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Abstract

We have deployed a fleet of robots that pickup and
deliver items requested by users in an office building.
Users specify time windows in which the items should
be picked up and delivered, and send in requests on-
line. Our goal is to form a schedule which picks up
and delivers the items as quickly as possible at the low-
est cost. We introduce an auction-based scheduling al-
gorithm which plans to transfer items between robots
to make deliveries more efficiently. The algorithm can
obey either hard or soft time constraints. We discuss
how to replan in response to newly requested items, can-
celled requests, delayed robots, and robot failures. We
demonstrate the effectiveness of our approach through
execution on robots, and examine the effect of transfers
on large simulated problems.

Introduction

We have deployed a set of robots, called CoBots, in an of-
fice building to satisfy user requests. Users visit a website
and ask the CoBots to pickup and deliver objects, such as
food, drinks, printouts, or mail, to deliver a message, or to
escort visitors between rooms. A centralized server assigns
tasks and a task ordering to each of the robots such that the
tasks are completed within user-specified time constraints.
The CoBots then navigate autonomously through the build-
ing to complete their assigned tasks (see Figure 1).

Our goal is to form schedules which complete as many
tasks as possible within the requested time windows at the
lowest cost in energy. In particular, we are interested in ex-
ploiting the presence of multiple robots to transfer items and
reduce the cost of delivery even further. Since requests come
in an online fashion and must be accepted or rejected imme-
diately so that the requester can be informed, the scheduling
algorithm must add new tasks to the schedule quickly.

Previously, the scheduler assigned tasks by optimally
solving a mixed integer program (MIP). Users made re-
quests online, and a new MIP was solved every time a re-
quest arrived. This is effective for small numbers of tasks,
on the order of two robots and fifteen tasks without trans-
fers. CoBot was deployed extensively using this approach
(Veloso et al. 2012). However, solving an MIP is infeasible

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: CoBot-1, CoBot-2 and CoBot-4 navigate through
the building to deliver items requested by users.

for large numbers of tasks and robots, and even more chal-
lenging with transfers.

In this paper, we introduce an auction mechanism to plan
online, time-constrained pickup and delivery schedules with
transfers. We replan in response to robot delays and failures.
We evaluate our approach experimentally on the CoBots and
on large simulated problem instances.

The main novel contributions of this work are:

e Planning for online pickup and delivery tasks with trans-
fers, under both hard and soft time constraints.

e Replanning with transfers in response to failures.
e Executing the planned schedules on physical robots.

We previously developed a two-approximate heuristic for
collecting and delivering a set of items to the same location
with transfers (Coltin and Veloso 2012). We also developed
three algorithms to plan for ridesharing problems with trans-
fers, in which riders offer passengers rides along their way
(Coltin and Veloso 2013b). In this work, we extend the auc-
tion algorithm we developed for ridesharing to obey time
constraints and to run online by revising existing schedules.

We first discuss related work, then define the online
pickup and delivery problem with time windows and trans-
fers more formally. Finally, we present an algorithm to plan
online with transfers, and share experimental results.



Related Work

We focus on the Pickup and Delivery Problem (PDP) in
which a set of vehicles pickup and deliver a set of items.
Offline PDPs are commonly solved optimally with branch
and bound methods, or approximately using various heuris-
tics and metaheuristics such as Tabu search, simulated an-
nealing, and genetic algorithms (Parragh, Doerner, and Hartl
2008). PDP requests may include time constraints, specified
as windows of time the request must be completed in.

In online pickup and delivery problems, such as schedul-
ing the CoBots, requests come in over time and are not
known beforehand. Existing static solutions can be ap-
plied to form new schedules from scratch as new informa-
tion arrives. Alternatively, heuristics (Popken 2006; Rubin-
stein, Smith, and Barbulescu 2012) or metaheuristics such
as Tabu search and simulated annealing (Gutenschwager,
Niklaus, and Vo3 2004) can be applied to extend and ad-
just schedules to incorporate new tasks. Some work has been
done on responding to dynamic events such as cancella-
tions, traffic delays, and accidents (Haghani and Jung 2005;
Xiang, Chu, and Chen 2008). Our approach is unique in that
we plan to transfer items, an idea that has not been explored
in online settings.

A few researchers have explored offline PDPs with trans-
fers, developing heuristics (Waisanen, Shah, and Dahleh
2007; Thangiah, Fergany, and Awan 2007) to solve the PDP
with transfers. Our work differs in that we plan online, con-
sider transfers that are not limited to a small, fixed number
of exchange points, and execute the schedules on robots.

Problem Definition

We are given a set of robots R. The robots navigate on a
map between locations L with a shortest path function sp, a
distance function d, and a travel time estimate ¢¢. Each robot
r € R has a starting location r;, € L and a maximum item
capacity r¢ that cannot be exceeded. Robots may optionally
have an ending point 7 € L if they must end at a final
destination such as a charging station.

The robots must deliver a set of items A/ that are not nec-
essarily known beforehand. Each item m € M has:

e An initial pickup location mp;

o A final dropoff location mp;

e An earliest possible pickup time mg; and
o A latest possible delivery time mg.

For simplification, we limit our discussion to pickup and
delivery tasks. However, our algorithm can be extended to
schedule tasks that take place at only a single location (such
as delivering a spoken message) simply by introducing a
pickup and delivery task with the same starting and ending
location.

The goal is to form a schedule that retrieves and delivers
each item m within the time window (mg, mg) at the low-
est possible cost in energy, corresponding to the lowest total
distance traveled by all of the robots. The time windows can
either be soft or hard. If the time windows are hard, then
they cannot be violated, and if all items canot be delivered

within the time windows they are rejected. With soft time
windows, items can be delivered after their time window has
ended, but at a cost. The objective then is to minimize an ob-
jective function that is the sum of a late delivery fee and the
energy cost. We use a linear late delivery fee, a product of
a constant K, and the time past the delivery window, but
other costs are viable with our planning approach.
Planned schedules include the following actions:

e Retrieve(m): Retrieve item m at pickup location mp.
e Deliver(m): Deliver item m to dropoff location m .
e TransferSend(m,r,loc): Transfer m to robot r at loc.
e TransferReceive(m,r,loc): Receive m from r at loc.

e Start(r): This is the first action performed by a robot, and
always occurs at rp,.

e End(r): This is the last action performed by each robot,
and occurs at 7. If the robot has no ending point, the lo-
cation is a special “wildcard location” which is zero units
of distance and time away from every other point.

Every action a has alocation ar,, a duration a p, and a sched-
uled starting execution time ap. Each robot r forms a plan
Tplan» @ sequence of these actions. A time cost for transfer-
ring items is represented by the duration of the TransferSend
and TransferReceive tasks. We assume without loss of gen-
erality that each plan always begins execution at time 0, and
adjust the time window constraints accordingly.
A valid schedule must have the following properties:

e Start and End actions begin and end every plan.

e A valid route delivers every item, consisting of a Retrieve
action, a possible sequence of TransferSend and Transfer-
Receive actions, and a Deliver action.

e Scheduled times are feasible such that for sequential ac-
tions a and b, by > ar + ap + tt(aL, bL)

e Transfer actions match such that each action
a = TransferSend(m,rqe,loc) by robot r matches
a b =TransferReceive(m,r1,loc) action in r5’s plan, and
vice-versa, where ar = by, ap = bp, and a;, = by,.

e Obey capacity constraints.

e Obey time windows. For a = Retrieve(m), ar > mg.
With hard windows, for a = Deliver(m), ar < mg.

e Robots deliver items they are already carrying in an
online, modified schedule. If robot r is already carrying
m, then r plans a =Retrieve(m) with ar = 0, ap = 0,
and ay, = rr, so the plan begins with r carrying m.

To execute a schedule, robots take the shortest path be-
tween action locations, and execute each action at the sched-
uled time. We can anticipate that the robots will not execute
every action at the scheduled time. Delays may occur due to
unexpected obstacles, crowded hallways, or robot failures.
In each scenarios the schedule should be revised.



Revising Schedules with Transfers

At a high level, our scheduling approach is to revise a sched-
ule with an auction. Robots place bids based on the addi-
tional cost that robot would incur to pick up and deliver an
item. This cost is determined by an insertion heuristic which
inserts the item pickup and delivery actions into the robot’s
schedule. Once an item is part of an existing schedule, robots
place bids to split that item’s route, inserting transfer points
to make the delivery at lower cost. Time constraints are
maintained with a Simple Temporal Network (STN). We
provide a top-down explanation, first discussing the high
level auction, then the insertion heuristic, and finally how
time constraints are maintained.

Auctioning Pickups, Deliveries and Transfers

Algorithm 1 shows the auction algorithm for scheduling
transfers with time constraints.

Algorithm 1 auction(R, M): Run an auction to form a
plan for the robots R to deliver items M. The robots begin
with partial schedules (which may consist of solely a Start
and End action).

1: Vr € R bids, < oo

2: Ym € M assigned,, < True iff m is in any plan

3: form € M do

4:  if not assigned,, then

5: Vr € Rbid(m,r, insert(rpan, m))

6: else

7 Vr1 € R s.t. rq transports m, 11 # ro tbid(m,
8: r1,T2, insert_transfer(m,ry,r2))

9: endif
10: end for

11: done < True
12: for r € R do
13:  if r has a valid bid then

14: Robot r wins bid of lowest cost, update the plan(s)
15: Cancel conflicting bids

16: done < False

17:  endif

18: end for

19: if not done then
20:  Repeat auction
21: end if

When the auction algorithm is first called, we begin with
an existing partial schedule. This partial schedule may in-
clude delivering other items which were scheduled earlier
from online scheduling. Even if no items are delivered, the
partial plans alway includes Start and End actions.

First, we check if each item is delivered in the existing
partial schedule (line 2). If not, each robot places a bid to
pick up and deliver that item by inserting a Retrieve and a
Deliver action into its plan without changing the rest of the
plan’s ordering (line 5). The value of the bid is the addi-
tional cost incurred by the vehicle, including both additional
distance travelled and the penalty for soft time window vio-
lations. If the item already is part of some robot’s plan, then
for each such robot, we attempt to insert transfer actions to

Retrieve Item 1 (2) Deliver Item 1
ﬁf{Robot 1 Start

A Transfer ltem 1

Original Find Transfer Add Transfer
Figure 2: Robot r’s pickup and delivery of item m is split
with robot s using insert_transfer. First, a trans-
fer point is chosen between two subsequent tasks on each
robot’s plan. Then the delivery point is removed from r’s
plan and inserted into s’s, lowering the delivery cost.

split its route with another vehicle (line 7). The cost is again
the additional cost in distance and time window violations
incurred by all of the robots. We explain the insert and
insert_transfer procedures in detail in the next sec-
tion.

Each robot is allowed to make one bid per round, the bid
of lowest cost. Once all the bids are placed, the winning bids
are evaluated (lines 11 - 17). Each winning bid is applied,
and the schedule is updated accordingly to insert either a
new item or a new transfer. Winning bids may conflict with
later bids, for example, if two robots bid on the same item,
or if two robots bid to transfer an item to or from the same
robot. Due to time constraints, more subtle conflicts may oc-
cur if a new introduced transfer causes an action on an en-
tirely different robot to be delayed. We detect these conflicts
using temporal networks as discussed later.

To further optimize the auction algorithm, we use caching
when possible so we do not need to reevaluate bids if the
relevant section of the schedule has not changed.

Insertion Heuristic

The insert(r,m) subroutine plans to deliver item m by
inserting the Retrieve(m) and Deliver(m) actions into
Tpian Without changing the ordering of the other actions in
Tplan- 1t does this by iterating over every possible insertion
point of the two actions that does not violate the capacity or
time constraints, returning the plan of lowest total cost, with
the cost including both total distance travelled and penalties
for violating soft time constraints.

Similarly, the insert_transfer(m,r,s) subroutine
inserts a transfer of an item m transported by robot r
to or from an additional robot s. Intuitively, this routine
splits robot r’s transport of m in half with robot s: robot
s takes responsibility for either m’s retrieval or delivery (ei-
ther a Retrieve or Deliver action, or a TransferReceive or
TransferSend action) and the item is exchanged midway.
See Figure 2 for an example of the expected output of the
insert_transfer algorithm.

First, the insert_transfer algorithm searches over
all subsequent pairs of actions a, b in 7145, and subsequent
actions ¢ and d in Spiqyn. A TransferReceive action will be
inserted between actions a and b, and a TransferSend ac-
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Figure 3: An example temporal network with two robots, three items and a single transfer. The feasible time windows for each
action are computed based on the item time windows and the edge durations.

tion will be inserted between actions ¢ and d if robot s will
make the delivery, or vice versa if robot s will pick up item
m originally in place of robot r. The inserted transfer point
must not violate the capacity and must be reachable without
violating any hard time constraints. The algorithm computes
a proposed exchange point from ay, by, cr, and dy. For
CoBot’s map, we simply find the first intersection point be-
tween the shortest path from ay, to by, and the shortest path
from ¢y, to dy. If no such point exists then no transfer is
made between these actions. More sophisticated methods of
choosing transfer points can be used for other maps.

Once a transfer point is found, the algorithm attempts to
have robot s pick up the item in place of robot r, then trans-
fer it to 7 for r’s original delivery. Next, it attempts to have
r pick up the item in the original location, then transfer it
to s, and have s deliver the item to 7’s original delivery lo-
cation. We iterate through every possible insertion point for
the new pickup or delivery point in 84y, and choose the
plan of lowest cost.

During this search, we check that the newly introduced
transfer does not induce a cycle of robots waiting for each
other by performing breadth first search on the graph formed
by the robot’s plans. In this graph, subsequent actions are
connected, and TransferReceive | TransferSend actions are
additionally connected to each other’s subsequent actions. If
one of the initial transfer actions is reached a second time in
the graph search a cycle exists and the schedule is rejected.

Although the insert_transfer routine runs in poly-
nomial time, it is still expensive for large problem instances.
To speed things up and reduce the number of considered
transfer points, we add a budget rp for each vehicle. If the
starting and ending points of item m’s portion of r’s route
are both further than rp units of distance from s’s planned
path, we disregard the potential transfer point. This limits
the consideration of transfer points that are likely not to be
cost-effective.

Maintaining Time Constraints

To maintain time constraints, we form a Simple Temporal
Network (Dechter, Meiri, and Pearl 1991). Every action in
the robots’ plans is a node in the network, associated with
a time window within which that action must occur. Each
edge is associated with a time window which bounds the
difference in time between two nodes. Every Start action

node has the time window [0, 0], and every End action has
the time window [0, o). The nodes for actions that transport
item m have the time window [mg, mg].

Every pair of subsequent actions a and b in a robot’s
plan have nodes linked with an edge with duration [ap +
d(ar,by,), 00), the minimum time in which a robot can com-
plete action a and then travel to the location of action b.
TransferSend actions are connected to the corresponding
TransferReceive actions with edges of duration [0, 0], ensur-
ing that both actions take place at the same time. Whenever
the schedule is modified, we solve the constraints in the tem-
poral network to find valid windows of time in which each
action could be executed without violating any constraints.
Figure 3 shows an example temporal network and solution.

With hard time constraints, when a new action or set of
actions is inserted into the schedule, we attempt to insert the
new actions into the temporal network to determine whether
or not the schedule remains feasible with the new actions.
This does not require reconstruction or recomputation of the
entire temporal network from scratch; the changes can be
propagated from the insertion points. With soft time con-
straints, the temporal network is used to compute the earliest
feasible execution time of each action by setting all deliv-
ery deadlines to infinity. The action execution times are then
used to determine the cost of violated soft time constraints.

Online Planning and Replanning

We presented an algorithm to revise a schedule to transport
new items. To replan online with this scheduler, the existing
schedule must first be updated. First, completed tasks are re-
moved from the schedule, and all times are updated to be
relative to the current time, which is always time 0. Robots
currently carrying items have Retrieve actions added to their
schedule at the current location, with a time window of [0, 0]
and a duration of 0. These actions are not executed, but en-
sure the algorithm maintains its invariants.
We replan in four cases:

e New Item Requested: The auction algorithm inserts the
new items into the existing schedule.

e Request Cancelled: Every action involving the removed
item is removed from the schedule.

e Delayed Robot: If a robot is late to complete a task by
a fixed amount of time, all tasks involving items the late
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Figure 4: Planned schedules to deliver four items, sched-
uled with the (a) MIP without transfers, and () auction with
transfers. Items 1 and 2 are requested at time 0, Item 3 is re-
quested after 150 s, and Item 4 is requested after 200 s. See
Fig. 2 for symbol meanings.

robot is scheduled to carry and does not currently hold are
removed from the schedule and re-inserted.

e Dead Robot: If a robot does not communicate with the
server for a fixed time, it is marked as dead. Its tasks are
re-added to the schedule, except for items it is holding.

The robots can also replan for other reasons, such as based
on shared information about blocked hallways or closed
doors shared from other robots (Coltin and Veloso 2013a).

Experiments

We first present several illustrative problems run on the
CoBot robots, demonstrating the scheduler’s ability to re-
vise schedules with transfers. We then share extensive re-
sults from larger problem instances solved in simulation,
demonstrating the scheduler’s scalability and effectiveness.

Illustrative Revised Schedules on CoBot

Since the CoBots do not have arms, pickups, deliveries and
transfers are made with human help. We assume in these ex-
amples that humans are readily available to retrieve, deliver
and transfer items, although the time taken to ask for help is
still included in the experiments. Other robots are capable of
transferring items autonomously (Coltin and Veloso 2012).
For the first experiment, two robots placed four pickup
and delivery requests (see Figure 4). Items 1 and 2 were re-
quested at time 0, Item 3 at 150 s, and Item 4 at 200 s. Solv-
ing the MIP optimally without transfers in an online manner
(our original approach) results in each robot performing one
of the initial tasks. When Tasks 3 and 4 arrive, one robot
travels all the way back to the starting point. Using the auc-
tion algorithm with transfers, only one robot travels to the

opposite end of the building initially. Then the other robot
is free to deliver items 3 and 4. The MIP approach took ap-
proximately 5 minutes 45 seconds to execute and traversed
280.7 m. The auction algorithm with transfers took approx-
imately 4 minutes to execute and traversed 162.1 m.

For the second example, we used three robots to perform
five tasks placed at the same time. Two robots were sched-
uled to transfer an item to a third robot for delivery. How-
ever, we immediately turned off the robot scheduled to de-
liver the three items. The server detected this, and a new plan
was formed which the robots then executed (see Figure 5).

Large Simulated Problems

The final problem set was run on large simulated problem in-
stances to test the scalability of the algorithms. The world is
a 30x30 grid of city blocks, each one unit long. Item pickup
and dropoff locations are chosen from the block intersec-
tion at random. Unlike in the CoBot domain, robots have an
assigned end location, a station where they return to charge.
Corresponding start and end points for both robots and items
are constrained to be at least five blocks apart.

We ran tests in this domain with | R| = 80 robots and with
the number of items | M| varying from 20 to 240. We formed
schedules for fifty different trials for each value of | M |. For
every robot r, rc = 3 and rg = 5. Each vehicle travels one
block per minute. Soft time windows are used, and K4t =
50, meaning every minute a delivery is late adds 50 units
to the cost function. Every block traveled adds one unit to
the cost function, and each transfer contributes four units
(but takes a negligible time to execute). Each item is given
a small time window of ten minutes for delivery. This is a
very tight window: for some items it is not even physically
possible to deliver the item in time. Our goal here is to make
the delivery as quickly as possible. The start of this time
window falls at a random point in the interval [0, 2|M|]. The
schedule is executed online, with new items scheduled one
at a time. The scheduler is informed of each request half an
hour before the time window begins (or immediately if the
start of the window falls within the first half hour).

These problems are too large for us to solve optimally.
Instead, we compare the auction algorithm with transfers to
the auction algorithm without transfers. The costs of the so-
lutions found with both algorithms are shown in Figure 6.
With 240 items, the cost is reduced by almost 33% by us-
ing transfers. Most of this savings comes from an improved
capability to deliver items within their time windows due to
the availability of additional scheduling options. With 240
items, an average of 26.6 transfers were made. The auc-
tion without transfers took an average of 6.03 s to execute
in total, while the auction with transfers took an average of
13.98 s. This amounts to an average of 0.058 s per request.

Conclusions

We have introduced an auction-based algorithm to sched-
ule pickup and delivery problems with transfers and time
windows. The algorithm runs online and replans in response
to new requests, dead vehicles, and shared information. We
have demonstrated the schedules formed on robots and in
large simulated problem instances.
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Figure 5: (a) Deliveries are scheduled with three robots (including two transfers). (b) When one of the robots dies and fails to
respond, the tasks are rescheduled. See Fig. 2 for symbol meanings.
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Figure 6: The mean cost of the generated schedules to the
number of items. The shaded regions depict the standard de-
viation across the fifty trials.
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