
Constrained Scheduling of Robot Exploration Tasks

Max Korein, Brian Coltin, Manuela Veloso
mkorein@cmu.edu, vcoltin@cmu.edu, veloso@cmu.edu

Robotics Institute and Computer Science Department, Carnegie Mellon University, Pittsburgh, USA

ABSTRACT
In order for an autonomous service robot to provide the best ser-
vice possible for its users, it must have a considerable amount of
knowledge of the environment in which it operates. Service robots
perform requests for users and can learn information about their
environment while performing these requests. We note that such
requests do not take all of the robot’s time, and propose that a
robot could schedule additional exploration tasks in its spare time
to gather data about its environment. The data gathered can then be
used to model the environment, and the model can be used to im-
prove the services provided. Such additional exploration is a con-
strained form of active learning, in which the robot evaluates the
knowledge it can acquire and chooses observations to gather, while
being constrained by its navigation and the time underlying the user
requests it receives. We create a schedule of exploration tasks that
meets the given constraints using a hill-climbing approach on a
graph of tasks the robot can perform to gather observations. We
test this method in simulation of a CoBot robot and find that is able
to learn an accurate model of its environment over time, leading to
a near-optimal policy when scheduling user requests.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms

Keywords
Robotics, Exploration, Learning, Scheduling

1. INTRODUCTION
Autonomous mobile service robots typically require knowledge

of their environment in order to perform their services optimally.
Robots that must perform scheduled tasks are often dependent on
knowledge that is specific to a location and varies with time. For
example, a robot that delivers messages in an office building would
benefit from knowing when a person is most likely to be in their
office to receive a message. An autonomous taxi would be able to
pick up more fares if it knew where it was most likely to find a
passenger at a given time.

These robots would be capable of acquiring this knowledge au-
tonomously. An office robot may be able to detect whether an office
door is open or closed, and an autonomous taxi would presumably
be capable of detecting people trying to hail a cab, even when it is
not actively seeking passengers. The robot may be able to make

these observations as it travels during the course of providing its
normal services, but then its knowledge would be heavily weighted
towards the locations it commonly travels past.

Ideally, the robot would be able to actively seek additional infor-
mation for improving its services. Its ability to do so, however, is
constrained by the need to continue performing the services them-
selves. Thus, actively gathering data is a problem of constrained
exploration and active learning. The robot must consider not only
the observations it can make and how valuable they will be, but
also how to navigate its environment in order to gather them while
still completing all user requests at the scheduled times. The ulti-
mate goal is to maximize the reward of the information the robot
acquires in the limited spare time it has between user requests, and
use that information to improve its services in the future.

We contribute an algorithm to solve this challenge in which the
robot creates a schedule of exploration by finding a path through a
graph of possible exploration tasks using a hill-climbing method.
Through experiments performed in simulation, we show that our
algorithm gathers more data and learns a better model than ran-
dom exploration, particularly when guided by an informed reward
function. Given sufficient time it learns a model that results in a
near-optimal policy when scheduling user requests.

2. HYPOTHESIS
We consider a robot that receives mandatory tasks, such as re-

quests from users, that require the robot to travel to a specific lo-
cation to perform them. The robot is given windows of time dur-
ing which it must perform each task, and the robot’s performance
on the request depends on decisions it makes. The quality of the
robot’s performance can be predicted using features of the envi-
ronment that the robot is capable of observing, and these features
may be time-dependent. For example, the probability of an office
robot’s message deliveries succeeding depends on the probability
of the recipient’s door being open, which depends on the time of
day. When the robot is not performing a user request, it is idle.

Our goal is to have the robot make use of this idle time to gather
information that will allow it to improve its services. Specifically,
we seek to show two things:

1. The robot can observe features of its environment as it trav-
els. Furthermore, it can make use of the spare time in be-
tween user requests to gather additional observations. This
uses only the time in between user requests, during which
the robot would otherwise be idle. It does not restrict the
availability of the robot to perform user requests or require
it to alter the scheduling of user requests to make room for
exploration.

2. The robot can create a model of observed features of the en-
vironment, and use the model to improve its services. The
more accurate the model, the better the services.

3. EXPLORATION SCHEDULING
We now formalize the problem of scheduling exploration tasks in

the robot’s spare time in order to gather information, and using that
information to improve services. By finding an effective solution
to this problem, we will be able to demonstrate the hypothesis put
forth in Section 2.

First, we define some terminology we will use throughout this
paper. We will use the term “interval” to refer to a contiguous win-
dow of time I, starting from tstart(I) and ending at tend(I). Some
intervals also have a start location Lstart(I) and an end location
Lend(I), which represent the location the robot must be at at the
beginning or end of that interval.

We will use the term “task” or “request” to refer to actions the
robot can schedule. Typically, we will use the term “user request”
or “request” to refer to actions requested by a user, and “exploration
task” or “task” to refer to actions the robot chooses to perform on
its own. To begin the task r, the robot must be at the start location
Lstart(r). The task has a duration d(r) that it takes to perform it,
and ends at Lend(r).

In the exploration scheduling problem, the robot is given an in-
terval of operation Iop over which it must create a schedule. It is
also given a set of user requests {r1, . . . ,rn}, as well as a set of cor-
responding constraint intervals {Ic,1, . . . , Ic,n}, during which they
must be performed. Additionally, the robot is given a set of explo-
ration tasks, {s1, . . . ,sm}. Some of these exploration tasks may be
declared “mutually exclusive” from each other, which means they
overlap in the information they provide. For example, in the case of
an office robot learning when people’s office doors are most likely
to be open, it might have exploration tasks that consist of travers-
ing a hallway in one direction or another and observing the states
of the doors it passes. In this case, the two tasks for traversing the
same hallway in opposite directions would be labeled mutually ex-
clusive, because the information they provide is approximately the
same.

Finally, the robot is given two reward functions, Rrequest(r, t) and
Rexplore(s, t), which give the expected reward of performing a user
request or an exploration task at a given time, respectively. Rrequest
is the expected probability of a task succeeding at a given time,
while Rexplore is the expected usefulness of the information that
will be gathered by performing an exploration task.

The robot must produce a schedule consisting of start times for
user requests, along with a set of exploration tasks that it will per-
form and start times for each of them. There are two hard con-
straints on this schedule:

1. The start time for each user request ri must be within the
interval of constraint Ic,i.

2. There must be sufficient time to travel from the end location
of each task to the start location of the next one.

Additionally, there are three soft constraints that we would like
the robot to meet:

1. Maximize the total reward achieved by the user requests.

2. Complete all user requests at the earliest time possible.

3. Maximize the total reward achieved by the exploration tasks.

These soft constraints are in order of priority. For the purposes
of this paper, we will treat these priorities as strict and not consider
tradeoffs: maximizing the request reward is always more important
than performing user requests quickly, which is always more im-
portant than any amount of exploration reward. This is consistent
with our goals stated in Section 2 that the robot should not need to
adjust the scheduling of user requests to make room for the explo-
ration. The robot must be able to continue scheduling user requests
as optimally as possible, both in terms of maximizing the reward
received and performing them at the earliest time possible (which
is desirable for many users and makes the schedule more robust
to changes in the plan due to underestimated travel times or new
requests).

4. RELATED WORK
The problem of evaluating knowledge that a robot could gather is

an instance of active learning, and various techniques for handling
active learning problems have been developed [10]. In standard
active learning problems, information can be acquired at a fixed
cost, and the challenge lies in assigning rewards to observations
in order to learn the best model while meeting constraints such as
minimizing cost.

Some work has been done with office service robots that learn in-
formation that will improve their services. An algorithm for finding
and fetching objects in an office environment using environmental
knowledge is presented in [9] and [7]. Jijo-2 is an office robot that
is capable of learning information about its environment that will
assist in the completion of its task through conversations with users
[1]. The Dora the Explorer robot is an autonomous office robot
that delivers objects, and develops a probabilistic model of where
different objects can be found based on what it has observed. It
evaluates its current knowledge to determine what new observa-
tions are most likely to benefit its model, and finds and delivers an
object for a user based on this model[6, 5, 4].

The work with Dora the Explorer is focused primarily on plan-
ning around the spacial constraints of gathering data in an office
environment. In the problem we seek to solve, however, there are
temporal constraints as well imposed by the robot’s need to ful-
fill user requests. Scheduling user requests for such a robot is an
instance of the Vehicle Routing Problem, in which a set of robots
are assigned to fulfill a set of spatially located tasks. Specifically,
it is an instance of the Vehicle Routing Problem with Time Win-
dows (VRPTW) in which the tasks must be executed with fixed
windows of time. The VRPTW is commonly solved optimally
with branch and bound approaches, such as mixed integer programs
[11]. Transferring items between rooms is an instance of the Pickup
and Delivery Problem with Time Windows (PDPTW), and when
tasks come in online, it is an instance of the Dial-a-Ride Problem,
named after how customers call cabs in a city in an online fashion.
The PDPTW and Dial-a-Ride Problem have been approached with
a multitude of heuristics and metaheuristics [2, 8].

While solving the PDPTW problem using a mixed integer pro-
gram is effective for scheduling user requests for an office robot,
such techniques scale poorly with the number of tasks the robot
is attempting to schedule. When attempting to schedule additional
exploration in between user requests, the number of tasks makes
an optimal mixed integer approach infeasible. Thus, we must use a
more efficient approach to scheduling exploration tasks that allows
us to consider the spacial and temporal constraints on the robot’s
ability to acquire data while still being executable in near-real time
for the large number of tasks being considered.

Figure 1: An illustration of the process of exploration schedul-
ing.

5. EXPLORATION SCHEDULING
PROCESS

We now present a baseline approach to solving the exploration
scheduling problem described in Section 3. While this approach
is not guaranteed to be optimal, it is fast and allows us to test the
hypothesis put forth in Section 2, that a service robot can explore
and and learn information that improves its services in the long
term without making any short-term sacrifices in its services. The
steps are as follows:

1. For each user request ri, find the sub-interval Iri of that Ic,i
during which the request will yield the maximum reward.

2. Schedule each user request at the earliest possible time in Iri .

3. Schedule exploration tasks in between the user requests.

A diagram of this process is shown in Figure 1.

5.1 Scheduling User Requests
The first step in the process is to restrict the intervals of constraint

for each user request to the sub-interval that provides the optimal
reward. For each user request ri with interval of constraint Ic,i, we
choose a new restricted interval of constraint Ir,i:

Iri = argmax
I⊆Ic,i

1
length(I)

∫ Lend(I)

Lstart (I)
Rrequest(ri, t), (1)

In some cases, there may be a single instantaneous time at which
the reward is maximized. In these cases, we choose some mini-
mal interval length minlength and use an interval of that size sur-
rounding the optimal time. However, if the maximum in the request
reward occurs as a plateau, rather than a single point, then the in-
terval will be the entire plateau. Figure 5.1 shows a set of example
reward functions that would result in the intervals shown in Step 1
in Figure 1.

It is possible for a conflict to exist in which it is not possible to
perform each request within the chosen optimal intervals together.
In these cases, we schedule the user requests according to the func-
tion:

Figure 2: Example reward functions for the three requests. r1
provides the optimal reward for t ≤ 15, r2 provides the optimal
reward for 18 ≤ t ≤ 22, and r3 provides the optimal reward
for t ≥ 26. These rewards would lead to the restriction of the
intervals shown in step 2 in Figure 1.

Iri = argmax
I⊆Ic,i

1
length(I)

(f ∗ length(I)
minlength

+1)
∫ Lend(I)

Lstart (I)
Rrequest(ri, t),

(2)
where f is the flexibility parameter. The larger the flexibility pa-
rameter is, the more the function promotes choosing a larger inter-
val of constraint over an optimal one. When f = 0, this is equiv-
alent to using Equation 1. In the case of a conflict, f is increased
incrementally (we used δ = 0.1 in our experiments) until a schedule
can be found. The effect is that the restricted intervals of constraint
are slowly widened until the conflict no longer exists.

The second step of the process is to schedule each user request
as early as possible within the restricted intervals of constrain cho-
sen in the first step. This is done using the existing algorithm de-
scribed in [3], which solves a mixed integer program to determine
the schedule that will accomplish all user requests as early as pos-
sible. An example can be seen in Step 2 of Figure 1.

5.2 Scheduling Exploration Tasks
The final step of the process is to schedule exploration tasks.

With the user request times chosen, there are now fixed gaps in be-
tween the user requests, which we will call the Intervals of Explo-
ration {Ie,1, . . . , Ie,n+1}. We consider each interval of exploration
independently, scheduling a set of exploration tasks for that inter-
val and then merging the schedules for the individual intervals of
exploration into the full schedule.

The exploration tasks are scheduled by constructing what we are
calling a “task graph,” a directed graph with nodes representing the
exploration tasks the robot can perform and locations it can visit.
The robot then finds a path through the task graph using a greedy
hill-climbing algorithm, and schedules the tasks on the path.

5.2.1 Task Graph Construction
The task graph is a directed graph featuring one node for each

exploration task the robot can perform. There is an edge from
each task node si to each other task node s j with length equal to
D(Lend(si),Lstart(s j)), where D(L1,L2) is the estimated time for
the robot to travel between two locations. The exception is nodes
for tasks that are mutually exclusive with each other, which are not
connected by an edge. Each task node also has a duration, equal to
the expected duration of performing the task, and a reward, equal
to the average reward over the interval of exploration.

In addition to the task nodes, the task graph has two nodes repre-
senting locations: one for the start location of the interval of explo-
ration, and the other for the end location. There is an edge from
the start location node Ls to each task node si with a length of

D(Ls,Lstart(si)). Similarly, there is an edge from each task node
si to the end location node Le with length equal to D(Lend(si),Le).

An example of a simple environment and a corresponding task
graph are shown in Figures 3 and 4, respectively.

5.2.2 Task Graph Hill Climbing
A path through the task graph represents a sequence of explo-

ration tasks. The total cost of a path is the sum of all edge costs
and task node durations along the path, and represents the expected
time it would take to perform the tasks. The total reward of a path
is the sum of the rewards of all task nodes in the path. Any path
from the start location node to the end location node with length
less than the length of the interval of exploration is a valid schedule
of exploration tasks for the interval of exploration. Thus, our goal
in scheduling exploration tasks is to find the path that meets this
criterion with the highest reward.

Our approach to this problem is a greedy hill-climbing algo-
rithm. The task graph hill-climbing algorithm takes as input a task
graph G (which includes a function D(n1,n2) that gives the edge
length from node n1 to node n2, and a duration function dur that
gives the duration of a task node), a start location S, an end location
E, a reward function R which gives a task’s average reward over the
interval of exploration, a maximum cost for the path maxC, and a
dictionary of mutually exclusive nodes mutexes. It returns a locally
optimal simple path P through the graph from S to E with cost less
than or equal to maxC that does not violate any of the constraints in
mutexes. Pseudocode for the algorithm is shown in Algorithm 1.

The algorithm works by iteratively adding tasks to the path until
no more tasks can be added, at which point E is added to finish the
path. Each iteration, each task in the graph is assigned a marginal
reward (lines 5-11). If the task is already in the path, mutually
exclusive with a node already in the path, or there is not enough
time left to perform the task and then travel to the end location, the
task is assigned a marginal reward of −∞ (lines 6-7). Otherwise,
the task is assigned a marginal reward equal the ratio of the task’s
reward to its cost, defined as the sum of the edge to the task node
and the task’s duration (line 9). If no tasks have a positive marginal
reward, then it is not possible to perform any more tasks in the
time remaining, so the end location is added to the path and the
path is returned (lines 12-14). Otherwise, the task with the highest
marginal reward is added to the end of the path, and the process is
repeated (lines 16-17).

5.2.3 Hill Climbing Example
Consider the environment shown in Figure 3. This environment

has three locations, L1, L2, and L3. There are six tasks, labeled
as “T12”, “T21”, etc. in the map. Each task consists of the robot
traversing from one end of a hallway to the other.

Now, for an example of the hill-climbing algorithm, consider our
robot attempting to schedule a set of exploration tasks for an inter-
val of exploration that begins at tstart(Ie) = 0 and ends at tend(Ie) =
25, starting from L1 and ending at L3. Let each task have a reward
equal to the number of rooms on the hallway, and let the two tasks
for crossing each hallway be mutually exclusive. The task graph
for this search is shown in Figure 4.

The search begins at the L1 node. The algorithm computes the
marginal reward of each task. Task 31 has a marginal reward of
−∞, because the total time to start from the current location, per-
form Task 31, and then travel to L3 would be 36, while the total
time available for planning is 25. There is similarly not enough
time to perform task 32. Of the remaining tasks, Task 12 has a
marginal reward of 0.4, Task 21 has a marginal reward of 0.2, Task
13 has a marginal reward of 0.25, and Task 23 has a marginal re-

Algorithm 1 The hill-climbing algorithm for finding a path of a
given cost through the task graph.
1: procedure TASKGRAPHHILLCLIMB(G, S, E, R, maxC, mu-

texes)
2: P← S
3: last← S
4: loop
5: for task ∈ G do
6: if D(last, task)+D(task,E)+dur(task)> maxC

∨ task ∈ P
∨mutexes[task]∩P 6= /0 then

7: marginal[task]←−∞

8: else
9: marginal[task]← R(task)

D(last,task)+dur(task)
10: end if
11: end for
12: if marginal[task]≤ 0 ∀ task ∈ G then
13: Append E to P
14: return P
15: else
16: last← argmax

task∈G
(marginal[task])

17: Append last to P
18: end if
19: end loop
20: end procedure

Figure 3: A simple environment consisting of three locations,
L1, L2, and L3, and six tasks, T12, T21, T13, T31, T23, and
T32. Each task corresponds to traversing a hallway in a certain
direction.

ward of 0.22. So Task 12 is added to the path, and the search con-
tinues with Task 21 as the starting location.

Now, Task 21 is assigned a marginal reward of −∞, because it is
exclusive with Task 12. There is still not enough remaining time to
perform Task 31 or 32, so those are out as well. Meanwhile, Task
13 gets a marginal reward of 0.18, while Task 23 gets a marginal
reward of 0.31, so Task 23 is added to the path. Next the search
continues from Task 23, but we find that all remaining tasks now
have a marginal reward of −∞: either there is insufficient time to
complete them and still reach L3 (Tasks 13 and 31), or they are

Figure 4: A task graph for the environment shown in Figure 3,
with a start location of L1 and end location of L3.

mutually exclusive with a node that is already in the path (Tasks 21
and 32). So L3 is added to the path and the search is complete.

6. EXPERIMENT
We tested our algorithm using a simulation of an office robot

in the seventh through ninth floors of the Gates Hillman Center at
Carnegie Mellon University. In the simulation, the robot repeatedly
received sets of user requests to deliver messages within a subset of
a 30-minute interval of operation. The probability of doors being
open varied with time, and a message delivery failed if the robot de-
livered it to a closed door. The robot scheduled exploration tasks in
between the user requests, and learned a model of the probabilities
of doors being open over time. It used the model to determine how
to schedule message deliveries to maximize the odds of success.

6.1 Experimental Setup
Each simulated interval of operation was 30 minutes long. Dur-

ing that interval, the robot received four user requests, each to
deliver a message to a randomly chosen office within a random
interval of constraint between 5 and 30 minutes long. Messages
were delivered (or failed to be delivered) instantaneously upon the
robot’s arrival at the recipient’s office. The requests were always
tested to ensure that it was possible to perform all four within the
given intervals of constraint. If not, a new set of tasks was gener-
ated until a possible set was created.

The environment the robot operated in was based on the seventh
through ninth floors of the Gates-Hillman Center at Carnegie Mel-
lon University, with a total of 203 doors. A map of one floor of
the environment is shown in Figure 5. The probability of each door
being open at a time t was given by

p(door = open|t) = ae−
(t−µ)2

2σ2 , (3)

where a, µ , and σ are randomly chosen parameters for each door.
a was between 0.75 and 1.0, µ was between 0.0 and 30.0, and σ

Figure 5: A map of one floor of the simulated environment used
in the experiments. The robot travels through the hallways,
and can travel between the floors using three elevators, labeled
7811, 7813, and 7832 in this map. The remaining numbers cor-
respond to rooms the robot can visit.

was between 2.0 and 17.0. Whenever the robot passed by a room,
it observed the door being either open or closed according to this
probability. These observations were made whether the robot was
deliberately observing them as part of an exploration task or merely
passing by while traveling from one location to another.

The robot stored the time of all observations of doors it made
and the observed status of the door. It did not know the form of the
ground truth probability distributions for the doors, and inferred a
probability at each minute by taking a weighted sample of observa-
tions at nearby times:

Popen(room|t) =

0.5+ ∑
s∈open door samples

e−
(ts−t)2

50

1.0+ ∑
s∈all door samples

e−
(ts−t)2

50

, (4)

where t is the time, ts is the time of the sample, and only samples
for which |ts − t| ≤ 10 are considered to speed up computations.
The 0.5 in the numerator and 1.0 in the denominator are to reduce
overfitting from small numbers of samples, biasing the probability
very slightly towards 0.5.

The exploration tasks available to the robot each consisted of
traversing a single hallway in the environment. It would begin
at one end of the hallway and travel to the other end of the hall-
way, observing all doors it passed along the way. There were two
exploration tasks available per hallway, one starting at each end.

Since the two tasks for each hallway yielded the same observa-
tions, they were considered mutually exclusive when performing
the hill-climbing algorithm with the task graph.

6.2 Algorithms Tested
We compared three different algorithms for scheduling explo-

ration tasks. Two were variations of task graph hill-climbing, one
was a random exploration algorithm for comparison, and two were
control models that did not do any exploration.

Uninformed Hill-Climbing. The uninformed hill-climbing algo-
rithm scheduled user requests, constructed task graphs for each
interval of exploration, and carried out the hill-climbing algorithm
as described in Section 5. It used a uniform reward function, as-
signing all tasks a constant reward of 1.0. This reward promoted
gathering as many observations as possible, regardless of what
they are or what data the robot already has.

Informed Hill-Climbing. Like the uninformed hill-climbing al-
gorithm, the informed hill-climbing algorithm scheduled requests
and exploration tasks using the method described in Section 5.
However, this algorithm used an informed reward for observing a
door based on the density of the observations the robot had of that
door at that time, given by

Rexplore(hall, t) =
1(

1+ ∑
s∈samples

e−
(ts−t)2

50

)2 . (5)

The reward for observing all doors on a hallway was the sum of
the rewards for observing each of the doors. This reward function
gave a higher reward to observations of hallways and times during
which the robot had less data. As the number of observations the
robot had of a hallway at a given time increased, the reward of ex-
ploring that hallway decreased dramatically. Thus, the informed
hill-climbing algorithm sought to achieve an even distribution of
observations over all doors and times.

Random Exploration. The random exploration algorithm began
by restricting the intervals of constrain for the user requests as de-
scribed in Section 5.1. Once the restricted windows were chosen,
it randomly chose between four and seven exploration tasks. It
then used the same mixed integer program that was used when
choosing the starting times of tasks in Section 5.1 to create a
schedule featuring both the user requests (with the restricted inter-
vals of constraint chosen) and the chosen exploration tasks (with
intervals of constraint spanning the entire interval of operation).

If a schedule was found, it would execute that schedule. If no
schedule could be created, the chosen exploration tasks were re-
jected and only the user requests were executed using the mixed
integer program.

No Exploration. With this “algorithm”, the robot did not schedule
any exploration tasks at all. Instead, it simply ran the schedule of
user requests created as described in Section 5.1. It still learned a
model, but only from observations of the doors it passed by while
traveling between user requests.

No Learning. The final model tested in each trial was one that
learned nothing at all. In this case, the robot always assumed that
all doors had a probability of 0.5 of being open at all times. This
resulted in all user requests being scheduled as early as possible.

6.3 Results
We ran 30 trials, each consisting of 100 30-minute intervals, with

the robot accumulating more knowledge of the environment with
each interval. We evaluated the algorithms using three different
metrics.

6.3.1 Model Error
The model error was computed by taking the mean difference of

each model’s learned probability and the true simulated probability
of each door being open at each minute. It represents how accurate
a model each algorithm was able to create from the observations it
gathered.

Figure 6 shows the average error of the model learned by each of
algorithm after each interval. The robot learned a much more ac-
curate model of the environment when using exploration tasks than
without them. The best model was learned when using the task
graph algorithm with an informed reward, which learned a model
that was more accurate than the uninformed version of the algo-
rithm by more than one standard deviation within fifteen iterations.
The gap between the model errors continued to grow with further
exploration. The uninformed version of the algorithm, meanwhile,
had an average model error less than that of the random exploration
algorithm by more than one standard deviation within five itera-
tions. This demonstrates that hill-climbing through a task graph
allows the robot to learn a strong model of the environment, partic-
ularly when using an informed reward function that encourages the
robot to explore the areas from which it has the least data.

6.3.2 User Request Success Rate
Every ten iterations, each model was tested to obtain a measure

of how well the model translated into an effective policy when car-
rying out user requests. For this test, the model was given 500
requests, one at a time, to deliver messages to randomly-chosen
rooms in randomly-chosen constraint intervals between 5 and 30
minutes long. It chose the time in the interval at which it believed
the delivery to have the highest chance of success, and received a
reward equal to the actual probability of the delivery succeeding at
that time. These rewards were normalized relative to the optimal
reward the robot could have received if it chose the best possible
time for every request.

Figure 7 shows the results of this test. Although the differences
between the rewards the algorithms earned are less significant than
the differences in their model errors, we can still see that, on aver-
age, a better model translated to a higher reward, with algorithms
ranking in the same order in terms of performance. Thus, a better
model of the environment translates to a better policy when carry-
ing out user requests. The informed hill-climbing algorithm was
able to achieve over 97% of the optimal reward after 100 iterations,
showing that the model learned was extremely effective for choos-
ing a strong policy.

6.3.3 Cumulative Distribution of Observations
Figure 8 gives some insight into why the algorithms ranked the

way they did. It shows the number of doors that acquired at least
a given number of observations after 100 intervals. We can see
that both task graph algorithms consistently acquired considerably
more data than the other methods. The informed task graph al-
gorithm acquired a more even distribution of data than the unin-
formed algorithm, as it was designed to do, while the uninformed
algorithm had a more skewed distribution. Because observations
of the same door typically yield diminishing returns in terms of the
model learned, it is easy to understand why the informed algorithm
had the best performance.

Figure 6: The average error of the model learned by the different algorithms over time.

Figure 7: The average expected success rate of the model when delivering messages, relative to the optimal expected success rate.

Figure 8: The number of doors each model had with at least a given number of observations after 100 intervals. The area under each
curve is the total number of observations obtained by the algorithm.

7. CONCLUSION
In this paper, we proposed using the spare time of an autonomous

mobile service robot to to explore its environment and learn infor-
mation that can improve the services it provides. Our goal was to

demonstrate that the robot could schedule exploration and learn a
model of its environment using only time during which the robot
would otherwise have been idle, without reducing its availability or
short term service quality to make time for exploration. This is a

constrained scheduling problem in which the robot must navigate
its environment and attempt to gather the most valuable data it can
while still ensuring all user requests are satisfied to the best of its
ability. We presented a baseline method for scheduling exploration
within these constraints by planning using a “task graph” of the ex-
ploration tasks the robot can perform. We then used a hill-climbing
algorithm to find a schedule using the task graph, which was effec-
tive while still being fast enough to not interfere with the robot’s
execution.

We tested this algorithm in a simulation of a service robot in
an office building. The robot had to learn the probabilities of office
doors being open as a function of time, and use that model to sched-
ule message deliveries for the times the recipients were most likely
to be present. The results in the simulation showed that the robot
was able to learn a more accurate model of the office doors when
exploring using the hill-climbing approach than when choosing ex-
ploration tasks randomly or not exploring at all. Furthermore, the
model learned by the robot was more accurate when using an in-
formed reward function that encouraged it to seek out knowledge
from locations and times where it had fewer data points than an un-
informed uniform reward that weighted all data equally. After suf-
ficient time, the robot using the informed hill-climbing was able to
use its model to schedule tasks nearly optimally, achieving approx-
imately 97% of the optimal success rate. Thus, we successfully
showed that, using only the spare time in between user requests,
the robot was able to gather information about its environment that
considerably improved the quality of its services.

There are a number of ways in which we can expand on this
research for future work. The approach to exploration scheduling
that we presented in this paper was designed to be fast and demon-
strate that a robot can improve its services by exploring only in its
spare time, but it is far from optimal. Existing planning algorithms,
such as the various solutions to the orienteering problem, a graph
search problem closely resembling the one we are attempting to
solve, could potentially be applied to this problem. We would like
to compare them to our hill-climbing approach, in terms of both
performance and speed. We would also like to find ways to improve
our hill-climbing algorithm’s performance, such as computing ex-
ploration task rewards at the exact time they are executed instead
of averaging them over the interval of exploration when construct-
ing the task graph, or taking into account the observations the robot
gathers while traveling from one location to another when not per-
forming exploration tasks. Finally, we would like to test our work
on a real robot in a real office environment, to determine how well
the simulated results translate to the real world.

We will continue building upon this research in the future, but
our current results still serve as a useful demonstration of explo-
ration scheduling. We have shown that a service robot can explore
in its spare time without reducing the availability or short term ef-
fectiveness of its services. Over time, it can learn a model of its
environment that can be used to create significant improvements to
the robot’s policy when fulfilling user requests.

Acknowledgments
We thank Reid Simmons for his help with the revisions to this pa-
per. This research was partially supported by the Office of Naval
Research under grant number N00014-09-1-1031, the National Sci-
ence Foundation award number NSF IIS-1012733, and by Darpa
award number FA8750-12-2-0291. The views and conclusions con-
tained in this document are those of the authors only.

8. REFERENCES
[1] H. Asoh, N. Vlassis, Y. Motomura, F. Asano, I. Hara,

S. Hayamizu, K. Ito, T. Kurita, T. Matsui, R. Bunschoten,
and B. Kröse. Jijo-2: An office robot that communicates and
learns. IEEE Intelligent Systems, 16(5):46–55, 2001.

[2] G. Berbeglia, J. Cordeau, I. Gribkovskaia, and G. Laporte.
Static pickup and delivery problems: a classification scheme
and survey. Top, 15(1):1–31, 2007.

[3] B. Coltin, M. Veloso, and R. Ventura. Dynamic user task
scheduling for mobile robots. In Proceedings of the AAAI
Workshop on Automated Action Planning for Autonomous
Mobile Robots, August 2011.

[4] M. Hanheide, C. Gretton, and M. Göbelbecker. Dora, a robot
exploiting probabilistic knowledge under uncertain sensing
for efficient object search. In Proceedings of Systems
Demonstration of the 21st International Conference on
Automated Planning and Scheduling (ICAPS), 2011.

[5] M. Hanheide, N. Hawes, J. Wyatt, M. Göbelbecker,
M. Brenner, K. Sjöö, A. Aydemir, P. Jensfelt, H. Zender, and
G.-J. Kruijff. A framework for goal generation and
management. In Proceedings of the AAAI Workshop on
Goal-Directed Autonomy, 2010. QC 20120126.

[6] N. Hawes, M. Hanheide, K. Sjöö, A. Aydemir, P. a. G.
Jensfelt, M. Brenner, H. Zender, P. Lison,
I. Kruijff-Korbayova, G.-J. Kruijff, and M. Zillich. Dora The
Explorer: A Motivated Robot. In Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010),
pages 1617–1618, May 2010.

[7] L. Kunze, M. Beetz, M. Saito, H. Azuma, K. Okada, and
M. Inaba. Searching objects in large-scale indoor
environments: A decision-theoretic approach. In Robotics
and Automation (ICRA), 2012 IEEE International
Conference on, pages 4385–4390. IEEE, 2012.

[8] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and
delivery problems. Journal für Betriebswirtschaft,
58(2):81–117, 2008.

[9] M. Saito, H. Chen, K. Okada, M. Inaba, L. Kunze, and
M. Beetz. Semantic object search in large-scale indoor
environments. In Proceedings of IROS 2012 Workshop on
active Semantic Perception and Object Search in the Real
World, 2011.

[10] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

[11] P. Toth and D. Vigo. The vehicle routing problem, volume 9.
Society for Industrial Mathematics, 2002.

