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Abstract Successful approaches to the robot localiza-
tion problem include particle filters, which estimate non-
parametric localization belief distributions. Particle filters
are successful at tracking a robot’s pose, although they fare
poorly at determining the robot’s global pose. The global
localization problem has been addressed for robots that
sense unambiguous visual landmarks with sensor resetting,
by performing sensor-based resampling when the robot is
lost. Unfortunately, for robots that make sparse, ambiguous
and noisy observations, standard sensor resetting places new
pose hypotheses across a wide region, in poses that may be
inconsistent with previous observations. We introduce multi-
observation sensor resetting (MOSR) to address the localiza-
tion problem with sparse, ambiguous and noisy observations.
MOSR merges observations from multiple frames to gener-
ate new hypotheses more effectively. We demonstrate experi-
mentally on the NAO humanoid robots that MOSR converges
more efficiently to the robot’s true pose than standard sensor
resetting, and is more robust to systematic vision errors.

1 Introduction

Whether a robot is driving through city streets, navigating
the corridors of buildings, laboring on the floor of a factory,
or playing a game of soccer, the ability of the robot to interact
intelligently with the physical world fundamentally depends
on its ability to self-localize, or determine its own pose rel-
ative to the environment. We are particularly interested in
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tasks where the robot must localize quickly in response to
real-time constraints, and also robustly, in the presence of
noisy, ambiguous, and even incorrect sensing.

Our motivation stems primarily from the RoboCup Stan-
dard Platform League (SPL), in which the NAO humanoid
robots must localize in order to play soccer using visual land-
marks, namely the goal posts and the markings on the field
(see Fig. 1). Critically, these landmarks are ambiguous: an
observed “L”-shaped corner, for example, could correspond
to any of eight such markings on the field. Additionally, color-
segmentation vision algorithms will often detect false pos-
itives from either objects on the field or objects outside of
the field, and localization algorithms must be robust to these
errors.

Although this work is inspired by the RoboCup SPL, the
problem of localizing based on ambiguous landmarks and
with false positives is far from specific to this domain. Our
algorithms are robust to false positives, and apply to any
domain in which the robot observes multiple, potentially
ambiguous landmarks. For example, imagine a robot that
navigates the halls of a building. It can detect hallway inter-
sections, and visually observe doors. Or, imagine a robot
that observes buildings on city streets. The robot sees sev-
eral chain restaurants and a coffee shop. Alone, each piece
of information is ambiguous, but in combination, the robot
can determine its pose.

The localization problem has been extensively studied,
and one common solution is the use of Monte Carlo localiza-
tion (MCL), where a set of particles models multiple pose
hypotheses. These particles are updated based on both a
model of the robot’s motion and a sensor model. The sen-
sor model computes the likelihood of possible robot poses
given sensory data. Particle filters have been widely used
for robots with diverse sensory inputs, including 2D pla-
nar LIDAR scans (e.g., Dellaert et al. 1999; Adams et al.
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Fig. 1 In the RoboCup SPL, NAO humanoid robots compete at soccer
on a 4 m×6 m field, with color coded goal posts and field lines which
the robots use to localize

2004), 3D point clouds (e.g., Levinson et al. 2007; Biswas
and Veloso 2012), stereo vision (e.g., Porta et al. 2005; Eli-
nas and Little 2005), visual information (e.g., Lenser et al.
2001; Vlassis et al. 2002; Wolf et al. 2005; Andreasson et
al. 2005), range-only measurements (e.g., Kantor and Singh
2002), and the signal strength of WiFi access points (e.g.,
Biswas and Veloso 2010). Different sensor modalities offer
different challenges and advantages.

One major weakness of MCL, however, is that due to prac-
tical limits on the number of particles maintained, the full
pose probability distribution cannot be modeled. If no parti-
cles are in the area of the robot’s true pose, standard MCL
may take a long time to converge to the robot’s true pose:
hence, it requires a good initial estimate of the robot’s loca-
tion. Sensor resetting localization (SRL) (Lenser and Veloso
2000), an extension to MCL, addresses this kidnapped robot
problem (Engelson and McDermott 1992) by inserting addi-
tional hypotheses generated from sensing when the robot is
uncertain of its position.

SRL is effective at both local position tracking and global
position estimation. However, it still does have a few short-
comings:

1. Exploration versus exploitation. SRL favors exploration
by generating observations from single camera images,
spread across a large region, which increases the likeli-
hood of localization converging to an incorrect location.

2. Ambiguous landmarks. SRL does not generate hypothe-
ses based on ambiguous observations as they could corre-
spond to many landmarks. Thus SRL ignores potentially
useful information.

3. False positives. SRL is sensitive to false positives from
vision, as it generates more new hypotheses from obser-
vations that contradict the current state estimate.

Multi-observation sensor resetting (MOSR) localization, a
new sensor resetting algorithm, addresses each of these issues
(Coltin and Veloso 2011). MOSR localization converges

quickly and accurately by using multiple observations across
multiple camera frames to generate fewer but more informed
new hypotheses for sensor resetting. In addition to speedy
convergence times, MOSR localization is robust to false pos-
itives. In this article, we introduce a RANSAC-like approach
for MOSR to robustly select samples for sensor resetting,
and present extensive experiments demonstrating MOSR’s
effectiveness.

In this article, we first put our work into context with
an overview of related work on self-localization. Next, we
present the complete algorithm for MOSR Localization.
Finally, we extensively demonstrate the effectiveness of the
algorithm experimentally on the RoboCup Standard Platform
League (SPL) field with the NAO humanoid robots, which
provides a challenging scenario with multiple ambiguous
landmarks, detected by the NAO’s limited field of view.

2 Background and related work

Let xt ∈ Rd , yt and ut represent the robot’s d-dimensional
pose, sensor observations, and control input at time t , respec-
tively. Then let Yt = {y1, . . . , yt } and Ut = {u1, . . . , ut } be
the history of observations and controls. The goal of the local-
ization problem is to determine the robot’s current pose, xt ,
typically in order to perform some location-dependent task.
Due to noise in sensing and motion, xt cannot be computed
with certainty. Instead, we model the pose belief (also called
posterior) bel(xt ) = p(xt |Ut , Yt ), as the probability distri-
bution over the robot’s pose given its sensing and control
inputs.

However, the true posterior is typically intractable to
compute. Instead, most localization approaches rely on the
Markov assumption: that the robot’s history of observations
and sensing can be ignored, and that the robot’s pose belief
bel(xt ) can be recursively computed with only bel(xt−1), yt ,
and ut . The belief is then updated using the equation

bel(xt ) = kp(yt |xt )

∫
p(xt |xt−1, ut )bel(xt−1)dxt−1

where k is a normalizing constant. In this formulation, p(y|x)

is the sensor model, the probability of a set of sensory obser-
vations given the robot’s pose, and p(xt |xt−1, ut ) is the
motion model of the robot’s motion based on its control
inputs.

The localization problem is often divided into two sub-
problems: local position tracking and global position esti-
mation (Dellaert et al. 1999). Given an initial pose estimate,
a local position tracker maintains an accurate estimate of
the robot’s position. However, if the robot becomes lost or
does not know its initial position estimate, the local position
tracker may take a long time to recover, if it can recover at
all. Algorithms designed for global position estimation, on

123



Auton Robot (2013) 35:221–237 223

the other hand, determine a coarse estimate of the robot’s
position without the need for a prior.

A variety of approaches have been proposed to solve the
global localization problem. One early approach coregistered
successive observations on an occupancy grid (Elfes 1989).
In a later approach, the robot’s state space was discretized and
a probability maintained that the robot was in each cell (Bur-
gard et al. 1996). This approach can find the robot’s global
position, but only coarsely unless a highly dense discretiza-
tion is used, which requires high processing time. Discretiza-
tions have also been used in combination with fuzzy logic in
Fuzzy Markov localization (Buschka et al. 2000).

Other approaches are specifically tailored to the local posi-
tion tracking problem. One of the earliest and most success-
ful approaches is a non-linear version of the Kalman filter
(Kalman 1960), such as the extended Kalman filter (EKF),
which robustly and reliably tracks a robot’s position given
an initial estimate (Leonard and Durrant-Whyte 1991). How-
ever, Kalman filters only represent uni-modal distributions,
while the actual probably distribution is often multi-modal.
This is especially the case when the environment contains
ambiguous landmarks, and an observation indicates only that
the robot is in one of several symmetric locations. Several
extensions to Kalman filters have been proposed to address
this problem, including schemes that use multiple EKFs
(Jensfelt and Kristensen 2001; Quinlan and Middleton 2010)
or combine multiple EKFs with Fuzzy Markov localization
(Martín et al. 2007).

2.1 Monte Carlo localization

A more recent approach to the local position tracking prob-
lem is MCL, in which a multi-modal particle filter maintains
the belief of the robot’s pose bel(xt ), represented as a set
of weighted particles, pose hypotheses pt

i with weights wt
i .

The weights represent the likelihood that the robot is in the
associated pose (Dellaert et al. 1999).

With every observation yt and control action ut , the parti-
cles and the weights are updated. The most common update
algorithm is sampling/importance resampling (Gordon et al.
1993), although other approaches, such as the auxiliary par-
ticle filter (Pitt and Shephard 1999; Vlassis et al. 2002), exist.
Sampling / importance resampling is a three step process:

1. Predict step. The particles move based on a sampling
from the motion model of the robot, p(pt

i |pt−1
i , ut ).

2. Update step. The weight wt
i = wt−1

i p(yt |pt
i ) is updated

by the sensor model, the likelihood of making the
observed sensor readings given the robot’s pose.

3. Resample step. New particles are chosen probabilisti-
cally, where particle pi is chosen (with replacement) with

probability
wi∑
wi

.

With resampling, more particles are placed in regions
of higher likelihood. The additional particles will spread
out due to sampling from the motion model in the predict
step, creating a more diverse particle spread in regions of
higher likelihood and leading to a more precise estimate
of the robot’s true pose.

At each timestep, a single pose is typically selected as the
robot’s estimated pose, although other robot behaviors may
consider multiple particles and the uncertainty in the robot’s
pose.1

This formulation of MCL has a major flaw in the case of
ambiguous or noise observations, due to the nature of the
resampling step. If the robot continues to acquire ambiguous
or noisy observations which do not distinguish one hypoth-
esis from another, in the long run the resampling step will
cause all but one of the hypotheses to die out, leading to
a reduction of diversity. To address this, the MCL resam-
pling step is better performed with low variance resam-
pling rather than simply drawing with replacement (Rekleitis
2004). Other researchers have developed clustered particle
filters to preserve particles for multiple likely hypotheses
caused by ambiguous landmarks (Milstein et al. 2002).

Many extensions to MCL have been introduced for bet-
ter local tracking. Monte Carlo Markov chains (MCMCs)
(Metropolis et al. 1953; Hastings 1970) and the hybrid Monte
Carlo (HMC) filter (Duane et al. 1987; Choo and Fleet 2001)
both refine particles by using the gradient of the full posterior,
d

dx p(xt |Yt , Ut ), and hence require fewer particles. However,
the gradient is typically not possible to compute in practical
applications, and the steps required to compute the MCMC
and HMC are computationally expensive. Corrective gradi-
ent refinement (CGR) (Biswas et al. 2011) also refines sam-
ples locally, but with estimates of the gradient of the observa-
tion model rather than the full posterior, which can be com-
puted efficiently.

Particle filters model multi-modal distributions in a com-
putationally inexpensive manner. However, a limited number
of particles cannot sample the entire configuration space of
the robot. So MCL by itself may fail to solve the global local-
ization problem without sufficient particles.

One way to partially mitigate this problem is to increase
the number of particles with the uncertainty of the belief. If
the uncertainty is high, more particles are introduced to cover
a wider area, and if the robot’s pose is more certain, fewer
particles are used to reduce computational requirements (Fox
2001). Another technique that may help is to use a more

1 See Rekleitis (2004) for a detailed tutorial on implementing particle
filters in practice.
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highly peaked sensor model during local position tracking
and a smooth likelihood function during global localization
(Pfaff et al. 2006). Then some particles are sampled randomly
from the entire space, and the position will eventually con-
verge. However, a large number of particles is still required
for effective performance.

2.2 Sensor resetting localization

Particle filters are effective at local position tracking but fare
poorly at global localization. Typically a fixed percentage
of particles is drawn at random from the environment, but
this will either take significant time to converge or require an
unmanageably large number of particles for large environ-
ments. However, if in addition to computing p(y|x), we can
compute p(x |y) directly from observations, we can solve the
global localization problem. SRL extends standard particle
filters by using p(x |y) to place new hypotheses directly at
likely poses of the robot (Lenser and Veloso 2000). Each
particle is replaced with a particle generated directly from
sensing with probability

preset = 1−
∑

wi

k N
,

where k is a constant and N is the number of particles. So if
the total weight is high, the particles are already in a likely
configuration and little sensor resetting is performed. If the
total weight is low, the particles’ poses are unlikely and they
are chosen anew from p(x |y) (Lenser and Veloso 2000).
Sensor resetting has been deployed for a number of domains
and sensors, including to localize urban cars with the help of
GPS (Levinson et al. 2007), based on features extracted from
camera images (Menegatti et al. 2004), based on WiFi signal
strength (Biswas and Veloso 2010), and based on detecting
visual landmarks (Lenser and Veloso 2000; Liemhetcharat
and Coltin 2010). The ideas from sensor resetting have also
been applied to localize with Kalman filters (Jochmann et al.
2012).

Sensor resetting localization is designed to solve the kid-
napped robot problem. However, by choosing preset based
only on the likelihood of the current observations given the
current particles, preset is extremely sensitive to noisy obser-
vations and false positives. If the particles have converged to
the robot’s true pose and the vision module detects a false pos-
itive, preset will become high and large numbers of particles
will be replaced based on the false observation. Adaptive-
MCL instead chooses preset based on smoothed estimates
of the observation likelihood, and somewhat mitigates this
effect by rejecting some temporary outliers (Gutmann and
Fox 2002). Other researchers have introduced heuristics for
selecting preset that bias the algorithm away from exploration
and towards exploitation (Marchetti et al. 2007). The MOSR

algorithm that we introduce further eliminates the effect of
false positives while maintaining fast convergence times.

A second problem with SRL is that it assumes observa-
tions are unambiguous. Ambiguous observations cannot be
used effectively since SRL uses observations from only a sin-
gle step in computing p(x |y). Upon observing an ambiguous
landmark, SRL may place new particles based on all possi-
ble matchings to landmarks. However, this removes particles
that could be tracking the true pose and increases the like-
lihood that local position tracking will fail. This problem is
addressed in part by keeping a running history of observa-
tions, and merging observations into estimates of the land-
marks’ positions, incorporating robot motion (Sridharan et al.
2005). Sensor resetting is then performed using triangulation
with two or three of the merged landmark estimates. This
approach remains sensitive to false positives, and is intended
for unambiguous landmarks to which the relative angle and
distance may be known, but not the global angle. By keeping
a running history, triangulation can be used to determine a
unique robot pose, even if only one landmark was observed in
a given visual frame. This approach does not address ambigu-
ous landmarks which could be at multiple locations in the
environment. Other research has considered using a changing
observation model based on an explicit probabilistic model of
which set of landmarks is being observed (Özkucur and Akn
2010). However, this increases the size of the state space that
needs to be covered by the particle filter, increasing the nec-
essary number of particles, and likewise remains sensitive to
false positives. MOSR makes use of ambiguous landmarks
by sampling from p(x |O) where O ⊆ Y instead of from
p(x |y).

2.3 Localization in the RoboCup Standard Platform League

Sensor resetting was first introduced in the context of the
RoboCup SPL (Lenser and Veloso 2000), in which the Sony
AIBOs competed on a field with six unique, unambigu-
ous landmarks and color-coded goals. Since landmarks are
detected with color-segmented vision, the robots are partic-
ularly prone to erroneous or even false measurements. Upon
detecting one landmark, p(x |y) places particles at random
in a circle around that landmark, since the distance to the
landmark are known, but the global angle is not. If two land-
marks are detected in a single frame the pose is triangulated
(Lenser and Veloso 2000). As the league progressed, teams
continued to incorporate more information into their sensor
models, including negative information (not seeing a land-
mark) (Hoffman et al. 2005; Odakura et al. 2009), and lines
and corners on the field (Röfer and Jungel 2003; Schulz et
al. 2011).

At the same time, the number of unique landmarks on
the field has steadily decreased as localization algorithms
have improved. In 2008 the RoboCup SPL switched from
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Fig. 2 a In 2000, the SPL played soccer with the AIBOs on a field with
six unique color coded beacons on the sidelines. b The league has now
moved to the NAO humanoid robots on a larger field without beacons

the AIBOs to the NAO humanoid robots (Iocchi et al. 2009).
The field has no beacons on the sidelines, and only contains
the field lines and corners, which are highly ambiguous, and
the color coded goals (see Fig. 2). When close to the goal,
the robot cannot see the top goal bar, and the goal posts are
also ambiguous.

Teams in the RoboCup SPL currently use variants of SRL
(Burchardt et al. 2011; Hester and Stone 2008; Kaplan et al.
2006), Kalman filters (Whelan et al. 2011), or a combina-
tion of the two (Ratter et al. 2010; Jochmann et al. 2012).
These algorithms mainly include ambiguous observations
in the sensor model p(y|x), but only make limited use of
ambiguous landmarks for sensor resetting (i.e., only reset-
ting from goal posts).

2.4 Active localization

A final challenge of localizing with visual landmarks is incor-
porating active perception into localization—the robot can
decide what to look at. Researchers have addressed this prob-
lem for choosing a location to explore for grid-based local-
ization methods (Fox et al. 1998) and for multiple Kalman
filters (Jensfelt and Kristensen 2001), with selecting a target
for a stereo camera (Porta et al. 2005) or tiltable laser (Küm-
merle et al. 2008), and even to select actions for localizing a
robot with a bump sensor (Erickson et al. 2008).

In robot soccer, robots must simultaneously localize and
track the ball. The robot may even have multiple hypotheses
of the ball’s location to track (Rybski and Veloso 2009), some
acquired from shared information (Vail and Veloso 2003).
Heuristics based on the time since the ball or landmarks
were seen and the uncertainty of localization are often used
to determine whether to look at the ball or at landmarks, in
order to acquire the perception necessary to actuate, to main-
tain a model of the world, and to localize (Winner and Veloso
2000; Roth et al. 2003; Coltin et al. 2010). When observing
landmarks, RoboCup teams commonly use fixed head scan-
ning motions or stare at each in a sequence of landmarks.
Another approach is to make the observations expected to

reduce the entropy the most in the underlying localization
particle distribution (Seekircher et al. 2011).

3 Multi-observation sensor resetting

We have mentioned that SRL has shortcomings stemming
from the fact that SRL generates hypotheses from p(x |y),
where y is the observation from a single visual frame. SRL
considers only the most recent observation y, but ignores
every other frame in the history of observations Y .

We introduce the MOSR algorithm, based on SRL. Rather
than placing new particles by sampling from p(x |y), MOSR
samples from p(x |O), where O ⊆ Y . Algorithm 1 presents
the MOSR algorithm, which takes the set of particles and
their weights, observations, and controls as input.

Algorithm 1 mosr(p, w, y, u): The MOSR localization
algorithm for a single scan (T, T + �T ). ν, αl and αs are
constants controlling the number of particles sensor resetting
is applied to. N is the number of particles, pi are the particle
poses, wi are the particle weights, y is the observation, and
u is the control.
1: O ← ∅
2: for t = T to T +�T do
3: for i = 1 to N do
4: pi ← motion_predict(pi , ut )

5: wi ← vision_update(pi , wi , yt )

6: end for
7: pold ← p, wold ← w

8: w̄←∑
wi

9: w̄l ← w̄l + αl (w̄ − w̄l)

10: w̄s ← w̄s + αs(w̄ − w̄s)

11: preset ← max{0, 1− ν w̄s
w̄l
}

12: for i = 1 to N do
13: (pi , wi )← sample pold

i from pold w/ prob. ∝ wold
i

14: end for
15: O ← odometry_update(O, ut )

16: O ← O ∪ {y}
17: end for
18: for i = 1 to N do
19: if random() < preset then
20: pi ← mo_hypothesis(O)

21: else
22: (pi , wi )← sample pold

i from pold w/ prob. ∝ wold
i

23: end if
24: end for

O is the set of observations made during a scan, which is
an interval of time that may be delineated by a fixed interval,
a set number of observations, or the robot’s behavior. Instead
of performing sensor resetting after every frame, as in SRL,
MOSR performs sensor resetting only after a scan completes.
By considering part of the history of observations, MOSR
places fewer, more accurate hypotheses that are consistent
with multiple observations. MOSR disambiguates multiple
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ambiguous observations, and effectively filters out false pos-
itives.

MOSR is most effective if p(x |O) is highly peaked, mean-
ing that the robot observes a set of disambiguating observa-
tions during the scan. In practice, the duration of a scan is
tightly coupled with the robot’s behaviors and actions. The
scan may continue while the robot moves to actively perceive
multiple landmarks. Alternatively, if the robot is required
to focus on its task, the scan may end when either a fixed
number of observations is made or a set time elapses. Each
scan should detect sufficient observations to disambiguate
the robot’s pose. Additional observations add redundancy to
reduce the effect of errors and false positives, but come at a
cost in the robot’s time.

In Algorithm 1, as the robot senses the world, it applies
predict (line 4), update (line 5), and resampling (lines 12–
14) steps identical to standard MCL. The algorithm also
updates the old observations in O with odometry informa-
tion (line 15) to be relative to the robot’s current pose, and
adds new observations to O (line 16). We assume that the
odometry error accumulated during a scan is small enough
to be ignored. The effect of odometry error is mitigated
by the use of multiple observations, including more recent
ones.

When a scan completes, an extra iteration of the resam-
pling step is performed (lines 18–24). Sensor resetting is per-
formed in this phase using all of the observations from the
scan (lines 19–20), sampling from p(x |O), not p(x |y). The
value of preset is computed as in Adaptive-MCL (Gutmann
and Fox 2002) (lines 7–11).

We expect the robot to add more than two observations
to O to over the course of a scan, so a new algorithm is
required to sample from p(x |O). Algorithm 2 introduces the
function mo_hypothesiswhich generates a pose hypoth-
esis from multiple observations, using a method similar to
RANSAC (Fischler and Bolles 1981). The algorithm has four
steps:

1. Sample observations, line 3. Sample a subset D of obser-
vations from O that is only finitely ambiguous, meaning
that the observations generate a finite number of possible
pose hypotheses.

2. Generate hypotheses, line 4. Generate a set H containing
all the (finitely many) poses consistent with the observa-
tions in D.

3. Acceptance test, lines 5–10. Test each hypothesis h ∈ H
against every observation in O to determine if they are
compatible. An observation o ∈ O is considered com-
patible with an observation if the sensor model p(o|h)

exceeds a threshold (e.g., a set percentile of the sensor
noise model). Record the fraction of compatible observa-
tions, and throw out hypotheses for which the fraction of

Algorithm 2 mo_hypothesis(O): Generate a pose
hypothesis based on sensing of multiple observations.
1: for i = 1 to K do
2: V ← ∅
3: D← random finitely disambiguating observations from O
4: H ← generate_hypotheses(D)
5: for h ∈ H do
6: rh ← acceptance_rate(h, O)

7: if rh ≥ M I N_ACC E PT ANC E_R AT E then
8: V ← V ∪ h
9: end if
10: end for
11: if |V | > 0 then
12: return sample h from V w. prob/ prop. to rh
13: end if
14: end for
15: return failure

compatible observations falls below a threshold.2 If no
hypotheses are valid, return to step 1 and select a different
subset D up to K times before declaring failure.

4. Hypothesis selection, lines 11–13. Finally, choose a valid
hypothesis with probability proportional to the fraction
of observations that hypothesis agreed with. In the case
that the multiple observations observed in the scan are
still ambiguous, this step generates particles for all of the
valid hypotheses.

MOSR uses a randomly sampled subset of the observations
in O to generate hypotheses, but it uses every observation
made during the scan to confirm each hypothesis’ validity. It
is this acceptance test which empowers MOSR’s resilience
to false positives.

MOSR addresses each of the issues previously discussed
as limitations of standard sensor resetting:

1. Exploration versus exploitation. MOSR only samples at
the end of a scan, generating fewer but more informed
hypotheses. MOSR’s directed exploration enables further
exploitation of strong hypotheses.

2. Ambiguous landmarks. MOSR generates hypotheses
from ambiguous observations.

3. False positives. MOSR’s acceptance test throws out
inconsistent hypotheses, making it robust to false pos-
itives.

Next, we discuss as an example how MOSR is applied to the
domain of a RoboCup SPL soccer field.

2 This test is sometimes called the “individual compatibility test” as
it does not consider joint associations between observations, and may
accept two mutually contradictory observations. A joint compatibility
test could be conducted instead at additional computational cost (Neira
and Tardós 2001).
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Fig. 3 a The NAO humanoid robot stands on the field near the yellow
goal. b, c Two images from the robot’s camera with the head at different
angles. The field of view is limited, and the robot cannot see the top bar
to determine whether it sees a left or a right post

4 MOSR for RoboCup SPL soccer

We deployed MOSR localization on the NAO robots on the
RoboCup SPL soccer field. In this section, we discuss the
specifics of MOSR localization as it is applied to the land-
marks of the SPL soccer field.

4.1 The SPL setup

The RoboCup SPL plays on the Aldebaran NAO humanoid
robots. The NAO senses with two cameras: one on its fore-
head and one in its chin, although so far only one camera
may be used at a time. The field of view of the camera is very
limited, as exemplified in Fig. 3. The NAO can freely turn its
head to look at landmarks.

The NAOs play soccer on a playing field of fixed size (see
Fig. 4). The visual landmarks on the field include goal posts,
corners, the center circle and lines. Our robot vision system,
CMVision (Bruce et al. 2000) can distinguish between yellow
and blue goal posts for each team, as well as distinguish
between the left and right goal posts if the robot sees the top
bar of the goal. However, if the robot does not see the top
bar of the goal, the post cannot be identified as on the left or
right side, and it is classified as an ambiguous unknown goal
post.

The remaining landmarks observed on the field include
the white lines marking the borders of the field, the cen-
ter line and circle, and the goal boxes. Our vision system
detects line segments, as well as the intersection of line seg-
ments at corners and the center circle. There are three types of
corners:

– 8 ‘L’ corners mark the corners of the field and goal boxes,

Fig. 4 The field that the SPL is played on. Robots observe two color-
coded goals, and ambiguous field lines and corners

– 6 ‘T’ corners mark the intersections of the field border
with the goal boxes and center line, and

– 2 ’X’ corners denote the penalty kickoff points on both
halves of the field.

Critically, the majority of the field markers are ambigu-
ous and could actually correspond to multiple landmarks. A
detected unknown goal post could be one of two landmarks
(namely, the left or right post), a detected corner refers to
between 2 and 8 landmarks, and an observed line could be
paired with nearly any line segment on the field.

4.2 Monte Carlo localization for RoboCup SPL

Our team’s previous localization algorithm used SRL
(Liemhetcharat and Coltin 2010). It also uses several other
extensions to MCL, including low variance resampling. We
localize with 50 particles, which we have found in practice
allows the filter to localize successfully when run at 30 Hz.

In practice, robot soccer behaviors typically play soccer
using a single pose estimate rather than the full probability
distribution modeled by the particle filter. The localization
module outputs a final pose for the use of the behaviors by
first selecting the highest weighted particle within a fixed
neighborhood of our previous pose estimate. This helps pre-
vent the pose estimate from jumping across the field based
on individual observations. To compute the final pose, we
take the weighted mean of particles within a set radius of
the selected particle. If the weight of all such particles is
smaller than a fixed threshold, meaning the robot’s pose is
very uncertain, we instead begin with the particle of highest
global weight, allowing the robot’s pose estimate to jump
(Liemhetcharat and Coltin 2010).

Our motion model uses the standard technique of sampling
from a Gaussian for both translation and angular odometry.
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As a humanoid robot with biped motion, the NAO’s odometry
is exceptionally poor. Furthermore, there are significant per-
robot differences in how each robot moves. The robots are
not capable of localizing for any significant time purely based
on odometry. The use of visual observations is essential to
accurately localize.

The sensor model, p(y|x), weights each particle based on
the likelihood of observing the landmarks y from the pose
x . We compute p(y|x) as a product of each individual land-
mark’s observation likelihood.

p(y|x) =
∏
yi∈y

p(yi |x)

To compute p(yi |x) for ambiguous landmarks, we must
first match the observation yi to a landmark on the field.
For ambiguous goal posts, we compute the observation like-
lihood of both goal posts, and take whichever post (left or
right) is more likely.

But for lines and corners, we would need to compute up to
many likelihoods, one for each line on the field. This is com-
putationally expensive, especially for a common operation
that must be performed every single frame on every single
particle. Instead, we use a decision tree to match corner and
line observations to specific corner or line landmarks, and
only compute a single likelihood function.

Each individual landmark observation’s likelihood is a
product of Gaussians: one for the observed distance to the
robot, one for the angle to the robot, and, for lines and cor-
ners, one for the angle of the corner or line relative to the
robot. Let d be the observed distance to the landmark yi , θ the
relative angle to the landmark, and φ, for lines and corners,
the angle of the landmark relative to the robot. If μd , μθ , and
μφ give the expected pose of the matching landmark, then

p(yi |x)= f (d;μd , σ 2
d (d)) f (θ;μθ , σ

2
θ (d)) f (φ;μφ, σ 2

φ (d))

where f (x;μ, σ 2) is the probability density function of a
Gaussian distribution. For goal posts and the center circle,
the term involving φ is omitted because the vision system
does not detect the orientation of these landmarks.

The variances of the normal distributions are linear func-
tions of the distance to the landmark: more distant landmarks
give less accurate measurements and so the sensor model
expects a higher variance. The change in variance is large
for d, since the accuracy of distance measurements decrease
drastically with distance as pixelation effects increase, but
minor with θ and φ.

4.3 Standard sensor resetting in the RoboCup SPL

In standard SRL as it is commonly applied to robot soccer,
the sensor resetting only places hypotheses based on goal
posts, the least ambiguous landmarks. Corners and lines are
not used. If one unambiguous goal post is seen, the possible

Fig. 5 The circles surrounding the two goal posts indicate the pos-
sible robot poses given observations of the left and right goal posts
(or one observation of an “unknown” goal post). Possible robot poses
from sensor resetting are drawn on the circles. The larger pose at the
circles’ intersection represents the hypothesis generated by sensor reset-
ting from both goal posts

poses for the robot form a circle around that goal post, and
new pose hypotheses are selected uniformly at random. For
an unknown goal post where the top bar is not visible, a
random post is selected to place the new hypothesis around.
If two goal posts are seen in a single frame, the robot’s pose
is triangulated (see Fig. 5).

Noise is added to the observations before generating a
new hypothesis. The noise is proportional to the expected
observation noise in the sensor model, and increases with
distance. The addition of noise encourages diversity of par-
ticles by placing them in slightly different poses.

Triangulating the robot’s pose from two goal posts seems
straightforward, but how this is done is important. Let l1 and
l2 be the global positions of the two goal posts, d1 and d2

be the observed distance to the posts, and θ1 and θ2 be the
observed angle from the robot to the posts (see Fig. 6a). We
solve the following equations for the pose p of the robot:

l1 =
[

px

py

]
+ d1

[
sin pθ + θ1

cos pθ + θ1

]

l2 =
[

px

py

]
+ d2

[
sin pθ + θ2

cos pθ + θ2

]

Note that we have four equations and three unknowns, an
overconstrained system.

The simplest way to solve this system of equations is to
find the intersection of the circles around the goal posts with
radii d1 and d2, place the robot at the intersection of the cir-
cles, and match up the robot’s angle with one of the goal
posts (see Fig. 6b). With this method, the distance to the goal
posts matches the observations, but the angle to one of the
goal posts will be incorrect. This is problematic, because the
angle measurements are accurate, but the distance measure-
ments are sensitive to pixelation and color calibration issues
and are much less precise. In certain cases, this may lead to
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(a) (b) (c)

Fig. 6 a The robot observes the two blue goal posts at angles θ1 and
θ2, and distances d1 and d2. Distance d2 is inaccurate due to lighting
changes. b Sensor resetting based on distances places the robot in the
wrong pose relative to the posts, at the intersection of the two circles.
c Sensor resetting from angular observations places the hypothesis in a
position to make a valid shot on goal, on the circle of radius r

incorrect hypotheses which cause the robot to miss the goal
when shooting.

Instead, we first solve so that the angles to the goal posts
are correct. It follows from the law of sines that the robot
falls on the circumcircle of radius r = g/(2 sin θ) including
the two goal post observations, where g is the length of the
goal. The hypothesis is then placed at the intersection of this
circumcircle and the circle around the closer goal post with
the radius as the observed distance (see Fig. 6c). With this
method, the robot is positioned to have the correct angle to
both goal posts, which means it will shoot in the direction of
the goal, even if its distance is incorrect.

4.4 MOSR for the RoboCup SPL soccer field

Two steps of the MOSR algorithm are domain-specific:
selecting disambiguating observations, and generating
hypotheses from these observations. For robot soccer, we
consider two types of disambiguating observations: a single
corner observation, which corresponds to no more than 8 cor-
ner landmarks, or 2 observations of goal posts or the center
circle. In the latter case, we ensure with the use of thresholds
that we do not select two observations of the same land-
mark. Lines observations are not added to O to generate new
hypotheses, but are included in the sensor model.

Given an observation of a corner at distance d, angle to
the robot θ , and orientation φ, paired with a matching field
landmark (cx , cy, cθ ), the generated hypothesis (px , py, pθ )

is given by the system of equations
[

px

py

]
=

[
cx

cy

]
+ d

[
cos φ

sin φ

]

pθ = cθ + φ + π + θ.

For two disambiguating landmarks (goal posts and/or the
center circle) we generate a hypothesis in the same way as
standard sensor resetting, maintaining the angles to the land-
marks. We again add noise to the observations before gener-
ating hypotheses to encourage diversity.

4.5 Active vision in SPL soccer

Our robots alternate between looking at the ball and looking
at landmarks on the field to localize, depending on the state
of the game and the robot’s uncertainty. We have introduced
three different types of scans:

1. A horizontal scan, where the robot moves its head from
side to side to observe the goal posts.

2. A landmark scan, where the robot forms a list of every
landmark that should be visible from its estimated current
pose and looks at each in turn.

3. An entropy-based scan, similar to the landmark scan, but
the robot only looks at the three landmarks expected to
reduce the entropy of the particles the most (Seekircher
et al. 2011). Looking at three landmarks is typically suffi-
cient for MOSR to disambiguate the robot’s pose. Addi-
tional, non-targeted landmarks are often detected during
the scan as well.

The landmark scan and entropy-based scan are faster and
more informative since the robot looks directly at landmarks,
but they assume that the robot already has some idea of its
pose so it knows where the landmarks are. Thus, we initially
use the horizontal scan to roughly determine the robot’s pose
and then switch to one of the other scans. The robot may
move while scanning.

We prefer that the robot looks at the ball as much as pos-
sible so that we do not lose sight of it. However, the robot
should ideally be well-localized when it arrives at the ball,
so it can simply kick immediately without scanning, before
the opponents come and block the shot.

Our approach is to have localization report one of three
states to the robot’s behaviors, indicators of increasing sever-
ity: first, whether localization is confident that it is Localized;
second, whether it is Suspicious of its own correctness; and
third, whether it is Lost. If Suspicious, the robot behaviors
will perform a scan of the landmarks as soon as possible.
If Lost, the robot halts its current behavior and searches for
landmarks.

Figure 7 illustrates the finite state machine transitions
between these three states. Since the robot’s odometry is so
poor, localization becomes Suspicious after traveling a fixed
distance: either moving 2m or turning 2π radians, whichever
comes first. Upon completing a MOSR scan where the robot
made at least five observations and where the final pose
passes the MOSR acceptance test, the state transitions to
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Fig. 7 The finite state machine for transitioning among three localiza-
tion behavioral states, Localized, Suspicious, and Lost, as a function
of the variance of the localization particles σ 2, the robot’s odometry
information, and the occurrence of successful MOSR scans

Localized. The NAO becomes Lost whenever the variance
of the particle filter’s particles exceeds a threshold.

5 Experimental results

To test MOSR, we compared it directly with SRL (Lenser
and Veloso 2000). The MOSR implementation is identical
to the SRL implementation in every respect except for when
and how sensor resetting is performed. SRL uses Adaptive-
MCL’s method of choosing the probability of sensor reset-
ting to reduce the effect of false positives (Gutmann and Fox
2002).

We performed two sets of experiments to validate the
effectiveness of MOSR. Namely, in the first set of experi-
ments, we measured the localization accuracy over time as
the robot moved. In the second set, we studied the robot’s

effectiveness at a task which is highly dependent on local-
ization: moving to a specific position.

5.1 MOSR localization over time

For the first set of experiments, a NAO robot moved on half
of the soccer field. A pattern attached to the robot’s head was
monitored by an overhead camera using SSL-Vision (Zick-
ler et al. 2010). The robot’s state and the pose information
from SSL-Vision were recorded in a log file for ground truth.
Then, both localization algorithms were run on the log file a
thousand times, and for each frame the average error of the
final localization pose output by the localization module and
the standard deviation of the particles from this final pose
were computed.

For the first experiment, the robot was placed on the ’X’
corner facing the yellow goal and continuously performed
a horizontal scan. The particle filter was initialized with the
particles spread throughout the field uniformly at random.
In this experiment, the error from standard sensor reset-
ting drops earlier when sensor resetting occurs around sin-
gle posts, but after the scan completes, MOSR localization’s
error drops even lower and remains there until standard sen-
sor resetting eventually begins to catch up (see Fig. 8). MOSR
takes slightly longer to reach initial convergence since it waits
for a scan to complete before performing sensor resetting.

Next, we chose to simulate the “blue jeans problem” in
the SPL. Blue jeans worn by spectators may be consistently
misidentified as goal posts if no heuristics are used to discard
them. We use the same experimental setup as before, scan-
ning in place with a horizontal scan, but place an actual blue
goal post on the side of the field to introduce “false” pos-
itives into vision. Standard sensor resetting jumps particles
to the other end of the field whenever it sees the blue goal

Fig. 8 Localization error from
repeatedly horizontally scanning
while standing still on a
standard field
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Fig. 9 Localization error with
an extra, “fake” blue goal post
detected at times t = 5, 11, 17,
and 23, as indicated by the
spikes in standard sensor
resetting error

post. MOSR initially transfers some weight to the other side
of the field after seeing a blue goal post, but after the initial
hypotheses die out, the blue goal post does not cause local-
ization to jump (see Fig. 9). MOSR does not generate new
hypotheses using the goal post because it requires multiple
observations to reset from, and the location of the fake goal
post is inconsistent with the observations of the two yellow
posts.

We also tested MOSR while the robot is in motion, both
while constantly performing the landmark scan and while
performing the entropy-based scan, with the horizontal scan
as a fallback when the robot is lost. The robot repeatedly
chose a random location on one half of the field and moved
to it. Figure 10 shows the results for the landmark scan, and
Fig. 11 shows the results for the entropy-based scan. MOSR
converges to the neighborhood of the robot’s true pose faster
and tends to remain closer to the true pose than standard
sensor resetting. Furthermore, the particles representing the
distribution of poses have a smaller variance with MOSR,
since fewer hypotheses invalidated by other nearby observa-
tions are generated.

5.2 Task-focused MOSR localization

For the second set of experiments, we tested MOSR’s effec-
tiveness in scenarios similar to what would be encountered in
games of robot soccer. Rather than monitoring the accuracy
of localization as the robot moves, we instead determine the
robot’s effectiveness at reaching a target position quickly and
accurately with different localization algorithms.

For each experiment, we repeat 10 trials in which the robot
heads from a fixed starting pose to a destination pose. The
particle filters begin initialized uniformly at random. Upon
reaching the destination, the robot waits 3 s to make sure its

position has converged, and declares that it has arrived at its
destination. We measure the time the robot takes to reach the
destination, along with the final error in angle and distance.
If the robot either leaves the field (in which case it would be
penalized during an actual game) or takes longer than 3 min
to reach the destination, the trial is marked as a failure. Unless
otherwise stated, for the experiments in this section the robot
uses the entropy-based scan.

We tested the localization algorithms on two scenarios:

Scenario 1 The robot heads from the side of the field to
the center of the goal box facing downfield (see Fig. 12).
This is the action a goalie must take in the game to return
to guarding the goal after it has been penalized, and is
particularly difficult when the robot is close to the goal
and the objects it can see in its field of view are limited.
It cannot see the crossbar from the goalie box to deter-
mine which goal posts it detects, so all observations are
ambiguous.
Scenario 2 The robot moves from a corner of the field
to the edge of the center circle (see Fig. 12), an action
the robot must take at the start of each half of the game
to move to its initial position. This scenario is difficult
at the beginning, when the robot can only see a single
(ambiguous) nearby goal post. These experiments test the
effectiveness of the localization algorithms for scenarios
that occur in an actual game, and measure the end result
of the robot’s behavior rather than directly measuring the
accuracy of localization.

Using these scenarios, we compare MOSR to SRL and
MCL, compare active vision algorithms, and show MOSR’s
effectiveness in response to false positives from vision. Fur-
thermore, we demonstrate MOSR’s ability to localize in dif-
ferent field layouts and environments.
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Fig. 10 a Mean localization
error and b the mean standard
deviation of the particle
distribution for the landmark
scan while the robot is in motion

(b)

(a)

5.2.1 Comparing MOSR, SRL, and MCL

For the first experiment, we compared Multi Observation
Sensor Resetting to both standard sensor resetting and stan-
dard Monte Carlo Localization using the entropy-based scan.
The implementations were identical, aside from how and if
sensor resetting is performed. The standard sensor resetting
algorithm sampled from p(x |y) for every frame with obser-
vations, and standard MCL never did. Standard MCL chose
5 % of the particles uniformly at random from the entire field
on every frame where a landmark was detected, so that the
particle filter would be able to eventually converge and solve
the kidnapped robot problem.

Table 1 presents the results. For both scenarios, standard
MCL performed poorly, succeeding in under half of the trials.
In Scenario 1, four of the seven failures were due to leaving
the field, and three were due to wandering for more than
3 min without reaching the destination. This scenario was
particularly challenging because directly in front of the goal,
which is the final destination, the robot cannot see the goal’s
crossbar. The robot thus cannot determine whether it sees a
left or right goal post, and all its observations are ambiguous.
MCL may converge to an incorrect pose that agrees with
the one post the robot can see, and then either walk to the
other side of the goal or walk inside of the goal, leaving the
field.
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Fig. 11 a Mean localization
error and b the mean standard
deviation of the particle
distribution for the
entropy-based scan while the
robot is in motion. At the large
spike in the error for standard
sensor resetting, a false positive
was detected outside the field

(b)

(a)

For Scenario 2, the robot initially only sees an ambigu-
ous blue goal post and two distant yellow posts (which are
weighted low in the sensor model due to their distance). For
four of the trials, the robot converged to the wrong pose ini-
tially from the ambiguous blue goal post, and proceeded to
leave the field. When standard MCL did complete its task, it
was largely successful at arriving in the correct pose. How-
ever, because of increased convergence time and hesitation,
standard MCL took significantly longer than SRL or MOSR
to arrive.

SRL succeeded every time at Scenario 2. Sampling from
p(x |y) allowed SRL to focus more particles in the area made
feasible by the ambiguous goal post. The incorrect hypothe-
ses were then eliminated by observing the yellow posts. For

Scenario 1, however, SRL failed four times by leaving the
field. As with MCL, this occurred because the robot only
sighted ambiguous observations near the goal. SRL would
place hypotheses that assumed the robot saw either the left
goal post or the right post, and occasionally the robot would
converge to the wrong pose when only one of the posts was
in its visual range. The robot would then either wander back
and forth in front of the goal once or twice before correcting
and heading to the correct position, or leave the field before
it could do so. When SRL did succeed for Scenario 1, the
robot finished its task significantly faster than with MCL, in
part due to a speedy initial convergence and less hesitation
at the goal itself. For Scenario 2, SRL was slightly faster as
well.
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Fig. 12 The experimental setup, showing starting and ending poses for
the two scenarios, the position of the fake goal post, and the alternate
field layout

Table 1 MOSR, SRL and standard MCL results for two scenarios

Method Failures Error, cm
(μ± σ )

Error, ◦
(μ± σ )

Time, s
(μ± σ )

Scenario 1

MCL 7/10 19.7±19.6 26.7±19.1 126±57

SRL 4/10 29.5±38.5 15±13.8 53±20

MOSR 0/10 17.4±7.6 5.1±3.7 32±3

Scenario 2

MCL 5/10 34.6±41.6 15.2±6.6 65±26

SRL 0/10 27.4±27.4 9.8±11.3 53±25

MOSR 0/10 10.4±5.3 6.7±3.8 32±7

Mean errors and times include only successful trials

MOSR has little difficulty dealing with the ambiguous
landmarks by the goal in Scenario 1, since it uses ambiguous
goal posts and corners to place new particles only in the
neighborhood of poses supported by multiple observations.
For Scenario 2, MOSR quickly converged to the robot’s pose
after a single scan of the ambiguous blue goal posts and the
yellow goal, and proceeded to the kickoff position. MOSR
succeeded in every trial, and the robot, on average, arrived
at the final pose in nearly half the time with MOSR that
it took with standard SRL. Furthermore, the variance of the
error and arrival time were significantly reduced with MOSR,
indicating that the algorithm is more consistent.

5.2.2 Comparing active localization methods

In this experiment, we aimed to test the importance of active
localization methods and their effect on task performance.
We tested both having the robot repeatedly perform a side to
side scan, and looking at all landmarks predicted to be visible,
as in previous experiments. Table 2 shows the results of these

Table 2 Active localization methods for Scenario 1

Scan Failures Error, cm
(μ± σ )

Error, ◦
(μ± σ )

Time, s
(μ± σ )

Horizontal 3/10 20.7±14.8 29.0±22.8 37±10

Landmark 0/10 21.9±8.3 12.4±11.9 31±3

Entropy 0/10 17.4±7.6 5.1±3.7 32±3

tests with MOSR localization in Scenario 1, and reprints the
results from the previous test which used the entropy-based
scan.

The horizontal scan failed three of the 10 trials due to
leaving the field (each time, the robot ran into a goal post and
fell). When the algorithm did succeed, there were three trials
with angular error greater than 40◦, and another trial with
displacement greater than 50 cm. This indicates that actively
perceiving objects, particularly the corners (which the side-
to-side scan does not detect) is important for localization.

The landmark and entropy scans succeeded in reach-
ing the destination every time. Furthermore, there was lit-
tle difference in the error or arrival time for these two
active vision methods. In this particular case, looking at the
object expected to decrease entropy the most gives a negli-
gible improvement over looking at every visible landmark
in sequence. However, we do not expect this to hold in the
general case.

5.2.3 Localizing with false positives

For the next experiment, we examined how localization algo-
rithms fare in the presence of false positives from vision.
These are common when, for example, someone with blue
jeans stands by the side of the field and is detected as a blue
goal post. For this experiment, we removed the blue goal
from the field and place one post by the side of the field on
the other half, and covered up the second post (see Fig. 12).
We tested both MOSR and SRL for Scenario 1 with this
setup. Table 3 shows the results.

SRL failed in seven out of 10 trials: six due to leaving the
field, and one due to taking more than 3 min. When the robot
saw the blue goal post, sensor resetting would make the pose
estimate jump to the wrong position. Upon seeing the yellow
goal posts again, the robot would correct itself. However, the
robot would hesitate, moving back and forth, and tended to

Table 3 Localization methods for Scenario 1 with false goal posts

Method Failures Error, cm
(μ± σ )

Error, ◦
(μ± σ )

Time, s
(μ± σ )

SRL 7/10 17.3±4.7 5.7±3.7 115±3

MOSR 0/10 21.9±8.3 12.4±11.9 31±3
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Table 4 MOSR localization, Scenario 1, alternate field layout

Failures Error, cm (μ± σ ) Error, ◦ (μ± σ ) Time, s (μ± σ )

1/10 14.4±6.4 10.1±12.3 38±5

eventually leave the field. In the three trials that succeeded,
the robot happened to approach from an angle such that it did
not see the blue goal post upon arriving at the final position.
In these cases, the task took nearly four times as long as it
did with MOSR.

MOSR succeeded every time, and the effects of the false
goal post were hardly noticeable. There was no significant
difference in the time it took the robot to arrive at the des-
tination with and without the additional goal post. This is
because MOSR only performs sensor resetting based on a
landmark if that landmark is in agreement with the other
landmarks the robot sees. So the blue goal post was used to
update the weights of the particles, but is effectively filtered
out when performing sensor resetting by all the observations
it conflicts with.

5.2.4 Localizing with another field layout

For the final experiment, to demonstrate the general applica-
bility of MOSR aside from this specific domain, we changed
the layout of the field. The blue goal was moved to the side-
line at midfield, and the yellow goal was shifted to the corner
of the field. The robot’s field map was updated to account for
these changes. Table 4 shows the results.

The robot successfully arrived at its destination in nine
out of ten trials. It took slightly longer with the alternate field
layout as well. This is because, if the robot happens to turn
left from its initial position for whatever reason, the robot
cannot see the yellow goal and has no landmark to correct
itself with (the robot only sees the corners if it knows its
position, otherwise if it does not see the goals it repeatedly
performs the side-to-side scan). For the time the robot did
not succeed, it ended up facing towards the left, most likely
due to poor odometry. It continued walking in that direction
without detecting any landmarks, and eventually left the field.
The robot successfully completed nine out of 10 tasks in a
previously untested field layout.

5.3 MOSR’s computational cost

To compare the computational cost of MOSR with that of
SRL, we conducted 20 trial runs of Scenario 2 in simulation
on an Intel 2.53 GHz i5 CPU. We recorded the time spent for
the localization algorithm that runs every frame (Algorithm 1,
lines 3–16) and the time spent in each sensor resetting phase
(Algorithm 1, lines 18–24) separately. Table 5 presents the
results.

Table 5 Per frame computation times for SRL and MOSR phases

Algorithm Mean time (ms) Max time (ms)

SRL 0.224 ± 0.172 1.372

MOSR, w/o SR 0.053 ± 0.034 0.363

MOSR, SR only 0.758 ± 1.156 6.45

MOSR, both phases 0.070 ± 0.211 6.517

Both algorithms are fast enough to run in real-time on the
robot (and likely have room for further optimization). An
average frame of MOSR runs in approximately a third the
time of SRL, since MOSR does not need to perform sensor
resetting every frame. However, when MOSR does perform
its sensor resetting phase, there is a large spike in computing
time. The robot is still able to localize at full frame rates
without delay, and has computation time remaining for other
perception and planning tasks.

6 Conclusion

We have introduced MOSR localization, which generates
new localization hypotheses from multiple visual obser-
vations collected during a scan. MOSR localization con-
verges quickly and accurately by generating fewer but more
informed new hypotheses for sensor resetting from multi-
ple observations. By generating hypotheses from multiple
observations, MOSR is able to make use of ambiguous obser-
vations, and is robust to false positives. We demonstrated
MOSR’s effectiveness experimentally in the robot soccer
domain.

MOSR is applicable to any system where a robot needs to
localize based on ambiguous landmarks. To extend MOSR to
additional domains, MOSR requires a domain-specific scan-
ning behavior to seek out landmark observations, a domain-
specific function to select sets of finitely ambiguous observa-
tions, and a domain-specific function to generate hypotheses
from finitely ambiguous observation sets. Potential future
work on MOSR includes further optimization of MOSR’s
parameters (particularly the number of particles selected for
sensor resetting), and further study to guide the selection of
finitely disambiguating sets of observations in other domains.
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