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Abstract— We have deployed a fleet of robots that pickup
and deliver items requested by users in an office building. Users
specify time windows in which the items should be picked up
and delivered, and send in requests online. Our goal is to form
a schedule which picks up and delivers the items as quickly
as possible at the lowest cost. We introduce an auction-based
scheduling algorithm which plans to transfer items between
robots to make deliveries more efficiently. The algorithm can
obey either hard or soft time constraints. We discuss how
to replan in response to newly requested items, cancelled
requests, delayed robots, and robot failures. We demonstrate
the effectiveness of our approach through execution on robots,
and examine the effect of transfers on large simulated problems.

I. INTRODUCTION

We have deployed a set of robots, called CoBots, in an
office building to satisfy user requests. Users visit a website
and ask the CoBots to pickup and deliver objects, such as
food, drinks, printouts, or mail, to deliver a message, or to
escort visitors between rooms. A centralized server assigns
tasks and a task ordering to each of the robots such that the
tasks are completed within user-specified time constraints.
The CoBots then navigate autonomously through the building
to complete their assigned tasks (see Figure 1).

Our goal is to form schedules which complete as many
tasks as possible within the requested time windows at
the lowest cost in energy. In particular, we are interested
in exploiting the presence of multiple robots to transfer
items and reduce the cost of delivery even further. Since
requests come in an online fashion and must be accepted or
rejected immediately so that the requester can be informed,
the scheduling algorithm must add new tasks to the schedule
quickly.

Previously, the scheduler assigned tasks by optimally
solving a mixed integer program (MIP). Users made requests
online, and a new MIP was solved every time a request
arrived. This is effective for small numbers of tasks, on
the order of two robots and fifteen tasks without transfers.
CoBot has been deployed extensively using this approach [1].
However, solving an MIP is infeasible when there are large
numbers of tasks and robots, and even more challenging with
transfers.
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Fig. 1: CoBot-1, CoBot-2 and CoBot-4 navigate through the
building to deliver items requested by users.

In this paper, we introduce an auction mechanism to plan
online, time-constrained pickup and delivery schedules with
transfers. We replan in response to robot delays and failures.
We evaluate our approach experimentally on the CoBots and
on large simulated problem instances.

The main novel contributions of this work are:

o Planning for online pickup and delivery tasks with
transfers, under both hard and soft time constraints.

o Replanning with transfers in response to failures.

o Executing the planned schedules on physical robots.

We previously developed a two-approximate heuristic for
collecting and delivering a set of items to the same location
with transfers [2]. We also developed three algorithms to
plan for ridesharing problems with transfers, in which riders
offer passengers rides along their way [3]. In our previous
work, tasks did not have time windows, and all the tasks
were known fully up front.

We first discuss related work, then define the online pickup
and delivery problem with time windows and transfers more
formally. Finally, we present an algorithm to plan online with
transfers, and share experimental results.

II. RELATED WORK

We focus on the Pickup and Delivery Problem (PDP)
in which a set of vehicles pickup and deliver a set of
items. Offline PDPs are commonly solved optimally with
branch and bound methods, or approximately using various
heuristics and metaheuristics such as Tabu search, simulated
annealing, and genetic algorithms [4]. PDP requests may



include time constraints, specified as windows of time the
request must be completed in.

In online pickup and delivery problems, such as scheduling
the CoBots, requests come in over time and are not known
beforehand. Existing static solutions can be applied to form
new schedules from scratch as new information arrives.
Alternatively, heuristics [5], [6] or metaheuristics such as
Tabu search and simulated annealing [7] can be applied to
extend and adjust schedules to incorporate new tasks. Some
work has been done on responding to dynamic events such
as cancellations, traffic delays, and accidents [8], [9]. Our
approach is unique in that we plan to transfer items, an idea
that has not been explored in online settings.

A few researchers have explored offline PDPs with trans-
fers, developing heuristics [10], [11] to solve the PDP with
transfers. Our work differs in that we plan online, consider
transfers that are not limited to a small, fixed number of
exchange points, and execute the schedules on robots.

III. PROBLEM DEFINITION

We are given a set of robots R. The robots navigate on a
map between locations L with a shortest path function sp, a
distance function d, and a travel time estimate ¢¢. Each robot
r € R has a starting location r;, € L and a maximum item
capacity r¢ that cannot be exceeded. Robots may optionally
have an ending point rz € L if they must end at a final
destination such as a charging station.

The robots must deliver a set of items M that are not
necessarily known beforehand. Each item m € M has:

« An initial pickup location mp;

o A final dropoff location mp;

o An earliest possible pickup time mg; and

o A latest possible delivery time mpg.

For simplification, we limit our discussion to pickup and
delivery tasks. However, our algorithm can be extended to
schedule tasks that take place at only a single location (such
as delivering a spoken message) simply by introducing a
pickup and delivery task with the same starting and ending
location.

The goal is to form a schedule that retrieves and delivers
each item m within the time window (mg, mg) at the lowest
possible cost in energy, corresponding to the lowest total
distance traveled by all of the robots. The time windows can
either be soft or hard. If the time windows are hard, then
they cannot be violated, and if all items cannot be delivered
within the time windows they are rejected. With soft time
windows, items can be delivered after their time window has
ended, but at a cost. The objective then is to minimize an
objective function that is the sum of a late delivery fee and
the energy cost. We use a linear late delivery fee, a product
of a constant K, and the time past the delivery window,
but other costs are viable with our planning approach.

Planned schedules include the following actions:

e Retrieve(m): Retrieve item m at pickup location mp.

e Deliver(m): Deliver item m to dropoff location m p.

o TransferSend(m,r,loc): Transfer m to robot r at loc.

o TransferReceive(m,r,loc): Receive m from r at loc.

e Start(r): This is the first action performed by a robot,
and always occurs at 7.

e End(r): This is the last action performed by each robot,
and occurs at rg. If the robot has no ending point, the
location is a special “wildcard location” which is zero
units of distance and time away from every other point.

Every action a has a location ay, a duration ap, and a
scheduled starting execution time ar. Each robot r forms
a plan 7p.,, a sequence of these actions. A time cost
for transferring items is represented by the duration of the
TransferSend and TransferReceive tasks. We assume without
loss of generality that each plan always begins execution at
time 0, and adjust the time window constraints accordingly.
A valid schedule must have the following properties:

o Start and End actions begin and end every plan.

o A valid route delivers every item, consisting of a
Retrieve action, a possible sequence of TransferSend
and TransferReceive actions, and a Deliver action.

¢ Scheduled times are feasible such that for sequential
actions a and b, by > ar + ap + tt(ar,br).

o Transfer actions match such that each action
a = TransferSend(m,ra,loc) by robot r; matches a
b =TransferReceive(m, r1,loc) action in 79’s plan, and
vice-versa, where ar = by, ap = bp, and ay, = br,.

o Obey capacity constraints.

o Obey time windows. For a = Retrieve(m), ar > ms.
With hard windows, for a = Deliver(m), ar < mg.

« Robots deliver items they are already carrying in an
online, modified schedule. If robot r is already carrying
m, then r plans a =Retrieve(m) with ar =0, ap = 0,
and ay, = rr, so the plan begins with r carrying m.

To execute a schedule, robots take the shortest path
between action locations, and execute each action at the
scheduled time. We can anticipate that the robots will not
execute every action at the scheduled time. Delays may occur
due to unexpected obstacles, crowded hallways, or robot
failures. In each scenarios the schedule should be revised.

IV. REVISING SCHEDULES WITH TRANSFERS

At a high level, our scheduling approach is to revise a
schedule with an auction. Robots place bids based on the
additional cost that robot would incur to pick up and deliver
an item. This cost is determined by an insertion heuristic
which inserts the item pickup and delivery actions into the
robot’s schedule. Once an item is part of an existing schedule,
robots place bids to split that item’s route, inserting transfer
points to make the delivery at lower cost. Time constraints
are maintained with a Simple Temporal Network (STN). All
scheduling is done by a centralized algorithm, which is aware
of all requested tasks and the robots’ current positions. The
server already knows all of this information for the telep-
resence interface, so no additional communication is needed
[12]. We provide a top-down explanation, first discussing the
high level auction, then the insertion heuristic, and finally
how time constraints are maintained.



A. Auctioning Pickups, Deliveries and Transfers

Algorithm 1 shows the auction algorithm for scheduling
transfers with time constraints.

Algorithm 1 auction(R,M): Run an auction to form a
plan for the robots R to deliver items M. The robots begin
with partial schedules (which may consist of solely a Start
and End action).

1: Vr € R bids, + o0

2: Vm € M assigned,, < True iff m is in any plan

3: for m € M do

4:  if not assigned,, then

5: Vr € R bid(m,r, insert(rpian, m))

6: else

7: Vry € R s.t. r1 transports m, 1 # ro tbid(m,
8: r1,T2, insert_transfer(m,r1,72))

9: end if

10: end for

done < True
12: for r € R do
13:  if r has a valid bid then

—
—_

14: Robot r wins bid of lowest cost, update the plan(s)
15: Cancel conflicting bids

16: done < False

17:  end if

18: end for

19: if not done then
20:  Repeat auction
21: end if

When the auction algorithm is first called, we begin
with an existing partial schedule. This partial schedule may
include delivering other items which were scheduled earlier
from online scheduling. Even if no items are delivered, the
partial plans alway includes Start and End actions.

First, we check if each item is delivered in the existing
partial schedule (line 2). If not, each robot places a bid
to pick up and deliver that item by inserting a Retrieve
and a Deliver action into its plan without changing the
rest of the plan’s ordering (line 5). The value of the bid
is the additional cost incurred by the vehicle, including both
additional distance travelled and the penalty for soft time
window violations. If the item already is part of some robot’s
plan, then for each such robot, we attempt to insert transfer
actions to split its route with another vehicle (line 7). The
cost is again the additional cost in distance and time window
violations incurred by all of the robots. We explain the
insert and insert_transfer procedures in detail in
the next section.

Each robot is allowed to make one bid per round, the bid
of lowest cost. Once all the bids are placed, the winning bids
are evaluated (lines 11 - 17). Each winning bid is applied,
and the schedule is updated accordingly to insert either a new
item or a new transfer. Winning bids may conflict with later
bids, for example, if two robots bid on the same item, or if
two robots bid to transfer an item to or from the same robot.

Retrieve Item 1 (2) Deliver Item 1
A Transfer Iltem 1 obot 1 Start

I I
(D) (D €

Original Find Transfer Add Transfer

Fig. 2: Robot r’s pickup and delivery of item m is split with
robot s using insert_transfer. First, a transfer point is
chosen between two subsequent tasks on each robot’s plan.
Then the delivery point is removed from r’s plan and inserted
into s’s, lowering the delivery cost.

Due to time constraints, more subtle conflicts may occur if
a new introduced transfer causes an action on an entirely
different robot to be delayed. We detect these conflicts using
temporal networks as discussed later.

To further optimize the auction algorithm, we use caching
when possible so we do not need to reevaluate bids if the
relevant section of the schedule has not changed.

B. Insertion Heuristic

The insert(r,m) subroutine plans to deliver item m
by inserting the Retrieve(m) and Deliver(m) actions into
Tplan Without changing the ordering of the other actions in
Tplan. It does this by iterating over every possible insertion
point of the two actions (every possible insertion point into
the list of actions, not every insertion point in time) that
does not violate the capacity or time constraints, returning
the plan of lowest total cost, with the cost including both
total distance travelled and penalties for violating soft time
constraints.

Similarly, the insert_transfer(m,r,s) subroutine
inserts a transfer of an item m transported by robot r
to or from an additional robot s. Intuitively, this routine
splits robot r’s transport of m in half with robot s: robot
s takes responsibility for either m’s retrieval or delivery
(either a Retrieve or Deliver action, or a TransferReceive
or TransferSend action) and the item is exchanged midway.
See Figure 2 for an example of the expected output of the
insert_transfer algorithm.

First, the insert_transfer algorithm searches over
all subsequent pairs of actions a, b in 1145, and subsequent
actions ¢ and d in Spjqn. A TransferReceive action will be
inserted between actions a and b, and a TransferSend action
will be inserted between actions ¢ and d if robot s will make
the delivery, or vice versa if robot s will pick up item m
originally in place of robot r. The inserted transfer point
must not violate the capacity and must be reachable without
violating any hard time constraints. The algorithm computes
a proposed exchange point from ar, by, ¢y, and dy. For
CoBot’s map, we simply find the first intersection point



Start r|,, .,|Pickup 1 r |,  |TransferReceive 2 r |, IDeliver1l r | |Deliver2 r
[0, 0] [0, O] i [10, 70] [12, 15] . [20, 90] [37, 40] . [10, 70] [67, 70] . [20, 90] [75, 90]
[0, 0] [0, ]
Start s|;y .| Pickup 2 s |5 . TransferSend 2 s|s .| Pickup 3 s End r
[0, 0] [0, 0] [20, 90] [20, 25] [20, 90] [37, 40] [50, 90] [52, 60] [0, ©] [75, =]
[30, =]

Legend Action Item Robot | iMin, Max Time Difference] Deliver 3 s [0, ] End S

) Time Windows: Item  Action [50, 90] [82, 90] [0, ] [82, ]

Fig. 3: An example temporal network with two robots, three items and a single transfer. The feasible time windows for each
action are computed based on the item time windows and the edge durations.

between the shortest path from ay to by and the shortest
path from cr, to dr. If no such point exists then no transfer
is made between these actions. More sophisticated methods
of choosing transfer points can be used for other maps.

Once a transfer point is found, the algorithm attempts to
have robot s pick up the item in place of robot r, then transfer
it to r for r’s original delivery. Next, it attempts to have r
pick up the item in the original location, then transfer it to s,
and have s deliver the item to r’s original delivery location.
We iterate through every possible insertion point for the new
pickup or delivery point in spj.y,, and choose the plan of
lowest cost.

During this search, we check that the newly introduced
transfer does not induce a cycle of robots waiting for each
other by performing breadth first search on the graph formed
by the robot’s plans. In this graph, subsequent actions are
connected, and TransferReceive | TransferSend actions are
additionally connected to each other’s subsequent actions. If
one of the initial transfer actions is reached a second time in
the graph search a cycle exists and the schedule is rejected.

Although the insert_transfer routine runs in poly-
nomial time, it is still expensive for large problem instances.
To speed things up and reduce the number of considered
transfer points, we add a budget rp for each vehicle. If the
starting and ending points of item m’s portion of r’s route
are both further than rp units of distance from s’s planned
path, we disregard the potential transfer point. This limits
the consideration of transfer points that are likely not to be
cost-effective.

C. Maintaining Time Constraints

To maintain time constraints, we form a Simple Temporal
Network [13]. Every action in the robots’ plans is a node
in the network, associated with a time window within which
that action must occur. Each edge is associated with a time
window which bounds the difference in time between two
nodes. Every Start action node has the time window [0, 0],
and every End action has the time window [0, c0). Nodes
for actions that transport item m have the time window
[ms, mg].

Every pair of subsequent actions a and b in a robot’s
plan have nodes linked with an edge with duration [ap +

d(ar,br),00), the minimum time in which a robot can
complete action a and then travel to the location of action
b. TransferSend actions are connected to the correspond-
ing TransferReceive actions with edges of duration [0, 0],
ensuring that both actions take place at the same time.
Whenever the schedule is modified, we solve the constraints
in the temporal network to find valid windows of time in
which each action could be executed without violating any
constraints. Figure 3 shows an example temporal network
and solution.

With hard time constraints, when a new action or set of
actions is inserted into the schedule, we attempt to insert the
new actions into the temporal network to determine whether
or not the schedule remains feasible with the new actions.
This does not require reconstruction or recomputation of
the entire temporal network from scratch; the changes can
be propagated from the insertion points. With soft time
constraints, the temporal network is used to compute the
earliest feasible execution time of each action by setting
all delivery deadlines to infinity. The action execution times
are then used to determine the cost of violated soft time
constraints.

V. ONLINE PLANNING AND REPLANNING

We presented an algorithm to revise a schedule to transport
new items. To replan online with this scheduler, the existing
schedule must first be updated. First, completed tasks are
removed from the schedule, and all times are updated to be
relative to the current time, which is always time 0. Robots
currently carrying items have Retrieve actions added to their
schedule at the current location, with a time window of [0, 0]
and a duration of 0. These actions are not executed, but
ensure the algorithm maintains its invariants.

We replan in four cases:

e New Item Requested: The auction algorithm inserts
the new items into the existing schedule.

e Request Cancelled: Every action involving the re-
moved item is removed from the schedule.

« Delayed Robot: If a robot is late to complete a task
by a fixed amount of time, all tasks involving items the
late robot is scheduled to carry and does not currently
hold are removed from the schedule and re-inserted.



(a) (b)

Fig. 4: Planned schedules to deliver four items, scheduled
with the (a) MIP without transfers, and (b) auction with
transfers. Items 1 and 2 are requested at time 0, Item 3 is
requested after 150 s, and Item 4 is requested after 200 s.
See Fig. 2 for symbol meanings.

« Dead Robot: If a robot does not communicate with the
server for a fixed time, it is marked as dead. Its tasks are
re-added to the schedule, except for items it is holding.

The robots can also replan for other reasons, such as based
on shared information about blocked hallways or closed
doors shared from other robots [14].

VI. EXPERIMENTS

We first present several illustrative problems run on the
CoBot robots, demonstrating the scheduler’s ability to revise
schedules with transfers. We then share extensive results
from larger problem instances solved in simulation, demon-
strating the scheduler’s scalability and effectiveness.

A. Illustrative Revised Schedules on CoBot

Since the CoBots do not have arms, pickups, deliveries
and transfers are made with human help. We assume in these
examples that humans are readily available to retrieve, deliver
and transfer items. The time taken to ask for help is included
in the results. We have developed other robots which are
capable of transferring items autonomously [2].

For the first experiment, two robots placed four pickup and
delivery requests (see Figure 4). Items 1 and 2 were requested
at time 0, Item 3 at 150 s, and Item 4 at 200 s. Solving
the MIP optimally without transfers in an online manner
(our original approach) results in each robot performing one
of the initial tasks. When Tasks 3 and 4 arrive, one robot
travels all the way back to the starting point. Using the
auction algorithm with transfers, only one robot travels to
the opposite end of the building initially. Then the other
robot is free to deliver items 3 and 4. The MIP approach
took approximately 5 minutes 45 seconds to execute and
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Fig. 6: The mean cost of the generated schedules to the
number of items. The shaded regions depict the standard
deviation across the fifty trials.

traversed 280.7 m. The auction algorithm with transfers took
approximately 4 minutes to execute and traversed 162.1 m.
For the second example, we used three robots to perform
five tasks placed at the same time. Two robots were sched-
uled to transfer an item to a third robot for delivery. However,
we immediately turned off the robot scheduled to deliver the
three items. The server detected this, and a new plan was
formed which the robots then executed (see Figure 5).

B. Large Simulated Problems

The final problem set was run on large simulated problem
instances to test the scalability of the algorithms. The world
is a 30x30 grid of city blocks, each one unit long. Item
pickup and dropoff locations are chosen from the block
intersection at random. Unlike in the CoBot domain, robots
have an assigned end location, a station where they return to
charge. Corresponding start and end points for both robots
and items are constrained to be at least five blocks apart.

We ran tests in this domain with |R| = 80 robots and
with the number of items |M| varying from 20 to 240. We
formed schedules for fifty different trials for each value of
|M]|. For every robot r, rc = 3 and rp = 5. Each vehicle
travels one block per minute. Soft time windows are used,
and Kj,:e = 50, meaning every minute a delivery is late
adds 50 units to the cost function. Every block traveled adds
one unit to the cost function, and each transfer contributes
four units (but takes a negligible time to execute). Each item
is given a small time window of ten minutes for delivery.
This is a very tight window: for some items it is not even
physically possible to deliver the item in time. Our goal here
is to make the delivery as quickly as possible. The start of this
time window falls at a random point in the interval [0, 2| ).
The schedule is executed online, with new items scheduled
one at a time. The scheduler is informed of each request half
an hour before the time window begins (or immediately if
the start of the window falls within the first half hour).
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Fig. 5: (a) Deliveries are scheduled with three robots (including two transfers). (b) When one of the robots dies and fails to
respond, the tasks are rescheduled. See Fig. 2 for symbol meanings.

These problems are too large for us to solve optimally.
Instead, we compare the auction algorithm with transfers
to the auction algorithm without transfers. The costs of the
solutions found with both algorithms are shown in Figure
6. With 240 items, the cost is reduced by almost 33% by
using transfers. Most of this savings comes from an improved
capability to deliver items within their time windows due to
the availability of additional scheduling options. With 240
items, an average of 26.6 transfers were made. The auction
without transfers took an average of 6.03 s to execute in total,
while the auction with transfers took an average of 13.98 s.
This amounts to an average of 0.058 s per request.

VII. CONCLUSIONS

We have introduced an auction-based algorithm to sched-
ule pickup and delivery problems with transfers and time
windows. The algorithm runs online and replans in response
to new requests, dead vehicles, and shared information. We
have demonstrated the schedules formed on robots and in
large simulated problem instances.
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