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Abstract In task-oriented robot domains, a human is often
designated as a supervisor to monitor the robot and correct
its inferences about its state during execution. However, su-
pervision is expensive in terms of human effort. Instead, we
are interested in robots asking non-supervisors in the envi-
ronment for state inference help. The challenge with asking
non-supervisors for help is that they may not always under-
stand the robot’s state or question and may respond inaccu-
rately as a result. We identify four different types of state in-
formation that a robot can include to ground non-supervisors
when it requests help—namely context around the robot, the
inferred state prediction, prediction uncertainty, and feed-
back about the sensors used for the predicting the robot’s
state. We contribute two wizard-of-oz’d user studies to test
which combination of this state information increases the
accuracy of non-supervisors’ responses. In the first study,
we consider a block-construction task and use a toy robot
to study questions regarding shape recognition. In the sec-
ond study, we use our real mobile robot to study questions
regarding localization. In both studies, we identify the same
combination of information that increases the accuracy of
responses the most. We validate that our combination results
in more accurate responses than a combination that a set of
HRI experts predicted would be best. Finally, we discuss the
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appropriateness of our found best combination of informa-
tion to other task-driven robots.

Keywords Human-robot interaction · Asking for help ·
User studies

1 Introduction

Robots use a variety of sensors to perceive and make infer-
ences about their state and their environments. These sen-
sors are often noisy, leading to uncertainty in the robot state
which can result in errors while executing. As a result, hu-
man supervisors are often required to monitor robot perfor-
mance and help reduce their uncertainty, even though full-
time supervision is not scalable as we continue deploy more
and more robots.

Our goal, instead, is for robots in our environments to
identify when they are uncertain and proactively request
assistance from the humans around them (e.g., the robot’s
users [19, 24] or other humans available in the environment
[26]). The proactive requests for help eliminate the need
for expensive supervision. However, unlike prior approaches
that assume humans are always knowledgeable about robots
and state inferences when providing help, such as active
learning [11, 22], learning by demonstration [3] and mixed-
initiative and semi-autonomous robots [4, 5, 30], we cannot
necessarily assume that non-supervisor humans in the en-
vironment will be knowledgeable about robots and always
answer correctly [16]. This work focuses on how robots can
increase the likelihood of receiving correct responses from
non-supervisors.

In particular, we are interested in the types of robot in-
formation that help non-supervisors make more accurate in-
ferences about the robot’s state. We performed an extensive
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human-robot interaction (HRI) and human-computer inter-
action (HCI) literature review to understand the types of in-
formation that other robots and devices have used to ask for
help from humans. We found four common types of infor-
mation that researchers in HRI and HCI have used (e.g., [7,
14, 18, 28]):

– Context: The current sensor information related to the
task (e.g., features detected through vision or LIDAR);

– Prediction: The current inferred state (e.g., the object de-
tected with vision or the location of the robot),

– Uncertainty: The probability the inference is incorrect,
and

– Feature feedback: The critical features from context used
in inference (e.g., the number of sides of the object or the
carpet pattern near the location).

While different combinations of these four types of infor-
mation are often used when requesting help from humans,
little work has been performed to identify which combina-
tions result in more accurate responses.

Our contribution is three-fold. After reviewing prior work
on the types of information that is often provided when re-
questing help, we first contribute a novel two-part study de-
sign to evaluate which combination of the four types of in-
formation results in the most accurate non-supervisor re-
sponses. In the design, participants are asked to perform
a task to limit their ability to supervise the robot. As our
robot requests help on its own task, participants determine
whether it is worth interrupting their task to respond. The
robot is wizard-of-oz’d to ensure that the only difference
between study conditions is the information provided; each
participant receives the same questions at the same time dur-
ing their task. After an initial test of many different combina-
tions of information, our design includes a validation study
to explicitly test our best found combination against a com-
bination that HRI experts believed would result in the most
accurate responses.

Our second contribution is the results of a shape recogni-
tion task and a localization task that use our study design. In
the shape recognition task, a wizard-of-oz’d toy robot asks
participants to identify the shapes of blocks they are manipu-
lating. In the localization task, a remote-controlled real robot
asks participants to identify their current location while giv-
ing a tour of the building. In both tasks, we vary the combi-
nations of the four commonly used types of information that
a robot provides to understand how such combinations affect
the accuracy of participant responses. We find that providing
all four kinds of information together—context, prediction,
uncertainty, and feature feedback—most improved the ac-
curacy of participants responses in both studies.

While this result may seem obvious, our group of HRI
researchers predicted that a combination without a predic-
tion and with only minimal context would result in more ac-
curate responses. In a direct comparison with their selected

combination, we validated that our best found combination
shows a statistically significant improvement in accuracy.
We thirdly contribute our combination as a guideline, val-
idated in two domains and against HRI expert input, that
can be used in new domains to increase non-supervisor ac-
curacy.

2 Related Work

Human-human interactions are often grounded in the com-
mon references and experiences we have with others [10].
When we ask for help from other humans, these common
experiences help clarify the question being asked and help
us answer as accurately as possible. However, because hu-
mans may not share knowledge or references with robots, it
has been suggested that robots should explicitly share their
state information with humans as they act in the world [9].
We are interested in the types of information that could and
should be shared with humans.

Researchers in human-computer interaction (HCI) and
human-robot interaction (HRI) use different types of infor-
mation when implementing requests for help on devices. We
found that asking for help is common when there is uncer-
tainty in inference (e.g., recognizing or labeling objects in
images [1] or localizing a robot [4]). While several different
sets of guidelines have been proposed for what types of in-
formation devices should provide humans (e.g., [7, 14, 18]),
little work has studied which types actually increase re-
sponse accuracy.

2.1 Task Domains

A variety of domains have used human help to reduce un-
certainty when making inferences. In HCI domains, sys-
tems use user feedback to correct email and news article
classifications [15, 23], handwriting recognition errors [29],
and other context-aware inference errors [2]. Human com-
putation and crowd-sourcing are also becoming increasingly
popular ways to request labeled data from humans outside of
any particular domain. For example, a game can use play-
ers’ answers to label images for a search engine [1]. In robot
domains, supervisors typically have an interface that shows
robot and task state and allows them to control the robot’s
behavior (e.g., [30, 34]). Robots have also autonomously re-
quested localization help in offices [24], as well as help nav-
igating both in offices [4] and outdoors [33].

In this work, we focus on two particular robot tasks that
could require human help—shape recognition and localiza-
tion.

Shape/Object Recognition Shape recognition (i.e., identi-
fying shapes of building blocks as a cube, cylinder, etc.)
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Table 1 Operational definitions for each of the four types of information we focus on in this work, and examples of that information in our two
task domains: Shape Recognition (Shape) and Localization (Loc)

State info. Operational definition Examples

Local context The features around the area that the
robot is trying to classify.

Shape: “You are working with the red and green blocks.”
Loc.: “I am near the kitchen.”

Local+global
context

The location of the local context in the
state space.

Shape: “You are working with the red and green blocks
on the top left” (of the tower).
Loc.: “I am near the kitchen by the 7100 corridor.”

Prediction The most probable answer. Shape: “Prediction is a rectangular prism.”
Loc.: “I think I’m at the red dot.” (dot on map)

Uncertainty Probability the inference is incorrect. Shape: “Cannot determine the shape.”
Loc.: “Cannot determine the location.”

Feature
feedback

Ask the human for a set of contextual
features that are indicative of the answer.

Shape: “What features describe the block?”
Loc.: “Please describe the location.”

is similar to camera-based object recognition that a robot
might have to perform. In such recognition tasks, if a robot
cannot determine the shape of an object that it is supposed
to pick up, it may fail to complete its task. It could instead
ask a human to identify the shape or object when it is uncer-
tain (i.e., asking “What shape is the red block?”) in order to
overcome the recognition failure and complete more tasks.

Localization Many mobile robots perform localization to
determine where they are and how to navigate to a goal
location. If a robot cannot determine its location, it may
miss turns and have to backtrack down the hallway. We have
shown that a robot can ask a human to identify its location
on a map when it is uncertain (i.e., “Can you point to where
we are on this map?” (shows map)) to navigate more quickly
and accurately to its goal [24].

2.2 Types of Information to Provide

We analyzed different systems that request help in differ-
ent domains and categorized the types of information they
provide to contextualize or ground those requests [10]. We
found four popular categories of information also proposed
by other researchers (e.g., [7, 14, 18]):

– Context: The current sensor information related to the
task (e.g., features detected through cameras for vision
or through LIDAR or WiFi for localization). We fur-
ther divide this into local context sensor data around the
inference and local+global context which additionally
grounds the sensor data within the entire state space;

– Prediction: The current inferred state of the robot (e.g.,
the shape of the object detected with vision or the (x, y)

location of the robot);
– Uncertainty: The probability the inference is incorrect,

and
– Feature feedback: The critical features from context used

in inference (e.g., the number of sides of the object or the
carpet pattern near the location).

While these other researchers have also proposed includ-
ing other information such as the current action that is being
executed [7], acknowledgment of accountability to the hu-
mans in the environment [7, 14], and the costs and benefits
of different user responses [18], we did not find these other
types as prevalent in implemented systems.

Next, we provide operational definitions for each kind
of information and provide examples of how to implement
them in our two task domains (summarized in Table 1). We
compare the accuracy of non-supervisor responses to robots’
questions that include different combinations of the infor-
mation.

Context Many robots and other applications provide hu-
mans with some contextual information about their sensor
data before asking a question. However, some provide more
contextual information than others. For example, a robot
user interface to monitor speech recognition errors provides
the audio that could not be recognized and a transcript of the
conversational context [30]. Another robot provides no con-
text at all about its current sensor readings when asking for
help with localization and navigation in an office hallway
(e.g., [4]).

We define two kinds of contextual information: local con-
text and local+global context. Local context are the fea-
tures immediately around the state that the robot is trying
to classify or infer. For example, in the speech recognition
user interface described above, the local context is the au-
dio recording of the sentence that is not recognized. The
local+global context additionally contextualizes the local
context in the entire state space (e.g., the unrecognized sen-
tence within the current conversation). In our shape recogni-
tion task, the local context is the color feature of the object
in question and the local+global context is the location of
the object in the image area (e.g., top, left, bottom, right).

Prediction The prediction is the most likely state based on
the inference. In speech recognition, the prediction is the



120 Int J Soc Robot (2012) 4:117–129

most likely sentence that was spoken [30]. An interface may
automatically fill in fields in an online form or provide a
prediction for which folder to sort an email into (e.g., [12,
15]). In our shape recognition task, the prediction is the most
likely shape (i.e., cube or cylinder). Providing a prediction
may reduce a user’s work to respond because they only have
to confirm an answer rather than generate it [13]. In this
work, we test the accuracy of participant responses when the
robot provides a correct prediction. Testing accurate predic-
tions allows us to understand how people trust the robot and
how much they are paying attention to what the robot says.

Uncertainty Many classification and inference algorithms
give a measure of uncertainty—the probability that a predic-
tion is inaccurate—in addition to the prediction itself. Stud-
ies of context-aware and recommender systems show that
providing users with the level of uncertainty in predictions
improves its overall usability (e.g., [6, 21]), even if the sys-
tem does not provide the exact uncertainty value [2]. For
example, in the shape recognition task, the robot indicates
that it is uncertain with the phrase “Cannot determine the
shape.”

Feature feedback We define feature feedback as request-
ing users list a set of contextual features that are most im-
portant for the inference. For example, in the shape recogni-
tion domain, feedback might include the number of edges or
sides a shape has. It has been shown in both the active learn-
ing and HCI research that people are capable of providing
useful feature feedback to a system. For example, in text
classification domains, people were able to indicate not only
the type of news article (sports, current events, etc.) but also
keywords in the article that determine the type (e.g., team
or score for sports) [23]. People have also been able to suc-
cessfully provide corrective feedback for handwriting recog-
nition, email classification, and other domains (e.g., [20, 27,
29]). We test whether asking people to provide this addi-
tional feedback influences the accuracy of non-supervisor
responses to inference questions.

2.3 Combining the Information

Despite the common use of our four types of information,
we found that different combinations of them have been
used on different robots. For example, search and rescue
robot interfaces for supervisors almost always include the
robot’s local context and inference predictions [34]. How-
ever, sensor uncertainty and feature feedback did not appear
in interfaces, because supervisors implicitly also knew about
the robot’s uncertainty and were able to give feedback about
the features without being asked.

In total, there are 3 × 2 × 2 × 2 = 24 different combi-
nations of this information that could be provided. There

are three ways to provide context: no context, local context,
or local+global context. For each of those choices it could
provide an inference prediction or not. For each of those six
choices, it could provide uncertainty information or not. And
finally, for each of those 12 choices, it could request feature
feedback or not. In this work, we combine the types of in-
formation in the following order: (1) uncertainty, (2) con-
text, (3) the question the robot wants answered, (4) predic-
tion, (5) feature feedback. For example, when the robot in
the shape recognition task asks about a block with all four
kinds of information, it would say:

Robot: “Cannot determine the shape. You are working with
the red and green blocks in the top left. What shape is the
red block? Prediction is Rectangular Prism.”

Human: Answers
Robot Follow Up: “What features describe this block?”

However, if the robot only asks with uncertainty and predic-
tion (no context or feature feedback), it would say:

Robot: “Cannot determine the shape. What shape is the red
block? Prediction is Rectangular Prism.”

Human: Answers

In our studies, we explore the impact of these differ-
ent combinations of information on the accuracy of non-
supervisor responses. In the shape recognition task, we will
test all 24 combinations to find the most accurate. In the lo-
calization task, due to robot and time constraints, we test
only 5 combinations. While the exact statements are domain
specific, they illustrate how we use the operational defini-
tions and can be easily generalized to other similar applica-
tions. Next, we contribute our study design that we used to
test the combinations of information.

3 Study Design

We define non-supervisors as humans who have a task to
attend to and do not monitor the robot’s progress. Because
they are busy with their own task, they may not hear the
information the robot might provide when asking for help,
they may be rushed to answer, and as a result, their answers
may be incorrect or they may not answer at all. However,
despite the interruptions, some non-supervisors, such as the
robot’s users, have incentive to accurately answer questions
in order for the robot to be able to complete its tasks for
them. For example, visitors, who are escorted to meetings
by a robot, may have incentive to answer questions about
localization so that they can continue following the robot to
their meetings [24]. Recent studies on email systems con-
firm that people are willing to be interrupted if there is a
perceived benefit for them later [31, 32]. We are interested
in combinations of information that improve response accu-
racy under these conditions.
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We contribute a two-phase study design, namely an ini-
tial exploration phase to test many combinations of infor-
mation and a validation phase to explicitly compare our best
found combination with a baseline combination. In the ini-
tial exploration phase, we vary the combination of informa-
tion that participants receive when the robot asks for help to
understand how it affects the accuracy of their responses to
the questions. Because there are too many combinations of
information to test the statistical differences of each combi-
nation individually, we instead test the effect of each type
of information averaged over all combinations. In our ini-
tial experiment, we show which types of information has
a positive effect on the accuracy of the participants, either
alone or in conjunction with other information in a between-
subjects design. Using the between-subject design, we can
understand how user accuracy varied through the experi-
ment without confounding responses by presenting multiple
different combinations in a short period of time. We measure
the response rate and accuracy to the robot’s questions.

Although we do not test the statistical significance of
each combination, we perform a validation comparing the
combination which includes all positive information from
the initial phase against a predicted best combination from
a set of HRI experts. The validation demonstrates that our
combination is statistically more accurate.

The design is intended to mirror real-world conditions of
asking non-supervisors including the incentives to answer
while controlling for variations in the timing of the ques-
tions.

No Supervision In both the initial exploration and valida-
tion phases, participants are given a task to complete and
limited time to complete it, preventing them from supervis-
ing the robot. They are told that they will only be judged
on their task performance but that they can help the robot if
they have time to complete the task.

Incentive to Answer Non-supervisors have incentive to an-
swer questions despite the interruption, because they want
the robot to perform tasks for them. In our study design,
participants are told that the robot will interrupt their task to
ask them for help if it is uncertain of predictions it is making.
Helping the robot during their current task will improve their
performance on a second task (which they are never actually
given), but answering is optional as it may slow down their
performance on their current task. During the study, partici-
pants must determine if they have time to answer the ques-
tion without affecting their task performance. We measure
the response rate to understand how participants evaluated
the tradeoff.

Control of Question Timing The timing of a question may
significantly affect response accuracy if the question is re-
ferring to something that the participant is doing at the time.

In order to control the timing, the experimenter triggered
the same questions during the same events in the task for all
participants in all conditions (the robot was wizard-of-oz’d
[17]). Controlling the timing ensures that the only differ-
ence between study conditions is the information the partic-
ipants receive when being asked for help. The ground truth
of what the robot is asking about is what the experimenter
triggers the robot to ask about. We compare the participants’
responses to the experimenter’s ground truth to measure re-
sponse accuracy.

Two Phase Validation The initial exploration phase is a
between-subjects experiment. Participants are assigned to
one condition of the study and receive a single combina-
tion of information for all questions asked. By comparing
participants’ responses in the different conditions, we can
determine the best combination of information. After an ini-
tial study, our design includes a second within-subject val-
idation study to explicitly test our best found combination
of information against a combination that HRI experts pre-
dict will result in the most accurate responses. We chose the
HRI expert combination to serve as our baseline instead of a
baseline with no information, because we expect that a robot
that asks for help would be implemented with their predicted
combination. The validation serves to show that our results
are an improvement over this baseline.

Next, we describe two experiments conducted using our
study design.

4 Study Method

To investigate the impact of a robot providing different com-
binations of information when asking for help, we com-
pared the accuracy of non-supervisor responses during both
a shape recognition and a localization task. We first con-
ducted the initial phase of the shape recognition task, test-
ing all 24 combinations of information. At the same time,
HRI researchers were brought together to come to a con-
sensus on which combination of information they thought
would result in the highest accuracy—which we call the HRI
expert input combination. After finishing our 24-condition
shape recognition task, we ran a shape recognition valida-
tion to directly compare our best combination to the HRI
expert input. Finally, we conducted the localization task ex-
periment to test our best combination from the shape recog-
nition study against four other combinations. We show that
our single best combination outperforms the other combina-
tions in both domains.

4.1 Task Procedures

Questions and Information Combinations Before each
study began, we generated the questions and information



122 Int J Soc Robot (2012) 4:117–129

Fig. 1 (a) The robot asked
participants to indicate the
shapes of blocks they were
holding as they built the
structures. (b) and (c) Examples
of structures participants were
asked to build out of
multi-colored blocks

the robot provided based on the expected state at the time the
questions would be asked. We, first, determined which sen-
sors that would be used in the task (camera for shape recog-
nition and a WiFi sensor readings for localization). Then, we
chose the blocks and locations the robots would ask for help
about and used our operational definitions to generate the
information the robots would provide about them. We com-
bined the information and questions in the following order:
(1) uncertainty, (2) context, (3) the question the robot wants
answered, (4) prediction, (5) feature feedback. For example,
for the shape recognition task, when the robot provided all
information it would say:

Robot: “Cannot determine the shape. You are working with
the red and green blocks in the top left. What shape is the
red block? Prediction is Rectangular Prism.”

Human: Answers
Robot Follow Up: “What features describe this block?”

Table 1 outlines examples of each type of state information
for each task, and Sect. 2.3 outlines the different combina-
tions of information.

Shape Recognition Initial Task For the shape recognition
task, we asked participants to build structures out of blocks
while the robot tried to recognize the block shapes [25]. Our
robot in this study, the RoboSapien V2 robot (Fig. 1(a)),
contains a camera to track primary colors and LEDs that
rotate towards the motion so that it appeared to be watch-
ing the participants build the structures. Upon arrival for the
study, participants were randomly but evenly assigned to one
of the 24 combinations of information, given an explana-
tion of the study and signed a consent form. Before start-
ing the task, participants were told that during their building
task, the robot might ask them for help. The building task
prevented the participants from supervising the robot. They
could choose not to respond to the questions if they were
too busy with building the structures, but they were told that
answering questions would benefit them in a second related
task (which we did not actually have them perform).

Participants were, then, given 50 colored blocks and four
pictures of structures each containing 20–30 blocks to build
in 12 minutes (Fig. 1(b) and 1(c)). When each of 8 pre-
designated blocks were picked up by the participant, the
experimenter pressed a button to make the robot ask par-
ticipants to identify the shape of a block they were holding
in their hand. The participants were then given a chance to
answer the questions verbally if they chose to. After com-
pleting the task, participants were given a survey about their
experiences with the questions. Then, participants were told
there was not enough time to conduct the second task and
were dismissed after being paid.

Shape Recognition Validation While the initial phase was
run, we sought advice from three members of the HRI
community about which information they believe the robot
should use when asking for help. The community members
understood both the technical data that could be collected
and the usability requirements necessary for effective com-
munication to non-supervisors. We explained each type of
information and how the information could be combined to-
gether. To achieve maximum accuracy, they suggested that
the robot should provide uncertainty, local context, no pre-
diction, and feature feedback, which we call the HRI expert
input combination. They believed that longer sentences in
the global context condition would make participants have
to listen longer, interrupting them more. Additionally, they
thought that participants would not believe the predictions if
a robot was asking questions. We test the HRI expert input
against our best found combination from the initial shape
recognition task to validate that our best combination is bet-
ter than what would commonly be implemented on robots
that ask for help.

The shape recognition validation was conducted as a
within-subject design with participants receiving questions
both with our best combination of state information and with
the HRI expert input combination. Participants were ran-
domly but evenly assigned to the combination of informa-
tion they would receive first. Subjects were given the same
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Fig. 2 CoBot from the front (a)
and back (b). Participants
walked behind CoBot so that
they could see the messages and
questions. CoBot spoke the
questions through speakers
below the laptop

shape recognition task instructions in the initial phase. When
they finished building their first four structures in 12 min-
utes, they were given a questionnaire. Then, they were given
a second set of four structures (the order of the groups of
structures were randomly and evenly assigned between the
two conditions) to complete in 12 minutes while the robot
asked questions using the second combination of informa-
tion. In total, participants performed two 12 minute tasks,
filled out a survey after each task, and then filled out a final
survey to compare the two question conditions. When they
completed the third survey, they were paid and dismissed.

Localization Task Our robot CoBot (Fig. 2), a real custom-
built mobile robot, is capable of autonomous localization
and navigation and provides services such as tours to our
computer science building. However, it can be uncertain
of its location when using WiFi localization [8]. We have
shown that if CoBot could ask for localization help from
people in the environment as it navigates, it can avoid local-
ization errors and speed navigation time [24].

In our localization task, participants were asked to walk
around with CoBot while it gave a 15-minute tour of one
floor of the building. These participants had never been
on this floor of the building and thus could benefit from
the tour. Upon arrival, they were randomly assigned to one
of five conditions: (1) no information, (2) uncertainty and
local+global context, (3) uncertainty and prediction, (4) un-
certainty, local+global context, and prediction, and (5) un-
certainty, local+global context, prediction, and feature feed-
back (our best found combination from the shape recog-
nition task). In pretests, we found that local context was
not enough information for people who had never seen our
building before. Additionally, we include uncertainty in four
conditions because it has previously [2] been found that
users tend to trust agents more when they admit they are un-
certain. We included all combinations of local+global con-

text and prediction, because the context and predictions pro-
vide similar information in different ways. Our 5th condition
tests our best combination which also includes feature feed-
back.

The experimenter remote-controlled the robot to each lo-
cation in the building, triggering information about seven
different laboratories, art installations, and views from the
windows as it navigated. During the tour, the experimenter
stopped the robot in 13 pre-defined locations to ask partic-
ipants to indicate the robot’s location on a map (Fig. 3).
Participants were told that the robot would not be able to
continue the tour if they did not help it. Because the ex-
perimenter was standing behind the participant while he/she
was following the robot, the participants could not see the
experimenter trigger the questions or control the robot and
they believed the robot was moving autonomously. We used
CoBot’s uncertainty and predictions from its autonomous
navigation to guide our decisions in where we triggered
questions during the study. After the participant clicked on
the map to indicate their location, the robot would continue
navigating. After participants completed the 15-minute tour
containing 7 places of interest and 13 questions, they were
given a survey about their experiences with the robot. Upon
completing the survey, participants were paid and dismissed.

4.2 Participants

Forty-eight Pittsburgh residents ages 18–61 (mean 27.6, s.d.
2.4) with a variety of occupations including students, bar-
tenders, teachers, and salesmen performed the shape recog-
nition task (37 subjects in the initial phase and 11 in the
validation). Forty-two participants were included in the lo-
calization study all of whom were graduate or undergraduate
students at Carnegie Mellon University who had not spent
time in our new computer science building. Only a few par-
ticipants (15%) had experience with machine learning tech-
nology, and all spoke fluent English.
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Fig. 3 CoBot stopped in 13
locations to ask participants to
indicate their current location by
clicking locations on its user
interface

4.3 Measures

Because a robot agent would benefit more from correct
answers to questions rather than incorrect ones, we as-
sessed the non-supervisor responses to the questions primar-
ily based on correctness. The responses in the shape recog-
nition task were classified as a binary value: correct or incor-
rect. The responses in the localization task were measured as
the Euclidean distance from the true robot location to the lo-
cation the participants clicked on the map. We also gave sur-
veys to all subjects about their opinions of the robots, asking
questions including whether they found the applications to
be annoying.

Shape Recognition Initial Task and Validation Partici-
pants’ responses were classified as correct answers if their
last answer (some users changed their minds) was correct
and incorrect otherwise. For example, if a subject disagreed
with the prediction, but gave an equally correct answer, it
was classified as correct. Synonyms were determined to
be correct as long as they were not too vague. For exam-
ple, “rectangle” was considered a synonym to “rectangular
prism” but “square” and “cylinder” were not.

Localization Task Participants clicked on a map displayed
on the robot’s screen to indicate their current location, and
the (x, y) locations of their clicks were logged in order to
determine the Euclidean distance to the actual robot loca-
tion (Fig. 3). These mouse clicks could be used directly by
the robot by translating the pixel coordinates into (x, y) co-
ordinates in the building, making it an ideal way to ask for
help. Each pixel is equal to about 4 inches and a hallway in
the building is 15 pixels across. The mouse clicks were de-
liberate as participants often considered which pixel to press
within a 1–2 pixel granularity. We recognize Euclidean dis-
tance does not distinguish incorrect hallways or inside of-
fices as worse than a click in the appropriate hallways. How-
ever, our data indicates that when these errors occur, they are
at large distances from the true location anyway.

Surveys After completing any of the tasks, participants
were given questionnaires on their subjective experiences
with each technology. They were asked about whether they
thought the robot’s questions were annoying and whether
they found each dimension particularly useful. Responses
were coded as either “Yes” or “No” because participants
were not exposed to their combination of information many
times and thus using a Likert scale to understand informa-
tion preferences would not produce valid results. Partici-
pants were also asked whether it was easy or hard to answer
the questions on a Likert scale from 1 (very easy) to 5 (very
hard).

5 Results

We analyze the results of our studies to determine the com-
bination of the four types of information that results in the
most accurate responses. We find the same combination re-
sults in the highest accuracy in both domains. We will com-
pare our shape recognition results with the HRI expert input
to show that our combination improves accuracy a statisti-
cally significant amount.

5.1 Shape Recognition Initial Task

The robot asked all subjects at least 5 out of the 8 possible
questions, due to some subjects running out of time. There
was no significant difference in the number of questions an-
swered for any particular combination of state information.
Six percent of the questions that were asked were ignored
due to the primary task. Seven participants skipped at least
one question with two participants accounting for nearly half
of the skipped questions. Of the answered questions, partic-
ipants had an average error rate of 16.4% (s.d. 25%). This
high standard deviation indicates that many (15) participants
answered all questions correctly while several had very high
error. We performed an ANOVA with the F statistic to test
for ordering effects of whether the question number affected
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(a) Context

(b) Prediction

(c) Uncertainty

(d) Feature Feedback

Fig. 4 (a) The more context the robot provides, the higher the accu-
racy of the participants’ responses. (b) When the robot includes a pre-
diction, the participants answer more accurately. (c) When the robot
provides at least local context, the accuracy increases when the partici-
pant also receives uncertainty information. (d) When the robot asks for
feature feedback, the participants answer more accurately

the participant accuracy. We found that there was no order
effect and the accuracy did not change over the eight ques-
tions (F(7,170) = 1.70, p > 0.05). McNemar tests with
the χ2 statistic were used to analyze the significance of the
categorical response (correctness) against the categorical in-
dependent variables (our four types of information).

We analyzed the effects of each individual type of infor-
mation on the proportion of correct answers the robot re-

ceived. Figure 4(a), 4(b), 4(c), 4(d) show the percentage of
questions that were incorrectly answered for context, predic-
tions, uncertainty, and feature feedback, respectively. Sub-
jects made statistically significantly fewer errors as they
were given more context, dropping from 42% (none) to 23%
(local) to 10% (local+global) (χ2[2,2] = 8.61, p < 0.02).
Subjects made significantly fewer errors when they received
predictions (10%) compared to when they did not (25%)
(χ2[1,1] = 3.59, p < 0.05) and made fewer errors when
asked about feature feedback (10%) compared to when they
were not (19%) (χ2[1,1] = 4.05, p < 0.05). There were
no significant effects of uncertainty alone, but we found a
significant paired effect of uncertainty and context reduc-
ing the error from 21% to 16% with local+global con-
text and no significant difference in error without context
(χ2[2,2] = 5.98, p < 0.05). There were no other signifi-
cant effects. Overall, we find that providing all four types
of state information—local+global context, prediction, un-
certainty, and feature feedback—increases the accuracy of
non-supervisor responses. We will refer to this combina-
tion of information as our guideline for robots to ask non-
supervisors for help and compare it to the HRI expert input
next.

Subjects did not find any combination of dimensions
more annoying than the others. Of the participants who re-
ceived feature feedback, predictions, uncertainty or contex-
tual information (local and local+global), 35%, 64%, 37%
and 71%, respectively, found them to be useful.

5.2 Shape Recognition Validation

We compared the responses of participants in a within-
subject design when the robots asked questions with the HRI
expert input (local context, uncertainty, and feature feed-
back) to our guideline (local+global context, prediction, un-
certainty, and feature feedback). T-tests were used to ana-
lyze the significance of the categorical response (correct-
ness) against the two combinations of information (expert
input and our guideline). There was no significant effect in
the ordering of the conditions (t[186] = 0.00, p > 0.05).
Figure 5 shows the percent of questions subjects answered
incorrectly for each condition. There are significant effects
of the combination on the proportion of correct answers
subjects gave. Subjects provide significantly more correct
answers (2.22% error) to the robot’s questions when us-
ing our guideline compared to the expert input (15.63%)
(t[186] = 10.05, p < .01).

Participants were asked whether they thought each kind
of information was useful in helping them to answer
the robot’s questions. Subjects only scored the two sys-
tems differently for the contextual information dimension.
While six participants gave our guideline combination (with
local+global context) a score of 5 (very useful) for contex-
tual information, only two participants gave the HRI expert
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Fig. 5 Participants made significantly fewer errors when the robot pro-
vided our guideline combination compared to the combination deter-
mined by HRI expert input

combination (with local context) the same score. However,
a t-test shows no statistical difference between local con-
text (3.46 average score) and local+global context (4.15)
(t[13] = 1.39, p > 0.05). Participants rated our prediction
on average 3.69 which is more positive than neutral, but
we could not compare this to the expert condition which
did not receive predictions. Subjects rated our uncertainty
and the expert condition uncertainty (which were the same),
2.67 and 2.77 respectively (t[13] = 0.18, p > 0.05). Simi-
larly, participants rated the feature feedback (which were the
same) identically at 2.66 (t[13] = 0.0, p > 0.05).

Subjects were given another survey at the end of the ex-
periment asking which system they preferred, which they
thought was smarter, and which learned more (although the
robot did not actually learn during the experiment). On all
three survey questions, our guideline scored higher. Twelve
out of fourteen respondents preferred our guideline over the
expert input, eleven thought ours was smarter, and ten re-
ported they thought ours learned more.

5.3 Localization Task

During the localization task, we collected the clicks on
the map for each participant and calculated the Euclidean
distance from the clicks to the actual robot location. Be-
cause the distribution of these distances was skewed, we
performed a log transformation to normalize the data. We,
then, analyzed the results of the localization test of log dis-
tances with a mixed model with participant ID as a ran-
dom effect and the question condition as a fixed effect an-
alyzed using the F statistic. Our results show there are sta-
tistically significant differences between the five conditions
(F(4,38.53) = 3.93, p < 0.001). We used contrasts to ana-
lyze whether there were statistically significant differences
between our guideline (condition 5) from the shape recog-
nition study and the other four conditions tested. Running 4
contrasts means that statistical significance is determined at
the level of p < .05/4.

Although we analyzed the log distances, we report the
true distances in meters for clarity (Fig. 6). Participants who

Fig. 6 The localization task had 5 conditions: (1) no state information,
(2) uncertainty and local+global context, (3) uncertainty and predic-
tion, (4) uncertainty, local+global context, and prediction, and (5) (our
guideline) uncertainty, local+global context, prediction, and feature
feedback. Participants who received our guideline combination of in-
formation responded with the least error

received no state information clicked further away from the
robot’s true location (4.5 meters) compared to those who
received our guideline (1.65 meters) (F(1,38.45) = 22.17,
p < 0.001). Participants who received only uncertainty and
local+global context or uncertainty and predictions clicked
2.76 and 2.74 meters respectively from the true location,
a marginally significant difference (F(1,38.9) = 3.18, p =
0.082) (F(1,38.7) = 3.78, p = 0.059). While our guideline
shows a 1 meter improvement to these two conditions, there
was a larger range of click distances for these conditions
leading to only marginal significance. Finally, participants
who received local+global context, uncertainty, and pre-
diction clicked significantly further from the true location
(2.94 meters) than those with our guideline (F(1,37.6) =
8.17, p < 0.001).

6 Discussion

Our results show that we were able to find a combina-
tion of information for robots to provide non-supervisors to
increase the accuracy of their responses. Additionally, we
were able to validate this combination of information in a
second domain and against HRI expert input. Next, we dis-
cuss the impact of each kind of information on the human as
well as the impact to the robot of providing this information.

6.1 Human Benefits of State Information

Interestingly, the combination of information that resulted
in the most accurate responses for the non-supervisors is the
same as the combination found useful for supervisors even
though all the information was not found on supervisors’ in-
terfaces [34]. We found that participants in the shape recog-
nition study rated the context and the prediction as useful to
helping them respond, while supervisors similarly include
the two types of information in their interfaces. Additionally,
while neither our participants nor the supervisors rated the
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uncertainty and feature feedback as not useful, both types
of information were found to increase the accuracy of re-
sponses. Contrary to HRI expert intuition about which infor-
mation increases the accuracy of responses, our result shows
that all types of information have an impact on the non-
supervisor. However, we still believe that a robot will not
need to provide all information to supervisors, shortening
the length of each required question, because they implicitly
know the uncertainty and feature feedback information.

Context and Prediction The supervisors and non-super-
visors use contextual information and prediction to focus
their attention on what the robot is asking about. In the shape
recognition task especially, where the participants were not
shown the camera view of the robot, the full (local+global)
description of where the robot was looking was useful to
help participants find the block in question. Although the
prediction was always correct, participants often did not
trust it. The contextual information was used by the non-
supervisors to check that the robot’s prediction was con-
sistent with the context it was providing. Additionally, the
subjects’ high rating of the predictions indicates that they
listened to the predictions despite being busy with their pri-
mary task. A robot with less accurate predictions would need
to focus more on providing contextual information to help
people determine the accuracy of the prediction.

Uncertainty Although non-supervisors were frequently in-
terrupted with questions in their structure building task
and in the tour, they almost always answered the ques-
tions when it was prefaced with uncertainty information.
Although these interruptions slowed them down, when the
robot said explicitly that it was uncertain, the participants
felt they should answer the question. We found a signif-
icant interaction of uncertainty and context in our analy-
sis marked by improvement in accuracy with high levels of
context, which confirms previous findings that users tend to
trust or rely on systems more when the system displays un-
certainty information [2]. However, when participants were
asked whether they valued uncertainty, they did not remem-
ber if they had received the uncertainty information and did
not report it as useful. We believe that participants underes-
timated how much they were using the uncertainty in their
predictions.

Feature Feedback When participants were asked to pro-
vide feature feedback about their response, they sometimes
changed their labels to the correct answer when they thought
about why they chose the particular label. While it may be
difficult for a system to incorporate such freeform feedback
as we allowed, it has been shown that feature feedback can
improve classifier accuracy [23]. Additionally, and perhaps
more importantly, we have shown that the robot will benefit
from increased response accuracy just by asking the ques-
tion and irrespective of using the response.

6.2 Errors

We were initially surprised by the number of errors that par-
ticipants made in both domains. However, upon further ex-
amination of the data, we found that there were two main
causes of errors among our participants in each task. In the
shape recognition task, the robot asked each question about
the block the participants were currently holding in their
hands. The participants often picked up multiple blocks at
a time, causing mix-ups in shape when they were not pay-
ing attention. Additionally, participants continued building
while the robot asked for help. If they put down their block
and picked up another one of the same color, sometimes they
would respond with the shape of the latter block although the
robot started asking earlier. While these two problems could
have been solved by requiring the participant to stop what
they were doing to listen to the robot, it is unlikely that non-
supervisors would stop what they were doing for the robot
in real world situations. We believe, therefore, that our shape
recognition results reflect real world scenarios at the cost of
increased numbers of errors in many conditions. Our vali-
dation results show that using our guidelines, the error rate
drops to 2% even when participants do continue working
during the question.

In the localization study, the robot stopped moving to al-
low the participants to click on its attached laptop. Realis-
tically, an error of 2.5 meters or more, as we received in
all conditions except our best found combination, would not
resolve the robot location uncertainty around an intersection
to know whether to turn now or continue straight for an-
other meter before turning. The two main causes of error
in the localization task were due to (1) lack of knowledge
of the building and (2) misunderstanding the robot’s ques-
tion. When participants did not know the building, they of-
ten found it hard to read the map even with every room la-
beled. Participants would often click on the correct corridor
of rooms but did not focus their clicks close to specific room
they were nearest to, resulting in clicks further down the hall
away from the true robot location. Additionally, participants
who found the room sometimes would click on the room it-
self rather than their location in the hallway. While this is
an interesting response, it would result in large localization
errors on a real robot.

Both of these errors were greatly reduced using our com-
bination of information. The participants in our guideline
condition had an average error of 1.65 meters, roughly the
width of the hallway. While the robot can account for such
error in its sensors, responses with larger errors would be
difficult to use because the questions often occurred near
hallway intersections when the robot is uncertain of whether
to turn yet. The predictions on the map indicated to the par-
ticipant to click in the hall instead of in a room. Most im-
portantly, the feature feedback question resulted in partici-
pants looking around at room numbers more than in other
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conditions. This heightened awareness likely impacted the
responses the most in our guideline condition.

6.3 Computation Required to Calculate State Information

As we are motivated by task-driven robots that interact with
people in the environment, we acknowledge that computa-
tion is limited on these robots and generating these ques-
tions may sometimes not be possible. We aimed to use infor-
mation that was largely already calculated or known by the
robot in order to reduce the computational requirements of
asking for help. However, with limited resources, we found
that a robot can increase the accuracy of its responses most
with the least computation by providing at least local con-
text, and also providing uncertainty and asking for feature
feedback. We have found the most significant increases in
accuracy when adding additional context, and suggest main-
taining at least local context when asking for help. When
CoBot provided context, participants’ errors dropped from
4.5 meters to 3 meters to the robot’s true location. Provid-
ing uncertainty information and asking for feature feedback
both increase accuracy without having to generate any new
information. The feature feedback, in particular, requires
that the non-supervisor be more alert of the robot and the en-
vironment and results in more accurate responses, dropping
localization error significantly from 3 meters to less than 2
meters.

7 Conclusion

When a robot asks for help, it must ground the human with
information about its state in order to help them understand
what the robot is inferring. While supervisors are grounded
in the robot’s current state because they are constantly mon-
itoring it, people in the environment have no a priori knowl-
edge about the robot. However, requiring supervision for
each robot is expensive and not scalable so robots will need
to ask people in the environment for help.

The contribution of this work is three-fold. First, we con-
tributed a study design to test whether a robot’s questions are
understandable to non-supervisors. Second, we described
the methods of two studies that use this design successfully
to identify information that participants respond most accu-
rately to. The same combination of information was found
to increase the accuracy of non-supervisors the most in both
studies. Third, we validated against a baseline combination
of information from HRI expert input and contribute the
combination as a guideline for the types of information a
robot should provide when asking for help.

We believe our guideline can be used by other researchers
given our validations. However, other types of information
may also have an impact on how non-supervisors answer

questions and need their own validation using our study de-
sign. Future work is needed to test our questions in long-
term field studies among many more participants to under-
stand the usability of robots that proactively ask for help as
well as how answers change over time as people in the envi-
ronment may get more familiar with a robot.

References

1. von Ahn L, Dabbish L (2004) Labeling images with a computer
game. ACM conference on human factors in computing systems.
In: CHI 2004, pp 319–326

2. Antifakos S, Schwaninger A, Schiele B (2004) Evaluating the ef-
fects of displaying uncertainty in context-aware applications. In:
UbiComp 2004, pp 54–69

3. Argall B, Chernova S, Veloso M, Browning B (2009) A survey of
robot learning from demonstration. Robot Auton Syst 57(5):469–
483

4. Asoh H, Hayamizu S, Hara I, Motomura Y, Akaho S, Matsui T
(1997) Socially embedded learning of the office-conversant mo-
bile robot jijo-2. In: 15th international joint conference on artificial
intelligence, pp 880–885

5. Asoh H, Motomura Y, Hara I, Akaho S, Hayamizu S, Matsui T
(1996) Acquiring a probabilistic map with dialogue-based learn-
ing. In: Proceedings of ROBOLEARN-96, pp 11–18

6. Banbury S, Seldcon S, Endsley M, Gordon T, Tatlock K (1998)
Being certain about uncertainty: How the representation of system
reliability affects pilot decision making. In: Human factors and
ergonomics society 42nd annual meeting

7. Bellotti V, Edwards K (2001) Intelligibility and accountability: hu-
man considerations in context-aware systems. Hum-Comput Inter-
act 16(2):193–212

8. Biswas J, Veloso M (2010) Wifi localization and navigation for
autonomous indoor mobile robots. In: ICRA 2010, pp 4379–4384

9. Clark H (2008) Talking as if. In: HRI’08: proceedings of the 3rd
ACM/IEEE international conference on human robot interaction,
pp 393–394

10. Clark H, Wilkes-Gibbs D (1986) Referring as a collaborative pro-
cess. Cognition 22:1–39

11. Cohn D, Atlas L, Ladner R (1994) Improving generalization with
active learning. Mach Learn 15(2):201–221

12. Culotta A, Kristjansson T, McCallum A, Viola P (2006) Corrective
feedback and persistent learning for information extraction. Artif
Intell 170(14–15):1101–1122

13. Eagle M, Leiter E (1964) Recall and recognition in intentional and
incidental learning. J Exp Psychol 68:58–63

14. Erickson T, Kellogg WA (2001) Social translucence: an approach
to designing systems that support social processes. ACM Trans
Comput-Hum Interact 7(1):59–83

15. Faulring A, Myers B, Mohnkern K, Schmerl B, Steinfeld A, Zim-
merman J, Smailagic A, Hansen J, Siewiorek D (2010) Agent-
assisted task management that reduces email overload. In: IUI’10:
proceeding of the 14th international conference on intelligent user
interfaces, pp 61–70

16. Fong TW, Thorpe C, Baur C (2003) Robot, asker of questions.
Robot Auton Syst 42(3–4):235–243

17. Green P, Wei-Haas L (1985) The rapid development of user in-
terfaces: Experience with the wizard of oz method. Hum Factors
Ergon Soc Annu Meet 29(5):470–474

18. Horvitz E (1999) Principles of mixed-initiative user interfaces. In:
CHI’99: proceedings of the SIGCHI conference on Human factors
in computing systems, pp 159–166



Int J Soc Robot (2012) 4:117–129 129

19. Lee MK, Kielser S, Forlizzi J, Srinivasa S, Rybski P (2010) Grace-
fully mitigating breakdowns in robotic services. In: HRI’10: 5th
ACM/IEEE international conference on human robot interaction,
pp 203–210

20. Mankoff J, Abowd G, Hudson S (2000) Oops: a toolkit support-
ing mediation techniques for resolving ambiguity in recognition-
based interfaces. Comput Graph 24(6):819–834

21. Mcnee S, Lam SK, Guetzlaff C, Konstan JA, Riedl J (2003) Confi-
dence displays and training in recommender systems. In: Proceed-
ings of the 9th IFIP TC13 international conference on humancom-
puter interaction (INTERACT). IOS Press, Amsterdam, pp 176–
183

22. Mitchell T (1997) Machine learning. McGraw Hill, New York
23. Raghavan H, Madani O, Jones R (2006) Active learning with feed-

back on features and instances. J Mach Learn Res 7:1655–1686
24. Rosenthal S, Biswas J, Veloso M (2010) An effective personal

mobile robot agent through a symbiotic human-robot interaction.
In: AAMAS’10: 9th international joint conference on autonomous
agents and multiagent systems, pp 915–922

25. Rosenthal S, Dey AK, Veloso M (2009) How robots’ questions
affect the accuracy of the human responses. In: The international
symposium on robot-human interactive communication, pp 1137–
1142

26. Rosenthal S, Veloso M, Dey AK (2011) Is someone in this of-
fice available to help me? proactively seeking help from spatially-
situated humans. Journal of Intelligent and Robotic Systems pp.
1–17

27. Scaffidi C (2009) Topes: Enabling end-user programmers to vali-
date and reformat data. Carnegie Mellon Technical Report CMU-
ISR-09-105

28. Shadbolt N, Burton AM (1989) The empirical study of knowledge
elicitation techniques. SIGART Bull 108:15–18

29. Shilman M, Tan DS, Simard P (2006) Cuetip: a mixed-initiative
interface for correcting handwriting errors. In: UIST’06: Proceed-
ings of the 19th annual ACM symposium on user interface soft-
ware and technology, pp 323–332

30. Shiomi M, Sakamoto D, Takayuki K, Ishi CT, Ishiguro H, Hagita
N (2008) A semi-autonomous communication robot: a field trial
at a train station. In: HRI’08: 3rd ACM/IEEE international confer-
ence on human robot interaction, pp 303–310

31. Stumpf S, Rajaram V, Li L, Burnett M, Dietterich T, Sullivan E,
Drummond R, Herlocker J (2007) Toward harnessing user feed-
back for machine learning. In: IUI’07: proceedings of the 12th
international conference on intelligent user interfaces, pp 82–91

32. Stumpf S, Sullivan E, Fitzhenry E, Oberst I, Wong W, Burnett M
(2008) Integrating rich user feedback into intelligent user inter-

faces. In: IUI’08: proceedings of the 13th international conference
on Intelligent user interfaces, pp 50–59

33. Weiss A, Igelsböck J, Tscheligi M, Bauer A, Kühnlenz K, Woll-
herr D, Buss M (2010) Robots asking for directions: the willing-
ness of passers-by to support robots. In: HRI’10: 5th ACM/IEEE
international conference on human robot interaction, pp 23–30

34. Yanco H, Drury JL, Scholtz J (2004) Beyond usability evaluation:
analysis of human-robot interaction at a major robotics competi-
tion. Hum-Comput Interact 19(1):117–149

Stephanie Rosenthal is a Ph.D. student at Carnegie Mellon Uni-
versity in Computer Science. She conducts research in human-robot
interaction, artificial intelligence, ubiquitous computing, and human-
computer interaction. She received her B.S. in Computer Science and
Human-Computer Interaction in 2007 and her M.S. in Computer Sci-
ence in 2009 from Carnegie Mellon. Rosenthal is a National Science
Foundation Graduate Research Fellow, a National Physical Science
Consortium Fellow, and a Google Anita Borg Scholar. Rosenthal is
a National Science Foundation Graduate Research Fellow, National
Physical Science Consortium Fellow, Siebel Scholar, and Google Anita
Borg Scholar.

Manuela Veloso is Herbert A. Simon Professor of Computer Science
at Carnegie Mellon University. She researches in the area of Artificial
Intelligence and Robotics. Veloso created and directs the CORAL re-
search laboratory, for the study of autonomous agents that Collaborate,
Observe, Reason, Act, and Learn, www.cs.cmu.edu/~coral. Veloso is
IEEE Fellow, AAAS Fellow, and AAAI Fellow. She is the President-
Elect of AAAI, the Association for the Advancement of Artificial In-
telligence. She is also the recipient of the 2009 ACM/SIGART Au-
tonomous Agents Research Award for her contributions to agents in
uncertain and dynamic environments, including distributed robot local-
ization and world modeling, strategy selection in multiagent systems
in the presence of adversaries, and robot learning from demonstration.
Veloso is the author of one book on “Planning by Analogical Reason-
ing” and editor of several other books. She is also an author in over 250
journal articles and conference papers. As of 2011, Veloso has success-
fully advised 23 Ph.D. students in Computer Science and Robotics.

Anind K. Dey is an Associate Professor in the Human-Computer In-
teraction Institute at Carnegie Mellon University. He holds a Ph.D. and
M.S. in Computer Science, and a M.S. in Aerospace Engineering from
Georgia Tech., and a Bachelor’s Degree in Computer Engineering from
Simon Fraser University. He conducts research on ubiquitous comput-
ing, mobile technologies, machine learning and human-computer in-
teraction.

http://www.cs.cmu.edu/~coral

	Acquiring Accurate Human Responses to Robots' Questions
	Abstract
	Introduction
	Related Work
	Task Domains
	Shape/Object Recognition
	Localization

	Types of Information to Provide
	Context
	Prediction
	Uncertainty
	Feature feedback

	Combining the Information

	Study Design
	No Supervision
	Incentive to Answer
	Control of Question Timing
	Two Phase Validation

	Study Method
	Task Procedures
	Questions and Information Combinations
	Shape Recognition Initial Task
	Shape Recognition Validation
	Localization Task

	Participants
	Measures
	Shape Recognition Initial Task and Validation
	Localization Task
	Surveys


	Results
	Shape Recognition Initial Task
	Shape Recognition Validation
	Localization Task

	Discussion
	Human Benefits of State Information
	Context and Prediction
	Uncertainty
	Feature Feedback

	Errors
	Computation Required to Calculate State Information

	Conclusion
	References


