger r between vehicle v; and vehicle vs. The
passenger is assumed to already be part of v;’s route. After
the function is called, v; will either pick up or drop off the
passenger as it had before, but a transfer will be inserted
with vy which will complete the other action originally in
va’s route. We search through every feasible pair of edges in
the routes of v; and ve (without reordering the routes) and
find the transfer point of lowest cost which obeys the capacity
constraints and does not induce a cycle. The split_route
function effectively splits a segment of a passenger’s route
between two vehicles.

We also introduce a budgetary heuristic in the
split_route function. If the start and ending point of the
passenger p in vy are both a greater distance than a budget b,
from the edge being considered from v, for a transfer point
insertion, then that potential transfer point is rejected. With
this heuristic, transfer points between vehicles that do not
cross near each other are not considered. This helps alleviate
the computational load of iterating through O(|V'|?) potential
transfer points.

B. Greedy Route Splitting

The first approach we propose greedily adds transfer points
to an existing solution without transfer points. We form
a queue ¢ containing passengers and the vehicles that are
transporting them. For each passenger and vehicle in the
queue, we iterate through the other vehicles and check if
a different vehicle could take the passenger part of the way
at a lower cost, using the split_route function. If such a
transfer exists, we find the other vehicle which would lower

Algorithm 2 greedy transfer(V,P,{r, : v € V}):
greedily adjust routes 7, for vehicles v € V' to delivery all
passengers p € P, with transfers.

Algorithm 3 auction_transfer(V,P,{r, : v € V}):
adjust routes 7, for vehicles v € V' to delivery all passengers
p € P, by bidding on transfers.

q<+nil
for p € P do
for v € {v : p transported in 7, } do
enqueue(q, (p,v))
end for
end for
while ¢ not empty do
(p,v1) + dequeue(q)
best, < o0, best, +— 0
for vy € V vy # v do
¢4 split_route_cost(p,vy,vs)
if ¢ < best,. then
best. < c, best, <+ vy
end if
end for
if best. # oo then
split_route(p, vy, best,)
enqueue(q, (p,v1)), enqueue(q, (p, v2))
end if
end while

for v € V do
bid, <+ oo
end for
for p € P do
v1,vp ¢ argmin,, 4, split_route_cost(p,vi,v2)
¢4 split_route_cost(p,v1,vs)
if ¢ # oo and bid,, > c then
bid,, < ¢, bidp,, < p, bidv,, < v1)
end if
end for
assigned < false
for v € V do
if bid, # oo then
split_route(bidp,,, bidv,,,vs)
assigned < true
end if
end for
if assigned then
repeat auction
end if

the cost the most, and add the transfer. We then add both
halves of the split route back into the queue g, where we
may later add additional transfers to subdivide the route
further. The full details of the greedy approach are presented
in Algorithm 2.

The effectiveness of this algorithm, as with many greedy
algorithms, is dependent on the order in which we iterate over
the passenger and vehicle pairs. We only consider transfers
between pairs of vehicles at a time, ignoring better routes
which could be obtained by transferring between multiple
vehicles. However, routes which transfer to multiple vehicles
may be obtained when the greedy algorithm is applied
recursively to partial routes of passengers on individual
vehicles.

C. Auctioning Partial Rides

Our second approach is an auction in which passengers
bid for vehicles. In one round of the auction, each passenger
finds the single transfer point which could be added to obtain
the greatest cost decrease, by applying the split_route
function. Each passenger places a bid for each vehicle. Then,
each vehicle accepts the passenger with the lowest bid which
will decrease the total cost the most. If no assignments were
made the auction ends; otherwise we repeat the auction for
another round (see Algorithm 3).

Like the greedy approach, the auction algorithm has the
shortcoming that it only considers a single transfer at a time.
However, the auction approach is less greedy in the sense
that the assignment does not depend on the ordering the
passengers or vehicles are examined in.

D. Graph Search

Our final algorithm for ridesharing with transfers differs
from the first two in that it does not begin with a solution for
ridesharing without transfers. Instead, it plans for transfers
from the beginning. However, since it finds routes in an
exponentially larger space which includes transfers, this
algorithm is significantly slower to execute than the previous
approaches.

The graph search algorithm is greedy in the sense that we
iterate through each passenger, and plan the best path for
that particular passenger. To do so, we construct a directed
multi-graph containing all the vehicles’ current routes and
potential transfer points. Each vehicle’s initial route r, is set
to contain only s, and e,. The edges on the graph represent
segments of vehicles’ paths or transfers that the passenger
could take on his route. The weights of the edges represent
the additional cost to the vehicles of using that means of
transportation for the passenger. Then, the shortest path on
the graph gives the route of least cost for the passenger.

We construct a graph when searching for a route for
passenger r which contains the following nodes:

e Yv,Vx € 1, x, every point already visited by a vehicle;

e Sp,ep, the starting and ending points of p; and

o Yo1,v2,1 < i < |ry,|,1 < j < |ry,| tpw v, (for each
pair of edges on two vehicles’ paths) we add the transfer
point tpoint(rl ,ritt ri ritl). Transfer points are
not added if they would cause a cycle or if reaching
them would exceed one of the two vehicles’ budgets.

These nodes are connected by directed edges representing
possible paths for the passenger, with the edge weights
equalling the change in the distance travelled if these routes

are taken. We add the edges, Vv, V1 < i < |r,|:

o from 7! to 7! with weight 0, representing paths the
vehicles already plan to travel (at no additional cost);

o from s, to 7! with weight d(r¢,s,) + d(s,,rit) —

d(r?, 1), representing the passenger being picked up

vt v

on an edge of the original path;

« from e, to i+l with weight d(ri,ep) + d(epﬂ“f;ﬂ) o

d(rf,ri+1), representing the passenger being dropped

off on an edge of the original path; and
o from s, to e, with weight d(ri,s,) + d(sp,ep) +
d(ep, i) — d(ri,rit!), representing the passenger

being both picked up and dropped off on the same edge.

Furthermore, for each transfer point newly added as a node

ex = tpoint(ri ,rift ri ritl), we add the edges:

o from s, to ex with weight d(r} ,s,) + d(sp,ex) +
I ex) —d(rl ity —d(r]

41 .
d(T%Qa v Ty Vo) T%Q) +cr + hr;

o from 7} to ex with weight d(rl ,ex)+ d(ri,,ex) —

d(ry,, ") = d(rd,, i) + e + hr;
o from ex to e, with weight d(ex,e,) + d(ep, ") +

d(ex,rith);
o from ez to ri1* with weight d(exz, 73 1) +d(ex, rit);
and, finally,
o for every other additional transfer point ex, =
tpoint(rd ,riFt rk rkF1) an additional edge from
ex to exy with weight d(ex,exs) + d(ex,ritt) +
d(rf,,exs) —d(rf,,riF!). These edges allow a vehicle
to receive an item and transfer it to another vehicle
along the same edge in the original path, although it
may not find the best transfer locations as if we were

to construct additional transfer points recursively.

An edge is not added to the graph if that edge would cause
a vehicle to exceed its capacity or maximum passenger
constraint.

Once the graph is constructed for passenger p, we use the
Bellman-Ford algorithm to find the shortest path on the graph
from s, to e,, the passenger’s route. Dijkstra’s algorithm
cannot be used since the edge lengths may be negative.
From the shortest path, we construct the route taken by
the passenger, and modify the routes r, of the appropriate
vehicles to accommodate the passengers. Then, we repeat
the algorithm, finding a route for the next passenger.

The resulting path found for a passenger may induce a
cyclical dependency by passing through multiple transfer
points. If this is the case, we remove the transfer points that
caused cycles from the graph and try again.

This approach is significantly slower than the greedy and
auction approaches, since the number of exchange points and
the size of the graph increases quadratically with the number
of edges in the vehicles’ paths. However, there is substantial
room for speed-ups if the graph is constructed incrementally,
or if heuristics are added to reduce the number of considered
transfer points and the edges between them.

VI. SELECTED EXPERIMENTAL RESULTS

To verify the effectiveness of the three algorithms, we
compare them in simulation and using actual passenger

Solution Cost to Passengers

Auction
550 Greedy
Auction w/ Transfers
Graph
— Base Value
Greedy w/ Transfers

S500H —

Cost

6 8 10 12 14 16 18
Passengers

Fig. 2. The solution cost found for each method in the simulated urban
area with |V| =20, Cy, =5, My =7, B, =6, and ¢ = 0.

routes on a city map. We demonstrate a reduction in fuel
use by planning for transfers.

For each experiment, we set the number of vehicles |V,
the number of passengers |P|, a vehicular capacity C,, the
maximum number of riders per vehicle M, and the budget
heuristic B,,. The starting and ending points for vehicles and
passengers are selected randomly.

A. Simulated Urban Area

The first set of experiments was performed in a simplified
simulated urban area, a regular 20 by 20 grid of city
blocks. Manhattan distance was used, and starting points and
destinations were chosen randomly from street intersections.

Figure 2 shows the costs of the solutions found by each
algorithm, when passenger starting and ending points are
at least 10 blocks apart, and intended vehicle routes are
between 5 and 7 blocks. Instances where passengers travel
further than vehicles (for example, long-distance hitchhiking)
particularly benefit from transfers. The shaded regions denote
the standard deviation across the fifty trials, and the “base
cost” is what the cost in fuel would be if all of the passengers
and drivers drove themselves in their own vehicles directly
to their destinations. In this domain, the greedy algorithm
without transfers performs worse than the base cost, and the
auction algorithm finds solutions of approximately the same
cost as the base.

However, with transfers, we can outperform both the
algorithms without transfers and the case when everyone
drives themselves, reducing fuel usage. The greedy transfer
algorithm, the auction transfer algorithm, and the graph-
based algorithm each offer a successive improvement. With
18 passengers and the graph-based algorithm, transfers re-
duce the distance travelled by nearly 30% compared to the
auction algorithm without transfers, and by 34% compared
to the base cost when each passenger drives themself.

Although the graph method finds the best solutions, its
effectiveness comes at a computational cost. For 20 vehicles

Fig. 3. An example solution with transfers for a problem in San Francisco.
Two passengers are transferred to other vehicles.

Solution Cost to Passengers

40000

= Best w/ Transfers
= u Best w/o Transfers

35000

30000

Cost

25000 e

20000

150095 4.5 5.0 5.5 6.0 6.5 7.0
Passengers
Fig. 4. The solution cost found for each method in San Francisco with

V| =18, Cp =4, M, =7, B, = 1.5 km, and cp = 0.

and 18 passengers, the greedy algorithm took an average of
0.7 s to run, the auction algorithm took 3.3 s, and the graph
algorithm took 484.7 s. There is significant room for further
optimization in each algorithm’s implementation, particularly
by constructing the graph used to find the route for each
passenger incrementally based on the previous graphs.

We also ran experiments with the same setup as before,
except without a maximum distance restriction for the vehi-
cles. In this case, for 20 vehicles and 18 passengers, auctions
without transfers improved on the base cost by an average of
23.8%, while the graph algorithm improved on the base cost
by 35.0%. Each passenger made an average of 1.55 transfers.

Finally, we conducted the same less constrained experi-
ment, but expanded to 100 passengers and 80 vehicles on
a 30 by 30 block grid. Auctions without transfers gave a
40.26% average improvement over the base cost, while auc-
tions with transfers gave a 46.52% improvement. The auction
with transfers took an average of 58 s to compute. The graph
algorithm does not yet scale to such large instances.

B. San Francisco

We also ran tests using real world taxicab data on an
actual city map. We obtained a map of San Francisco from

OpenStreetMap [11] and found shortest paths on this map
using pgRouting [12] (see Figure 3 for an example solution).
We sampled passenger and vehicle starting points from real-
world taxi cab data [13], limited to the downtown area.
Vehicles are constrained to trips between 0.22 and 0.56 km,
and passengers are constrained to trips greater than 1.33 km.
Selected results are shown in Figure 4.

Routing on the map of San Francisco is significantly more
costly than on the Euclidean plane. With 7 passengers and
18 vehicles, the greedy algorithm with transfers took over 80
seconds and the auction algorithm with transfers took nearly
200. The graph algorithm was not run due to its’ cost. Faster
path planning algorithms or approximate distance estimates
will need to be used to scale up. However, there were average
savings of approximately 15% from using transfers.

VII. CONCLUSION

We proposed transferring passengers to create more ef-
ficient ridesharing services and reduce emissions. We pre-
sented three heuristics to plan for transfers: a greedy ap-
proach, an auction, and an approach based on graph search.
Each algorithm trades off computation time with effective-
ness. We demonstrated that transferring passengers reduces
the distance travelled by nearly 30% for certain problems.
Much future work remains, including further optimizing the
graph-based algorithm, planning for transfers in dynamic
settings, and considering time and convenience.

REFERENCES

[1] B. Coltin, M. M. Veloso, and R. Ventura, “Dynamic user task schedul-
ing for mobile robots.” in Automated Action Planning for Autonomous
Mobile Robots, 2011.

[2] P.R. Wurman, R. D’ Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” Al Magazine,
vol. 29, no. 1, p. 9, 2008.

[3] S. Abdel-Naby, S. Fante, and P. Giorgini, “Auctions negotiation for
mobile rideshare service,” in Int. Conf. on Pervasive Computing and
Applications. 1EEE, 2007, pp. 225-230.

[4] A. Kleiner, B. Nebel, and V. Ziparo, “A mechanism for dynamic ride
sharing based on parallel auctions,” in Int. Joint Conf. on Al (IJCAI),
2011, pp. 266-272.

[5] E. Kamar and E. Horvitz, “Collaboration and shared plans in the open
world: Studies of ridesharing,” in Int. Joint Conf. on Al (IJCAI), 2009,
pp. 187-194.

[6] W. Herbawi and M. Weber, “A genetic and insertion heuristic al-
gorithm for solving the dynamic ridematching problem with time
windows,” in Proc. of the Int. Conf. on Genetic and Evolutionary
Computation. ACM, 2012, pp. 385-392.

[71 ——, “Evolutionary multiobjective route planning in dynamic multi-
hop ridesharing,” in Evolutionary Computation in Combinatorial Op-
timization, ser. Lecture Notes in Computer Science, P. Merz and J.-K.
Hao, Eds. Springer Berlin / Heidelberg, 2011, vol. 6622, pp. 84-95.

[8] P. Toth and D. Vigo, The vehicle routing problem. Soc. for Industrial
Mathematics, 2002, vol. 9.

[9] B. Gerkey and M. Matari¢, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939-954, 2004.

[10] P. Zebrowski, Y. Litus, and R. Vaughan, “Energy efficient robot
rendezvous,” in Computer and Robot Vision, 2007. CRV’07. Fourth
Canadian Conference on. 1EEE, 2007, pp. 139-148.

[11] OpenStreetMap, “OpenStreetMap,” 2012, http://openstreetmap.org.

[12] The pgRouting Project, “pgRouting Project,” 2012,
http://pgrouting.org.

[13] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser, “A
Parsimonious Model of Mobile Partitioned Networks with Clustering,”
in Int. Conf. on Communication Systems and Networks, January 2009.

