
Chapter 1
Transparent multi-robot communication
exchange for executing robot behaviors

Carlos Agüero and Manuela Veloso

Abstract Service robots are quickly integrating into our society to help people, but
how could robots help other robots? The main contribution of this work is a software
module that allows a robot to transparently include behaviors that are performed by
other robots into its own set of behaviors. The proposed solution addresses issues
related to communication and opacity of behavior distribution among team mem-
bers. This location transparency allows the execution of a behavior without knowing
where is located. To apply our approach, a multi-robot distributed receptionist ap-
plication was developed using robots that were not originally designed to cooperate
among themselves.

1.1 Introduction

Service robots help humans in many tasks, including cleaning tasks, medical ap-
plications, surveillance and guiding. Service robots solve a specific problem and
consequently their sensors and actuators are designed accordingly. A natural conse-
quence of this design is that these robots are not reusible in other tasks they were
not originally conceived for.

We find that these robots are very good at performing the task for which they
have been developed; we could say that they are experts in one or more specific
tasks. This specialization can be understood as an ability to perform an action.

As new applications appear, humans demand more functionality from service
robots. One way to meet these challenges is to expand the capabilities of the robot,
whether in hardware or software. Instead, we explore another approach for the robot
to cooperate with other robots that are able to solve the new task demands. The latter

Carlos Agüero
Universidad Rey Juan Carlos, Camino Molino, 28943, Madrid,Spain e-mail: caguero@gsyc.urjc.es

Manuela Veloso
Carnegie Mellon University, 5000 Forbes, Pittsburgh, PA 15213, USA e-mail: veloso@cs.cmu.edu

approach requires a shared effort among all the robots, since we have gone from
working with a single robot to a robot team. Quoting Doug McIlroy, the inventor of
Unix pipes, ”This is the Unix philosophy: Write Programs that do one thing and do
it well. Write Programs to work together”[11].

In this paper we present an approach that helps to make available to the whole
team all the different individual behaviors of each robot for solving tasks. This ag-
gregation is done transparently, so that all the robot share the same set of behaviors.
These behaviors could be performed by the robot itself or they could require coop-
eration with other robots that would run them in their place. The net effect is that
the behavior is done opaquely, regardless of which of the robots have completed it.

The modular solution described in this work addresses issues of communication
between robots with different operating systems, programming languages and inte-
gration with the host infrastructure on which it needs to operate.

The rest of this paper is organized as follows. First, we discuss the related state
of the art. Then, the design of the software module and its main components are
presented. Next, we detail the distributed receptionist application developed using
our approach. Finally, some discussion and future lines are presented.

1.2 Related work

As we witness the explosion of cloud computing, the idea of using other resources
on the Internet has spread to robotics with the creation of Cloud Robotics[7]. This
approach provides virtually unlimited resources alleviating the limited features of
robots. For example, the Google Goggles[6] application allows the user to send
a photograph of an object and, if it has been previously processed by someone
else, the object is recognized. The cloud can also store knowledge and models. The
RoboEarth project[12] describes how an articulated arm equipped with sensing ca-
pabilities can create a model to open a drawer. Then, another articulated arm with
rudimentary sensors can request the information previously stored in the cloud and
use it to open the drawer by adjusting the model to its actuator skills.

The key idea of reusing knowledge is fundamental to our approach and a pre-
vailing concept in Cloud Robotics. However, the module we present here also aims
to reuse the behaviors of other robots, reaching a higher level of cooperation based
solely on knowledge reuse from the cloud.

The term Robot as a Service[2] was created using the concept of Service-
Oriented Architecture, which provides a communication mechanism through stan-
dard interfaces and standard protocols. The idea that each robot maintains a common
layer for offering services is shared with the work presented here. However, our ap-
proach seeks to make transparent the fact that the services may require communica-
tion with another robot to get started, achieving an even higher level of abstraction.

Swarmnoids project[3] is an example of how a team of heterogeneous robots can
solve tasks that are beyond their individual capabilities. UAVs (Unmanned Aerial
Vehicles) cooperate with ground vehicles in highly-coupled tasks, generating self-

organized cooperative behaviors. The work presented in [9] for the treasure hunt
domain uses the very popular market-based mechanism of coordination to determine
which robot performs each behavior in an environment that requires the cooperation
of heterogeneous robots. In [4] other work is described based on this principle. For
a more detailed analysis and a Multi-Robot Task Allocation taxonomy consult [5].
In all of these works, communication between team members is made explicitly,
losing the level of transparency that our novel alternative offers.

1.3 Multi-Robot Task Module

Multi-Robot Task Module (MRTM) follows a distributed approach and, accordingly,
each robot should run an instance of MRTM. The main objective of the MRTM is
to encapsulate all access to the behaviors the team can offer. The behaviors do not
necessarily have to be implemented within the module itself, but the interface to
access them does. Some interesting features offered by this design are the behavior
location transparency and its cross-platform availability.

The behavior location transparency concept is defined as the ability to hide which
robot is providing a behavior for solving a given task. In practice, this solution
allows us to maintain a robot team, where all robots share a single interface. In
addition, this interface brings together all the behaviors that each robot can perform.
Essentially, the work of the MRTM module is to invoke the behavior that has been
requested, either by running an algorithm or a behavior on the robot itself, or by
requesting the behavior of another robot’s MRTM component. Figure 1.1 shows the
internal structure of the MRTM, whose main components will be explained below.

When there is a robot team where all members have a different behavior reper-
toire, it is necessary to know which robot can perform which behavior. A possible
solution is that each application queries all the robots, and obtains a list of available
behaviors, along with the robot that provides that behavior. Location transparency
takes care of this tedious operation and delegates all the job to MRTM module, so
applications just use the behaviors without knowing where they actually reside.

Fig. 1.1 Overview of the Multi-Robot Task Module

Ice Communication Middleware

All communication among robots is performed by Internet Communications Engine[8]
(Ice). Ice is an object-oriented middleware used in distributed systems. Ice’s main
virtues include its multi-platform and multi-language support, and efficiency.

An Ice object is an entity in a local or remote robot that can reply to client re-
quests. An interface declares a set of operations (behaviors) that an Ice object can
perform and clients can invoke. Operations performed between client and server are
declared using an independent of a specific programming language called Slice.

A proxy is an object used to contact with a remote Ice object. The proxy emulates
a specific Ice object’s interface and its operations can be invoked. In MRTM we use
indirect proxies, which are composed by an Ice object identifier and object adapter
identifier. An object adapter is a container of Ice objects in a given robot. An indi-
rect proxy does not contain any addressing information. To find the correct server,
the client-side Ice run time passes the proxy information to a location service. In
our system, to eliminate this single point of failure and ensure the highest possible
availability, we have included a Registry for each MRTM, thanks to the master-slave
replication supported on Ice.

Ice Communication Middleware (ICM) combines all operations related to Ice.
These operations are the creation of the object adapter and the registration of Task
Providers within the adapter. In addition, this sub-module is responsible for resolv-
ing indirect proxies to perform remote invocations and receiving calls from other
robots, as well as initializing the registry process.

In MRTM, an Ice object is realized by creating a class that implements the inter-
face to that Ice object. In our approach these classes are called Task Providers and
consist of related behaviors for a given task.

To receive requests on a given MRTM, they must be called by a different MRTM.
When a particular behavior is requested, if it cannot be executed by any local Task
Provider, the corresponding Task Proxy is used. The proxy is just a binding in the
form of an object, which hides the communication with another MRTM. To invoke
the method of the object that triggers the behavior, the proxy has to be resolved.
This is to find the End Point for the object adapter that includes the Task Provider of
interest. Locator is responsible for implementing this work. Locator communicates
with one of the Registries and resolves the indirect proxy. Once the proxy is set up,
the remote invocation can be performed and will be received by the ICM’s object
adapter of another robot. In turn, this object adapter will distribute the request to
one of its Task Providers, which will launch the behavior.

Local Communication Middleware

When a client or application invokes a specific behavior, MRTM receives the re-
quest through the Local Communication Middleware (LCM) sub-component. The
implementation of this sub-component depends on the internal communication sys-
tem of the robot. For example, using ROS[13], this sub-component would be a node

on the robot. The interface of this LCM node would form a set of ROS services.
In short, the function of this sub-module is to integrate into the host and serve as
an infrastructure gateway for clients of behaviors. There are two steps to implement
this component: To instantiate an MRTM object and to create an interface to use all
the behaviors that the robot team is able to perform. Depending on the local middle-
ware this could be a set of methods declared in a header file, a series of services, or
a series of published topics.

Task Providers

The Task Provider is another sub-component of the MRTM. Its mission is to trigger
the execution of a particular behavior on the robot. Inside MRTM, there will be as
many Task Providers for the local behaviors that the robot can perform. MRTM does
not intend to modify the internal architecture of the robot and make it monolithic. It
is the opposite, as these local behaviors implementations would remain independent
modules distributed within the robot (e.g., other ROS nodes). MRTM simply groups
all Task Providers to manage calls to these local behaviors more easily.

Task Proxies

Like the Task Provider sub-component, which start the execution of local behav-
iors, the Task Proxy sub-component run behaviors remotely requiring execution by
another robot. To implement each Task Proxy you must get an indirect proxy to
MRTM that is capable of performing the behavior, and then, to perform the remote
invocation using the indirect proxy as an object and the behavior as a method.

1.4 Multi-Robot receptionist

To illustrate the MRTM design made in section 1.3, we applied the proposed MRTM
to a team of robots performing a distributed people reception task. The task required
a receptionist to welcome visitors and ask for the name of the person to visit. The
receptionist retrieves and offers the office location associated with that person and
suggests the option of being escorted to the office.

To conduct the experiment, two different robots and a directory program that
ran on a conventional computer were used. The first is the Nao robot[1]. It is a
medium-sized humanoid robot running GNU/Linux. Nao features two cameras, Wi-
Fi, bumpers and hi-fi speakers, among other sensors and actuators. Its mission in the
experiment was to meet the people who came and to offer directory and escort tasks.

The second member of the team was the CoBot robot[10]. It is equiped with
a LIDAR, two cameras, one kinect and an omnidirectional base. CoBot is a visitor
companion robot able to navigate through the environment, transport objects, deliver

messages, and escort people. Its goal in this experiment was to escort a visitor from
a known area (the exit of the elevator) to the office of the person he wanted to visit.

The third and final team member was a directory program that ran on a laptop. It
contained a directory of people and their associated offices.

Figure 1.2 shows the overall architecture of the experiment (the elements Reg-
istry and Locator have been deliberately omitted to simplify the diagram). All agents
have the same interface, which allows the deployment of directory and escort behav-
iors. While in this experiment the application of user interaction was only deployed
on the Nao, any other robot could technically have offered the same functionality.

Fig. 1.2 Overview of the MRTMs on the Receptionist experiment

The LCM sub-component of the CoBot robot was integrated into a specific ROS
node responsible for managing the behavior of the robot. In turn, the LCM modules
of the Nao receptionist robot and directory program were included in objects that
communicated with each host infrastructure through regular method invocations.

The Slice interfaces shared among the agents of this experiment are shown below.
The Directory consists of a single function that returns the office associated with a
person. In turn, the Escort interface includes the method escort, which selects a
specific office and a time window and returns a task ID. This value can be used to
cancel the booking in a future calling to the cancelTask method.

module MultiRobotReceptionist {
interface Directory {

string people2office(string personName); };
interface Escort {

string escort(string room, string startDate, string startH, string startM,
string startP, string endDate, string endH, string endM, string endP);

int cancelTask(string taskId); }; };

After greeting and interacting with the visitor, Nao uses its Directory Proxy to
consult the directory program and ask for the destination. Note that the Nao does not
even know which robot or agent actually implements this service. The receptionist
application invokes the method person2office as if it is implemented in itself. Once
the visitor is informed of the office number, Nao offers the visitor the option of
being escorted to the office. If the proposal is accepted, Nao uses the escort method
offered by its MRTM to start escorting the visitor.

As we described before, the MRTM module takes over and triggers the escort be-
havior using the Escort Proxy of the CoBot robot. CoBot has a scheduler for request-
ing different behaviors and when they should be executed by the robot. The Escort
Provider of the CoBot robot makes a reservation for the escort task before offering
visitors the option of being escorted. If the reservation is successful, the receptionist

Nao offers the possibility of escorting the visitor. Then, if the visitor rejects the of-
fer, Nao uses the cancelTask method to remove that task from the scheduler. Figure
1.3 shows a sequence of frames illustrating the key moments of the experiment.

Fig. 1.3 Sequence of shots extracted during an experiment escorting a person. Upper left: Visitor
is greeted by the Nao receptionist. Upper central: Visitor and Nao interact using voice and bumpers
for select a person. Upper right: Directory program receives the request and answers with the office
number. Middle left: The escort task is reserved on the CoBot scheduler. Middle central: Visitor
accepts to be escorted. Middle right: CoBot starts navigating towards the meeting spot. Lower left:
CoBot waits at a known location until the visitor arrives. Lower central: The visitor is escorted by
CoBot. Lower right: The visitor arrives at the destination’s office.

The resources consumed by MRTM were measured during the experiment. CPU
overhead was completely negligible, 40MB of memory was consumed and there
was no continuous bandwidth used. The spikes on the bandwidth consumption were
at a maximum of 1Kb/sec. and occurred during the Directory and CoBot requests.
A video of the experiment can be downloaded at this link1.

1.5 Conclusions and future work

We have presented the MRTM as a solution to the problem of the remote execution
of behaviors with location transparency. All the work for localizing behaviors and
interoperability with different platforms has been solved using the tools provided by

1 http://dl.dropbox.com/u/2831576/PAAMS12 caguero.mov

the Ice middleware. This is one of the advantages over other middleware for robots.
Our approach allows for the integration of a MRTM module into more devices such
as robots with different operating systems or even mobile phones, with a very low
impact on CPU overhead, memory consumption and network bandwidth.

An experiment with robots and humans was conducted successfully for a multi-
robot receptionist task. The receptionist program running on the Nao robot was
ignoring where was the people directory located or which robot was escorting the
visitors. All the low level details of exchanging information were hidden by MRTM.

Thanks to the common interface provided by MRTM, programs that use behav-
iors are easier to design because there is no explicit negotiation among the robots.

Despite the results obtained, there are open questions for future research. One of
the main future lines is the inclusion of a Multi-Robot Task Allocation sub-module
used by multiple robots that provide the same Task Provider. It also could be respon-
sible for negotiating with multiple robots to choose the most appropriate in terms of
some utility function.

Acknowledgments

The authors also would like to thank all the members of the CORAL group, Robotics
Institute and URJC Robotics group who are collaborated in this work.

References

1. Aldebaran Robotics. http://www.aldebaran-robotics.com, 2011.
2. Y. Chen, Z. Du, and M. Garcı́a-Acosta. Robot as a Service in Cloud Computing. In Proceed-

ings of the 2010 Fifth IEEE International Symposium on Service Oriented System Engineering,
SOSE ’10, pages 151–158, Washington, DC, USA, 2010. IEEE Computer Society.

3. L. G. F. Ducatelle, G. Di Caro. Cooperative Self-Organization in a Heterogeneous Swarm
Robotic System. In Proceedings of the Genetic and Evolutionary Computation Conf., 2010.

4. B. P. Gerkey and M. J. Mataric. Sold!: auction methods for multirobot coordination. IEEE
Transactions on Robotics, 18(5):758–768, 2002.

5. B. P. Gerkey and M. J. Mataric. A formal analysis and taxonomy of task allocation in Multi-
Robot systems. The International Journal of Robotics Research, 23(9):939–954, Sept. 2004.

6. Google. Google Goggles, http://www.google.com/mobile/goggles/, 2011.
7. E. Guizzo. Cloud Robotics: Connected to the Cloud, Robots get Smarter,

http://spectrum.ieee.org/automaton/robotics/robotics-software/cloud-robotics, 2011.
8. M. Henning. A New Approach to Object-Oriented Middleware. IEEE Internet Computing,

8:66–75, January 2004.
9. E. Jones, et al. Dynamically Formed Heterogeneous Robot Teams Performing Tightly-

Coordinated Tasks. In Int. Conf. on Robotics and Automation, pages 570 – 575, May 2006.
10. S. Rosenthal, J. Biswas, and M. Veloso. An effective personal mobile robot agent through

symbiotic human-robot interaction. In AAMAS 2010, volume 1, pages 915–922, May 2010.
11. P. H. Salus. A quarter century of UNIX. ACM Press, New York, NY, USA, 1994.
12. M. Waibel et al. RoboEarth. Robotics Automation Magazine, IEEE, 18(2):69–82, 2011.
13. Willow Garage. ROS (Robot Operating System), http://www.ros.org/, 2011.

