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Abstract Autonomous mobile robots equipped with visual
perception aim at detecting objects towards intelligently act-
ing in their environments. Such real-time vision processing
continues to offer challenges in terms of getting the object
detection algorithm to process images at the frame rate of
live video. Our work contributes a novel algorithm that is
capable of making use of all the frames, where each frame
is efficiently processed as a “’continuation” of the process-
ing of the previous frames. From the 2D camera images as
captured by the robot, our algorithm, Wave3D, maintains
3D hypotheses of the presence of the objects in the real 3D
world relative to the robot. The algorithm does not ignore
any new frame and continues its object detection on each
frame by projecting the 3D hypotheses back into the 2D im-
ages to focus the object detection. We can view Wave3D
as validating the 3D hypotheses in each of the images in
the live video. Wave3D outperforms the static single-image
classical approach in processing effort and detection accu-
racy, in particular for moving objects. In addition, the re-
sulting reduced vision processing time translates into more
computation available for task-related behaviors, as greatly
needed in situated autonomous intelligent robot agents. We
conduct targeted experiments using the humanoid NAO robot
that illustrate the effectiveness of Wave3D.
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1 Introduction

Autonomous mobile robots are increasingly being used in
our environments to perform concrete complex tasks. Such
robot agents need to perform a set of computationally in-
tensive functions, in order to be able to perceive, to reason
about, and to act in their surroundings.

The robot’s actuation, whether it is to manipulate ob-
jects or just to navigate throughout its environment, is based
on the information provided by its sensors. The success of
this actuation depends on the reliability and accuracy of the
sensory information. One of the richest and most complex
sensory information sources is the visual information as cap-
tured by cameras. Many of the modern robots are equipped
with cameras to observe the world and detect the objects rel-
evant to accomplish the specific tasks.

Robots perform their tasks in a closed loop between per-
ception and control (behaviors). Control includes the com-
putation of the next action towards self-localization, naviga-
tion, cooperation, or object manipulation. In dynamic envi-
ronments in particular, the detection of relevant objects to
the actuation has to be done in real time, i.e., with no delay
in the perception/control loop. As an example, in robot soc-
cer, a moving ball needs to be detected in real time, so that
the perception and control loop moves the robot’s camera to
focus the attention on the ball. Tracking the ball is a chal-
lenging coordination problem as the ball and the robot move
usually not at low speeds. In order to succeed, the control
to actuate the camera’s motors should be calculated with the
most updated perception information, as made available at
the frame rate of the camera (e.g., for a 30Hz frame rate, the
available computation time in between frames is 33ms.) If
perception processing, and therefore object detection, takes
longer than the frame rate, then the control algorithm makes
decisions based on old perception (i.e., old positions of the
ball), most probably leading to ineffective actuation that may
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miss the ball. As another example, mobile robots have to de-
tect people and obstacles in real time, when moving in our
daily environments. If the perceptual information (visual or
of other type) used for the selection of the navigation ac-
tion has a big delay, the robot could collide with obstacles,
including with humans.

So, object detection has to be performed efficiently by
the complete robots, as such robots cannot assign all their
computational effort to perceptual processing. Unfortunately,
the information extraction from the images in general in-
curs in intensive and costly processing. Most of the cur-
rent approaches, as we discuss next in section 2, perform
object detection by analyzing highly dimensional static im-
ages, which becomes an expensive computational task for a
real robot with limited computation resources. Most efforts
try to improve this process by reducing the dimension of the
images to be analyzed, but they still may not be able to pro-
cess images at the frame rate of live video, and frames may
be discarded, even if they are newer than the ones being pro-
cessed.

In this work, we contribute a new approach for detect-
ing objects that does not discard any frame in live video,
leading therefore the control decisions to be made on the
most updated visual information of the world. Our algo-
rithm, Wave3D, achieves this feature by being able to pro-
cess every new frame as a continuation of the processing of
previous frames. The algorithm generates 3D hypotheses of
the presence of the objects in the real 3D world relative to the
robot. These hypotheses are validated by projecting them to
the 2D image coordinates in the images fetched by the robot
camera. The interesting aspect is that these 3D hypotheses
are independent from a specific image frame, as opposed to
the 2D projections that depend on the robot’s motors posi-
tion. Because of this independence, our algorithm makes use
of every new image fetched by the camera, which let us to
perform the object detection process in live video.

Furthermore, we achieve another improvement by gen-
erating 3D hypotheses on the most probable positions based
on the previous frames. For example, the hypotheses for ball
detection in robot soccer are only generated on the playing
floor, starting where the ball was detected previously. The
algorithm progresses with its search in a wave-like man-
ner, as a propagation from the point of the hypotheses. The
Wave3D algorithm greatly improves the processing effort
which, frees computation for task-related behaviors.

2 Related approaches

Computer vision is a classic field in computer science which
is focused in extracting information from images for its use
in computer applications. There are many applications in
computer vision. Works on face and object detection in im-
ages extract statistical information, which is compared among

them using Neural Networks [1] based or Support Vector
Machines [2], among the most common techniques. There
are also many application of computer vision technologies
for people and traffic surveillance, as [7] and [6]. Techniques
for large image processing are becoming more and more
popular with the development of works like [5] and Google
Goggles focused on processing and classifying images from
the web. The majority of the previously cited works process
full images because this is made offline or relying on expen-
sive and powerful computers. There are some techniques for
real time video processing which focus on a fast object de-
tection with computational restricted resources. One of the
most successful video processing technique is Condensation
[31[41[9][10]. This technique is based on maintaining a pop-
ulation of samples which represents a probability distribu-
tion for detecting objects in images. This technique does
not process every pixel in the image, but the ones where
the particles are. This technique has successful results, but
the search space is always the image. In [11], a MonteCarlo
approach is used for multi-object tracking with several cam-
eras. In this case, the search space is the real world, and
the particles are projected to the images captured by several
cameras in order to validate them.

But we are working with robots, and these resources are
not available or it will consume a lot of them. From initial
works on computer vision for robots [12], images are being
used as an important sensor for getting information from the
environment. In the domain in which we are working, where
the computational time is limited and the time requirements
are very exigent, the efforts are focused on developing ef-
ficient computer vision techniques. The most extended ap-
proach for object detection is [13], which consists of pro-
cessing every pixel in an image. This process includes color
segmentation, connecting regions with same color character-
istics, extracting information from regions (bounding box,
centroid, density) and posterior valid regions merging. This
method consumes high computational resources because all
the pixels in the image have to be classified. This method has
been used widely in the RoboCup domain, using techniques
like look-up tables or reducing the resolution to make this
method computationally more affordable. The state-of-the-
art approaches in this domain are scan-lines based [15][14],
which tries to make the image processing more efficient. In-
stead of processing all the pixels in the image, they only
process some rows and columns from the image and take
note of the color transitions along these lines for a posterior
analysis of these transition points. Most of these work detect
the relevant objects of the environment in the image space.
After detecting the objects in the image, some of them cal-
culate the tridimensional position of the objects using the
motors odometry and some previous knowledge about the
object size and position (i.e. the ball is always in the floor).
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The radical novelty of the method proposed in this paper
with respect to most of the previously presented approaches,
is doing the inverse process for detecting the objects. Ob-
jects are not pixels, they are real elements that exist in the
real world, independently of the fact of being captured in an
image. We guess possible object positions in the real world,
and we use the image to validate these hypotheses. Making
the search space independent from the image allows us to
refresh the images as soon as they are fetched, doing a real
video processing, instead of an image processing. This al-
lows us to work at higher frequencies and to not mind the
image resolutions.

3 Wave3D approach

Our focus is on the RoboCup Standard Platform League,
which presents a complex problem. Virtually all the classic
problems of mobile robotics have to be solved for making
a robot play soccer autonomously: locomotion, perception,
self-localization, navigation, coordination or generation of
behaviors, including the most representative. The environ-
ment where the game is played is very dynamic and chal-
lenging, with numerous collisions and occlusions caused by
other robots that are in the field.

All elements of the game have a distinctive color: The
ball is orange, the field is green, white lines and the goals
are blue and yellow, respectively. Because of this, since the

robots in the RoboCup Standard Platform League are equipped

with a camera, the main sensor is vision. All the elements
relevant to the robot are perceived by processing images
from the camera.

The main feature of the Standard Platform League is that
the robot is the same for all participants. As the hardware can
not be modified, most efforts are focused on software devel-
opment. In addition, the robots are autonomous and all pro-
cessing must be carried on board. Resources are limited and
must be optimized for the implementation of control soft-
ware in a reasonable time.

In several approaches, the detection of relevant elements
is done through an exhaustive analysis of the image. This
means examining each of the pixels of an image to find re-
lated groups of pixels with similar color and correct size.
The process is usually quite costly, in terms of computation
time. Moreover, the processing of an image is not usually re-
lated to the following image, having to repeat the detection
process in each cycle.

This work is focused on visual processing in robots. Per-
ceptual information is used to generate commands for robot
actuation. This not only means that information must be ac-
curate and reliable, but must be done in real time for ef-
fective actuation. If processing a complete image takes too
long, the action commands are generated from information
that is too old to be effective in some cases.

Fig. 1 Pin-hole camera model. The camera frame origin C' is at the
center of the camera. The line connecting the point Po and the camera
center cross the image plane in the point p;,,4, Which is its projection
in the image.

Our Wave3D algorithm provides a new approach to vi-
sion systems for robots. First, the search for the objects is
performed in three dimensional space. The system hypoth-
esizes positions where the objects can be found and then
validated in the image. This permits to make a real video
processing rather than image processing. Thus, the process-
ing time does not depend on the resolution of the images but
on the hypothesis to be tested in each cycle. Furthermore,
the hypotheses are independent of the images, so the search
begun in an image can be continued in the following image.
This allows us, on one hand, to yield to the control code and
continue later, even using a different image. On the other
hand, validation of the hypotheses are conducted using the
latest image, even if they change during the detection pro-
cess.

3.1 Reference frames

Before starting the description of the algorithm Wave3D is
necessary to present the reference frames used in the rest of
this paper. We define three different reference frames: The
image frame, the camera frame and the robot frame. The first
is two-dimensional, whereas the latter two are three dimen-
sional.

An image stores the information collected from the cam-
era. An image pixel pimg(u,v) is the intensity of light or
the color stored in the image coordinates (u, v) in the image
frame img. The reference frame of the camera C' represents
points in space with respect to the center of the camera. Fig-
ure 1 shows these two reference frames and how they are
related using the “Pin-hole” model. The image frame is a
plane perpendicular to the axis Z¢, at a distance f far away
from the center of the camera. Every point pc in the cam-
era frame has an unique projection p;,,4 in the image plane,
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Fig. 2 Robot and camera frames. Projection of the Hypothesis pc (or
pr with respect the robot frame) in the image.

located at the intersection of the plane with the line linking
pe with the center of the camera.

Instead of using the reference axes of the camera C', we
use the reference axes of the robot R. Figure 2 shows Op
as the origin of the reference frame R, which is on the floor
between the robot’s feets. The points on the axes of the robot
are related to its coordinates in the axes of the camera by us-
ing the equations 1-3. Each image has an associated matrix
RT, which is calculated from the position of the robot’s mo-
tors. This matrix contains the rotations R, ; and translations
T, (where a and b subindexes are related to any axis) for
transforming the points from one reference frame to another
one.

(wg"*)" = RT-pg M
T /
TR Ra:,:z: R:c,y Rz,z TZL’ To
Yr | _ | Bya Byy Ry:Ty| _ Yo )
ZR Rz,w Rz,y Rz,z Tz ZIC'
1 0 1 1
RT!. (p%’y’z)T = piv' 3)

3.2 3D ball hypotheses

The goal of the robot’s visual processing is to calculate the
position pr of an object relative to the robot frame R . In-
stead of performing an image processing to find the object
and then transform the position in space of the image img
to the space of the robot R, our new approach performs a
subject search directly in the space of the robot R. Wave3D

Fig. 3 3D hypothesis generation in wave-like manner centered at
W Og. The hypothesis h%, projection corresponds to a green pixel and
the search continues. The hypothesis h%, projection corresponds to an
orange pixel. The bounding box calculated from hf, is valid and the
search successfully finishes.

generates a set of hypotheses h’; in positions where the ob-
ject can be found. The projection h,, o in the image is calcu-
lated from each hypothesis i If the coordinate hj,,, , cor-
responds to the color of the object sought, it starts a second
validation stage. In this second validation stage, we generate
a predefined number of points p;;,, next to ht,, o to calculate
the volume of the detected object. If this volume is consis-
tent with the desired object, the search successfully finishes.
If the volume does not correspond to the ball size, the search

continues.

The hypotheses are generated in a wave-like manner from
an initial position. If the object’s position was known before,
this will be the initial position of the wave. If the position of
the object is unknown, it begins in the center of the robot’s
field of vision. If an object is detected, subsequent searches
begin in the position of the object. In this way, subsequent
searches will need to generate a few hypotheses to find the
object again. If the wave leaves the whole field of vision of
the robot, it restarts again.

Figure 3 is an example of this process for the detection
of the ball. The hypotheses begin to be generated from the
wave origin WOpR away from it at every step. When the
projection of h%, in the image plane, hf,, 4> corresponds to
the coordinates of a orange pixel, it begins the second phase
of validation. The same figure shows that the bounding box
created from hi, fits with the ball dimensions, making the
search process finish successfully. In the following cycles,
the origin of the wave will be the center of the bounding box

created from h',.

If the hypotheses are out the field of view of the camera,
or is beyond the limits of the field, the search is restarted.
Thus, if there were sporadic occlusions, the occluded areas
are not permanently discarded. If the ball moves, the search
starts from the last known position, regardless of the posi-
tion of the camera. This provides spatial continuity for the
searching, and means that, after checking a few hypothe-
ses, the ball again be found, making efficient the process of
tracking.
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Fig. 4 Execution scheduling in time with the original video module
(upper line) and with Wave3D (bottom line). The center line represents
the image capture thread.

3.3 Live video processing

The robot should react to changes in their environment prop-
erly. To detect these changes, it uses perceptual information
obtained in visual processing, which is used to generate the
actuation commands of the robot.

The robot software execution is often planned as a closed
loop that begins with the processing of images from the cam-
era and ends with the generation of the action commands.
Often a robot has to react to visual stimuli in very short pe-
riods of time, e.g. to track a ball moving at high speed. The
reaction of the robot to track the ball has to be very fast. Any
delay in the generation of action commands would result in
losing the ball.

Since Wave3D searches for objects in the robot space
R, which is independent of the image, it can be used in-
stead of the old one when a new image is available. Figure 4
shows the execution of Wave3D and the original approach.
The new images are always used for the detection of objects.
For this reason, the actuation commands are more appropri-
ate, as they are generated using the most updated perceptual
information. In addition, visual processing can be paused at
any time and resume later. Wave3D arbitrarily set a maxi-
mum time t,,,, reserved to visual processing. If it exceeds
this time, it yields to the execution of behaviors. This will
guarantee a minimum rate for the control loop execution.
The whole algorithm is described in detail in Algorithm 1.

4 Experiments

Our current approach for visual perception enables a robot
Nao to optimize actuation using two simple techniques: in-
creasing the execution frequency of the control loop, and us-
ing the most updated image for hypothesis validation. In this
section we measure how much the frequency of the control
loop is increased using Wave3D with respect to a classical
approach, and the improvement provided by this method in
the robot actuation.

Algorithm 1: Wave3D algorithm.

Ball=getLastBallPosition()

execution_time=0;

start_time = clock();

while execution_time < t,, 4, do

if camera.isNewImage()) then
L image = UpdatedImage();

hf) = getNewHypothesis();
if hi, =0 then
resetWave();
continue;

hic = RobotCoordsZCameraCoords(hio );
himg = ApplyPinHole(hic);
color = image[hfig][h?;ig];
if color == orange then )
BB = calculateBoundingBox(h g, );
if BB.valid() then
WO =BB.center();
setBall(BB.center());

Execution frequency
35

Wave3D
Original
30 -
25
20

15 ¢

Frequency (Hz)

10 ¢

0 50 100 150 200 250 300 350 400 450
Cycle

Fig. 5 Frequency of the control loop using the original vision module
(dashed line) and using the Wave3D vision module (solid line).

We have designed an experiment to measure the control
loop frequency and to compare the time spent by our origi-
nal vision module, which uses a classical approach, with the
Wave3D vision module. In this experiment, the ball is al-
ways visible in the image and is moving at different speeds.
We set the maximum time ¢,,,,, for video processing in the
Wave3D module to 15 ms. Table 1 shows the execution time
spent by the original vision module and by the Wave3D vi-
sion module. On a few occasions the maximum time slot du-
ration is reached (since the ball is usually found before this
threshold), and no other image is available. Figure 5 shows
the frequencies of the execution of the original method (10
Hz on average) and Wave3D (24Hz on average).

The benefits of Wave3D in terms of execution speed are
evident, but we have yet to demonstrate how this improve-
ment benefits the operation of a Nao robot. The robots must
use object detection to self-localize and score goals. It is in-
feasible to measure the benefits of Wave3D during a soccer
match, because there are many confounding factors that can
influence the results. Hence, we make the experiments using
a basic skill called TrackingBall for these experiments.

The goal of the TrackingBall skill is to look for the ball
and center it in the image at all times. To achieve this goal,
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Method | Median
Original | 43.0 ms
Wave3D 6.0 ms

Table 1 Computation times for the original method and for Wave3D

Fig. 6 Sequence of images when the ball is moving. Az represents the
position variation between frames.

the skill takes the ball position provided by the video pro-
cessing module in the robot frame R and moves the head to
point directly at the ball (matching up the Z¢ axis and the
line that connects the camera with ht., obtained from ap-
plying equation 3 to h%,, as we showed in Figure 2). This
skill is executed in the stripped slots of Figure 4, and sends
control commands to the robot neck motors according to the
information provided by the vision module.

In Figure 6 we have represented the value that we want
to measure. This value is designated Ax or scan distance
and represents the variation in the position of the ball, in the
robot frame, used by the control code to track the ball. If
Az is high (upper image in figure 6), the distance from the
previous point that the camera was pointing at and the new
point is high, and the head movement will be less smooth.
Besides that, if Ax is high enough to set the ball outside the
camera range of vision, the ball will be declared lost, and
a searching routine begins. If Az is low (bottom image in
figure 6), the movement will be smooth, and the ball will re-
main in the robot’s field of view. The lower the value of Az
at a similar speed of the ball, the more updated the position
of the object to track will be and best performance the robot
actuation will be.

In this experiment, we measure the variation in the ball
position, Az, while the robot is tracking it at different ball
speeds. We activated the TrackingBall skill to make the robot
track the ball by moving the head without walking. Once the
ball is detected by the robot, we manually moved the ball to
make the robot adjust the neck position to center the ball in
the image. The ball follows a trajectory parallel to the Y;.,p0t
axis, 1.5 meters far away from the robot. We made several
trials at different ball speeds with both vision modules.

Figures 7 and 8 show the results of this experiment for a
similar trial. The speed in both cases is lower than 40 cm/s
and the experiment begins and ends with the ball stopped.
The variation Az using the original video module (figure 7)
varies while the ball is moving, reaching the distance of 25

Average Stdev
43.305 ms | 4.225 ms
6.306 ms | 2.656 ms
E Evolution of AZ and Ball Speed
2 40 —
S Az ——
E 35t Speed 4
o ]
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Fig. 7 Variation of Az (solid line) while the ball is moving at a speed
(dashed line) using the original video module.
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Fig. 8 Variation of Az (solid line) while the ball is moving at a speed
(dashed line) using Wave3D.

cm/s. The variation Az using Wave3D (figure 8) is always
low, with values lower than 5 cm/s. The head movement of
the robot is smoother with Wave3D, because of the higher
detection frequency, than with the original video module,
and the risk of losing the ball is lower as well.

The experiment was conducted at different ball speeds.
Figure 9 summarizes the results. The value of Ax is higher
using the original vision module for every ball speed, and in-
creases with speed. With Wave3D, the value of Ax is lower
and seems to be constant with respect to speed.

5 Conclusion

We presented a novel algorithm, Wave3D, for visual object
detection suitable for autonomous robots embedded in com-
plex tasks, which need to save computational power from
vision to behavior processing. Furthermore the algorithm al-
lows for the processing of the most updated visual frame
leading to the control algorithm to select actions based on
the most updated sensory information processed.
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Fig. 9 Mean and standard deviation of Az using the original vision
module (dashed line) and Wave3D (solid line).

The Wave3D algorithm creates and maintains hypothe-
ses of the presence of the objects in the real 3D world rela-
tive to the robot position. Such hypotheses are hence inde-
pendent of a specific 2D frame and therefore can be mapped
into every frame, as soon as it is available. The 3D hypothe-
ses are validated in each new 2D image. The search for the
object processes starting at the hypotheses and spreads to the
rest of the image as wave propagations from the dropped hy-
potheses. Each frame is then processed as a “’continuation”
of the previous frames. No new frame is ignored during the
visual processing time slots, and robot actuation greatly im-
proves. As we have shown in the experiments, this approach
improves the actuation decisions by using the most recent
information of the objects and allowing the control to take
enough computational effort and to use the most updated vi-
sual information.

Looking for real objects in the 3D world is more natural
for detecting them. This makes Wave3D more efficient in
the object detection process. The execution frequency of the
overall robot system is improved as well, without losing per-
ceptual accuracy or reliability, which means more computa-
tion available for task-related behaviors. Wave3D is used in
the RoboCup domain, but it is applicable to any object de-
tection task for robots which use cameras as main sensor.
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