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Abstract Policy Reuse is a transfer learning approach to improve a reinforce-
ment learner with guidance from previously learned similar action policies.
The method uses the past policies as a probabilistic bias where the learner
chooses among the exploitation of the ongoing learned policy, the exploration
of random unexplored actions, and the exploitation of past policies. In this
work we demonstrate that Policy Reuse further contributes to the learning
of the structure of a domain. Interestingly and almost as a side effect, Policy
Reuse identifies classes of similar policies revealing a basis of core-policies of
the domain. We demonstrate theoretically that, under a set of conditions to
be satisfied, reusing such a set of core-policies allows us to bound the min-
imal expected gain received while learning a new policy. In general, Policy
Reuse contributes to the overall goal of lifelong reinforcement learning, as (i)
it incrementally builds a policy library; (ii) it provides a mechanism to reuse
past policies; and (iii) it learns an abstract domain structure in terms of core-
policies of the domain.
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1 Introduction

Reinforcement Learning (RL) [1,2] is a powerful technique for learning to solve
different kinds of tasks. Solving the task consists of learning a near-optimal
policy for such task. In the best case, such policy will be near-optimal for
the task, i.e., will maximize the long term sum of the rewards obtained. The
learning process is based on a trial and error process guided by reward signals
received from the environment. Classical RL algorithms as Q-Learning [3] rely
on an intensive exploration of the action and state spaces. Due to the “curse
of dimensionality” of such spaces in complex domains, solving a task typically
requires an extensive interaction of the learning agent with the environment.

Although the cost (time, resources, etc.) of such a learning process may
be very high, sometimes the task can be tackled and successfully solved [4,5].
There have been many different efforts to address the complexity of learning.
Reusing the knowledge acquired in the current learning process when solving
future problems, so the cost of future learning processes is reduced, is an
appealing idea. In RL, several efforts have been done in this line, like the
transfer of value functions [6], the reuse of options [7] and the learning of
hierarchical decompositions of factored Markov Decision Processes (MDPs) [8].

In this manuscript, we report on Probabilistic Policy Reuse, an approach
for transfer learning based on the reuse of similar action policies. It is based
on our research in the related areas of Symbolic Plan Reuse [9] and Extended
Rapidly-exploring Random Trees (E-RRT) [10]. Planning by analogical rea-
soning provides a method for symbolic plan reuse. However, when reusing a
past plan, if a step becomes invalid to use in the new situation, the traditional
reuse questions are either (i) to resolve the locally failed step and direct the
search to return back to another past plan step, or (ii) to completely abandon
the past plan and re-plan from scratch from the failed step directly towards
the goal. E-RRT solves this general reuse question by guiding a new plan prob-
abilistically with a past plan. The past experience is effectively used as a bias
in the new search, and thus solves the general reuse problem in a probabilistic
manner.

Learning structure in complex domains is a key challenge for scaling up
applications, in particular because of the difficulty in finding similarity metrics
to determine commonalities in a complex domain. In this article, we contribute
a method to identify equivalence classes of domain states through our devel-
oped Policy Reuse. When solving a new problem, Policy Reuse utilizes the
past policies as a probabilistic bias where the learner faces three choices: the
exploitation of the ongoing learned policy, the exploration of random unex-
plored actions, and the exploitation of past policies. As a past policy becomes
relevant to solving a new task, such effective reuse reveals the similarity be-
tween the past and new task. Domain structure is then incrementally learned
through Policy Reuse, as we present.

Therefore, a side-effect of Policy Reuse is its capability to identify classes of
similar policies revealing a basis of core-policies of the domain. That allows to
build a library of policies to be reused in the future, by using the PLPR algo-
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rithm (Policy Library through Policy Reuse). In this work we contribute new
theoretical results, and we show that, under a set of conditions to be satisfied,
reusing such a set of core-policies allows us to bound the minimal expected
gain received while learning a new policy. We introduce new definitions, as the
0-Basis-Library of a domain, which defines a library of core policies which is
large enough to successfully obtain accurate results in a Policy Reuse process.

In this paper, we also include additional evaluations over classical explo-
ration strategies (like e-greedy and Boltzmann) to show the advantages of
Policy Reuse in the grid domain. Policy Reuse can also be applied to domains
potentially more complex, such as the Keepaway domain [5]. The challenge
in Keepaway is to transfer learned knowledge from simpler (although contin-
uous) to larger state and action spaces, e.g., from a Keepaway problem with
some number of teammates and opponents to a new one with larger number
of agents. The use of Policy Reuse for transfer learning among different state
and action spaces (typically called inter-task transfer [11]), and its evaluation
in the Keepaway can be found in the literature [12-14]. Variations of Policy
Reuse algorithms can also be found for multi-robot reconfiguration [15] and
learning from demonstration, also in the Keepaway [16]. In this work we use a
grid-based domain that allows us to highlight some properties which are more
difficult to represent in other domains. The same domain has been used in
other works [17].

In summary, the main contributions of this manuscript are, on the one
hand, to show empirical and theoretical results about how the similarity metric
among policies work, why it is useful to select the policy to reuse from a set
of past policies, and how to use it to bound the gain that can be obtained by
reusing a policy library. On the other hand, to demonstrate how Policy Reuse
learns the domain structure of a domain in terms of libraries of core-policies,
which can be used in future learning tasks.

This manuscript is organized as follows. Section 2 summarizes relevant re-
lated work. Section 3 introduces Policy Reuse in the scope of Reinforcement
Learning, and formalizes the concepts of task, domain, and gain. Section 4
defines the m-reuse exploration strategy, a similarity metric among policies,
and the PRQ-Learning algorithm. Section 5 presents the PLPR algorithm,
and provides theoretical and empirical results that demonstrate the capabil-
ity of the algorithm to build the basis of a domain as a set of core-policies,
and bound the sub-optimality of the transfer learning. Section 6 shows the
empirical results. Finally, Section 7 summarizes the main conclusions of this
work.

2 Related Work

Policy Reuse is a transfer learning method. It uses past policies to balance
among exploitation of the ongoing learned policy, exploration of random ac-
tions, and exploration toward the past policies. The exploration vs. exploita-
tion problem defines whether to explore new or exploit the knowledge already



4 Fernando Ferndndez, Manuela Veloso

acquired. The limits are defined by the random and the greedy strategies,
and several can be found in between, as e-greedy and Boltzmann [2]. Directed
exploration strategies memorize exploration-specific knowledge that is used
for guiding the exploration search [18]. These strategies are based in heuristics
that bias the learning so unexplored states tend to have a higher probability of
being explored than recently visited ones. These strategies only use knowledge
obtained in the current learning process.

Several methods aim at improving learning by introducing additional knowl-
edge into the exploration process. Advice rules [19] define the actions to be
preferred in different sets of states. In this case, the source of the advice rules
is the user, which is the source of exploration knowledge in many other ap-
proaches [20]. Different knowledge sources can be used, as a mentor, from
which policies can be learned by imitation [21]. In the previous cases, as in
Policy Reuse, the advice is about policies rather than Q values.

Transfer learning refers to the injection of knowledge from previously solved
tasks. Memory guided exploration [22] incorporates knowledge from a past
policy in a new exploration process by weighting the Q values associated to
the new and the past policy. However, that requires that the values of both
Q functions are homogeneous and a perfect mapping between the past and
the new Q function. The problem can be solved by weighting the probability
of selecting each action, instead of the actual Q values [23]. In any case, the
choice of a correct weight decay to balance correctly the use of the past and
the new policy relies on the designer.

Transfer learning, as knowledge reuse across different learning tasks, can be
performed by initializing the Q-values of a new episode with previously learned
Q-values [24,25]. However, if the source and target tasks are very different,
transfer learning may require expert knowledge to decide on the feasibility of
the transfer, and on the mapping between actions and states from the source
and target tasks [26]. Some methods try to solve this problem through a study
of actions correlations [27], through state abstraction [28], or by defining the
relationships between the state variables of the source and target MDP’s [29].
Value function transfer is an alternative but it is restricted to previous learning
processes performed also through a value function. Furthermore, they do not
focus on the case where several tasks have been previously solved (several value
functions have been learned) and are susceptible to be reused.

A different way of introducing previous knowledge is by executing macro-
actions or sub-policies. For instance, some algorithms use macro-actions to
learn new action policies in Semi-Markov Decision Processes (SMDPs), as it is
the case of TTree [30]. These macros can also be defined using a relational lan-
guage, and learned using Inductive Logic Programming (ILP) techniques [31].
Options can also be used in SMDPs [7]. They require the set of states from
which they can be executed, an end condition and the behavior of the option.
Such a behavior can be learned on line [32], as well as the other components
of the option [33]. Other ways to transfer knowledge is through the use of set
of rules that summarizes polices [34] or by composing solutions of elemental
sequential tasks [35].
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Hierarchical RL uses different abstraction levels to organize subtasks [36],
and some approaches are able to learn such a hierarchy [37]. The methods
for learning hierarchies or options capture the structure of the domain. Some
related algorithms are SKILL [38], which discovers partially defined policies
that arise in the context of multiple tasks in the same domain, and L-Cut,
which discovers subgoals and corresponding sub-policies [39]. Sub-policies can
suboptimally solve a task with computable bounds [40]. Other methods in-
crementally build a cache of policies for a decomposed MDP [41], but also
following a hierarchical approach.

Probabilistic Policy Reuse establishes a huge difference with previous works
based on options, macro-actions or hierarchical RL. Those methods are built on
a basis where, once a sub-policy is selected, it is followed until an end condition
associated to the sub-policy is satisfied or it suffers an external interruption.
In our case, past policies provide a bias, and the learning agents interlace the
execution of actions suggested by the new and past policies probabilistically.
Policy Reuse never executes complete, nor even partial policies, but in each
step decides whether to execute an action suggested by one of the past or
new policies. This fact avoids the definition of both the conditions when a
sub-policy must be executed, nor the conditions when the execution of a sub-
policy must be interrupted.

A primary difference of Policy Reuse and using macro-actions, assuming
flat macro-actions similar to the exploratory actions used in Policy Reuse, is
that Policy Reuse does not learn values for such exploratory actions, but it
learns values for the primitive actions. From the values of the primitive actions,
the ground policy is derived.

A main contribution of Policy Reuse with respect to other previous ap-
proaches is that Policy Reuse does not assume that transferred knowledge is
positive. This assumption makes other methods to believe that the transferred
knowledge will be useful, as it is highlighted in a previous survey [42]. Policy
Reuse owns mechanisms to measure the utility of the transferred policies, and
capabilities to decide when to reuse them or not.

3 Policy Reuse in Reinforcement Learning

Reinforcement Learning problems are typically formalized using Markov De-
cision Processes (MDPs). An MDP is a tuple < S, A, T, R >, where S is the
set of states, A is the set of actions, 7T is a stochastic state transition function,
T:SxAxS — R, and R is a stochastic reward function, R : § x A — R.
RL assumes that 7 and R are unknown.

We focus on RL domains where different tasks can be solved. The MDP’s
formalism is not expressive enough to represent all the concepts involved in
knowledge transfer [43], so we define domain and task separately to handle
different tasks executed in the same domain. We introduce a task as a specific
reward function, while the other concepts, S, A and T stay constant for all
the tasks in the same domain.
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Definition 1. A Domain D is a tuple < S, A, T >, where S is the set
of all states; A is the set of all actions; and T is a state transition function,
T:SxAxS— R

Definition 2. A task {2 is a tuple < D, R >, where D is a domain; and
Ro is the reward function, R : S x A — R.

We assume that we are solving episodic tasks. A trial or episode starts by
locating the learning agent in a random position in the environment. Each
episode finishes when the agent reaches a goal state or when it executes a
maximum number of steps, H. ' The agent’s goal is to maximize the expected
average reinforcement per episode, W, as defined in equation 1:

L X
W:?ZZ’Y Tk.h (1)
k=0 h=0

where v (0 < v < 1) reduces the importance of future rewards, and
defines the immediate reward obtained in the step h of the episode k, in a
total of K episodes.

An action policy, II, is a function IT : S — A that defines how the agent
behaves. If the action policy was created to solve a defined task, {2, we call
that action policy Il,. The gain, or average expected reward, received when
executing an action policy IT in the task {2 is called W} . Finally, an optimal
action policy for solving the task {2 is called II{,. The action policy II7, is op-

timal if Wg 2 > W[ for all policy IT in the space of all possible policies when
K — o0. Action policies can be represented using the action-value function,
Q' (s,a), which defines for each state s € S, a € A, the expected reward that
will be obtained if the agent starts to act from s, executing a, and after it
follows the policy I1. So, the RL problem is mapped to learning the function
Q' (s,a) that maximizes the expected gain. The learning can be performed
using different algorithms, such as Q-Learning [3].

The goal of Policy Reuse is to use different policies, which solve different
tasks, to bias the exploration process of the learning of the action policy of
another similar task in the same domain. We call Policy Library to the set of
past policies, as defined next.

Definition 3. A Policy Library, L, is a set of n policies {II1,...,II,}.
Each policy II; € L solves a task §2; =< D,Rp, >, i.e., each policy solves a
task in the same domain.

The previous definition does not restrict the characteristics of the tasks
(they may be repeated), nor the characteristics of the policies (they may be
sub-optimal),although optimality or near-optimality could affect the reuse pro-
cess. The scope of Policy Reuse is summarized as: we want to solve the task
2, i.e., learn IT};; we have previously solved the set of tasks {{21,..., §2,} with
n policies stored as a Policy Library, L = {II,...,II,,}; how can we use the
policy library, L, to learn the new policy, IIf,?

1 Constraining Policy Reuse to episodic tasks or to limit the number of steps of an episode,
are a relaxation but not a requirement to apply Policy Reuse, which has demonstrated to
perform accurately in domains with undefined length of the episodes [44].
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Policy Reuse answers this question by adding the past policies into a learn-
ing episode as a probabilistic exploration bias. We define an exploration strat-
egy able to bias the exploration process towards the policies of the Policy
Library, and a method to estimate the utility of reusing each of them and
to decide whether to reuse them or not. Furthermore, Policy Reuse provides
an efficient method to construct the Policy Library. We now detail the Policy
Reuse approach.

4 Reusing Past Policies

In this section we describe the basic algorithms of Policy Reuse. We first
describe how to reuse just one past policy. Then, we show how to reuse a set
of past policies. Last, in this section we describe in depth the results obtained
in a grid navigation domain.

4.1 The m-reuse Exploration Strategy

The m-reuse strategy is an exploration strategy able to bias a new learning
process with a past policy. Let I, be the past policy to reuse and I7,¢,, the
new policy to be learned. We assume that we are using a direct RL method
to learn the action policy, so we are learning the related @ function. Any RL
algorithm can be used to learn the @ function, and Sarsa(\) and Q(A) have
been applied [13,14].

The goal of m-reuse is to balance random exploration, exploitation of the
past policy, and exploitation of the new policy, as represented in Equation 2.

a= { Hpast (S) W/pI‘Ob. 7/) (2)
€ — greedy(Il,ew(s)) w/prob. (1 — )

The 7-reuse strategy follows the past policy with probability ¥, and it
exploits the new policy with probability of 1 — . As random exploration is
always required, it follows the new policy using an e-greedy strategy.

Table 1 shows a procedure describing the m-reuse strategy integrated with
the Q-Learning algorithm. The procedure gets as an input the past policy
I },qs¢, the number of episodes K, the maximum number of steps per episode
H, and the 1 parameter. An additional v parameter is added to decay the
value of ¥ in each step of the learning episode. The procedure outputs the
Q function, the policy, and the average gain obtained in the execution, W,
which will play an important role in similarity assessment, as the next sections
present. The variable v, keeps the value of v"1) in each step of each episode.

4.2 A Similarity Function Between Policies

The exploration strategy m-reuse, as defined in Table 1, returns the learned
policy I1,,¢.,, and the average gain obtained in its learning process, W. Let W;
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m-reuse (Ipast, K, H, ¢, ).
Initialize QTrew (s,a) =0, Vs € S,a € A
Fork=0to K —1
Set the initial state, s, randomly.
Set 11 +
forh=1to H
With a probability of ¥, a = Ipast(s)
With a probability of 1 — ¢y, a = e-greedy(IInew(s))
Receive the next state s’, and reward, Tk,h
Update Q1Inew (s,a), and therefore, Ty eq:
QMnew (s,a) + (1 — a)Q(s,a)Tnew 4
alr + v maxy QMnew (5, )]
Set Y41 < Ynv
Set s + s’
W= % S >t T
Return W, Qnew (s,a) and Hpew

Table 1 w-reuse Exploration Strategy.

be the gain obtained while executing the 7-reuse exploration strategy, reusing
the past policy II;, and using a parameter vector 8 that encapsulates all the
parameters of the exploration strategy (K, H, 1 and v, defined in Table 1).
We can use such value to measure the usefulness of reusing the policy II; to
learn the new policy I1,,- The next definitions formalize this idea.

Definition 4. Given a policy II; that solves a task {2, =< D, R; >, and
a new task 2 =< D, Ry >, the Reuse Gain of the policy II; on the task (2,
Wie, is the gain obtained when applying the m-reuse exploration strategy with
the policy II; and a parameter vector 0 to learn the policy II.

Vector 6 plays an important role, since the reuse gain obtained when
reusing a policy depends on such a vector. However, we can assume that such
parameter vector must be fixed “a priory” or after some tuning. Therefore, in
the rest of the paper we will assume that such vector is fixed. To simplify the
notation, we will also eliminate it from the formulation, and we will use W,
instead of W?.

Then, given a parameter vector 6, the most useful policy to reuse, I1y,
from a Library Policy, L = {II1,...,II,}, is the one that maximizes the Reuse
Gain when learning such a task, as defined in equation 3:

I}, = argy, max(W;),i =1,...,n (3)

To solve this equation we need to compute the Reuse Gain for all the past
policies. Interestingly, such a gain can be estimated on-line at the same time
that the new policy is computed. This idea is formalized in the PRQ-Learning
algorithm.
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4.3 The PRQ-Learning Algorithm

The goal of the PRQ-learning algorithm is to solve a task 2, i.e., to learn an
action policy ITp;. We have a Policy Library L = {II4, ..., II,,} composed of n
past optimal policies that solve n different tasks respectively. Then two main
questions need to be answered: (i) given the set of policies {IIp, ITy, ..., II,},
which consists of the policies in the Policy Library plus the ongoing learned
policy, what policy (say ITj) is exploited? (ii) once a policy is selected, what
exploration/exploitation strategy is followed?

The answer to the first question is as follows: let W; be the Reuse Gain
of the policy II; on the task (2. Also, let Wy be the average reward that
is received when following the policy IT, greedily. The solution we introduce
consists of following a softmax strategy using the values W, and W;, as defined
in equation 4, with a temperature parameter 7. This value is also computed
for Iy, which we assume to be Il. Equation 4 provides a way of deciding,
T, to select to exploit.

67'Wj

Hk = argnjvoéjgn maxP(Hj), where P(H]) = W,
p=0

(4)

The problem of selecting what policy to reuse in the PRQ-Learning is simi-
lar to a non-stationary k-armed bandit problem. Most works in non-stationary
k-armed bandit problems try to detect when the change in the distributions
occurs, and then to re-learn with classical stationary approaches [45].

The answer to the second question (what exploration strategy to follow
once a policy is chosen) is an heuristic that depends on the selected policy. If
the policy chosen is I, the algorithm follows a completely greedy strategy.
However, if the policy chosen is II; (for i = 1,...,n), the w-reuse action
selection strategy, defined in previous section, is followed instead. In this way,
the Reuse Gain of each of the past policies can be estimated on-line with
the learning of the new policy. Thus, the values required in Equation 4 are
continuously updated each time a policy is used.

All these ideas are formalized in the PRQ-Learning algorithm (Policy Reuse
in Q-Learning) shown in Table 2. The algorithm gets as input: a new task to
solve §2; the policy library L; the temperature parameter of the softmax policy
selection equation 7, and a decay parameter Ar; and a set of previously defined
parameters: K, H,{,v,7, a.

The algorithm initializes the new Q function to 0, as well as the estimated
reuse gain of the policies in the library. Then the algorithm executes the K
episodes iteratively. In each episode, the algorithm decides which policy to
follow. In the first iteration, all the policies have the same probability to be
chosen, given that all W; values are initialized to 0. Once a policy is chosen,
the algorithm uses it to solve the task, updating the Reuse Gain for such
a policy with the reward obtained in the episode, and therefore, updating
the probability to follow each policy. The policy being learned can also be
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PRQ-Learning(§2, L, 7, A1, K, H, v, v,v, )

— Given:

1.

w N

N s

A new task {2 we want to solve

. A Policy Library L = {IIy,...,II,}
. An initial value of the temperature parameter, 7, and an incremental size, At, for

the Boltzmann policy selection strategy
A maximum number of episodes to execute, K
A maximum number of steps per episode, H

. The parameters ¢ and v for the m-exploration strategy
. The parameters v and « for the Q-learning update equation

— Initialize:

1.
2.

4.
5.

Qo(s,a) =0,Ys € S,ac A
Initialize Wy, to 0

. Initialize W; to 0

Initialize the number of episodes where policy ITy, has been chosen, Up = 0
Initialize the number of episodes where policy II; has been chosen, U; = 0,Vi =
1,...,n

— For k=1 to K do

Choose an action policy, Iy, assigning to each policy the probability of being se-
lected computed by the following equation (equation 4):

6'er

P(I;) = W
p=0

where Wy is set to W, and 0 < j < n
I, = argrr; 0<j<n max P(II;)

Execute the learning episode k
o If II}, = I, execute a Q-Learning episode following a fully greedy strategy
e Otherwise, use the m-reuse exploration strategy to reuse Il, i.e., call n-
reuse([lg, 1, H, ¢, v)
e In any case, receive the reward obtained in that episode, say R, and the updated
Q function, Q (s, a)

WiUg+R
Set W, = WeUkth

Set Uy, = U, +1
Set 7 =71+ AT

— Return the policy derived from Qg (s, a)

Table 2

chosen,

PRQ-Learning.

although in the initial steps it behaves as a random policy, given

that the Q values are initialized to 0. While new updates are performed over
the Q function, it becomes more accurate, and receives higher rewards when
executed. After executing several episodes, it is expected that the new policy
obtains higher gains than reusing the past policies, so it will be chosen most
of the time.

5 Building a Library of Policies

This section describes the PLPR algorithm (Policy Library through Policy

Reuse),

an algorithm to build a library of policies. The algorithm is based
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on an incremental learning of policies that solve different tasks. Notice that
we are assuming that the tasks that the algorithm will be asked to solve are
unknown a priory, and are given in a sequential way. Otherwise, a method to
learn them in parallel could be applied [46].

5.1 The PLPR Algorithm

The algorithm works as follows. Initially, the Policy Library is empty, PL = ().
Then, the first task, say 21, needs to be solved, so the first policy, say II, is
learned. To learn the first policy, any exploration strategy could be used but
the policy reuse strategy m-reuse, given that there is not any available policy
to reuse. II; is added to the Policy Library, so PL = {II;}. When a second
task needs to be solved, the PRQ-Learning algorithm is applied, reusing I1;.
Thus, I15 is learned. Then, we need to decide whether to add IIs to the Policy
Library or not. This decision is based on how similar I7; is to I1s, following the
equation 5. In the equation, Wy is the average gain obtained when following
115 greedily, and Wj is the Reuse Gain of II; on task {25. Both values are
computed in the execution of the PRQ-Learning algorithm, so no additional
computations are required.

dy(II, II5) = Wy — W, (5)

This distance metric estimates how similar II; is to II;. We define this
distance not by direct comparisons between the policies, but comparing the
result of applying them. In our case, if IT; is very similar to I, i.e., d_, (ITy, IT3)
is close to 0, to include the second policy in the library is unnecessary. However,
if the distance is large, Il is included. Therefore, we can introduce a new
concept, d-similarity, as follows.

Definition 6. Given a policy, II; that solves a task §2; =< D, R; >, a new
task 2 =< D, R >, and its respective optimal policy, II. IT is d-similar to
II; (for 0 <6 <1)if W; > W, where W; is the Reuse Gain of II; on task (2
and W, is the average gain obtained in {2 when an optimal policy is followed.

The interesting property of this concept is that for any optimal policy 11,
if we know a past policy which is d-similar to it, we know that such optimal
policy can be easily learned just by applying the w-reuse algorithm with the
past policy, and that the gain obtained in the learning process (the reuse gain)
will be at least  times the maximum gain in such a task. From this definition,
we can formalize the concept of d-similarity with respect to a Policy Library,
L, as follows.

Definition 7. Given a Policy Library, L = {II1,...,II,,} in a domain D,
a new task 2 =< D, R >, and its respective optimal policy, I1. IT is §-similar
with respect to L iff AII; such as II is §-similar to II;, fori=1,...,n.

Thus, if we know that a policy IT is d-similar with respect to a Policy
Library L, we know that the policy Il can be easily learned by reusing the
policies in L.
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The PLPR algorithm is described in Table 3. It is executed each time that
a new task needs to be solved. It inputs the Policy Library and the new task
to solve, and outputs the learned policy and the updated Policy Library.

PLPR Algorithm

— Given:
1. A Policy Library, L, composed of n policies, {II1,...,II,}
2. A new task {2 we want to solve
3. A § parameter
— Execute the PRQ-Learning algorithm, using L as the set of past policies. Receive
from this execution ITq, W and Wiaz, where:
— Il is the learned policy
— Wy, is the average gain obtained when the policy IT, was followed
— Winaz = maxW;, fori=1,...,n
— Update PL using the following equation:

I = LU{H_Q} if Winae < dWg
L otherwise

(6)

Table 3 PLPR Algorithm.

Equation 6 is the update equation for the Policy Library, derived from
equation 5. It requires the computation of the most similar policy, which is
the policy II; such as j = arg;maxW;, for ¢ = 1,...,n. The gain that will
be obtained by reusing such a policy is called W, 4,. The new policy learned
is inserted in the library if W, 4, is lower than § times the gain obtained by
using the new policy (Wy,), where § € [0,1] defines the similarity threshold,
i.e., whether the new policy is d-similar with respect to the Policy Library.

The parameter § has an important role. If it receives a value of 0, the
Policy Library stores only the first policy learned, given that the average gain
obtained by reusing it will be greater than zero in most cases, due to the
positive rewards obtained by chance. If § = 1, most of the policies learned are
inserted, due to the fact that Wi, < Wi, given that W, is maximum if the
optimal policy has been learned. Different values in the range (0,1) provide
different sizes of the library, as will be demonstrated in the experiments. Thus,
0 defines the size, and therefore the resolution, of the library.

5.2 Suboptimality of Policy Reuse

The PLPR algorithm has an interesting “side-effect,” namely the learning of
the structure of the domain. As the Policy Library is initially empty, and
a new policy is included only if it is different enough with respect to the
previously stored ones, depending on the threshold ¢, when the policies stored
are sufficiently representative of the domain, no more policies are stored. Thus,
the obtained library can be considered as the Basis-Library of the domain, and
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the stored policies can be considered as the core policies of such domain. In
the following, we introduce the formalization of these concepts.

Definition 8. A Policy Library, L = {II1,...,I1,} in a domain D with a
distribution of tasks T, is a 0-Basis-Library of the domain D iff: (i) AIl; € L,
such as II; is §-similar with respect to L — II;; and (ii) the rest of policies IT
in the space of all the possible policies in D are d-similar with respect to L.

Here we introduce the idea of a distribution of tasks, 7, to limit the dis-
tribution of rewards functions. This distribution will be important when we
define the conditions to build a J-Basis-Library of a domain.

Definition 9. Given a 0-Basis-Library, L = {II,...,II,} in a domain
D, a new task 2 =< D, Rq >, each policy II € L is a -Core Policy of the
domain D in L.

The proper computation of the Reuse Gain for each past policy in the PRQ-
Learning algorithm plays an important role, since it allows the algorithm to
compute the most similar policy, its reuse distance and therefore, to decide
whether to add the new policy to the Policy Library or not. If the reuse gain is
not correctly computed, the basis library will not be either. Thus, we introduce
a new concept that measures how accurate the estimation of the reuse gain is.

Definition 10. Given a Policy Library, L = {IIy,...,II,,} in a domain
D, and a new task 2 =< D, Ry >, let us assume that the PRQ-Learning
algorithm is executed, and it outputs the new policy I, the estimation of the
optimal gain WHQ, and the estimation of the Reuse Gain of the most similar
policy, say Wnas. We say that the PRQ-Learning algorithm has been Properly
Ezecuted with a confidence factor n (0 < n < 1), if I is optimal to solve
the task 2, and the error in the estimation of both parameters is lower than a
factor of n, i.e.:

A 7
WHQ 2 77WHQ and 77WH_Q S WHQ ( )

where W, 4. is the actual value of the Reuse Gain of the most similar policy
and Wy, is the actual gain of the obtained policy.

Thus, if we say that the PRQ-Learning algorithm has been Properly Ex-
ecuted with a confidence of 0.95, we can say, for instance, that the estimated
Reuse Gain, Winae of the most similar policy, has a maximum deviation over
the actual Reuse Gain of 5%. The proper execution of the algorithm depends
on how accurate the parameters selection is. Such a parameter selection de-
pends on the domain and the task, so no general guidelines can be provided.
The definition requires that that Il is optimal to solve the task (2, which
theoretically may require an infinite number of episodes. However, in practice,
optimal policies may be obtained in a finite number of episodes or, at least,
the suboptimality could be bounded.

The previous definition allows us to enumerate the conditions that make
the PLPR algorithm build a J-Basis-Library, as described in the following
theorem.

Theorem 1. The PLPR algorithm builds a d-Basis-Library of a domain
D for a task distribution T if (i) the PRQ-Learning algorithm is Properly
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Ezecuted with a confidence of 1; (ii) the Reuse Distance is symmetric; and
(iii) the PLPR algorithm is executed infinite times over random tasks in the
distribution T .

Proof. The proper execution of the PRQ-Learning algorithm ensures that
the similarity metric, and all the derived concepts, are correctly computed. The
first condition of the definition of §-Basis-Library can be demonstrated by in-
duction. The base case is when the library is composed of only one policy, given
that no policy is d-similar with respect to an empty library. The inductive hy-
pothesis states that a Policy Library L, = {ITy,...,II,} is a 6-Basis-Library.
Lastly, the inductive step is that the library L, = {II1,...,I,, 41} is
also a 6-Basis-Library. If the PLPR algorithm has been followed to insert I7,, 41
in L, we ensure that 7,1 is not d-similar with respect to L, given this is the
condition to insert a new policy in the library, as described in the PLPR al-
gorithm. Furthermore, II; (for ¢ = 1,...,n) is not J-similar with respect to
L1 — II;, given that (i) II; is not d-similar with respect to L, — II; (for
inductive hypothesis); and (ii) II; is not d-similar to IT,,11 because the reuse
distance is symmetric (by second condition of the theorem), and that ensures
that if I1; is not é-similar to I, 11, then I, is not §-similar to I7;. Finally,
the second condition of the definition of §-Basis Library becomes true if the
algorithm is executed infinite times, which is satisfied by the third condition of
the theorem, which also constrain the distribution of tasks for which policies
are computed.

The achievement of the conditions of the theorem depends on several fac-
tors. The symmetry of the Reuse Distance depends on the task and the do-
main. The proper execution of the PRQ-Learning algorithm also depends on
the selection of the correct parameters for each domain. However, although
the previous theorem requires the PRQ-Learning algorithm to be properly ex-
ecuted with a confidence of 1, a generalized result can be easily derived when
the confidence is under 1, say 7, as the following theorem claims.

Theorem 2. The PLPR algorithm builds a (2nd)-Basis-Library if (i) the
PRQ-Learning algorithm is Properly Executed with a confidence of n; (ii) the
Reuse Distance is symmetric; and (iii) the PLPR algorithm is executed infinite
times over random tasks.

Proof. The proof of this theorem only requires a small consideration over
the inductive step of the proof of the previous theorem, where a policy 11,41
is inserted in the §-Core Policy L,, = {II1,...,II,} following the PLPR algo-
rithm. The policy is added only if it is not J-similar with respect to L,. In
that case, if the PRQ-Learning algorithm has been properly executed with a
confidence of 7, we can only ensure that the policy IT,,41 is not (2nd)-similar
with respect to L,, because of the error in the estimation of the gains (reuse
gain and optimal gain) in the execution of the PRQ-Learning algorithm.

Finally, we define a lower bound of the learning gain that is obtained when
reusing a d-Basis-Library to solve a new task.

Theorem 3. Given a §-Basis-Library, L = {II1,...,II,} of a domain D,
and a new task 2 =< D, Ro >. The average gain obtained, say Wy, when
learning a new policy Il to solve the task 2 by properly executing the PRQ-
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Learning algorithm over (2 reusing L with a confidence factor of n is at least
nd times the optimal gain for such a task, W§, i.e.,

Wa > ndiWe (8)

Proof. When executing the PRQ-Learning properly, we reuse all the past
policies, obtaining an estimation of their reuse gain. In the definition of Proper
Execution of the PRQ-Learning algorithm, the gain generated by the most
similar task, say II;, was called Wmaz, which is an estimation of the real one.
In the worst case, the gain obtained in the execution of the PRQ-Learning
algorithm is generated only by the most similar policy, II;, and the gain ob-
tained by reusing any other different policy is 0, i.e., W; = 0,VIl; # II;.
By the definition of §-Basis-Library we know that every policy II in the do-
main D is not d-similar with respect to L. Thus, the most similar policy in
L, II; is such that its Reuse Gain, W, satisfies Wi,qp > 6W§ (by defini-
tion of §-similarity). However, given that we have executed the PRQ-Learning
algorithm with a confidence factor of 7, the obtained gain Wy, only satisfies
that Wgo > nWi,a, by definition of proper execution of the PRQ-Learning
algorithm. Thus, W > nWinas, and Wiee > W5, so W > ndWy,.

6 Empirical Results

We use a grid-based robot navigational domain (see Figure 1) with multiple
rooms. The environment is represented by walls, free positions and goal areas,
all of them of size 1 x 1. The whole domain is N x M (24 x 21 in our case).
The actions that the robot can execute are “North,” “East,” “South,” and
“West”, all of size one. The final position after executing an action is modified
by adding a random value that follows a uniform distribution in the range
(—0.20, 0.20).

Walls block the robot’s motion, i.e., when the robot tries to execute an
action that would crash it into a wall, the action keeps the robot in its original
position.

The robot knows its location in the space through continuous coordinates
(z,y). We assume that we have the optimal uniform discretization of the state
space (which consists of 24 x 21 regions) 2. The goal in this domain is to
reach the area marked with 'G’, in a maximum of H actions. When the robot
reaches it, it is considered a successful episode, and it receives a reward of 1.
Otherwise, it receives a reward of 0.

Figure 1 shows 6 different tasks, 21, {25, {25, {24, {25 and (2, given that the
goal states, and therefore, the reward functions, are different. All these tasks
are used in the experiments described in the next sections.

We choose the robot navigation domain for experimentation because it has
been widely used in transfer learning papers (e.g., [38,25,43]) and provides

2 Different methods for function approximation have been successfully applied on this
domain [47]. We have simplified the state space representation to a uniform discretization
to focus on the study of Policy Reuse.
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(a) Task ¢ (b) Task (22 (c) Task 23
(d) Task 24 (e) Task 25 (f) Task £2

Fig. 1 Grid-based Office Domain

us an empirical demonstration of the theoretical results. Policy Reuse has also
been succesfully applied in more complex domains, as the Keepaway task in
robot soccer, which requires: i) a mapping between tasks that use different
state and action spaces; and ii) function approximation methods since the
state space is continuous [44,14].

The learning process has been first executed following different exploration
strategies that do not use any past policy. Specifically, we have used four
different strategies: (i) random; (ii) completely greedy; (iii) an e-greedy (i.e.,
with probability e follows the greedy strategy, and with probability (1 —¢) acts

randomly), with an initial value of ¢ = 0, which is incremented by 0.0005 in
each episode; (iv) the Boltzmann strategy (P(a;) = Zer(s‘qj)

p=1

~o(say ), initializing
QG

7 =0, and increasing it by 5 in each learning episode.

Figure 2 shows the results. Each learning process have been executed 10
times, the average value is shown and error bars show standard deviations.
When acting randomly, the average gain in learning is almost 0, given that
acting randomly is a very poor strategy. However when a greedy behavior is
introduced, (strategy 1-greedy), the curve shows a slow increment, achieving
values of almost 0.1. The curve obtained by the Boltzmann strategy does
not offer significant improvements. The e-greedy strategy seems to compute
an accurate policy in the initial episodes, and it corresponds to the highest
average gain at the end of the learning.
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Fig. 2 Results of the learning process for different exploration strategies that learn from
scratch.

6.1 Parameter Setting

In the m-reuse exploration strategy, there are three probabilities involved: the
probability of exploiting the past policy, i.e., 1, the probability of using the
current policy, i.e., €(1 — v,), and the probability of acting randomly, i.e.,
(1 —€)(1 —4p,). These probabilities are shown in Figure 3, for input values of
H =100, ¢ =1 and v =0.95.

Probabilities

L I I |
0 10 20 30 40 50 60 70 80 90

Steps

Exploit past policy Act randomly - - - -+
Exploit new policy -~~~

Fig. 3 Evolution of the probabilities of exploring and exploiting in an episode for the -
reuse exploration strategy.

With this parameter setting, the exploration is biased with the past policy
mainly in the initial steps of the episode. Assigning to € the value of (1 — )
makes the strategy very greedy in the final steps of each episode, given that we
assume that the last steps are the ones that are learned faster (since rewards
are also propagated fast from the goal). The figure shows that in the initial
steps of each episode, the past policy is exploited. As the number of steps
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increases, the probabilities of exploiting the new policy and acting randomly
increases. In the final steps of the episode, only the new policy is exploited.
The transition from exploiting the past policy and exploiting the new one
depends on the v parameter. If this parameter is low, the transition occurs in
the initial steps, while if it is high, the transition is delayed. This parameter
setting should be tuned for each domain, in a similar way with the parameters
of any other exploration strategy.

In the PRQ-Learning algorithms, the € parameter is set to 1 — ¢y, in each
step. The rest of parameters 7 = 0, and A7 = 0.05, that depends on the
number of episodes that we can execute, were obtained empirically after an
informal evaluation. Extended analysis on how to set the transfer rate has
been performed by different authors [48].

6.2 Computing the Reuse Gain with PRQ-Learning

We use the PRQ-Learning algorithm for learning the task (2, defined in Fig-
ure 1(f). We assume that we have 3 different libraries of policies, so we dis-
tinguish three different cases. In the first one, the policy library is L; =
{II, IT3, I1, }, assuming that the tasks {25, {25 and (24, defined in Figure 1(b),
(c) and (d) respectively, were previously solved. All these tasks are very dif-
ferent from the one we want to solve, so their policies are not supposed to
be very useful in learning the new one. In the second case, II; is added,
so Ly = {II;,II5,1I3,11,}. The third case uses the Policy Library L3 =
{II, I3, I14, IT5 }. The PRQ-Learning algorithm is executed for the three cases.
The learning curves are shown in Figure 4.

0.3 T T T

2 015 ) % |

005 LT

0 g !

1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
Episode
Learning from [, , L, I, —— Learning frorhl, M1,, L, T,

Learning from I, My, My, Mg -~~~

Fig. 4 Learning curve when learning the task of Figure 1(f) reusing different sets of policies.

Figure 4 shows two main conclusions. First, when a very similar policy is
included in the set of policies to be reused, the improvement on learning is
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very high. For instance, when reusing I1; and II5, the average gain is greater
than 0.1 in only 500 iterations, and more than 0.25 at the end of the episode.
Secondly, when no similar policy is available, the learning curve is similar to
the results obtained when learning from scratch with the 1-greedy strategy,
as shown in Figure 2. Interestingly, that is the strategy followed by PRQ-
Learning for the new policy, as defined by the PRQ-Learning algorithm. This
demonstrates that the PRQ-learning algorithm has discovered that reusing the
past policies is not useful, so it follows the best strategy available, which is to
the 1-greedy strategy with the new policy.

The process of learning the most similar policy is illustrated in Figure 5,
which reports about the learning process when reusing the Policy Library L3 =
{5, II5, II5, I1, }. Figure 5(a) shows the evolution of the Reuse Gain computed
for each policy involved, W5, Wy, W3, Wy, and the gain Wy,. On the z axis,
the number of episodes is shown, while the y axis shows the gains. Initially,
the Reuse Gain of all the policies is set to 0. After a few episodes, Wy, W3
and W, stabilize below 0.05. However, W5 increases up to 0.15. These values
demonstrate that the most similar policy (II5) is correctly computed. The
gain of the new policy, Wy, starts to increase around iteration 100, achieving
a value higher than 0.3 by iteration 500, demonstrating that the new policy is
very accurate.

The values of the Reuse Gain computed for each policy are used to compute
the probability of selecting them in each iteration of the learning process,
using the formula introduced in equation 4, and the parameters introduced
above (initial 7 = 0, and A7 = 0.05). Figure 5(b) shows the evolution of these
probabilities. In the initial steps, all the past policies have the same probability
of being chosen (0.2) given that the gain of all them is initialized to 0. While
the gain values are updated, the probability of II5 grows. For the other past
policies, the probability decreases down to 0. The probability of the new policy
also increases, and after 400 iterations, its bigger than the rest. After a few
iterations more, it achieves the value of 1, given that its gain is the highest,
as shown in Figure 5(a).
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Fig. 5 Evolution of W; and P(II;).

Figure 5(b) demonstrates how the balance between exploiting the past
policies or the new one is achieved. It shows how in the initial episodes, the
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algorithm chooses to reuse the past policies to find the most similar. Then, it
reuses the most similar policy until the new policy is leaned and improves the
result of reusing any past policy.

In summary, we can say that the PRQ-learning algorithm has demonstrated
to successfully reuse a predefined set of policies, and how it can compute
the reuse gain for each of the past policies. The remaining issue consists of
demonstrating how the reuse gain is successfully used to build a library of
policies and to learn the domain structure.

6.3 Learning the Structure of the Domain

In this experiment, we want to evaluate the PLPR, algorithm. With this pur-
pose, we try to learn the action policies for different tasks in the navigation
domain. Performing a task consists of trying to solve it K = 2000 times. Each
of these times is called an episode. Each episode consists of a sequence of
actions until the goal is achieved or until the maximum number of actions,
H = 100, is executed. Notice that there is no separation between learning
and test, so the correct balance between exploration and exploitation must be
achieved to maximize the average gain in each performance.

In this domain, the task distribution is represented by 50 different tasks,
each of them with a different reward function. The different reward functions
are derived from goal states located in different positions of the different rooms
of the domain, as shown in Figure 6. Notice that the figure does not represent
a unique task with 50 different goals, but the 50 different goal areas of the 50
different tasks.

The results provided are the average of 10 different executions, in which
the 50 different tasks are sequentially performed following a random order.

Fig. 6 Navigation Domain.
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In these experiments, we use the same parameter setting than in previous
experiments; for the Q-Learning algorithm, v = 0.95 and a = 0.05; for the
m-epsilon exploration strategy, 1 = 1, v = 0.05, and € is set to 1 — ¥, in each
step. In the PRQ-Learning algorithm, 7 is initially set to 0, and is increased
by 0.05 after each trial.

The first element to study is the size of the Policy Library built while
performing the tasks with the PLPR algorithm, i.e., the number of core-policies
stored in the Policy Library, shown in Figure 7. The figure shows in the y axis
the size of the Policy Library, and in the x axis, the number of tasks performed
up to that moment. As introduced above, when § = 0, only 1 policy is stored.
When § = 0.25, the number of core-policies is around 14. Interestingly, this
is very close to the number of rooms in the domain (15). While increasing 9,
the number of core-policies increases and when § = 1, almost all the learned
policies are stored.
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Fig. 7 Number of core-policies obtained.

Figure 8 shows an example of the core-policies obtained in one execution,
with § = 0.25. The figure represents the Policy Library obtained after perform-
ing the 50 tasks which, as defined above, is composed of 14 core-policies. In
the figure, we assume that a policy is represented by the goal area of the task
that it solves. An core-policy is represented also by the goal area, but in this
case, the area is shaded. The figure demonstrates that for most of the rooms,
one and only one core-policy has been learned. The algorithm has discovered
that if two different tasks are given two goal areas in the same room, their
respective policies are very similar, so only one of them needs to be stored in
the Policy Library. That allows us to say that the structure of the domain has
been learned by the PLPR algorithm, and is represented by the core-policies.

Figure 9(a) shows the average gain obtained when performing the 50 dif-
ferent tasks with the PLPR algorithm, for the different values of §. In most
of the cases, § = 0.25,0.50,0.75 and 1, the average gain increases up to more
than 0.2, and no significant differences exist between them. Only in the case
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Fig. 8 Core-Policies (6§ = 0.25).

of § = 0, the average gain stays low, around 0.16, given that, as introduced
above, 6 = 0 generates a Policy Library with only one policy (the first one
learned). For comparisons, the same learning process has been executed with
different exploration strategies that learn from scratch, and summarized in
Figure 9(b).
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Fig. 9 Results of PLPR.

The average gain obtained while new policies are learned stabilizes around
0.12 for all the strategies, without very significant differences. This demon-
strates that Policy Reuse can obtain an increment of almost a 100% gain in
the performance of the 50 tasks over the results obtained when the 50 tasks
are learned from scratch. Interestingly, when § = 0, and only one policy is
stored, it also obtains improved results over learning from scratch, due to a
good behavior of the m-reuse exploration strategy. That confirms that provid-
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ing the learning process with a bias improves the performance, even when that
bias may not be the best for all the learning processes.

7 Conclusions

Policy Reuse is a transfer learning method that contributes to Reinforcement
Learning with three main capabilities. First, it provides Reinforcement Learn-
ing algorithms with a mechanism to probabilistically bias an exploration pro-
cess by reusing a Policy Library. Our proposed Policy Reuse algorithm, called
PRQ-learning, improves the learning performance over exploration strategies
that learn from scratch. Second, Policy Reuse provides an incremental method
to build the Policy Library. The library is built at the same time that new
policies are learned and past policies are reused. And last, our method to
build the Policy Library allows the learning of the structure of the domain in
terms of a set of -core-policies or §-Basis-Library. Reusing this set of policies
ensures that a minimum gain will be obtained when learning a new task, as
demonstrated theoretically.

Policy Reuse defines a completely new way to reuse previous knowledge.
It should be easy to identify policies with classical macro (or SMDP) actions.
However, the way we reuse policies is completely different to the way macro-
actions or options are used. Let us take the case of an option. An option is
defined as a mapping between states and actions, an applicability condition,
and an end condition. The first and second components have a direct map-
ping to a policy, since a policy is an state-action mapping applicable in any
situation of the domain. However, options are defined to be executed until an
end condition is satisfied, or until the option is interrupted. Opposite to this
scheme, Policy Reuse never executes complete policies, nor even partial ones.
Instead, Policy Reuse executes individual actions suggested by past policies
probabilistically. Thus, past policies are only a bias.

The worst scenario for transferring knowledge through Policy Reuse is try-
ing to reuse a policy library where none of the stored policies is useful to solve
the current task, i.e., when none of the stored policies are similar to the one is
being leaned. The evaluation with the PRQ-Learning algorithm demonstrated
that when the policy library reused included a similar policy, that produced
a higher performance when compared with other exploration strategies, like
e-greedy. Interestingly, when the library does not include any similar policy,
the algorithm does not perform worse than when learning from scratch.

Another difference of Policy Reuse with macros/options and hierarchical
based approaches is that Policy Reuse learns policies in the same level as past
policies, while hierarchical methods learn in different abstraction levels. Last,
we would like to point out that hierarchical methods typically require the
structure of the domain, i.e., the hierarchy of the domain, is known a priory.
We have shown that Policy Reuse learns the structure of the domain in terms
of a library of core-policies. We believe that such core-policies could be used in
the future to support the learning of hierarchies or abstractions of the domain.
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In addition, Policy Reuse is very novel since it is able to transfer knowledge,
not only from a source task to a target task, but from many tasks to many
tasks. We have demonstrated that a Policy Library can be incrementally built.
This property is due to the capability of Policy Reuse to decide (i) given a set
of policies, which one to reuse, and (ii) given a new policy, whether it is useful
to include it in the Policy Library or not, so it can be reused in future tasks.
These mechanisms permit to discover when policies are useful for solving a
new task, minimizing the effects of negative transfers.
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