
OpenEval: Web Information Query Evaluation

Mehdi Samadi
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

msamadi@cs.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

veloso@cs.cmu.edu

Manuel Blum
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

mblum@cs.cmu.edu

Abstract

In this paper, we investigate information validation tasks that
are initiated as queries from either automated agents or hu-
mans. We introduce OpenEval, a new online information val-
idation technique, which uses information on the web to auto-
matically evaluate the truth of queries that are stated as multi-
argument predicate instances (e.g., DrugHasSideEffect(Asp-
irin, GI Bleeding))). OpenEval gets a small number of in-
stances of a predicate as seed positive examples and auto-
matically learns how to evaluate the truth of a new predicate
instance by querying the web and processing the retrieved un-
structured web pages. We show that OpenEval is able to re-
spond to the queries within a limited amount of time while
also achieving high F1 score. In addition, we show that the
accuracy of responses provided by OpenEval is increased as
more time is given for evaluation. We have extensively tested
our model and shown empirical results that illustrate the ef-
fectiveness of our approach compared to related techniques.

Introduction
A wide variety of complementary trends have started chang-
ing the transformation of the web, from being for humans
only, to also providing machine-processable data that can be
used by external applications. “Semantic Web” and “Web
of Trust” are two examples of these trends that have at-
tempted to reach this goal. Other significant contributions
have been made by automatically constructing machine-
readable knowledge bases by extracting relational facts and
rules from large text corpora such as the Web. Open in-
formation extraction techniques (Etzioni et al. 2011; Fader,
Soderland, and Etzioni 2011; Mausam et al. 2012; Carlson et
al. 2010), and generic relation extraction/classification tech-
niques (Cimiano, Ladwig, and Staab 2005; Zhang 2004;
Fang and Chang 2011) are a few examples of these at-
tempts. These techniques usually get an input initial ontol-
ogy, which specifies the semantic categories and semantic
relations, along with a set of unlabeled web pages. Given
this input, they then apply large-scale learning techniques to
learn to extract or classify new instances of these categories
and relations.

Despite the wide success of the current Information Ex-
traction (IE) techniques, most of them are designed for of-
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fline batch processing and to ensure high precision (i.e., few
false positives) knowledge extraction. This high precision
may result in low recall (i.e., many false negatives), making
them less applicable to online applications that require high
recall. The online aspect and high recall are especially im-
portant when a human or an external application, such as an
automated agent, wants to query the knowledge base within
a limited time. For example, a human or a pharmacological
agent may need to know if a drug has a specific side effect.
The knowledge acquisition technique should verify if a drug
has a side effect within the time that the agent or the human
can wait.

In this paper, we contribute a novel technique to re-
spond to predicate-based queries within a limited amount
of time while also achieving high recall (at a small cost of
sacrificing precision). We focus on how to determine the
value of a given proposition by devising and implementing
a new learning approach, OpenEval. OpenEval evaluates
the correctness of queries that are stated as multi-argument
predicate instances (e.g., DrugHasSideEffect(Aspirin, GI Bl-
eeding))). It trains a classifier by taking a small number of
instances of the predicate as an input and converting them
into a set of positive and negative Context-Based Instances
(CBI), which are used as training data. Each CBI consists
of a set of features constructed by querying the open Web
and processing the retrieved unstructured web pages. To
evaluate a new predicate instance, OpenEval follows a sim-
ilar process but then gives the extracted CBIs to the trained
classifier to compute the correctness probability of the input
predicate instance. To navigate the diversity of information
that exists on the Web, we have presented a novel explo-
ration/exploitation search approach, which enables formu-
lating effective search queries and increases the accuracy of
responses provided by OpenEval.

We test OpenEval on a wide range of predicates chosen
randomly from Freebase (Bollacker et al. 2008), a large se-
mantic database of several thousand categories and relations.
The baselines for our comparison are the Pointwise Mutual
Information (PMI) technique, (Turney 2001), and weakly-
supervised classification approach (Zhang 2004). We show
that OpenEval significantly improves the F1 score on the
test data compared to the baseline techniques. OpenEval is
also in use by a real mobile service robot (Samadi, Kollar,
and Veloso 2012; Kollar, Samadi, and Veloso 2012). When



asked to get an object, of which the robot does not know the
location, it autonomously generates queries to OpenEval as
instances of a trained predicate LocationHasObject with the
requested object and possible known locations. The robot is
capable to then plan a route to different locations according
to the corresponding confidences returned by OpenEval.

OpenEval
OpenEval evaluates the correctness of propositions that
are stated as multi-argument predicate instances (e.g.,
DrugHasSideEffect(Aspirin, GI Bleeding)). A predicate
such as p(x1,...,xn) defines a relationship between entities
(x1,...,xn). We call (x1,...,xn) an instance of predicate p
where each xi is an argument of such predicate instance.
We describe next in detail the three main components of
OpenEval, namely: CBI extractor, learning, and predicate
instance evaluator. We now explain in detail the CBI extrac-
tor since it is used by both learning and evaluator compo-
nents.

Context-Based Instance (CBI) Extractor
Algorithm 1 shows the procedure to extract a set of Context-
Based Instances (CBIs). Each CBI consists of a set of fea-
tures constructed by querying the open Web and processing
the retrieved unstructured web pages. The input to the CBI
Extractor is the tuple 〈p, ip, k〉, where p is the input pred-
icate (e.g., DrugHasSideEffect), ip is an instance of pred-
icate p (e.g., (Aspirin, GI Bleeding)), and k is a keyword
that is used to formulate the search query (e.g., side effects).
The output of the CBI extractor is a set of context-based in-
stances which are extracted for the input instance ip.

Algorithm 1 CBI Extractor
Input: 〈p, ip, k〉 //p: predicate, ip: predicate instance, k: key-

word
1: Function: CBIExtractor (〈p, ip, k〉)
2: Bip ← φ //Bip is the set of all the CBIs for ip
3: pArgs← Arguments of ip separated by space
4: Q← “pArgs k” //Q is the search query
5: W ← Retrieve the first N documents for query Q
6: BWi ← φ //BWi is the list of all the bags-of-words that

are extracted from Web page Wi

7: for all web pages Wi ∈W do
8: for all occurrences of words in pArgs (close to each other)

in Wi do
9: t̄← extract text around pArgs,

10: Remove stop words and words in pArgs from t̄
11: Add t̄ as a bag-of-words to BWi

12: end for
13: Add bags-of-words in BWi to Bip

14: end for
15: return Bip

Given the input tuple, the CBI Extractor first builds the
search query (Lines 3-4). The search query Q is built from
arguments of the input instance ip, and input keyword k. For
example, query Q ={“Aspirin” “GI Bleeding” side effects}
is built for the predicate instance DrugHasSideEffect(Asp-
irin, GI Bleeding), where the keyword is side effects. The

CBI extractor then searches the query Q in Google and
downloads the first N web pages (Line 5). For each Web
page Wi, which the search engine finds, the CBI extractor
searches the content of Wi and finds all the positions in Wi

whose words in ip appear “close” to each other (Line 8).
“Close” means we allow words in ip to appear in any arbi-
trary order and up to a maximum of 15 words can be in be-
tween, before and after them. For each occurrence of words
in ip, consider t̄ as the text that occurs around words in ip
(Line 9). All the stop words and the words in ip are deleted
from t̄ and the remaining words in t̄ are then added as a
bag-of-words into the set BWi (Line 11). Finally all the
bags-of-words that are extracted from different web pages
are returned as a set of extracted CBIs for input instance ip
(Line 13).

Learning
As part of training, OpenEval is given the tuple 〈P, I,R, t〉
where P is a set of predicates, I is a set of seed examples
for each predicate in P , R is the mutually-exclusive relation-
ships between predicates P , and t is the time that the learn-
ing algorithm should spend for the training. The OpenEval
learning algorithm is shown in Algorithm 2.

The learning algorithm first iterates over all the predicates
p ∈ P and extracts a set of CBIs (denoted by CBIp) for
each predicate p using the input seed examples (Line 2). It
also constructs another set, CBI′p, by randomly choosing and
removing 10% of CBIs from set CBIp (Line 3). CBI′p is
used as an evaluation set during the learning to estimate how
OpenEval performs on the future test data. A SVM is then
trained for each predicate p by considering the CBIs that
are extracted for p as positive examples (Line 5). To build
the set of negative examples, we sample from the instances
that are extracted for all other predicates that are mutually
exclusive from p (Line 6). Each of these CBI examples is
then transformed into a feature vector, where each element
corresponds to the frequency of a distinct word in the CBI.
The dimension of the vector is equal to the total number of
distinct words that occur in the training data. We train a
classifier for each predicate p so it classifies the input feature
vector f as positive if f belongs to p, and classifies it as
negative otherwise (Line 7). The classifier that is trained for
p is later used in evaluation to decide if a new CBI belongs
to predicate p.

Ideally our learning algorithm should train a classifier
that has minimum entropy value for each predicate. Hav-
ing minimum entropy value means that the classifier Cp′

should classify all the CBIs that are extracted for predi-
cate p′ as positive and all CBIs that are extracted for other
mutually-exclusive predicates as negative. It should also as-
sign a high confidence value to its prediction. To achieve
this goal, the learning algorithm iteratively finds a classifier
Cp′ that has the maximum entropy value on the evaluation
set CBI′ (Line 10). The training data of predicate p′ is then
increased by extracting new CBIs (Lines 10-15). By increas-
ing the number of training data and retraining the classifier,
OpenEval tries to decrease the entropy value of a classifier
and makes it more confident in its prediction.



Algorithm 2 Learning
Input: 〈P, I,R, t〉 //P : a set of predicates, I: seed examples, R:

mutual-exclusive relationships of predicates in P ,t: time for
training (seconds)

1: Function: Learning Classifiers (〈P, I,R, t〉)
2: CBIp ← Call CBIExtractor to extract CBIs for all instances

of p that exists in I (no keyword is used)
3: CBI′p ← Randomly sample and remove a set of CBIs from

CBIp //used to estimate how OpenEval performs on future
test data

4: for all p ∈ P do
5: pos← CBIp
6: neg← Sample instances from CBIi ∀ predicates i that are

mutually-exclusive to p
7: Cp ← Train SVM using pos and neg
8: end for
9: while elapsed time ≤ t do

10: Cp′ ← Find classifier Cp′ that has maximum entropy on
CBI′

11: ref ← Extract reference set from Cp′

12: k ← Choose a keyword from ref
13: NewCBIs←Extract CBIs for predicate p′ using instances I

and keyword k
14: CBIp′ ← CBIp′ ∪ NewCBIs
15: Retrain classifier for predicate p′

16: end while
17: return C, reference sets for all the predicates

To extract new CBIs for predicate p′, the learning algo-
rithm first chooses a keyword from the reference set of predi-
cate p′. A reference set contains a set of keywords that repre-
sent some of the underlying semantic concepts of a predicate
and mostly distinguish a semantic meaning of a predicate
from others. For example, keywords such as {drug, drug
effects, adverse effects} can be used as part of the reference
set for predicate DrugHasSideEffect(x,y). The reference set
can be built by selecting a set of relevant phrases from CBIs
that are already extracted for a predicate. Different feature
extraction techniques that have been studied in the machine
learning community can be used to construct the reference
set (Blum and Langley 1997). Among these techniques, we
use feature ranking using weights from linear SVM classi-
fier which has been shown to be an effective approach for
text classification tasks (Mladenić et al. 2004). Thus, the ref-
erence set is constructed by selecting the top K% keywords
that have highest absolute weights in the trained SVM (i.e.,
the normal to the hyperplane that separates positive and neg-
ative classes).

By iteratively choosing keywords from a reference set,
OpenEval automatically learns how to map a set of enti-
ties to an appropriate predicate (i.e., sense) to which they
belong. For example, given a predicate instance such as
Fruit(Apple), OpenEval uses keywords that are chosen from
the reference set of predicate Fruit as part of the search query
which biases the search engine to return the documents that
contain information about apple as a fruit. For example, by
using a keyword such as {vitamin}, the search query for
predicate Fruit(Apple) would be {“Apple” vitamin} which
forces the search engine to return the results that are more
likely to mention “apple” as a fruit rather than as a com-

pany. Using a keyword as part of the search query helps
OpenEval to automatically extract CBIs that specify an ap-
propriate sense of the input predicate instance. It is worth
mentioning that in the first iteration of the learning algorithm
(Lines 2-8), no keyword is used to extract CBIs. However,
since CBIs are extracted for a set of seed examples (not only
one), OpenEval eventually would be able to converge to ex-
tract relevant keywords for the reference set.

Predicate Instance Evaluator
To evaluate a new predicate instance, OpenEval follows a
similar process to the learning algorithm by converting the
input predicate instance to a set of CBIs, but gives the ex-
tracted CBIs to the trained classifier to compute the correct-
ness probability of the input predicate instance. The input of
predicate evaluator is predicate p, the candidate instance ip,
and time t (seconds). OpenEval outputs the probability of ip
to be an instance of predicate p.

To evaluate if ip is an instance of predicate p, OpenEval
iteratively selects a set of keywords from the reference set
that is built for predicate p (the reference set is built dur-
ing the training) and calls the CBI Extractor to extract a set
of CBIs for ip using the selected keywords. The goal is to
select a set of keywords and formulate search queries that
capture different semantic aspects of a predicate. For exam-
ple, predicate UniversityProfessor(x) is related to different
aspects such as teaching professor and research professor.
Different aspects of this predicate can be captured by key-
words such as {research, teaching, paper, ...}. To decide
which keywords should be chosen, we define a utility func-
tion that measures the utility value of each individual key-
word using the documents that are retrieved from the Web.
Given this utility function, we propose a learning algorithm
that iteratively explores/exploits different keywords from the
reference set, retrieves documents from the Web, and ex-
tracts CBIs from the retrieved documents.

Let ref = {k1, . . . , kn} be a reference set that is extracted
for predicate p, where each ki is one of the keywords that
is extracted during the training. Also consider set K as a
subset of keywords that are selected from ref and CBIK as a
set of CBIs that are extracted for input predicate instance ip
using keywords in K. To construct CBIK , we basically go
through all the keywords in K and extract a set of CBIs for
ip using the selected keyword. We express the utility of the
set of keywords K as following:

U(K) = |
∑

ci∈CBI+K

conf(ci)−
∑

ci∈CBI−K

conf(ci) | (1)

where CBI+K is a set of all CBIs that are classified as pos-
itive by the classifier of predicate p and CBI−K is a set of
all CBIs that are classified as negative. conf(ci) is the con-
fidence value that is assigned to ci by the classifier. The
utility U(K) shows how keywords in K could help to clas-
sify ip either as positive (true) or negative (false) classes. If
predicate instance ip belongs to predicate p, then we would
like to find keywords K to extract CBIs that give highest
confidence value on classifying ip as positive (large value of



U(K)). On the other hands, if ip does not belong to predi-
cate p, then we would like to find keywords that help to clas-
sify ip as negative where they give the highest confidence on
the classification vote. Thereby, our goal is find a set of key-
words K that maximizes the utility value U(K).

To maximize the expected utility, one naive approach is
to rank each of the keywords based on its utility and always
choose the keyword that has highest utility value. We call
it greedy approach. This approach may deprive the oppor-
tunity of finding the optimal set of keywords K. Therefore,
we face a trade-off between exploitation and exploration to
gain the optimal overall utility (Gittins and Jones 1974). To
achieve both exploitation and exploration goals, we rank the
keywords based on their expected utility plus a term related
to their variances, instead of solely using the expected utility
as in the greedy approach. The term related to the variance is
known as the exploration bonus (Sutton 1990). We use simi-
lar algorithm to UCB1 algorithm (Auer 2003) which aims at
obtaining a fair balance between exploration and exploita-
tion in a K-Armed bandit problem, in which the player is
given the option of selecting one of the K arms of a slot
machine (i.e., the bandit). In the context of our work, each
keyword in the reference list ref is treated as an arm which
can be used to formulate a search query and extract the cor-
respondence CBIs. The selection of keywords is directly
proportional to the number of times that all the keywords
have been selected and inversely proportional to the number
of times that each keyword is selected. We also assume that
an initial reward value is assigned to each keyword which is
calculated from the initial weight assigned to each keyword
during the training. More precisely, we assign Q(k) value to
each keyword k:

Q(k) = R̄k + C ′

√
2 log (n + 1)

Nk + 1
(2)

The keyword k that maximizes Q(k) is selected at each it-
eration. R̄ is the average reward that we have obtained by
selecting keyword k after n iterations, Nk is the number of
times that keyword k is selected. C ′ controls the balance
between exploration and exploitation.

Algorithm 3 shows the detail of our technique for evalu-
ating correctness of an input predicate instance ip. We first
extract the reference set for the predicate p (Line 3). The
average reward for each keyword is initialized by the weight
that is assigned to it in the reference set divided by the sum
of all the weights of keywords in the reference set (Line 5).
The algorithm then iteratively updates Q values for all the
keywords (Line 8) and extracts CBIs using the keyword that
has maximum Q value (Lines 9-10). The reward for the se-
lected keyword is then calculated (Line 12) and the average
reward value (R̄k′ ) is updated (Lines 13-15). Finally, the al-
gorithm classifies each of the extracted CBIs (Lines 17-18).
The next step of the algorithm is to combine the classifica-
tion results for all the extracted CBIs.

The simplest way to combine the classification results
from multiple CBIs is within a voting framework. In this
framework, the correctness probability of the input predicate
instance ip is calculated by dividing the number of instances

Algorithm 3 Predicate Instance Evaluator
Input: 〈ip, C, t〉 //ip: a predicate instance to be evaluated, C:

classifiers trained for predicates, t: time (seconds)
1: Function: Evaluator (〈ip, C, t〉)
2: CBI← {} //set of CBIs for predicate p
3: ref ← Extract reference set from classifier Cp

4: Nk ← 0 ∀k ∈ ref //number of times that k is used as a
keyword

5: R̄k ← weight of k in ref
sum of weights in ref ∀k ∈ref //initializing average reward

obtained by using keyword k
6: n← 1
7: while elapsed time ≤ t do
8: Qk ← Q(R̄k, Nk, n) ∀k ∈ref //update Q values
9: k′ ← Choose keyword with maximum Q value

10: B ← CBIExtractor(〈p, ip, k′〉)
11: CBI← CBI ∪B
12: R←

∑
[ci∈B+] conf(ci)−

∑
[ci∈B−] conf(ci)

13: Nk′ ← Nk′ + 1
14: R̄k′ ← (R̄k′ + |R|)/Nk′

15: n← n+ 1
16: end while
17: Classify instances in CBI
18: eval← calculate weighted majority vote for instances in CBI
19: return true if eval ≥ 0.5; false otherwise

that are classified as positive by the total number of instances
that are returned by the CBI Extractor, where the classifier
vote is weighted by its confidence value. This scheme is
known as weighted majority (or plurality) voting which has
been shown to be very robust compared to other more in-
telligent voting schemes that have been used in forecasting
literature (Clemen 1989; Dietterich 1998). The correctness
probability of ip can be written as following:

P (ip = t|CBIs(ip)) =
1

Z

∑
c∈CBIs(ip)

W[Cp(c)=t] × 1{Cp(c) = t}

(3)
where Z is the normalization factor:

Z =
∑

b={t,f}

∑
c∈CBIs(ip)

W[Cp(c)=b] × 1{Cp(c) = b} (4)

and W[Cp(c)=t] is defined as the confidence of classifier Cp

where it classifies c as positive.

Experimental Evaluation
OpenEval is tested on 50 predicates that are chosen ran-
domly from Freebase knowledge base (Bollacker et al.
2008), a large semantic database. Freebase contains 360
million instances of different relations. These predicates
contain both categories (predicates with one argument) and
relations (predicates with two arguments). For each pred-
icate, 25 instances are provided as training seed examples
to train OpenEval and 50 instances are randomly chosen as
the test data. The test data for each predicate p consists of
25 positive examples (i.e., instances of predicate p) and 25
negative examples. The negative examples are chosen from
predicates that are mutually-exclusive to p and also from
predicates that are not used as part of training in OpenEval.
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Figure 1: The precision/recall curve for test predicate in-
stances. OpenEval uses 100 iterations for training and 5 iter-
ations for evaluation. We also plot the curve for two baseline
approaches.

We compare our technique to the baselines using standard
performance metrics of precision, recall, and F1. The first
baseline that we compare against is the weakly-supervised
relation classification (Zhang 2004). In this work, a boot-
strapping approach is used on top of SVM to classify each
predicate instance to one of the predicates in the ontology.
The input of SVM is a set of lexical and syntactic features
extracted from the input corpus. To be able to do a fair com-
parison between Zhang’s approach and OpenEval, for each
predicate instance in the training and test data, we search the
arguments of such predicate instance in Google and crawl
the first N returned web pages. N is set to be the same as
the number of web pages that are used in OpenEval. The
list of predicates, seed examples for each predicate, and web
pages crawled from Google are given as an input to Zhang’s
self bootstrapping approach.

The other baseline for our comparison is the PMI tech-
nique. Given a predicate p and a predicate instance ip, the
PMI score is calculated as the following (Turney 2001):

PMI(ip, p) =
|Hits(ip, p)|

|Hits(p)| × |Hit(ip)|
(5)

where |Hits(p)| and |Hit(ip)| are the number of search en-
gine hits for query p and ip, respectively, and |Hits(ip, p)| is
the number of hits when both ip and p appear in the search
query. To evaluate correctness of an instance ip of predi-
cate p using the PMI technique, we calculate PMI(p, ip)
and if PMI(p, ip) > Threshold, then we accept ip as an
instance of p.

Figure 1 shows the precision/recall curve of OpenEval,
PMI, and Zhang’s self bootstrapping approach (Zhang 2004)
for 50 predicates chosen randomly from Freebase knowl-
edge base. The experiments are obtained when OpenEval
is trained with 100 iterations and CBIs are extracted by
crawling the first 5 web pages from Google. Each itera-
tion of training is one time step in Algorithm 2 (Lines 9-
16) and on average takes 43 seconds in a 8-core 2.67 GHz
CPU workstation. Also the value of parameter C ′ in predi-
cate evaluator is set to 3. OpenEval uses 5 iterations (Lines
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Figure 2: F1-score of OpenEval when it uses different num-
ber of iterations for training.
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Figure 3: Precision, recall, and F1-score of OpenEval when
it uses different number of iterations for evaluation.

8-17 in algorithm 3) to evaluate a new predicate instance.
The graphs show that for most of the different recall values,
OpenEval achieves significantly higher precision compared
to PMI. Comparing the result of OpenEval and baselines,
OpenEval has achieved the best F1 score of 80% while the
best F1 scores of PMI and Zhang’s approach are around 74%
and 70%, respectively. One should note that the F1 score of
OpenEval can be improved by using more iterations in the
training and evaluation (as will be shown in the next results).

The accuracy of OpenEval depends on the parameters
such as the number of iterations that are used in the train-
ing. A comparison of different values of these parameters is
important for understanding how the result of OpenEval can
be improved when more time is given for training. Figure 2
shows the results of OpenEval where the x-axis represents
the number of iterations that are used for training. These ex-
periments are done when OpenEval uses only one iteration
for evaluation. The result shows that OpenEval achieves a
high F1 value even when it uses a few iterations for the train-
ing.

Figure 3 shows the F1-score of OpenEval when differ-
ent number of iterations is used for evaluation (OpenEval
is trained by using 100 iterations). Interestingly, although
the number of training iteration is fixed for all different data
points in the figure, the result shows that OpenEval is able
to improve its accuracy as more time is given for evalua-
tion. OpenEval uses the trained classifier to measure the



effectiveness of each keyword and iteratively finds the set of
keywords that are most relevant to the input query. At it-
eration one, OpenEval achieves F1 score of 74% while the
F1 score is increased to 80% at iteration 5. It is worth men-
tioning that each iteration of predicate evaluator only takes
about 1.2 second to be completed.

Related Work
Our work in this paper leverages and extends some of
the ideas explored by previous work such as use of co-
occurrence statistics in information extraction, machine
reading, generic relation extraction and classification. In this
section, we briefly describe related research from each of
these areas.

Use of co-occurrence statistics: Co-occurrence statis-
tics computed from a collection of documents, such as the
Web corpus, has been widely used for information extrac-
tion. For example, Pointwise Mutual Information (PMI) is
an unsupervised technique that uses search engine hit counts
to measure the semantic similarity of pairs of words (Turney
2001). Other researchers have also used PMI to validate in-
formation extraction (Soderl et al. July 2004), to validate a
candidate answer in a question answering system (Magnini
et al. 2002), or to extract a relation instance (Cimiano and
Staab 2004; Nakov and Hearst 2005). The performance of
all of the above techniques depends on the accuracy of the
search engine hit counts, which is shown to be inaccurate in
estimating the popularity of input queries (Uyar 2009). Our
approach does not rely on the search hit count; rather it uses
the content of the web pages that are returned by the search
engines for the evaluation.

Machine reading: The main goal of machine read-
ing is to automatically extract knowledge from an unstruc-
tured text corpus (e.g., Web) and represent the knowledge
in a structured format. KnowItAll (Etzioni et al. 2004;
Downey, Etzioni, and Soderland 2010) is one of the first
web-scaled machine reading systems that uses generic syn-
tactic patterns to extract relation instances. TextRuuner (Et-
zioni et al. 2008), ReVerb (Etzioni et al. 2011), and OL-
LIE (Mausam et al. 2012) are examples of other IE tech-
niques which have shown significant improvements com-
pared to KnowItAll system in both precision and recall.
Similar to these works, NELL (Carlson et al. 2010) is
a semi-supervised learning technique that extracts struc-
tured information from the unstructured web pages using
the initial ontology. Weakly supervised techniques are also
used for large-scale IE techniques (Hoffmann, Zhang, and
Weld 2010; Mintz et al. 2009), where they use an exist-
ing ontology to generate a set of training data. Preemptive
IE (Shinyama and Sekine 2006) and OnDemand IE (Sekine
2006) are two examples of IE techniques that avoid relation
specific extractors and do not require any input ontology,
but they rely on document and entity clustering. These de-
pendencies make them too costly to be used in anytime and
online applications.

Generic relation extraction and classification: There
has been much research in the community of information
extraction focusing on supervised techniques to learn rela-
tion extractors (Califf and Mooney 2003; Ciravegna 2001).

These techniques rely on strong assumptions, such as a large
number of manually annotated examples, which make them
unable to scale up to hundreds of relations. To deal with
this weakness, others have developed unsupervised (Poon
et al. 2010; Carlson et al. 2010), weakly-supervised (Zhang
2004), or bootstrap relation extraction/classification tech-
niques (Agichtein and Gravano 2000; Pantel and Pennac-
chiotti 2006; Freedman et al. 2010) which start from an
initial set of seed examples and automatically generate a
set of surface patterns (or a set of rules) that are later
used to identify new relation instances. However, most of
these works have been focused on precision or are depen-
dent on a set of handwritten patterns. Hence the applica-
bility of their techniques is limited for any generic rela-
tions. Ontology-driven relation extraction techniques use
predefined ontologies (Cimiano, Ladwig, and Staab 2005;
Cimiano and Volker 2005; McDowell and Cafarella 2006),
which limits their scalability.

There are several main differences between OpenEval and
the above IE systems. Most of the current IE techniques are
designed for offline batch processing (usually require a long
time for training) and to ensure high precision. OpenEval
only requires a few minutes to be trained for each predi-
cate and is designed to achieve higher recall (at a small cost
of sacrificing precision), making it applicable to online and
anytime applications. Second, unlike most of the current IE
techniques that require to have a full hierarchy of relation-
ships between predicates as an input ontology, OpenEval
only takes mutually-exclusive relationship between predi-
cates. Third, OpenEval is designed to evaluate correctness
of a predicate instance, which is generally considered as a
more specific and possibly an easier task in IE compared to
extracting instances of predicates.

Conclusion
This paper introduced OpenEval, a novel online informa-
tion validation approach that automatically evaluates the
correctness of a predicate instance using the Web. We
described two main components of OpenEval in detail:
learning and evaluation, and experimentally showed that
OpenEval massively outperforms the related techniques
such as PMI and weakly-supervised relation classification
technique (Zhang 2004). We presented an online algorithm
that explores/exploits information on the Web by extracting
a set of context-based instances from the content of Web
pages that are returned by the search engine. We showed
that our online algorithm is able to improve the accuracy
of its prediction as more time is given for the evaluation.
OpenEval is a general online technique, requires minimum
supervision (in terms of seed examples and input ontology),
and improves its accuracy as more time is given for evalua-
tion and training.
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